
A FAST DIVIDE AND CONQUER PROTOCOL FOR CONTENTION
RESOLUTION ON BROADCAST CHANNELS

by

Karl Abra hams on

Technical Report 85-3

April 1985

A FAST DIVIDE AND CONQUER PROTOCOL FOR CONTENTION
RESOLUTION ON BROADCAST CHANNELS

Karl Abrahamson
Department of Computer Science

University of British Columbia
Vancouver, B.C. V6T 1\V5

Canada

Abstract

\Ve describe a contention resolution protocol for an ethernet-like broadcast channel.
The protocol is based on tree algorithms, particularly that of Greenberg. We show how
to obtain a sim pier and more accurate estimate of the number of contending stations
than Greenberg's met.hod, and use the new estimation method to obtain an improved
protocol.

. '

,
I

- 2 -

1. Introduction

Greenberg and Ladner [3] describe an abstract model of a broadcast network. The

model had previously been studied in [1,5,6,7,8], and subsequently by (4,9}. Greenberg

and Ladner describe a protocol r or efficient and fair sharing of the broadcast channel.

This paper describes an elegant modification of their protocol which improves both its

efficiency and its practicality.

In the next seciton, the model of a network is described. Following that, we discuss

a divide and conquer paradigm for designing protocols, and describe some known divide

and conquer protocols, including Greenberg and Ladner's. In section 5 the new protocol,

also a divide and conquer protocol, is described. Finally, the protocols are analyzed and

compared.

2. The Model

Our model is an abstraction of an ethernet-like broadcast network. Our notation is

borrowed from Willard [9]. There are N stations connected to a single broadcast chan

nel. Time is discrete. At each time slot, each station may choose either to broadcast or

to listen. In each time slot, one of three possible events occurs: 0 (no station broad

casts), 1 (exactly one station broadcasts) or e (two or more stations broadcast). Each

station knows the events which occurred in time slots O, .•. ,k-1 before it decides whether

to broadcast or listen in slot k.

Mes5ages are generated by the stations an some unknown random fashion. Each

station must successfully transmit itB messages. A 1 event corresponds to the successful

transmission of a message. An e event signifies an interval of contention for the channel,

during which no messages are successfully transmitted.

- 3 -

Our goal is to develop a protocol for channel access which a) gives each station fair

access to the channel, and b) obtains a high expected proportion of time slots containing

l events.

Our definition of f aimess is as follows: A protocol is k-fair if it permits any given

station at most k successful transmissions during any time interval in which a) some sta

tion x does no successful transmissions, and b) station x desires to send a message

throughout the interval. All of the protocols discussed here are 2-fair.

The protocols considered in this paper are probabilistic. Each strives for a high

expected throughput, averaged over the random values that it uses. Throughput is dis

cussed in section 6.

3. Divide and Conquer Protocols

It is most convenient to present a protocol as ir it were being executed by the chan

nel, rather than by each of the stations. Imagine the channel maintaining sets of sta

tions, and causing all of the members of a given set to broadcast in a given time slot.

Of course, in reality a protocol must be executed by the individual stations. It

must therefore be designed in such a way that each station can,, by simulating the chan

nel, determine what its own behaviour !!hould be. Each station may make use of locally

available information and the sequence of event!! which ha., occurred on the channel.

Two operations, conceptually executed by the channel, but which can be simulated by

each station, are

a) (A1, ... ,An) := partition(S,p1, ... ,pa). Her~, S,Ai, .. ,,Aa are sets of stations, and p1, ... ,pa

are probabilities which sum to I. The sets A1, ... ,Aa form a partition of S, and are

computed by independently placing each member of S into a randomly chosen Ai.

- 4 -

Ai is chosen with probability Pi, i = l, ... ,n.

b) Broadcast(S). Cause each member or S to broadcast during the next time slot, and

advance the clock one unit. Future actions may depend on the event caused by

Broadcast(s); that is, on whether IS I = 0, IS I = 1 or IS I > 2.

A divide and conquer protocol proceeds in a series of ,euion,. At the beginning of

a session, each station with a message to send is placed in a set S. Then SATISFY(S) is

executed. SATISFY(S) causes each member of S to send exactly one successful message.

When SATISFY(S) is finished, the next session begins. By listening to the events which

occur on the channel, and simulating the execution of SATISFY{S), every station

(including those not in S) can determine exactly when SATISFY(S) is finished.

The basic design for SA TIS FY is as follows. For convenience later on, we add an

output parameter n to SATISFY, which is set equal to ISi.

