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Abstract 

This clissertation is concerned with surface representations which record surface properties as a 

function of surface orientation. The Extended Gaussian Image (EGI) of an object records the 

variation of surface area with surface orientation. When the object is polyhedral, the EGI takes 

the form of a set of vectors, one for each face, parallel to the outer surface normal of the face . 

The length of a vector is the area of the corresponding face. 

The EGI uniquely represents convex objects and is easily derived from conventional models 

of an object. An iterative algorithm is described which converts an EGI into an object model 

in terms of coordinates of vertices, edges, and faces. The algorithm converges to a solution by 

constrained optimization. There are two aspects to describing shape for polyhedral objects: first, 

the way in which faces intersect each other, termed the adjacency structure, and, second, the 

location of the faces in space. The latter may change without altering the former, but not vice 

versa. The algorithm for shape recovery determines both elements of shape. The continuous 

support function is described in terms of the area function for curves, permitting a qualitative 

comparison of the smoothness of the two functions. The next Section describes a method of curve 

segmentation based on extrema of the support function. Because the support function varies with 

translation, its behaviour under translation is studied, lea.cling to proposals for several candidate 

centres of support. The study of these ideas suggests some interesting problems in computational 

geometry. 

The EGI has been applied to determine object attitude, the rotation in 3-space bringing a 

sample object into correspondence with a prototype. The methods developed for the inversion 

problem can be applied to attitude determination. Experiments show attitude determination 

using the new method to be more robust than area matching methods. The method given here 

can be applied at lower resolution of orientation, so that it is possible to 8ample the space of 

attitudes more densely, leading to increased accuracy in attitude determination. 

The discussion finally is broadened to include non-convex objects, where surface orientation 

is not unique. The generalizations of the EGI do not support shape reconstruction for arbitrary 

non-convex objects. However, surfaces of revolution do allow a natural generalization of the EG I. 

The topological structure of regions of constant sign of curvature is invariant under Euclidean 

motion, and may be useful for recognition tasks. 
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Chapter 1 

Introduction 

Problem solving by computer requires, first of all, a model of the problem domain. The relevant 

properties of the elements in the domain must be characterized and their relations must be ana­

lyzed. Then the elements of the model must be represented symbolically. Effective and efficient 

computation depends on the right choice of representation. For robotics and for computer vision, 

the question of representation arises at all stages in the process of converting sensed quantities 

into assertions about the world, and then into actions. The usefulness of a representation can be 

judged by the extent to which it facilitates the solution of the problem. 

Computational vision seeks to model, first, the way images are formed by the interaction of 

light with the objects in a scene. For this purpose, the properties of objects and their surfaces 

which affect their appearance in an image are important. Albedo , surface roughness, and shape, 

among other properties, enter into the description of image formation. The work of Horn [1975] , 

in particular, demonstrated how the appearance of an object depends significantly on its shape. 

The portion of computer vision known as image analysis or early vision seeks to devise methods for 

recovering the shape and location of visible surfaces from an image or images. This dissertation 

is concerned with surface representations which record surface properties as a function of surface 

orientation. Transformations among representations of objects, specifically polyhedral objects, 

are examined. A particular representation, the Extended Gaussian Image (EGI), is atudied, and 

an algorithm for converting the EGI into a more conventional representation is given. The use 

of the EG I in determining the attitude of an object in space is explored, wiing the concepts 

developed in converting the EGI to conventional polyhedral representations . 

Because of the recent successes of computer vision in computing surfaces from images, com­

puter vision systems can now provide maps of surface orientation in a scene. Specifically, nee­

dle maps[Hom,1982], the "2½D sketch" [Marr,1976}, and intrinsic images(Barrow and Tenen-
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baum.1978] represent the orientation of a surface at the points of the image. Orientation maps 

can be generated by the output of stereo processing from several images [Grimso:u,1981, Baker 

and Binford, 19811, photometric stereo [Woodham,1980], or any of the so-called "shape from" 

methods, such as shape from shading [Hom,1975, rltcuchi and Hom,1981], shape from contour 

[Marr,1977], shape from texture [Kender,1979, Witkin,1981], shape from edge interpretation 

[Mackworth,1973, Kanade,1981, Sugihara,1982], and by differentiation of laser range images 

[Brou, 1983]. By translating the surface normals of an object to a common point of applica­

tion, a representation of the distribution of surf ace orientation is formed, called the Extended 

Gaussian Image (EGI) [Smith,1979]. The EGI of an object records the variation of surface area 

with surface orientation. The discrete version of the EGI is a histogram of area versus orientation. 

lkeuchi [lkeuchi,1981] discussed recognizing objects in an induatrial environment using the 

EGI. The EGI of the visible portion of an unknown object is formed by a constrained optimization 

method applied to data from photometric stereo[Ikeuchi and Hom,1981]. The prototype EGI 

which best matches this EGI identifies the object. Tb.e EGI rotates in the same fashion as the 

object in space. By comparing a sensed EGI with a prototype EGI of the same object, attitude 

can be determined [Ilceuchi et al.,1983]. 

Chapter f presents an overview of models and representations for objects and surfaces in 

computer vision. Particular attention is given to models using orientation to reference object 

properties. The EGI is such a model, describing area as a function of orientation. This study 

presents concepts based on orientation, in particular, the support function which describes the 

distance from the origin of a tangent plane. Lastly, this Chapter defines the properties of poly­

hedral objects and their surfaces used in the exposition. 

In Chapter S, the EGI as an object representation is studied. The EGI uniquely represents 

convex objects [Minkowski, 1897] and is easily derived from conventional models of an object. The 

inversion problem is to convert an EGI into an object model in terms of coordinates of vertices, 

edges, and faces. A iterative algorithm for reconstructing surface shape from an EGI is described. 

The algorithm converges to a solution by constrained optimization[Little,1983]. The algorithm 

employs a geometric construction, the mixed volume, which was used in Minkowski 's proof of 

the existence of an inverse. The mixed volume is the product of the area function of one object 

and the support function of another. The objective function in the minimization is the mi.~ed 

volume of the area function specified by the EGI and the support function of the reconstnicted 

object. There are two aspects to describing shape for polyhedral objects: first, the way in which 

faces intersect each other, termed the adjacency structure, and, second, the location of the faces 

2 
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Figure 1.1: Stereo View of the EGI of a Distorted Octahedron 

_,·· 
~,,.,,~4 ,•\\ 

..... ... --~-------

Figure 1.2: View of the Original Polyhedron 

m space. The latter may change without altering the former, but not vice versa. The algorithm 

for shape recovery determines both elements of shape. The mixed volume itself is a measure of 

similarity of shape. 

