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ABSTRACT 

As distributed computing systems become popular because of their functional , 

economics and reliability characteristics, a new class of problems has emerged. These 

problems are characterized by the fact that the resources being used by a process as 

well as the syst.em state is distributed. The management of the processes and 

resources in sue b an environment present a challenge that cannot be satisfactorily 

met by the traditional procedural-based methods which often assume the existence 

of shared memories . This paper presents a multiagent structure consisting of cor­

porate processes and their associated aliases as an efficient and systematic solution 

to this class of problems. The model and the kernel primitives necessary to imple­

ment the model together with some design considerations are outlined. An example 

described in terms of the model is also given. 





On process aliases in distributed kernel design 

1. 0 Introduction 

As distributed computing systems become popular because or their functional, 

economics and reliability characteristics, a new class or problems has emerged. These 

problems arise from the fact that the resources used by a process may be distributed 

and reside on different machines. Furthermore, the system state is also distributed. The 

management of the processes and resources in such an environment presents a challenge 

that cannot be satisfactorily met by the traditional procedure-ba::ied methods which 

often assume the existence o{ shared memory. This paper presents a message-based 

model using process aliases ( which we call multiagent structure ) as an efficient and sys­

tematic solution to this class ·or problems. An alias is a light-weight agent that performs 

a small and well-defined task on behalf of a process. It derives its identity from the pro­

cess and does not exist by itself. The alias executes asynchronously to its associated pro­

cess and may reside on the same machine or on a different machine. Thus aliases are 

tools by which a process may be simultaneously present at different sites in the distri­

buted system performing different activities. We show how the multiagent structure 

provides a clean and uniform framework whereby previously hard-to-solve problems can 

be solved systematically, and in some cases easily. The model and the kernel primitives 

necessary to implement the model together with some design considerations are outlined. 

An example code description in terms of the model is also given. 

2.0 Some issues in distributed kernel design 

We outline some of the issues that are either characteristic of a distributed system 

or need to be reexamined in the context of a distributed environment. 

2.1 Resource reclamation 
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Resource reclamation can be quite difficult in a distributed system. This is because 

the system state is distributed across machines. Lack of ad~quate support from the ker­

nel in maintaip.ing a consistent view of the global state at each machine may result in 

loss of resources. 

One scenario is that of a client-server interaction across one or more gateways in an 

interconnected network where the kernel commits some resources at the gateways for the 

interaction. If the client/server dies during the interaction, the kernel abstraction should 

enable the reclaiming of not only the resources committed by the client/server, but also 

the resources that are committed at the gateways. Reclaiming the resources at the 

gateways requires kernel support in the form of death notification to the appropiate 

machines in some systematic fashion. 

The problem is more severe for a connection-oriented client-server interaction con­

sisting of a sequence of transactions ( for example, a file access ) than that or a 

connection-less interaction ( for example, a single transaction of a time request to the 

time server ). Apart from the amount of resources committed at both ends to maintain 

the connections (this is in addition to those required for each transaction), resources may 

be tied up for a long time ( or even lost ) if either the client or the server dies in between 

transactions without the knowledge of the other. Another problem is that if the client 

dies after requesting a transaction, the server should complete the requested operation in 

order to satisfy the atomicity of the transaction to maintain the resource in a consistent 

state. Thus the kernel should allow the ongoing transaction to complete even though the 

client has died. 

2.2 Piping data between servers 

We use the term piping to mean data transfer from one server to another that is 

essentially unidirectional. Typically, the data are not subjected to client process level 

interpretation but may need simple preprocessing. Examples of such transfers are file 

trans( ers and logging of telemetry data in a spacecraft application. The conventional 
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interprocess communication (IPC) models do not support low level stream-transfer of 

data. Typically in these models, the client process reads data from a source, say a disk 

file, into its address space and writes data to the sink, say another file. Since read/write 

requests are processed by the system, a single read/write cycle takes 4 context switches, 

two data copying and two system calls to move data from one point to another in the 

kernel on the same machine. This overhead is about 8.0 msec for l Kbyte of data in 

UNIX 4.2 BSD running on a SUN workstation, constituting about 50% of the system 

time spent in such transfers. Similar overhead has been observed in [4]. Measurements 

done elsewhere on a PDP-11/44 running version 7 UNIX [3] show that this overhead can 

be as high as 70%. 