SA TISFY(S .n):

end.

Broadcast(S);

on 0: n:=0;

on 1: n:=l;

one: RESOLVE(S,n)

RESOLVE(S,n):

1. Choose a number m and probabilities p1, •• ·,Pm, in such a way

that aJI stations agree on their values;

2. (A1, ••• ,Am) := partition(S,p1, ... ,pm);

3. For i := 1 to m do SATISFY' (A;,n;)i

- 6 -

end.

Protocol SATISFY' may be SATISFY itself, or may be some other protocol. A

divide and conquer protocol is determined by its choice of m,p1, ... ,pm, and its choice of

protocol SATISFY 1 •

In the next two sections, we describe several different versions of SATISFY. Some

do not fit exactly into the framework given in this section, but require small

modifications.

3. Previously Known Protocols

This section describes three divide and conquer protocols: Basic Binary Tree [1,8},

Improved Binary Tree [6,7,8] and m-ary Tree [2,3,4}.

3.1. Basic Binary Tree (BBT)

BBT is the simplest divide and conquer protocol. Simply choose m = 2,

p1 = p2 = 0.5, and SATISFY 1 = SATISFY. Figure 1 shows a possible execution of

BBT with I S I = 4. The tree represents the recursion structure of an execution.

3.2. Improved Binary Tree (mT)

Consider the procedure RESOLVE(S,n) with m == 2:

(A1,A2) := partition(S,p1,p2);

SATISFY (A1,n1);

SATISFY (A2,n2)i

-8-

~3}

{ 2} { 3}

Figure l. A possible execution of BBT with n = 4.
The sequence of events is eeOellel l.

Suppose a given execution of partition chooses A1 == 0, A2 == S, as will occasionally hap

pen. Then n1 = 0. \Vithout any further action, A2 = S can be inferred. Furthermore,

RESOLVE(S,n) is only called when IS I > 2. So I A2 I > 2 is inferred, and

Broadcast(A2) is guaranteed to produce an e event. That broadcast could be saved by

replacing SATISFY(A~,n2) by RESOLVE(A2,n::J , whenever n1 = 0.

Notice that no such savings is possible when A1 = S and A2 == 0. So A1 == 0 is

preferable to A2 = 0. Such a preference makes it desirable to bias the probabilitie3 p1

and p~, with p2 > p1• Hofri [6] shows that the optimum value of p1 is about .41 i 5.

Protocol IBT is BBT with the above two modifications: skipped broadcasts and

biased probabilities.

3.3. M-way Tree (MWT)

MWT uses an eatimation procedure to obtain an estimate n of n = I S I , agreed

on by all stations. The value of m is chosen to be max(l,Lo:iiJ) for some fixed constant

o; Pi= 1/m for i = 1, ... ,m. For SATISFY', M\VT uses IBT.

Suppose that ii is a good estimate of n, and o is close to 1.0. Then the effect of

MWT is to partition S into subsets A1, ••. ,Am of expected size close to one. \Vith any

luck, a good fraction of the subsets will be singleton .

- 'I -

The accuracy of n as an estimate of n is important to the efficiency of MWT. If n

is too large, many of the sets A1, ... ,Am are empty, and MWT generates many O events.

If n is too small, MWT degenerates to IBT.

Greenberg and Ladner propose an estimation procedure. To estimate ISi, perform

Broadcast(A)

for i = 1,2, ... , until a O or 1 event occun,. If the fin,t O or 1 event occurs when i = k, let

n = c2k, where c is a bias-counteracting constant (approx. 1.1).

Using the above estimation procedure, with o ~ 0.9, does give an improvement

over IBT (see section 7). But the estimation procedure produces an estimate n with

standard deviation greater than .6n [4]. A better estimation procedure might yield a

better algorithm.

And indeed, it does. Greenberg et al (4} suggest using the above estimation pro

cedure, but with (l+t)i in place of 2i. With suitable adjustments, they achieve a better

estimate, and hence an (asymptotic) improvement in the efficiency of the MWT protocol.

Unfortunately, for t and n both small, the time spent getting an estimate greatly exceeds

the time it would take to run a simpler protocol, such as BBT. A simpler and more

practical estimation procedure is given in the next section.

5. Improved Estimates

Suppose we partition S randomly into two sets A and B of equal expected size.

Then we count IAI, ezactly, and use that as an estimate of IBI. For ISi large, we have a

very accurate estimate of IBl, which can be used for them-way tree algorithm.