An example EGI is shown in Figure 1.1. The polyhedron to which the EGI cor:csponds is 

shown in Figure 1.2. The faces of the original polyhedron are parallel to those of a regular 

octahedron, but the distances of the faces from the origin have been altered. The algorithm 

initially constructs a regular octahedron, shown (in stereo) in Figure 1.3, which places all the 

faces tangent to the unit sphere. In the regular octahedron, each face is adjacent to three 

others. During minimization, the shape of the polyhedron constructed changes, and, at an early 

stage, the adjacency structure becomes identical to that of the original polyhedron. The final 

reconstructed polyhedron is shown in Figure 1.4. The reconstructed polyhedron has the same 

adjacency structure as the original polyhedron. 
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Figure 1.3: Initial Polyhedron 

.... /--------....... . 
,, 

a•4'.• 

Figure 1.4: Reconstructed Polyhedron 
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The reconstruction algorithm shows how the support vector for a polytope can be determined 

from its area vector. In Chapter 4, to facilitate arguments about mixed volumes in Chapter 5, 

the continuous support function is described in terms of the area function for curves, permitting 

a qualitative comparison of the smoothness of the two functions. The next Section describes a 

method of curve segmentation based on extrema of the support function. Because the support 

function varies with translation, its behaviour under translation is studied, leading to proposals 

for several candidate centres of support. The study of these ideas suggests some interesting 

problems in computational geometry. 

The EGI has been applied [Horn and lkeuchi, 1984) in determination of object attitude, 

the rotation in 3-space which will bring a sample object into correspondence with a prototype. 

Chapter 5 examines previous methods which have relied on direct comparison of the sensed EG I 

with the prototype EGI. The methods developed for the inversion problem can be applied to 

attitude determination. The rotation which minimizes the mixed volume of the support function 

of the prototype EGI and the sensed area function identifies the attitude of the sensed object. 

Experiments show attitude determination using mixed volume to be more robust thau area 

matching methods. The mixed volume method can be applied at lower resolution of orientation, 

so that it is possible to sample the space of attitudes more densely, leading to increased accuracy 

in attitude determination. Experiments with non-convex planar figures suggest that an extension 

of the proposed method to non-convex objects is possible. 

Mathematical results about area functions , support functions and EGis have mainly concerned 

convex bodies. In Chapter 6, the focus is broadened. On non-convex objects, surface orientation 

is not unique. The accumulation of area in an EGI must account for this in some fashion. One 

solution is to segment the object surface by the sign of curvature, keeping a separate EGI for each 

region. For surfaces of revolution, such segmentation, in principle, allows shape reconstruction. 

An analysis of the requirements for general solutions is also given. The topological structure of the 

curvature region graph is invariant under Euclidean motions, and may be useful for recognition 

tasks. 

Chapter 7 concludes with suggestions for future work and open problems. These centre, first , 

on improvements to the reconstruction algorithm and extensions to smooth surfaces . Secondly, a 

host of computational geometry problems emerge from the investigations. Lastly, generalizations 

of the EGI and other uses of the EGI are discussed. 
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Chapter 2 

Object Models for Vision 

2.1 Introduction 

Models and representations are fundamental for problem solving. Models select characteristic 

properties of an object. Representations describe the object properties selected by the model to 

facilitate solution of a class of problems. In early vision, a model mu.st account for several types 

of sensed quantities, i.e., brightness, hue, saturation, depth, orientation, sparsity or density of 

measurements. When sensed datn and a model are in a similar form or can be easily transformed 

into similar forms, computation of their relationship simplifies. 

New methods of acquiring surface information (photometric stereo, structured light and laser 

range scanners) allow acquisition of dense measurements of surface orientation. The availability 

of these data prompts investigation of models using orientation as reference coordinate, to take 

direct advantage of these data. Data on surface orientation can be readily transformed into 

representations such as the Extended Gaussian Image, which are well-suited to solution of certain 

practical problems. To investigate orientation-based models, the common object models of vision 

and Computer-Aided Design (CAD) are discussed. Planar-faceted models are studied, since they 

permit simple formulation of problems under investigation. Definitions of polyhedral models are 

given, stressing properties used in later investigations. 

2.2 Models for General Vision Tasks 

A model facilitates the representation of aspects of reality useful in a particular problem domain 

iBolles et al.,1983]. The utility of a representation is influenced by the combination of the sensor, 

the task and the object domain. In this dissertation, attention is restricted to a situation in which 
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dense information about surface orientation is available. 

2.2.1 Models and Representations 

In a model for a class of individuals, abstraction and simplification occurs. The information 

necessary to identify an individual is selected. Models divide the world into equivalence classes 

by the mappings induced by characteristic properties. Modelling is a purposive activity, always 

with a view toward the application. 

A representation is a symbol system in which elements are identified and the basic operations 

on elements and transformations among elements are defined. The mapping between the repre• 

sentation and the model provides the semantics for the representation. When a representation is 

chosen, the boundary between the explicit and implicit properties is drawn, often by the compu• 

tation necessary to make explicit that which is implicit. Throughout this dissertation, the focug 

will be on transformations on representations on the surfaces of objects. These transformations 

are computations, the complexity of which will enter the discussion. Algorithms are descriptions 

of computations, which deliver the result of the computation in a finite number of steps, each 

representing a primitive operation. The exact model of computation will not be critical here, 

but it may be ugeful to compare the amount of time algorithms require. The time complexity 

of an algorithm is given as a function of the size of the input n, using the following notation for 

functions of n: 

A function /(n) will be termed O(g(n)) if there exist c, no such that 

/(n) :$ cg(n), for n > no 

A function /(n) will be termed 0(g(n)) if there exist co, c1, no such that 

cog(n) ~ /(n) ~ c1g(n), for n > no 

A function / ( n) will be termed O(g( n)) if there exist co, no such that 

cog(n) ~ /(n), for n > n0 

A function /( n) will be termed ezponential in n if there exist c0 , c 1 , k0 , k1 , no such 

that 

Returning to modelling, the connection between model, representation and data can be seen 

by considering the circle: 
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Figure 2.1: The Gauss Map 

• a convex figure of constant curvature 

• the locns of points at a fixed distance from a point 

Both are descriptions or models of circles but their suitability for a particular probll'm domain 

depends on the form of the available data. Where curvature is primitive or easy to compute, the 

first should be used; where distance between elements is simple, the latter should be used. 