In a distributed environment, the servers and the client could potentially reside 

across machines adding a new dimension of inefficiency. From the measurement results 

on the V-system [5], we estimate that the data spend about 40% of the time in getting 

across from one server to the client to be piped to another server across machines. Since 

data are not subject to client level interpretation, the large overhead may be curtailed 

by providing a low level path from the source directly to the sink without routing 

through the client process. This eliminates unnecessary data movement, network 

transfers and process activations. Such application-dependent performance optimisations 

require efficient kernel tools on which relevant structures may be built. 

2.3 Asynchronous resource access 

Asynchronous resource access enables a client process to initiate multiple sen·ice 

requests which execute concurrently at different servers in the distributed system. The 

traditional shared-variable type mechanisms used in a single machine environment are 

too restrictive and not viable in a distributed system (1 J since resources can be on 

different machines which do not share memory. The abstraction of an asynchronous 

resource access in a distributed environment requires a message-based multiprocess struc­

ture. In such a structure, the abstraction conceivably requires three processes Pl (client 

process), P2 and P3 with P3 blocked on the server access, and P2 providing an 
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intermediary function between Pl and P3. The function of P2 is to receive a message 

from Pl ( service query ) or P3 ( service completion message ) and reply appropriately. 

2.4 Process interactions across gateways 

When a process interaction extends across one or more gateways, there are 

network-specific protocols that have to be handled at the intermediate gateways, and the 

IPC operations initiated by the sender/receiver must be translated into these network­

specific protocols. These intricacies should be transparent to the sender /receiver. In 

other words, the image activations that are initiated at these gateways should be tran­

sparent to the sender/receiver. Furthermore, as we have seen in section 2.1, the associ­

ated resource reclamation issues require some form of binding between these image 

activations and the sender/receiver. 

2. 5 Process migration 

Process migration is a characteristic requirement of a distributed kernel from the 

point of view of performance, modularity and robustness. Such a kernel feature enables a 

high level process manager to schedule processes across machines during execution to 

effect global load control, and automatic reconfiguration in the event of site failures [6]. 

However this raises a number of issues to be solved at the low level. One obvious prob­

lem is the handling of messages arriving at the original site for the process that has 

migrated elsewhere. This requires some form of kernel-supported message forwarding 

mechanism at the original site. 

2.6 Object search 

A typical example is the location of servers in a distributed system. If objects are 

allowed to migrate, this issue assumes a different dimension. In such an environment, an 

f. 
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IPC may potentially initiate an object search. Though caching techniques may be used 

to contain some of these searches to the local site, a significant number of object 

searches will be across the network. So every object needs to have some form of answer­

ing mechanism for these search protocols. 

2. 7 Handling application-level emergencies 

Emergency conditions are frequent phenomena in real time systems where each 

emergency should be treated in bounded time [7]. A typical scenario is that when a sen­

sor exceeds a threshold indicating an emergency, an emergency message is sent to the 

client for immediate correctin action which could range from turning a valve ON or 

OFF to making a certain amount or complex decision to handle the particular emer­

gency. The source of the emergency, the client and the sink r or the corrective measures 

could potentially be on different machines adding a new dimension to the problem. 

S. 0 Solution approach 

Having outlined a broad spectrum or issues that either are characteristic or a distri­

buted system or need more efficient solutions in the context of a distributed environ­

ment, let us examine how they may be solved. One way is to provide a different. solution 

(or each of the individual problems; this typically takes the form of creating a kernel 

(unction that provides a mechanism to solve a particular problem. This approach has the 

following deficiencies: 

(i) The solution technique is adhoc and is not extensible. Secondly, this increases 

the kernel complexity and size. This is evidenced in the evolution or UNIX 

which started with a well-knit kernel abstraction and turning out to be more 

and more complex as functions are added [4]. 

(ii) Since the issues have varying degrees of interaction with one another, individu­

ally solving the issues results in interactions between the individual solutions 
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which will turn out to be complex and difficult to understand. 

Thus a unified approach is sought which provides solutions to a majority of the issues. 

Our solution method using process aliases discussed in the fallowing sections evolved 

from this approach. 

4- 0 Process aliases 

We propose proceaa aliaae, as a tool to solve the class of issues outlined in section 

2.0. A process alias is an ancillary process that executes on behalf of a main process to 

carry out a limited, well defined function. These aliases may be created by the process 

itself or by the kernel. In the later case, they are transparent to the process and are 

known as invi,ible alia,e, . The alias executes asynchronously to its associated process. 