-8-

How can IAI be counted! Recall that our goal is to SATISFY(S), which can be

accomplished by SATISFY(A) followed by SATISFY(B). But, as a side effect,

SATISFY(A) computes IAI. The Sibling Estimator {SE) protocol makes use of that side

effect. Let SATISFY-IBT and RESOLVE-IBT be the Improved Binary Tree protocol

described in the previous section.

SATISFY- SE(S,n):

end.

Broadcast(S);

on 0: n:=0;

on 1: n:=l;

on e: {(A,B):=partition(S,0.5,0.5);

SATISFY-SE(A,ni);

if n1 = 0 then RESOLVE-IBT(B,n2)

else {m:=max(l,lonJ);

SOLVE-MWT(B,n2,m)};

SOLVE- MWT(S .n,m):

end.

(A1, •.• ,Am):=parition(S,l/m, ... ,l/m);

For i:=l tom do SATISFY-IBT(Ai,ni);

n:=n1+ ... +nm

6. Efficiency Mea.sures

-9-

The expected number of time slots in a session of SATISFY(S,n) depends only on

n = IS I (the multiplicitu of the session) and on the version of SATISFY used (BBT,

IBT, etc.). Let tA(n) be the expected number of time slots in a session of multiplicity n,

for protocol A. Define the local throughput of A a.,

T~n) is the expected proportion of time slots containing successful transmissions, for

sessions of multiplicity n.

The efficiency of a protocol is measured by its throughput, which is just the

expected proportion of time sloes containing successful transmissions, under conditions of

heavy load on the channel. The load on the channel may be distributed arbitrarily

among the N stations, and a protocol's throughput depends on that distribution. As an

extreme example, consider the case when all of the messages are generated by a single

station. Then a naive protocol has a throughput of 1.0.

We analyze protocols under two different assumptions about the distribution of the

load among the stations.

a) The load is distributed in a completely unknown fashion, and throughput is meas

ured under the worst possible distribution. The min throughput of protocol A is

defined as

b) N is infinite, and the load is distributed in such a way that, as the number of

untransmitted messages grows, so does the number of stations holding untransmit

ted messages. The limit throughput of protocol A is defined as

• 10 •

T1~ = lim inf {TA(k):k > n}.
n-+oo

The limit throughput is useful under the common assumption [1,2,6,8) that the

messages are generated by an infinite Poisson process of fixed intensity >.. For any >. less

than the limit throughput, the expected delay between generation and successful

transmission of each message is bounded [6].

7. Limit Throughput

The limit throughputs for BBT, IBT, MWT(2) (M\VT usmg Greenberg and

Ladner's estimation procedure) and M\VT(t) (MWT using the modified l+t estimation

procedure, for f = 10-4
) are given below, rounded to four decimal places. Sources for

the four results are, respectively, [1,8}, [61, [2,3) and [4).

T 1PJT = .3465 (1)

T1!~ = .3813 (2)

T1~(2) = .4303 (3)

Tit!'VT(i) = .4686 (4)

Our goal in this section is to analyze the limit throughput of the SE protocol.

Recall that the SE protocol involves a parameter o. It is convenient in what follows to

assume 1/2 < o < 2, so that max(l,lokJ) is 1 fork = 1, and LokJ fork > 1. We will

see that the optimal value of et is in fact about 0.785.

Let w(n,m) be the expected number of time slots used by SOLVE-MWT(S,n,m).

Let t8E(n) and t18T(n) be the expected number of time slots used by SATISFY-SE(S,n)

- 11-

and SATISFY-IBT(S,n), respectively. The following equations describe the behaviours of

the SE and IBT protocols. Let p = .4175, and q = 1-p.

(5)

(6)

(7)

(m>l) (8)

(9)

tSE (n) = 1+2-n t!BT (n) + nrn (l+tlBT (n-1)} (10)

The quantity w(n,m) can be bounded as follows. Let

Lemma 1. Letµ= >.n/(n->.). Then for >.<n,

Proof.

by (8)

- u-

by elementary calculus

0

Corollary e: As n approaches infinity, for fixed>., w(n,n/>.) is asymptotic to Kxn,

Proof. Examination of the proof of lemma 1 ehows that a.,ymptotic equality can be

proved.

[I

Choose an arbitrarily large I, and imagine executing SATISFY-SE(S,n) to I leYels or

rectmiion (see figure 2). Let Ai be the left sibling or Bi, and define random variables

ai = I Ai I , bi == I Bi I , i = 1, ... ,1. Due to the independence of the partitions at the

various levels, a1 is binomially distributed with mean nr1• In the next section we show

that t5E(n) = O(n). Bence, the expected time use by SATISFY-SE(Abai) is

(12)

for some constant c.