Vision is concerned with the interaction of light with surfaces to create images. The properties 

of albedo, surface roughness, shape, and location enter directly in the description of the image 

formation process. Hom's pioneering work on shape from shading [1975] showed the connection 

between shape and brightness modulation. Shape is a global property which emerges from the 

accumulation of the local orientation of the surface. Orientation will serve as a unifying reference 

property for the models presented herein, so now a precise definition is given. 

2.3 Orientation 

At ea.ch point on a smooth surface S a unit surface normal w is defined. The direction of the 

normal vector is the orientation of the surface at that point. A unit normal vector can be uniquely 

associated with a point on the unit sphere U. The map taking surface normals of S onto U is 

the Gauss map [DoCarmo, 1976]: 

G(p) = w,p f. S, w = unit normal at p,w f. U (2.1) 

Let Ebe a portion of S botmded by a closed curve. The image under the Gauss map of E, G(E), 

is the Gawaian image of E (Figure 2.1). 
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2.3.1 Curvature 

Curvature describes, informally, the rate of change in the orientation of a curve or surface. Let 

a plane curve c(s) be defined: 

c(a) = {(z(a), v(a)), 0 $a~ -'mu} 

such that le' ( s) I = 1. The curve c is then said to be parametrized by arc length. The number 

le" ( s) I = k( s) is called the curvature of c at a. The curvature of a plane curve at a point p is the 

reciprocal of the radius of curvature at p, which is found by taking the limit of the radii of circles 

through p and two points approaching p from both sides along the curve. At any point on a 

surface, a normal section is the intersection of the surface with a plane containing the normal at 

the point. The curvature of the surface in a given direction is the curvature of the normal section 

in that direction. At any point on a surface, there are two orthogonal directions at which the 

curvature is, respectively, maximum and minimum. These directions are the principal directions 

and the curvatures are the principal curvatures. The Gaussian curvature,K, is the product of 

the principal curvatures. Gaussi~ curvature can be described using the Gauss map: let IRI be 

the area of a region R, then 

K(p) = lim IG(E)I/IEI, Ea compact portion of S enclosing p 
IEI-O 

( 2.2) 

On an object bounded by planar facets, Gaussian curvature is zero on the facets, and undefined 

at the intersection of the facets. The Gauss map will take all points on a facet into a single point . 

2.4 Area as a Function of Orientation 

On a smooth surface of strictly positive curvature, the Gauss map is unique. Any point on the 

surface can be uniquely identified by its orientation: let c-1{w) be the inverse image of w under 

G, then p = c-1 (w). An area function A can be defined for any orientation, in an analogous 

manner to the definition of the Gaussian curvature from the Gauss map in Equation 2.2. 

A(w) = lim 1c-1(F)I/IFI, Fa. compact portion of U enclosing w 
IFI-O 

(2.3) 

The area function on U describes the variation of surface area with orientation and so it is 

analogous to the Extended Gaussian Image (EGI) of an object. Later, the EGI for objects 

bounded by planar facets will be described. 
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2.5 Geometric Models of Objects 

2.5.1 Object Representation in Vision 

Vision systems utilize many different representation schemes, each tailored to a sensor mode and 

a task. The needs of vision systems arise primarily from the demands of recognition. Recog­

nition is posed as matching descriptions derived from images with models of objects. Object 

properties which can be reliably determined from images must be described. Polyhedral models 

have been with us since the early days of blocks-world research [Guzman, 1968] [Huffman, 1971] 

[Waltz, 1972]. The interpretation of edges and junctions of edges in line-drawings employed the 

constraints in polyhedral representations. Many schemes rely on simple classes of object models, 

such as polyhedral models, or schemes with a set of generic objects (polyhedra, second-degree sur­

faces such as spheres, cylinders or ellipsoids), or objects composed of patches with generic shape, 

either planar patches or quadric patches. The features for recognition allowed by a scheme of 

course depend on the vocabulary in which they are expressed. 3DPO [Bolles et al., 1983] hypoth­

esizes the existence of cylindrical portions of objects from the conjunction of circular arc features 

and edges at the occluding boundary of the cylinder. 

The requirement of natural descriptions for image understanding motivates attention to vol­

umetric properties of objects, characterization of the distribution of the mass and general trends 

of the object shape [Nishihara, 1981]. Surface properties, in contrast, are necessarily local. Many 

systems use the notion of a central axis of an object. An early scheme focussing on the object 

axis was the Symmetric A.zia Tranaform of Blum [1967], which derives an object axis as the locus 

of the centres of maximal enclosed circles. It has been extended to R3 by Blum[l979] and studied 

by Nackman[l982]. In R3 it has the drawback that the axes generated are not curves but actually 

symmetry surfaces, so that the descriptive power is somewhat diluted. Binford [1971] described. 

an alternative method, the generalized cylinder which consists of a central axis ( a curve in R3
), a 

cross-section shape, and a sweeping rule specifying the change in scale of the cross-section shape 

with distance along the axis. The representation was fundamental to the ACRONYM system 

[Brooks, 1981] which analyzed the projection of generalized cylinders ( ribbona) to provide cues 

for recognition [Lowe, 1984]. Brady and Asada [1983] use amoothed local aymmetriea to represent 

boundaries of regions, capturing significant changes in curvature and deriving a. local symmetry 

axis for parts of the regions . 

In addition, the description of geometric features of objects can support attitude determina­

tion. Here the requirements of vision systems merge with those of manipulation systems. The 
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same features can be used for both recognition and manipulation • corners or junctions between 

planar patches are good indicators for both tasks. 

Systems vary in their ability to compute accurately the properties described here, orientation 

and area. Generalized cylinders are useful in recognition taJ:1ks [Lowe, 1984], but computing 

orientation and area can be problematic; their definition does not prevent self-intersection, which 

must be determined prior to area computation. Another volumetric system, [Mohr and Bacjsy, 

1983], describes a shape by the centres of spheres packed into the enclosing volume. The graph 

induced by adjacencies among the spheres characterizes the shape. Clearly such a representation 

attends to volumetric considerations at the expense of surface properties. 