The process on whose behalf the aliases execute is known as a corporate proce,, . For 

simplicity, we will refer to a corporate process simply as a process in the following sec­

tions. The meaning should be clear from the context. Also the term "agents" and 

"aliases" are used interchangeably. An aliase uses the identity of the associated process 

in all its interactiomi with other processes/alia!!es. In other words, aliases are abstract 

tools by which a process may be simultaneously present at different sites in the distri­

buted system performing different activities. It is different from a process in the follow­

ing respects: 

(i) A process 1s an independent entity whereas aliases do not exist by themselves, 

i.e., as soon as a process dies, its aliases cease to exist. 

(ii) Aliases do not have distinct, high level identity, and they are not subject to high 

level scheduling, i.e., they are executed indivisibly until they exit or are blocked. 

There is no notion of priority as!!ociated with the!!e aliases. 

(iii) Aliases are only support tools provided to perform limited, well defined func­

tions. They are small in size, and have short execution time. They may be 

created in a predefined state. Typical examples of alias functions are to receive 

a message and buffer it, read data from a message channel and write it onto 
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another. 

It is different from a procedure invocation in that the alias executes asynchronously 

to the process while procedure execution is synchronous. Remote Procedure Call ( RPC 

) [8, 9) too is different from remote aliases in the above respect in addition to the fact 

that RPC is a high level abstraction built on top of low level message-passing. 

The rationale behind proposing aliases, rather than full-blown processes for solving 

the distributed system issues is the (ollowing: 

(i) Because or the limited functionality of aliases, the descriptor information ( as 

well as the state information ) associated with them is usually small. This 

results in reduced overhead m terms of storage space, execution time and alias 

management. 

(ii) Aliases could potentially execute within the kernel owing to their limited func­

tionality. For such kernel-resident aliases, the kernel message facilities may be 

accessed much more efficiently than the case of a process accessing them via a 

kernel trap with the associated overhead. The creation or such aliases may be 

done cheaply since they do not require a separate address space, i.e., they share 

the kernel space. 

(iii) Since aliases cease to exist as soon as the associated process dies, the problem o( 

orphans [8] and resource reclamation common in distributed systems is minim­

ised. 

The properties or aliases are different from those used in RIG (10, 11). The RIG 

aliases are independent user-level processes transparent to the kernel, and the process 

has to explicitly manage its aliases. Furthermore, accidental deaths of the original 

processes might leave the alias processes orphans. The same differences apply to alias 

ports used in Accent [12). Our aliases are also different from the ghost processes used in 

COCANET [13). In addition to the differences with respect to RIG aliases, the ghost 

processes in COCANET are essentially used to fill up the lacuna created at the local site 

when the local process perlorms a remote execution. The function of this ghost process is 

to anchor the environment or the remotely executing process to the local site. 
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5.0 Process alias based solutions 

In this section, we discuss solutions to some of the problems outlilied in section 2.0 

based on the process alias concept. 

5.1 Piping data between servers 

As pointed out in section 2.2, the extent of the client's participation in the data 

flow is very minimal, ranging from splicing the data from one server connection to 

another to some simple preprocessing of data. Process aliases may be used to provide a 

low overhead interkernel stream transfer model in such applications. 

Essentially, the client's role is distributed between two aliases each colocated with a 

server. A typical application process anchors one alias each to the source and sink 

servers in a well-connected state. These aliases explicitly control the stream transfer 

from source to sink without the intervention of the process. The aliases stop the stream 

on detection of an end-of-atream or an explicit stream abort message from the applica­

tion process. These aliases could potentially execute at a low level in the kernel. Prepro­

cessed streams may be supported by dispatching intelligent aliaaea to these server sites. 

Since the aliases execute at the server sites, the stream model effectively eliminates one 

bop in the network path. When the model is applied to the degenerate ca5e of a single 

host system, the savings are in terms of data copying, context switchings and system call 

processmg. 

5.2 Resource reclamation 

The key requirement in resource reclamation pertaining to some of the situations 

outlined in section 2 .1 is the detection of the death of a process by another process. Con­

ceivably, the kernel could guarantee that the process death is broadcast to all nodes. 