• 13 •

..

Figure 2. Execution of SATISFY-SE to I levels.

The cost of satisfying the B/s may be counted as follows. For any r >I, let

Pub(n,l,r) be the probability that at least one of the I partitions shown in figure 2 is

unbalanced by more than a factor of r; that is, P ub(n,l,r) = Prob(for some i, either

E(~ cost of Bi) = P ub(n,l,r) E (~ w(bPl, LoaP~))
I I

where aPl, b?l, a/2) and b/2) are appropriately distributed random variables. We show

in the next section that w(n,m) = O(n+m). Choose >. andµ = >.n/(n->.) such that

Then, by lemma I,

E(~ cost of Bi) < P ub(n,/,r) ~ c(bi + aai)+ ~ ~ e,-~K,.bi
I I I i\

(13)

for some constant c. For any fixed I and r>I, lim Pab(n,l,r) = 0. Hence, there must be
D-+00

functions (n) and r(n) such that lim (n) = oo, lim r(n) = 1 and
D --+oo D -+oo

lim (n)Pub(n,(n),r(n)) = 0. From those functions, and inequalities (12) and (13) we
D-+00

obtain

Lemma 9. As n approaches infinity, t 8E(n) is asymptotic to K1; 0 ·n .

Figure 3 shows a graph of K1;a vs o. The m1mmum occurs at approximately

o = .785, where K1; 0 ~ 2.134 and T1f! ~ .4086. It is no coincidence that

T1r! ~ Tl!'''T(t); SE uses M\VT with asymptotically exact estimates, while the estimate

used by M\VT(t) approaches asymptotic exactness as t approaches zero.

4

3

2 .134

1

8. Min Throughput

. 785
1 2 3

Figure 3: Ki/a vs. a.

Equations (5) through (10) provide a basis for computing t 8E(n) for small values of

n. Figure 4 shows the results of such a computation, as well as similar results for IBT

and MWT(2). The computation indicates the following (rounded to four decimal places):

T ~<2> -= ,-MWT(2l(2) == .3166.

It remains only to demonstrate that the observed minima are the true global minima.

For IBT, the fflJult is easy. We are willing to give MWT(2) the benefit of the doubt;

certainly, the true min throughput is no better than given above. The remainder of this

section is devoted to showing that T 8~n) > .416 for n > 200. The reader who is con

vinced by Figure 4 may skip to the next section.

0.5

IBT

0.4

0.3

1

SE

¼

Lemma 12 bound on SE.

10 100
12

200

- - __ ...

__.
00

Figure 4. Local throughputs of three protocols, and the bound of Lemma 12.

We begin with some lemmas whose proofs are only sketched.

Lemma 5. For n>O, t 1BT(n) < 8/3 n- 5/6.

Proof. See [7).

Lemma 6. For n,m>O, w(n,m) < 8/3 n+m-11/6.

Proof. The worst case in m-way split occurs when all of the partitions bttt one are

empty.

Lemma 7. For n>O and 1/2 < o<2, t 8,n) < (! +o)n.

Proof. Straightforward induction on n, using equation (10) and lemmas 5 and 6.

Proof. Elementary calculus.

\Ve intend to break the binomial distribution (k) rn into a middle region

(b < k < n-b) and a tail region (k<b or k>n-b), where b = (1t)n, for some suitably

chosen L Throughout the r ollowing, let b = (1 t)n. We begin by bounding the tail.

Lemma 9. ~ (n) < (0)(l-t).
k~O k b 2t

Proof. Let x1 denote the decending power x!/(x-y)!.

Define

Proof.

b
< (n) E (1-t y

b j=O l+t
. b (1-t) smce = -

2
- n

An application of lemma 8 gives the desired result.

Define

[I

(by lemma 9)

(by Stirling' s formula)

. b (1-t) srnce = -
2
- n.

[I

- 18 -

Lemma 11.

Proof. The two sums have similar proofs. We prove (a) only.

by lemmas 5 ,6

by lemma 10

[I

\Ve are now ready to bound t 5~n).

Lemma 1e. tSE(n) < 2.35n + l.41og n for n>0 and o-= .785.