Bajcsy [1980] has criticized the EGI on the grounds that it "does not preserve connectivity 

and therefore part/whole relationships are hard to identify". It is exactly because the EGI ignores 

connectivity that it simplifies processing. The shape recovery method to be described shows how 

connectivity can be recovered. Part/whole relationships in the EGI, as in all representations, rely 

on accurate segmentation. Feature-based methods for determining attitude can be inaccurate 

when there is difficulty in precisely localizing the required features. Methods based on the EGI 

are potentially more robust since attitude determination becomes a global computation. Further, 

the EGI can deal with surface orientation directly, thus avoiding the integration step necessary 

ta pass from surf ace orientation to a surface depth map. This is useful with techniques like 

photometric stereo where surface orientation is determined directly. 

2.5.2 Shapes in CAD/CAM 

Manipulation poses new problems for a vision system, beyond the construction of an interpreta­

tion. The system must not only recognize objects, but also, for example, determine appropriate 

grasp points, and feasible approaches for a grasping arm. Many tasks envisioned for a robot with a 

vision apparatus occur in an industrial environment. Computer-based methods have had a strong 

impact on the manufacturing process. Recently, Computer Aided Design (CAD) and Computer 

Aided Manufacture (CAM) have expanded from research environments into production situations. 

Since the objects of robotic manipulation are the products of a computer-aided manufacturi:c.g 

process, it is natural to consider representational methods from these disciplines. Knowledge and 

understanding of Solid Modelling, the representation .and construction of 3-dimensional objects 

by computer, is currently advancing rapidly in CAD/CAM [Requicha, 1980]. Three-dimensional 

objects have been described by wireframe models tracing the edges (wires} of the planar faces of 

the model. These representations were extended to boundary representations which specify the 
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intersections of the (simple) surfaces bounding an object. With both wire-fra~e and boundary 

models, it is necessary to check that the resultant surface descriptions fulfill topological and ge­

ometrical consistency constraints, for example, that there are no holes not explicitly described 

(topology) and that no edges cross (geometry). 

Swept-volume methods describe a volume by an axis, a cross-section area, and a sweeping 

rule relating the scaling of the cross-section to position on the axis. Constructive Solid Geometry 

( CSG) [Brown and Voelcker, 1979] describes objects by the Boolean combination of primitive 

3-dimensional elements such as spheres and rectangular parallelepipeds. Its advantages lie in the 
., 

assurance that the resultant models fulfill topological and geometrical consistency constraints. 

The primitive vocabulary of CSG usually consists of elements which can be described by surface 

equations at most of the second degree, i.e., quadric surfaces. 

The form of object representation for computer vision remains an open question. The meth­

ods of CAD/ CAM facilitate precise measurement and description of the volumetric and surficial 

properties of an object, but lack the ability to describe simple generalization or hierarchy, proper­

ties useful for a system for recognition and description[Mulder,1985]. Nevertheless, by providing 

a description of the surfaces of objects these systems can serve as models for calculating surface 

orientation and area for Extended Gaussian hnages of prototypical objects. 

2.6 Polyhedral Models 

Extended Gaussian Images uniquely represent convex objects. A set C is conve% if and only if 

for every pair of distinct points a, bf:C, the -closed segment with endpoints a and b is contained 

in C. A set is atrictly conve% if and only if each point on the closed segment ab is contained in 

the interior of C, i.e., is surrounded by an open ball entirely within C. 

The treatment of polyhedra will follow the terminology of Griinbaum[l967]. A minimal 

number of geometric terms will be defined in order to provide enough terminology for discussion. 

Additional definitions can be found in Griinbaum [1967]. The term polyhedron often loosely 

refers to any body whose boundary is composed of a finite number of planar facets. In general 

polyhedra correspond to the class of objects representable by wire-frame models. A plane J can 

be represented as: 

J = { :i: I (w, :i:} = c }, where w is a unit vector normal to the plane ( 2.4) 

A plane forms the boundary of a half-apace, {:i: I (w,:i:) < c}, for a suitable choice of orientation w 

and c. The intersection of a finite number of half-spaces forms a convex polyhedron; its boundary 
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is composed of planar facets. A bounded convex polyhedron will be termed a polytopt:. The term 

d-polytope is an abbreviation for polytope of dimemion d. Under these definitions, a polytope has 

a definite location in space. For the purposes of all further discussion, the normal to a facet of a 

polytope will be outward facing, i.e., it will point away from the half-space bounded by the plane 

in which the facet lies . 

2.6.1 Bomotheticity 

Two 3-polytopes P and Q are homothetic if 

P = {:z: I :z: = ,\ • 1/ + t, ycQ, ..\cR, ,\ > 0, tcR3
} 

This relation is similar to the relation of congruence, which is invariance under translation, 

scaling, and rotation. Homotheticity is invariance only under translation and scaling. This 

notion is appropriate for the present setting in which measurements are tied to orientations of 

faces, and rotation is a parameter which mu.st be determined. In particular, the location in space 

of a polytope is not relevant to its description for the context of EG Is. It may be taken to be 

situated so that its centroid coincides with the origin. However, any rotation of a polytope is 

critical, since it changes the orientation of facets of the polytope. 

2.6.2 Support Functions 

A aupport plane J for a convex body C is a plane such that all of C lies on one side of the plane 

and C has at least one point in common with J, that is, J is tangent to the surface of C. Recall 

the definition of a plane (Equation 2.4) . The aupport function of C can be defined: 

)((w) = ma:z:(w, :z:), :z:cC. 

Then the plane J = { :z: I ( w, :z:) = c} aupporta C at the orientation w. Figure 2. 2 shows the 

construction of the support function for a polygon. For an orientation w corresponding to the 

normal of an edge of the polygon, the support function coincides with the value c in the equation 

of the supporting plane through that edge. For orientations w not identified with some edge of 

the polygon, the supporting plane (w, :z:) = c is incident upon a vertex v; of the polygon. Thus 

Jl(w) = (w,v;) 

Between two adjacent faces, Jl(w) can be rewritten as 

)((w) = lv;l(w, w;) ( 2.5) 

13 



Figure 2.2: Construction of the Support Function 
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Figure 2.3: The dual sketch 
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where w; is the normalized direction vector of v;. So Jl(w) varies as the cosine of the angle 

between w and w;. Drawn as a function of w, it is composed piecewise of portions of circles 

with centres at the midpoints of the position vectors of the vertices v;, with radius lv;/21 (see 

Figure 2.4). 

Figure 2.3 shows a polygonal curve, its EGI, its dual (to be described in Section 2.6.5) and 

its support function shown as a function of w. Figure 2.4 shows the support function of the 

polygonal curve alone. 