However, reliable broadcast entails heavy overhead [14]. A solution used in RIG [10) is 
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that the concerned processes register with the kernel that they be notified by emergency 

messages on a particular process' death. This scheme is practical only if the number of 

clients for a server is small. THOTH [2] uses a vulture-based scheme whereby a server 

creates a vulture that is receive-blocked on the client. On the client's death, the vulture 

is unblocked and notifies the server enabling resource reclamation from the server end. 

The death of the server destroys the vulture due to the ancestral relationship between 

them. A limitation in extending this scheme to distributed kernels like V and PORT (5, 

15] is that these kernels do not support remote creation/destruction of processes and the 

associated death notifications across machines. Let us see the implications of this limita­

tion. Suppose the server creates a vulture on the local machine Ml which becomes 

receive-blocked on the client residing on a different machine M2 (see Figure 5.1.a). The 

death of the server automatically destroys its creation, the vulture. But the death of the 

client is not sent to Ml. Thus the vulture is unaware of the client's death, nullifying its 

purpose. On the other hand, if the server arranges to create the vulture on M2 by 

indirect means ( using a process server on M2 ), the client's death can be detected by the 

vulture which notifies the· server. However the server's death does not destroy the vul­

ture since the server is not the ancestor of the vulture, thereby losing the resource being 

used by the vulture (see Figure 5.1.b). 

A kernel model supporting both local and remote aliases overcomes the limitation 

in these systems. The server dispatches an alias ( whose function is essentially that of 

the vulture used in THOTH ) that is receive-blocked on the client. When the server 

dies, the kernel destroys the vulture alias because of its abstraction supporting the alias 

properties ( that they do not have self-existence ). 

5.9 Asynchronous resource access 

Basically, the process creates two aliases to handle the interactions with the server. 

This is illustrated in Figure 5.2. The process creates two aliases Al and A2 with Al 

blocked on the server access and forwarding the reply messages to A2. The function of 

A2 is to buffer the server replies and interact with the process. Such a set up enables 
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the process to pick up the reply messages later. Al and A2 have functions similar to 

those of P3 and P2 discussed in section 2.3. This provides a more efficient solution to the 

problem as the aliases can be managed more efficiently. These agent functions could be 

placed inside the kernel to improve performance. 

5.4, Handling applic_ation level emergencies 

With proper support from the kernel, process aliases may be used to handle appli­

cation level emergencies with a tight upper bound on response time. The occurrence of 

an emergency may be likened to a hardware interrupt that is serviced immediately. A 

similar interrupt-like abstraction at the application level may be realised as follows: the 

application process (client) dispatches an alias Al to the site where the emergency condi­

tion is likely to occur and another alias A2 (which can be local or remote) to handle the 

emergency (see Figure 5.3). The execution thread of A2 extends into the application level 

interrupt handler. When Al senses an emergency ( in the form of a message from a local 

process, say, a sensor preprocessor ), it dispatches an emergency message to A2. The ker­

nel forces a context switch and executes A2 to handle the emergency. Simple corrective 

measures could be applied by the aliases themselves without getting back to the client if 

they are equipped with sufficient information when created. In such a situation, the 

remote aliases use the same model of communication discussed in section 5.1. 

6.0 Invisible process aliases 

These are aliases created by the kernel without explicit request from the process. 

The invisible aliases exhibit the same properties as discussed in section 4.0 except that 

they operate at a lower level than those explicitly created. They provide a good solution 

to problems such as those arising from IPC interaction across gateways and process 

migration. When the sender and the receiver are on different interconnected networks, 

location transparency requires that the sender be unaware of the location of the receiver, 

let alone the intervening gateways. The gateway implements different types of protocols 
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matching the network characteristics. These protocols may be encapsulated in the alias 

functions. In this context, these aliases may be thought of as abstract objects provided 

by the kernel to activate these protocols. 

Consider the process migration scenario. The message forwarding function may be 

encapsulated in an invisible alias and instalJed in the original site by the kernel. Since 

process migration is usually an involuntary ( as well as transparent ) activity initiated by 

the kernel, the process is unaware of its alias residing on the original site. If the process 

migrates further, an identical alias is created on the second machine to relay the for­

warded messages. When the process dies, it is the responsibility of the kernel to destroy 

such alias activations on both the local and remote sites. 