Proof. Direct computation verifies the lemma for n<200 (see Figure 4). Choose

t = 0.2. Then, for n > 200, tail<,n < 0.026. Break the summation of equation (10) into

ta.ii and mid sections, and apply lemmas 5 and 11 to obtain

- 19 -

By lemma l we have

for). = (n-k)/lokj, and p = X(n-k)/(n-k->.). Maximizing ~ e11->- and K,. indepen

dently subject to the restriction that .4n < k < .6n gives (see Figure l)

w(n-k,lokj) < 2.27·(n-k). (15)

Substitute inequality (15) and lemma 12 inductively into inequality (14), yielding

11- b
t 8E(n) < l + 10-66 + 0.26n + k ~ b (k) r•(2.35k + 1.4log k + 2.27(n-k)).

< 1 + 10-b& + l.4log(.6n) + 2.296n + (.osx.on)

< 2.35n + 1.4log n.

[I

Corollary 19. For n > 200, T8~n) > 0.416.

9. Conclusion

Both protocols SE and MWT(t) achieve a limit throughput of about .4686. But

MWf(t), using a special estimation procedure, must pay an overhead cost for obtaining

estimates. For t and n small, that overhead is prohibitively expensive. With SE, we

have shown how to avoid the overhead entirely, while retaining highly accurate esti-

mates.

- 20 -

As is apparent from figure 4, SE is slightly worse than IBT for small multiplicity

sessions. The reader can probably see how to modify SE, without changing o from .785,

so that its throughput is identical to that or IBT ror sessions or multiplicity 2. However,

it appears to be inherent to estimation protocols that they are inferior to similar proto

cols which do not make estimates, for some small value of n. The parameter a can be

adjusted so that LonJ < 1, for small n, and the estimate ha., no real effect. But there

must be some smallest n0 such that Lana) > 1. The estimate will have an effect on

some sessions of multiplicity n0 , but only when the initial partition is biased completely

to one side, and the estimate is very poor.

It therefore does not appear that IBT can be improved on for all n by any divide

and conquer protocol.

Furthermore, the identical throughputs or SE and MWT(t) in the limit make it

very tempting to conjecture that no divide and conquer protocol can do better in the

limit.

Wbich efficiency measure (min throughput or limit throughput) is more indicative

or a protocol's true efficiency! That depends partly on the importance or fairness. Sup

pose station i is holding k unsent messages. We might cause station i to behave as if it

were k different stations, each with one message to send. Then, as the total number or

pending message grows, so does the multiplicity of each session; the worst local

throughput is avoided, and the limit throughput gives a good indication of channel capa

city.

But the above trick violates fairness, and could permit one station to monopolize

the channel during a very long session. If 2-fairnCM is insisted upon, then it is realistic

to presume that the channel protocol may be driven at its worst multiplicity for

moderately long periods. Then the min throughput is a more realistic indicator of chan

nel capacity.

- zz -

REFERENCES

1. Capctanakis, J., Tree Algorithms for Packet Broadcast Channels, IEEE Tran!!ac
tions on Information Theory IT-25, 5, Sept. 1979, 505-515.

2. Greenberg, A.G., Efficient Algorithms for Multiple Access Channels, Ph.D. Thesis,
Univ. or \Va.shington, Seattle, \Vashington (1983).

3. Greenberg, A.G. and Ladner, R.E., Estimating the MultipJieities or Conflicts in Mul
tiple Acc~s Channels, 24th IEEE Sy:mp. on Foundations of Computer Science, Nov.
1983, 383-392.

4. Greenberg, A.G., Flajolet, P. and Ladner, R.E., Estimating the Multiplicities or
Conflicts in !vtultiple Access Channels , T.R. 333, INRIA, Rocquencourt, France,
(1984).

5. Hayes, J.F., An Adaptive Technique for Local Distribution, IEEE Transn.cticns on
Communications COM-26, Aug. 1978, 1178-1186.

6. Hofri, M., Stack Algorithms for Collision-Detecting Channel!! and Their Analysis: A
Limited Survey, Tech. Rep. 266, Israel Institute or Technology, Dept. or Computer
Science (1983).

7. Massey, J.L., Collision-Resolution Algorithms and Random-Access CommuD.iC'ations,
Tech. Rep. UCLA-ENG-8016, School or Engineering and Applied Science, llniv. cf
California, Los Angeles (Hl80).

8. Tsybako-v1 B.S., and Mikhailov, V.A., Free Synchronous Packet Access in a Bro:ld
cast. Ch:rnnP-1 with Feedback, Problems of Information Transmission 14, 4, April,
1978, 259-280.

9. \Villard, D.E., Log-logarithmic Protocols for Resolving Ethernet and Semaphore
Conflict!! (Preliminary Report), 16th ACM Symposium on Theory of Computing,
May, 1984, 512-521.