2.6.3 Orientation and Polytopes 

The set of orientations of the faces of a polytope is termed n. The EGI implicitly speciries 0 

for the polytope from which it is derived. This set of orientations will be referenced by indices 

from 1 ... n without implying any particular ordering. When it becomes necessary to compare 
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Figure 2.4: Constructing graph of support function 

two polytopes, P1 and P2, with face orientations 0 1 and 02, the two sets of face orientations can 

be merged into a common set of orientations 0. To describe the EGI of P1 in terms of 0, simply 

augment its list of faces with new faces of zero area for Wi not in 0 1 • For all polytopes, faces will 

be referenced by the index of the orientation vector w,. The composition of O should be clear 

from the context. 

2.6.4 Combinatorial Types 

A face F of a polytope P is the intersection of a supporting plane of P with P. When the 

intersection is a point, it is called a vertez of P, when it is a line segment, an edge, and when it 

has dimension 2 it is termed a facet of P. Two polytopes P and P' are combinatorially equivalent 

or of the same combinatorial type if there is a one-to-one function ¢, between the set { F} of 

all faces of P and the set { F'} of all faces of P', such that ¢, is inclusion-preserving, i.e. for 

F1, F2 C { F}, F1 C F2 if and only if ¢,( F1) C ¢, ( F2). Hereafter, the term / ace will be used 

interchangeably with facet. For the purpose of this discussion, the combinatorial type describes 

the incidence relations in a polytope: which faces share an edge, edges meet in a vertex, vertices 

lie on a face. The terms adjacency dructure and combinatorial atructure will also denote this set 

of incidence relations. In many cases, the simplest description of the combinatorial structure, a 

list of the face incidences, will be used. In this list, for each face, the set of faces incident upon 

the face is specified. 
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2.6.5 Metric Properties 

Many polytopes realize the same combinatorial type, but differ in the placement of the vertices, 

and the orientation of the faces. There are many alternative formulations of the metric properties 

of a polytope. The specification can involve the location of the vertices, the location of the planes 

bounding the polytope, the lengths of the edges in the polytope, etc. Consider the set of polytopes 

in which the orientations of the faces are restricted to a given finite set of orientations. Each 

face lies in a bounding plane of the polytope. A plane with fixed orientation has one degree of 

freedom, (see Equation 2.4). The simplest representation of a polytope when face orientations 

are fixed is the location of the planes bounding the polytope. The faces of the polytope can 

be referenced by their indices 1 ... n corresponding to the face orientation; the values of the 

support function Jl(w) at the face orientations form an n-tuple H = (h(wi), h(w2) ... h(wn)). A 

polytope with n faces having orientations in O corresponds to a point H in the space described 

by the generalized coordinates (h1, h2 ... hn), The space described by the generalized coordinates 

is termed aupport apace. Each point H in support space specifies the location of n planes in 

R3 . The point H corresponds to a polytope, P(H), constructed by their intersections. P(H) 

has a definite location in R3 , but this location is irrelevant for descriptions based on surface 

orientation. Consider the coordinates in R3 of the centroid e of a polytope· P(H). Let the 

coordinates in support space of the polytope when its centroid is translated to the origin be 

termed H0 ; there the coordinates are all positive. The difference between H and Ho is, where c 

is the centroid: 

Let w11 , Wi2, Wi3 be the x,y and z coordinates of direction Wi, then a translation by 1 in the j th 

coordinate corresponds to addition to the support vector of: 

( 2.6) 

Points in support space representing translations of P(Ho) by t = (t1 , t2 , t3 ) can be described in 

the form: 
3 

H= Ho+ I:t;v; 
j=l 

where the spanning vectors are v;. The set of polytopes which are similar except for translation 

form a flat of dimension 3 in support space. All computations described hereafter will implicitly 

recognize this fact. In some cases, the exact location of the polytope is irrelevant; otherwise, 

without loss of generality, the polytope can be considered to have its centroid at the origin. 
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Figure 2.5: A polytope and its dual 

The alceleton of a polytope lists the combinatorial structure. The full specification then 

describes the coordinates of the vertices. Each vertex is associated with the list of edges incident 

upon it and each face with the list of its bounding edges. Each of these lists can be ordered, for 

example, the bounding edges by counter-clockwise order around the face, in the sense determined 

by the surface orientation. The skeleton of a 3-polytope can be transformed into a description 

by bounding planes in e(V) time, where V is the number of vertices, since the number of faces 

is 8(V) and the description of each bounding plane supporting a face can be determined from 3 

vertices on the boundary of the face. 

The inverse transformation moves from the plane locations H to the vertex description. To 

construct a polytope P(H), form the intersection of the n half-spaces specified by the vector 

H. Brown l1978] describes a method for transforming the problem of intersecting n half-spaces 

into a convex hull problem, using the dual transform, described in the vision literature by [Huff­

man,1971, Mackworth,1973, Draper,1981]. The dual transform maps a plane with equation 

(2. 7) 

into the point w,/h, in R3 (see Figure 2.5). Providing h, is not O for any i, the planes containing 

faces of P(H) do not pass through the origin, so Equation 2.7 will be defined for all faces. The 

n planes forming P(H) correspond to n points in R3 , for which the algorithm of Preparata and 

Hong l1977] determines the convex hull in 8(nlogn) time. Any face of the convex hull of the 

dual points corresponds to a vertex of P. Any two points incident on an edge in the dual of P 

correspond to a pair of faces of P which share an edge. The adjacency information in the dual 
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provides the adjacency information for P. Hence the locations of the Yertices and edges of P can 

be calculated. 

2.6.6 Extended Gaussian Images of Polytopes 

The areas of the faces of a 3-polytope and their orientations can be computed, from the description 

of the skeleton of a polytope and the location of its vertices, in time linear in the number of faces. 

This follows dir~ctly from the fact that the area of a face can be computed in time linear in the 

number of incident vertices and the fact that, for a 3-polytope, the numbers of faces and vertices 

are linearly related. The definition of area for continuous surface (Equation 2.3) does not cover 

polytopes, since curvature vanishes on the faces of polytopes. The analogous area function for 

polytopes is equal in value to the area of the face having orientation w when w is the normal 

to a face, else it has the value zero. For orientations which do not coincide with a face of the 

polytope, A(w) is 0. This function is non-zero only at a finite set of points on U, and can be 

represented as a vector A of elements corresponding to the values of A,= .A(w,), where the area 

function is non-zero. Fenchel and Jessen [1938] showed that it is possible to construct a measure 

on U for a convex body C which is the area function of C, and which reduces to the continuous 

area function described above as well 1.\8 to the area of facets in a polytope. So, the two functiow 

can be considered specializations of this generalized measure. 