7.0 Implementation considerations for aliases 

The identifier of an alias may be derived Crom the corporate process itself. This 

allows the binding between the alias and the process to be made efficiently. This also 

enables the kernel to quickly authenticate the requests made by an activation ( process 

or alias ). If an alias is frequently used and its functions are well-defined, it could be 

made kernel-resident. These kernel-resident aliases provide an efficient mechanism to 

handle the various issues in the distributed kernel since their creation, destruction and 

the message-passing activities could be efficiently managed inside the kernel. Thus if we 

liken the kernel to a government and the corporate process to an individual, then this 

mechanism is analogous to the individual hiring various contractors owned by the 

government as his agents where each contractor is capable of doing a limited, well­

defined function, and has access to all the internal machinery of the government. 

8. 0 The abstract model of a kernel supporting aliases 

Our model of the process structure in a distributed environment is that of a cor­

porate process served by a heterogeneous set of agents. The execution of this mu/tiagent 
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atructure results in the execution of the entire program in the distributed system. Some 

of the agents could be on remote machines executing on behalf of the corporate process; 

some could be kernel-resident for performance considerations. The multiagent structure 

can be likened to a company located at some site with a large number or agents ( visible 

and invisible aliases ) working for the company at various sites. The relationship 

between the process and its aliases a.re governed by the properties discussed in section 

4.0. Thus our multiagent structure is different from the multiprocess structure as used 

in V and PORT in two respects: 

(i) There is support for local and remote aliases. 

(ii) The relationship between the process and its aliases is asymmetric. 

Another difference is that V-kernel team members reside in a single address space 

on the local machine. More importantly, remote processes a.re not supported in these 

kernels. The process itself has to arrange r or remote creations indirectly through the 

remote IPC supported by the kernel. This lack of kernel support for remote processes 

puts a severe limitation in _resource reclamation discussed earlier. 

8.1 Obiects provided by the kernel 

Having introduced the notion of a multiagent structure, we now describe our model 

of the kernel that supports such a structure. The kernel provides proceaaea, aliaaea and 

porta as the primitive objects. The former two a.re active entities and the latter is a 

passive one. Besides queueing messages, ports are also used to anchor aliases onto the 

process. They provide an abstract mechanism to create, maintain and destroy aliases by 

the kernel. Ports are tightl31 coupled with the process in that they can be manipulated 

only by the process that created them. Ports a.re automatically destroyed when the asso­

ciated process dies. The abstraction of tight-coupling and non-self-existing property of 

the ports is introduced to satisfy the alias properties outlined in section 4.0. Further­

more, we introduce the notion of typing the ports with each port type allowing only 

specific operations so as to anchor application-specific protocols as alias functions. Ports 

I' 

, 



are typed as follows: 

Port_type 

CLIENT _PORT 

SERVICE_PORT 

SYMMETRIC_PORT 
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Permissible operations 

Send service requests and receive service replies. 

Receive service requests and send service replies. 

Send and receive data/control messages. 

The SYMMETRIC_PORT is subtyped as SYNC, ASYNC, CONCURRENT and EMER­

GENCY. They are characterised as follows: 

Symmetric_port_type 

SYNC_PORT 

ASYNC_PORT 

EMERGENCY _PORT 

CONCURRENT_PORT 

Permissible receive operations 

Receive a message and send a reply message as soon as 

the recepient picks up the message. 

Receive a message and send a reply without waiting for 

the recepient to pick up the message. 

Receives an emergency message, forces an immediate 

entry in to the appropriate emergency handler, and then 

replies. 

Receives the appropriate typed I!"~ssage. The reply mes­

sage is sent after the message-initiated activation is over. 

The send operation on a particular port is to send an appropriately typed message and 

wait until a reply message arrives from the destination port. Our notion of ports is 

different Crom that of Accent [12] and UNIX IPC [161 in three respects: 

(i) Accent ports are free objects whereas our ports are tightly coupled to the pro-

cess. 

(ii) Accent ports are ·untyped while ours are typed objects. 

(iii) Our ports provide a mechanism for message-triggered concurrent executions 

within the program ( EMERGENCY and CONCURRENT ) while Accent ports 



are exclusively used for IPC operations. 

The differences (ii) and (iii) apply also to RIG ports (10, 11]. 

Aliases are anchored onto these ports to implement the specific port types and 

functions specific to these port types. Since every IPC message is to be initiated through 

one of these ports which might result in the creation of invisible aliases, the ports may 

also be used by the kernel to anchor information about these aliases. A typical skeleton 

of a port descriptor ( in a C-like syntax; appropriate types are assumed for the variables 

) is given below: 

struct port_dsp / • Port descriptor • / 

{ 

} 

port_id; 

port_type; 

struct alias_dsp •local_alias_dsp; 

struct rem_alias •remote_alias_dsp; /• Both are managed 

by the kernel on request by the process • / 

struct inv _alias • invisible_alias_dsp; / • Managed by 

the kernel transparent to the process • / 

struct alias_dsp / • Alias descriptor • / 

{ 

owner_process_id; 

owner_port_id; 

owner _port_type; 

alias_type; 

alias_func_code; 

alias_state; 

alias_entry _point; 

msg_m_q; 

msg_out_q; 

/• Local/remote • / 

/• Alias attributes • / 

/ • Message queues • / 
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} 

struct rem_alias 

/• Information for· the remote alias as available on the 

port descriptor at the local site • / 

{ 

} 

dstn_process _id; 

dstn_port_id; 

remote-site_id; 

remote_alias_state; 

remote_alias_func_code; 

struct inv _alias 

/• Information about the invisible alias as available on 

the port descriptor at the local site • / 

{ 

} 

remote_site_id; 

remote_alias_state; 

remote_alias_runc_code; 

8.2 Notion of a logical network 

The distributed system is abstracted as a set of processes ( with or without aliases 

), each executing on a logical machine, and accessed by others through a logical net­

work. In this model, each process communicates with another via the logical network, 

even though the processes involved reside on the same physical machine. This logical 

network may map onto to a physical network ( when processes are on different machines 

) or onto a simple software loop-back ( when processes are on the same machine ). Thus 

the notion of remote and local is only a logical one. This notion has the following 
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advantages: 

(i) It avoids the necessity of having two sets of protocols, one for local and one for 

remote interactions as done in the V-kernel (5) and SHOSHIN (19]. 

(ii) It facilitates easy and transparent relocation or objects. When an object migrates 

to a different machine, only the mapping or the logical network needs to be 

changed. 

(iii) The placement or local and remote aliases is well-defined and uniform. 

8.S Object identification 

An activation is identified by the quartet 

<activation_id> =-= <reincarnation_id, host_id, local_pid, alias_id> 

based purely on locally available information. The <reincarnation_id > uniquely 

identifies the system instance across failures, the <host_id> uniquely identifies the host 

in the network and the <local_pid> identifies the corporate process uniquely within the 

local host. The <alias_id> is a 5mall integer that identifies the alia5 activation for the 

process; a value of zero implies that it is the id of the root activation which is the hub of 

all activations at both local and remote Bites. A non-zero value implie5 that it i5 an alias. 

<alias_id> inherits its value from the <port_id>. Each port is assigned a process-wide 

unique integer value as its identifier. 

Each host joining the network broadcasts a message looking for the highest 

<host_id> in the network. Each host maintains a pair or variables <highest_host_id, 

local_host_id>. The host whose <local_host_id> equals the <highest_host_id> in 

the network responds with the id. The requestor then UBes the next higher id and broad­

casts this to other hosts. 

8.4 Kernel primitives 
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The services requested by the client are sent as messages <msg> to the kernel. 

The kernel interprets these messages to perr orm the appropriate services. In this sense, 

the messages are strongly typed. We describe the procedural interface to the kernel ser­

vices in this section. All high level operations are realised in terms or this procedural 

interface. Each or the primitives returns a structured value containing the success code 

and other primitive-dependent data. The list is by no means exhaustive. 

1. process_id = create_procea, ( ,ite_id, proce11_attribute1 ) . 

The kernel creates a process on the specified site. The process_id or the created 

process is returned. The local kernel interacts with its peer on the specified 

machine to create the process. The <process_attributes> specify the initial 

state or the process, the initial entry point, the port that is created along with 

the process, the message that is to be delivered to the process on its invocation, 

etc. 

2. err_code = de1troy_proce11 { proceu_id}. 

The kernel destroys the process specified by < process_id>. All resources associ­

ated with the process are reclaimed. All aliases for the process existing in the 

system are destroyed. 

3. err_code = create_port ( port_type, port_id} . 