From a image containing surface orientation, area can be calculated as the product of the 

pixei size and the inverse of the cosine of the angle between the viewing direction and the surface 

normal. Each surface normal is multiplied by the area, and moved to the origin. Should several 

vectors coincide, they are added as vectors. This representation of the distribution of surface 

orientation is termed the Extended Gaussian Image (EGI). The set of orientations present in 

an EGI derived from an image will lie in a hemisphere of the Gaussian sphere centred on the 

orientation recording the view direction. This forms a viaible hemiaphere of the EGI. The term 

EGI will refer to the map of the area function on the entire Gaussian sphere, unless otherwise 

noted. It is assumed, for the sake of the exposition, that only a single object is imaged. 

The Extended Gaussian Image of a polytope P with m faces can be described by a set of 

vectors N(P), indexed by orientations of the faces of P: 

(2.8) 
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Minkowski[l897] showed that if 

then N uniquely represents a polytope, up to translation. 
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Chapter 3 

Recovering Shape from an Extended 

Gaussian Image 

3.1 Introduction 

An iterative algorithm for recovering surface coordinates from the EGI of a polytope is given. 

The algorithm utilizes a geometric construction, the mized uolume, a.rising from the theory of 

mixtures of polytopes. The reconstruction algorithm employs constrained optimization to recover 

surface shape. Its implementation and performance .u-e discussed and evaluated. This a)gorithm 

is generalized for shape recovery from partial information. 

3.2 Previous Work 

Minkowski proved the existence and uniqueness of the polytope corresponding to an £.GI. It 

is easy to derive the skeleton of the polytope from its support ftmction, which need only be 

specified at the faces (see Section 2.6.5). The support function describes the locations in R 3 

of the half-spaces forming the polytope P(H). What must be determined is the vector H = 
(Jl(wi), Jl(w2 ), ..• Jl(wn)). The problem is to compute the support function H from the area 

vector A and the vector of face orientations 0. 

lkeuchi[1981] proposed an algorithm for reconstructing a polytope from its EGI. The problem 

is subdivided into n distinct cases; in the i1h case , face i is farthest from the origin. In case i , hi 

is set to 1.0; all other h; vary between 0.0 and 1.0. The n - l dimensional space of distances is 

quantized ( at spacing d < l) . Each of the d1-n locations in this space specifies a possible location 

of the n faces in R3 . The polytope can be constructed, and the areas of its faces determined. 
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Figure 3.1: The EG I of a Convex Polygon and Its Reconstruction, rotated by -1r /2 

These areas are scaled and compared with the objective. 

No analysis of the accuracy of the algorithm is supplied. The method minimizes the sum of 

the squared differences between the calculated areas of the polytope and the given areas in the 

EGI. It is not clear that the polytope which results from this minimization (after normalizing) 

will have the same combinatorial structure as the desired polytope. In addition, the method 

is very expensive. The polytope is constructed at each evaluation point. If the resolution in 

the location of the bounding planes is doubled (D = d/2), the the number of evaluation points 

increases to D1-n = d1-n2n-J, which is an increase by a factor exponential in n, the number of 

faces . 

3.3 Direct Methods 

A direct solution by a geometric construction is possible for the two-dimensional case. The EGI 

of a polygon is a system of vectors emanating from the origin. Any system summing to zero 

represents a convex polygon. Figure 3.1 shows a two-dimensional EGI and the reconstructed 

polygon. 

Mackworth [private communication, 1982] noted the following simple procedure for con.c;truct­

ing the polygon from the system of vectors: 

The vectors {ui} are given in anti-clockwise order. Rotate u1 anti-clockwise by 7r/'J. 

and place its tail at some point in the plane. In order, rotate Ui anti-clockwise by 7r/2 
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and place its tail at the head of Ui-l · Because the system sums to zero, the head of Un 

will close with the tail of u1 . By definition, the length of each vector is the length of 

the corresponding edge, and its orientation is normal to that of the edge. Each edge 

in the reconstructed polygon will be the correct length and at the proper orientation. 

The two-dimensional method does not directly extend to higher dimensions. In particular, in 

two dimensions, the adjacencies among the edges is explicit in the EGI. In three dimensions the 

adjacency relationships are not explicit in the EGI and must form part of the solution. 

The number of different adjacency relations for polytopes with n triangular faces is asymp­

totically exponential in n[Tutte,1962]. The number of general polytopes (with faces having any 

number of sides) is larger. Hence any method which examines all possible adjacency relations 

will, in the worst case, take exponential time. 

A particular combinatorial type may be realized by various assignments of orientations to 

faces. The assignment of orientations from {l to the faces in the combinatorial type corresponds 

to a labeling of the graph induced by the type. There are n! labelings of the incidence graph; 

many, however, are unrealizable. 

A combinatorial type, together with an assignment of face orientations, determines a set of 

linear equations. These equations indicate the incidence of the vertices of the polytope on the 

faces of the polytope. The incidence of a vertex tlm on a face i (see Figure 3.2) determines an 

equation: 

The number of equations involving a vertex is the degree of its incidence specified by the com­

binatorial type. The skeleton of a 3-polytope is planar and 3-connected [Steiuitz,1922], so there 

are O(n) equations specifying the incidence of vertices on faces on a 3-polytope with n faces. For 

a vertex tlm not incident on a face j, there are O(n2) inequalitie::1 

many of which are redundant. The cardinality of the set of redundant constraints can be de­

termined by the methods of Sugihara[l982J. When these equations do not. have any solution. 

the combinatorial type is not realizable for the particular assignment of orientatio!l.S to faces. 

Whether these linear equations have a solution satisfying the linear inequalities can be solved by 

the methods of linear programming [Papadimitriou and Steiglitz, 1982]. 

Each combinatorial type forms a convex region in the n-dimensional space referenced by H. 

Any convex combination of two polytope vectors Ho and H1 will also satisfy the systems of 
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Figure 3.2: Adjacency changes with position of faces 

equalities, since they involve only linear functions. Since all regions are convex, they must be 

bounded by hyperplanes. 