The kernel creates a port or the specified type and id r or the process. This is a 

local operation. <port_id> is unique within the process. 

4. err_code = deatroy_port ( port_id) . 

The kernel destroys the specified port. The resources allocated to the port are 

reclaimed. Also it destroys all aliases ( both local and remote ) a.,sociated with 

the port. 

5. <process_id, port_id> -= locate_,erver ( aerver_name). 

The kernel locates the server specified by server_name. The kernel makes a local 

search or it~ internal tables to locate the server. Ir this fails, a broadcast-based 
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networkwide search is made. The alias for the server process replies to the mes­

sage with the pair <process_id, port_id>. The kernel also caches the mapping 

in its local tables for future references subject to table size constraints. 

6. err_code = create_alia, ( alia,_type, local_port_id, remote_procea,_id, 

remote_port_id, function ) . 

The kernel creates an alias to implement the specified function. There is no dis­

tinct identity for the alias; it is identified by the associated port_id itself. 

7. err_code = de,troy_alia, ( aliaa_type, local_port_id, remote_proceaa_id, 

remote_port_id ) . 

The kernel destroys the specified alias. The kernel handles the orphaned service 

requests that may arise due to such a destruction. The resources used by the 

alias are reclaimed. 

8. err_code = aend_m,g_to_aiia, ( aliaa_type, local_port_id, 

. remote_proceu_id, remote_port_id, mag ) . 

The kernel sends the message <msg> to the alias associated with the port_id. 

The alias performs the required activities bracketed by receiveJrom_proceaa 

and reply_to_proceu operations. The structure or <msg> is dependent on the 

alias function. 

9. err_code = ,end_m,g ( ,rc_port_id, thtn_proceaa_id, 

datn_port_id, mag ) . 

Sends a message <msg> through src_port to the specified destination port to 

be received by the specified process. Non-specific recipients are supported. The 

blocking property or the primitive and the underlying kernel activities depend 

on the port type which specifies the message that unblocks the sender. Note that 

sending a message through a port of type SERVICE_PORT is equivalent to 

sending an application level reply message. 



10. err_code = recv_mag { port_id, aource_qualifier, arc_proceu_id, 

arc_port_id, timeout, mag ) . 

Receive a message <msg> on the port specified by <port_id>. The message 

originator is qualified by <source_qualifier> which can be SOURCE_ANY, 

SOURCE_SPECIFIC. The primitive can be made blocking, non-blocking and 

blocking with timeout by the <timeout> parameter. 

11. err_code = ezitJrom_port_hand/er () . 

The alias anchored on the particular port ( or type CONCURRENT or EMER­

GENCY ) returns control to the kernel, and gets initialised to a meaaage_wait 

state. An appropriate reply message is sent. 

An example or a high level operation (file serve access) using our model or the ker­

nel is given in Appendix-A. 

9. 0 Conclusions 

We have discussed the use or process aliases. to solve a class or problems ror distri• 

buted systems. Some design considerations and kernel primitives supporting the multi­

agent structure have also been presented. Besides lending an efficient solution, the alias 

approach also provides a clean and uniform framework whereby previously hard-to-solve 

problems can be solved systematically, and in some cases easily. The notion of aliases 

have been used indirectly in some systems ror network IPC. However none has explored 

the potentials or the multiagent structure as presented in this paper. Indeed the solu­

tions require our aliases to assume some different properties than those used in other sys­

tems. In RIG (10), the kernel does not support the notion of aliases, and the process has 

to explicitly create an alias for itself. In the Accent kernel, which uses free ports for IPC, 

the alias ports must also be explicitly created and managed by the process [12]. In both 

these systems, the abstract properties mentioned in section 4.0 cannot be provided by 

the kernel. Thus for example, the accidental death of the original process could orphan 
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its aliases. V-kemel supports the notion of invisible aliases in its internet communica­

tion [l 7]. However, they are identified separately from their processes. It uses a special 

bit in the process identifier to distinguish an alias from a process. There is no relation­

ship maintained in the alias identifier with respect to its process. In such a scheme, the 

kernel has to make an extemive arrangement in binding such aliases with a process to, 

for example, locate the aliases when a process dies. 

We believe the ideas presented in this paper constitute a sound foundation for 

further research in distributed kernel design. A system based on the model described is 

being implemented on a network of SUN workstations connected by an Ethernet. 
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Appendix-A 

Code skeleton of file server access using our rrwde/ of the kernel 

int function file_open_client ( file_server_name, file_name, file_attributes ) 
<Variable declaratioll5 > 

{ 
status = create_port ( CLIENT_PORT, client_port_id ); 
if ( status.error_code == FAILURE ) 

return ( <error_code> ); 
<rqst_msg> = <file_name, file_a.ttributes, FILE_OPEN>; 
<file_srvr_id> == locate_server ( file_server_name ); 
status == send_msg ( client_port_id, file_srvr_id.process_id, 

file_srvr_id.port_id, rqst_msg ); 
if ( status.error_code === MSG_SUCCESS ) 

if ( msg.reply_code === OPEN_SUCCESS ) 
{ 

} 

file_desc .client_port_id = client_port_id; 
file _desc .srvr _id. port_id == file_srvr _id. port_id; 
file_desc .srvr_id.process_id == msg.instance_id; 

/ • The instance that handles the client is returned • / 
file_desc .attributes = file_attributes; 
create_alias ( REMOTE, client_port_id, file_desc.srvr_id.proc.ess_id, 

file_desc.srvr_id.port_id, VULTURE ); 
return ( file_desc ); 

/• The association between the client port and the file server 
instance is set up by this interface • / 
else 

return ( FILE_OPEN_F AIL URE ); 
else 

return ( MSG_ERROR ); 

} / • End of function • / 

The code skeleton executed by the file server proprietor is as shown: 

function fi.le_server_proprietor () / • fi.le_srvr.process_id • / 
{ 
forever 



{ 
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status= recv_msg ( file_server_port_id, SOURCE_ANY, 
O, 0, BLOCK, msg ); 

if ( msg.code == FILE_OPEN ) 
{ 

<instance_msg> = <file_name, file_attributes, FILE_OPEN, 
msg.client_process_id, msg.client_port_id>; 

status =-= create_process ( LOCAL, <file_server_port_id, 
instance_msg, file_server_instance, 
instance_state > ); 

if( status.error_code == FAILURE ) 
{ 

} 

msg.reply_code = INSTANCE_NOT_CREATED; 
send_msg ( file_server_port_id, msg.client_process_id, 

msg.client_port_id, msg ); 

/ • Reply message • / 

} /• If ... FILE_OPEN ... • / 
if ( msg.code === STATUS_QUERY) 

{ 
< msg > == < file_server _status>; 
send_msg ( file_server_port_id, msg.client_process_id, 

msg.client_port_id, msg ); 

/ * Reply message • / 
} 

. <other operations done by the proprietor> 

} / • forever loop • / 
} / • end of function • / 

function file_server_iW!tance( msg ) / • Associated with a file • / 
{ 
forever 
{ 

} 
} 

do_a.,_requested ( msg ); 
status == recv _msg ( file_server_port_id, SOURCE_ANY, 

0, O, BLOCK, msg ); : 

function do_a.,_requested ( msg ) 
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<Variable declaration> 
{ 
switch msg.code or 
{ 

case FILE_OPEN: 
{ 

. < file server internal operations to set up data 

. structures associated with the file> 

if ( <file open is successful> ) 
{ 

} 

<reply_msg> = <imtance_id, file_open_success_code> 
send_msg ( file_server_port_id, msg.client_process_id, 

msg.client_port_id, reply _msg ); 
/• Reply message • / 

else 
{ 

} 

<reply_D1sg> = <file_open_failure_code>; 
send_msg ( file_server_port_id, msg.client_process_id, 

msg.client_port_id, reply _msg ); 
/ • Reply· message • / 

destroy _process ( SELF ); 

} /• End or case FILE_OPEN •/ 
case READ_ WRITE: 
{ 

. <validate client request, do the requested operation> 

<reply_msg> = <server_reply>; 
send_msg ( fi.le_server_port_id, msg.client_process_id, 

msg.client_port_id, reply_msg ); 
/ • Reply message • / 

} /• End or case READ_WRITE •/ 
cue CLOSE: 
{ 

. <Destroy all associations, return all resources> 

<reply_msg> = <server_reply>; 
send_msg ( file_server_port_id, msg.client_process_id, 

msg.client_port_id, reply_msg ); 



/ • Reply mesiiage • / 
destroy _process ( SELF ); 
} 

} /• End of switch loop•/ 
} /. End of function • I 
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