3.3.1 Area Variation 

The combinatorial type of a polytope P with n faces at given orientations O varies with H. For 

each given combinatorial type, the area of the faces in P will also vary with H. The combinatorial 

type of P specifies the incidences of faces on vertices. The area of a particular face is a function 

of the coordinates of the incident vertices, and can be determined by projection onto a plane 

parallel to the face, where the formula for plane figures can be used. When such an area equation 

is expanded in terms of the variables hi, the resulting equations for the area of the i1h face is: 

~ .. h·h· .. ,, t , (3.1) 
ji (!V eigh6or,(i)Ui} 

The coefficients Cij are constants which derived from the normal vectors of the faces . The number 

of terms in this formula is small. The total number of non-zero elements in the matrix ( ci;) i~ 

O(n) . Each coefficient is generated by an edge in the polytope; the number of edges is O(n) . 

Over all Ai, the number of non-zero elements is also 0( n), since each edge only occurs in the 

expression for the area of two faces. 

Equating these formulae with the n area values specified by the EGI generates, for each 

combinatorial type, a system of n second degree equations in H. Closed-form solution of such 

a system is in general possible for n ~ 2. For n > 2 these equations may be solvable in closed­

form, but a suitable reduction has not been found. Thus approximate numerical solution seems 

indicated. Morgan 11982] describes a suitable procedure using a continuation method. The form 

of these equations varies with combinatorial type. 
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It is interesting to note that all tetrahedra with specific orientatioll!3 to their faces are homoth­

etic, and thus the only free val'iable in their reconstruction is scaling. Another way of determining 

the number of degrees of freedom is to recall that the flat of points representing polytopes similar 

up to translation is of dimension 3 (see Section 2.6.5). Since the space has dimension 4, that 

leaves one degree of freedom for scaling. 

The volume of a polytope P is a function of H. By triangulating the faces, and connecting 

these triangles to the centre of gravity of P, the volume can be subdivided into tetrahedra. The 

volume of each tetrahedron is: 

V = 1/3A • h 

where A is the area of the triangular base, and h the height of the tetrahedron. Taking the 

centre of gravity of Pas the point from which the support function h; = Jl(wi) is computed, and 

aggregating the areas of the triangles into the areas of faces of P, the volume can be expressed: 

n 

1/3(A1h1 + A2h2 + ... + Anhn) = V(P) = 1/3 L A(w;)N(wi) 
i=l 

Consider the gradient of V expressed as a function of coordinates in support space: 

The gradient of the volume is proportional to the area vector of the polytope. In an EGL 

the vector A is specified, and, in reconstruction, the values of H are sought. The volume of a 

polytope links these two. This fact would support a naive method for recovering shape from an 

area function: search all polytopes with specified face orientations, choosing that polytope with 

gradient proportional to the given area vector. The volume of the polytope is irrelevant, since 

changing volume scales the gradient. The intuition provided by this informal analysis underlies 

the proof of Minkowski's theorem, which is analyzed in the following Section. 
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Figure 3.3: The sum of a square and a triangle 

3.4 Minkowski 's Fundamental Theorem 

Minkowski 's proof provides clues for finding a reconstruction method. The original proof considers 

polytopes in any dimension d; here the proof is described with d = 3 for clarity. For a 3-polytope 

P, the set of vectors is formed, as described in Equation 2.8. A set of vectors N is equilibriated if 

and only if it sums to zero and no two vectors are positively proportional, i.e ., no two are positive 

linear multiples of a common unit vector. An equilibriated set of vectors N is fully equilibriated 

if and only if it spans R3 . Minkowski 's polytope reconstruction theorem shows that 

1. if Pis a polytope in R3 not contained in any plane then the N(P) is fully equilibriated and 

2. if N is a fully equilibriated system of vectors, then there exists a polytope P unique within 

a translation such that N is the EG I of P. 

This description is taken from [Griinbaum,1967,p.332]. 

3.4.1 Linear Operations on Polyhedra 

The proof of Minkowski 's theorem depends on several facts derived from the study of the behavior 

of polytopes under linear operations. The Minkowski sum of two polytopes P and Q is: 

P + Q = {:z: +!II uP, ytQ} 

A polytope is considered a set of points, but it will shortly be seen how the sum of two 

polytopes can be expressed using the notion of support function and therefore support planes 

(bounding planes). 

25 



Figure 3.4: The mixture of a triangle and a square ; A = 0.66666 

Figure 3.3 shows the addition of a square and a triangle. The origin lies at the centre of S. 

Move point o in the triangle T to coincide with point p on the boundary of the square S, and 

draw the boundary of T. The boundary of the triangle drawn at that position represents the 

boundary of the set of points Q of the form: 

Q = { z + p I ZfT} 

By moving the triangle around S, the boundary of their sum is generated. This operation can 

be described as a convolution [Guibas, Ram.shaw and Stolfi,1983]. The sum of T and S would 

superimpose on the square S, but is drawn separated for clarity. 

Likewise, scalar multiplication for polytopes is defined using multiplication in R3 : 

A* P = p. * z I uP} 

The convex sum or mizture of two polyt.opes P and Q is 

A* p + (1- >.) * Q = p. * z + (1- A)* 11 I ZfP,yEQ,O :$A:$!} 

Figure 3.4 shows the mixture of the triangle T and the square S, in the form : 

>. * T + (1 - A)* S, where >. is ~ 

Their mixture is drawn as a figure lying between T and S. The vertices of their mixture are the 

mixtures of the corresponding vertices of the two polygons. Correspondence is established by 

orientation. The dotted lines in Figure 3.4 show connections between corresponding vertice3 . 

Support functions of mixed polytopes behave simply under mixing, as described in the fol­

lowing theorem, stated in Lyusternik[l963]: 
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Let Jlp(w) be the value of the support function of P evaluated at wand let JIQ(w) be 

the value of the support function of Q, then the support function of their mixture,R = 
A* P + (1 - A)* Q can be expressed a.s the mixture of the support functions: 

Jln(w) =A* J/p(w) + (1 - A)* Jlq(w) 

The area function of a polygon is simply the length of the side at the given orientation; if there is 

no such side the value is zero. An argument using similar triangles shows that the area function 

for the mixture R =A* P + (1 - A)* Q is: 

An(w) =A* Ap(w) + (1 - A)* Aq(w) (3.2) 

that is, the lengths of the faces of the mixture are equal to the mixtures of the face lengths of P 

and Q. 

3.4.2 Volume of Mixtures 

Consider the expression for the volume of the mixture of two 2-polytopes in terms of A. It is 

shown in Appendix A that the volume of the mixture V(R) is: 

(3.3) 

where 

and AQ is vector of edge lengths in Q, Hp is the vector of support values for P evaluated at the 

orientations in 0. The notation is from Appendix A, where the proof is developed for polygonal 

curves. 

The expression V2(P, Q) is called the mi:ied "olume of polygons P and Q, by analogy to the 

expression of volume (area) of a polygon. It is shown in Appendix A that V2 (P, Q) = V2 (Q, P). 

Minkowski [1897] showed that a similar expression arises in the formula for volume of 3-polytopes. 

The generalization of Equation 3.3 to 3 dimensions is: 

The coefficients appearing in the formula for V(R), the mixed volumes, are defined as follows: 
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These are expressions got by replacing the area function of one polytope with that of the other. 

In V3 ( P, Q) the area function of Q replaces the area function of P. In 3 dimensions, in constra.st 

to 2, except when Pis a translate of Q, 

The terminology V.(P, Q), i = 2, 3 departs from the more generalized conventional notation, but 

is used here since the only results necessary for the exposition occur in 2 and 3 dimensions and 

involve only two bodies. 

The mixed volume of P and Q is independent of the point from which the support function 

is calculated. Here the support function of Q is denoted by JIQ, If Q is translated by t, becoming 

Q', the support values of its faces are altered: 

V2(Q',P), after translation, is: 
n n n 

L ApiHQ~ = L ApiHQi + L Ap,(t, Wj) 

and, by the closure condition, 

so 

n n 

= LAPiHQi + I:(t,Apj * Wj) 

i=l 
n n 

= L ApjHQj + (t, L Apj * Wi) 

i=l i=l 

n 

I:Apj * Wi = 0 
i=l 

and the mixed volume is invariant under translation. 

3.4.3 Brunn-Minkowski Theorem 

( 3.5) 

The Brunn-Min.kowski theorem describes the relation between the volume of the mixture of P 

and Q and the volumes of the individual polytopes. The Bnmn-Min.kowski theorem states , in 

R3 , that 

( 3.6) 

The exponent is 1/d, where dis the dimension of the minimal imbedding space. Bnmn showed 

that the inequality holds. Minkowski f.howed that equality holds if and only if P and Q are 

homothetic. 
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Figure 3.5: Volume Contours, by The Brun.n-Minkowski Inequality 

Figure 3.5 shows the volume contours in a support space of two dimensions. Assume, for 

example, that the two support values represent the location of edges of a rectangle with orienta­

tions w1 = (1, 0) and w2 = (0, 1). The other two edges, with orientations (-1, 0) and (0, -1) , are 

assumed to pass through the origin in R2 . Each point having positive coordinates represents a 

rectangle with edge lengths h1 and h2. The rectangle is depicted in Figure 3.6; it corresponds to 

the point (6, a) in support space. The contours of constant volume (area) in support space are 

hyperbolae with equations: 

The polygons represented by points along the ray from the origin are homothetic. Points along 

the chord indicate a mixing between the two polygons represented by the endpoints . Let. V(H) 

be stand for V(P(H)), where P(H) is the polytope described by H. A1.J..y interior point on the 

chord HR has volume V(HR) > 1, by the Brunn-Minkowski inequality. 

After substituting the right hand side of Equation 3.4 in Equation 3.6, suitable algebraic 

manipulation yields: 

(3.7) 

Equality holds only when P and Q are homothetic. Homotheticity is very important; if two 

polytopes are homothetic, their area functions can be made equal by the proper scaling. 

An interpretation of these formulas is that the mixed volume captures the relation between 

the shapes of the two polytopes; when the mixed volume is minimal, the shapes are homothetic, 

and mixing the two polytopes does not result in shape change, only in scaling. Otherwise. the 

mixing results in both shape and scale change. 
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Figure 3.6: Rectangle used in minimization example 

3.4.4 Minkowski's Theorem on Polytopes with Given Area Functions 

Equation 3.7, which follows from the Brunn-Minkowski theorem, was used by Minkowski to 

transform a question of uniqueness into a minimum problem. Let Q be the polytope with area 

vector AQ, A polytope P will be constructed which is homothetic to Q. Consider only polytopes 

which have unit volume. Then, by Equation 3.7, 

V(Q) is not known, but is fixed. The Bnmn-Minkowski theorem says that the polytope P, having 

unit volume, that minimizes V3 (P,Q) is homothetic to Q. Scaling the minimizing polytope P so 

that V(P) = V(Q) results in a polytope whose area vector is equal to the desired vector AQ. 

The set of polytopes {P(H) I V(H) ~ l} is convex, as a consequence of the Brunn-Minkowski 

inequality. The objective function, (Aq, Hp), since it is linear, is convex, so the minimum will lie 

on the boundary of the convex set, where V(H) = 1. By convexity, a local minimum of (Aq, Hp) 

is the global minimum. Thus the polytope which minimizes the mixed volume is unique. 

The proof relies on the minimization to establish uniqueness. In addition, Minkowski argues 

that the polytope satisfying the minimization criterion in fact has the desired area vector. In 

the following discussion, it will be shown that known methods of constructing a polytope from 

its support vector and known minimization techniques can be combined to construct the support 

function of P so that Ap = Aq. 

3.4.5 Example of Minimization 

Consider the set of rectangles whose support space, previously defined, is pictured in Figure 3.5. 

A particular rectangle, with edge lengths ( a, b) at orientations ( w1, w2) corresponds to the point 
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in support space at (b, a) . Its area is ab, and its area vector A= (a, b) (see Figure 3.6). After 

substituting the right hand side of Equation 3.4 in Equation 3.6, One can solve explicitly for 

the point on h1 h2 = 1 which minimizes (A, H); its coordinates are ( v1b{a, ,/alb). Scaling by 

A 112 = y'ab recovers the correct coordinates for (h1 , h2) = (b, a). In general, explicit solution is 

not possible, so the problem is solved by constrained minimization. 

3.5 The Iterative Method 

In an iterative solution to a constrained optimization problem, a sequence of feasible points, i.e. 

points satisfying the constraints, is generated, which converges to the optimum [Gill et al., 1981] . 

The sequence of polytopes is generated, using a procedure for constructing a polytope P(H) from 

its support vector H. Each point His transformed into a point satisfying the volume constraint 

by computing its volume, V(H), and scaling P(H) so that. its volume satisfies the constraint. 

This permits the generation of a convergent sequence of feasible points by starting from an initial 

point, talcing a step toward the minimum , restoring feasibility, and repeating. 

3.5.1 Constructing P(H) 

A polytope P(H) can be constructed in 0(nlogn) time from the intersection of the half-spaces 

specified by the vector H, as described in Section 2.6.5. 

3.5.2 Restoring Feasibility 

Once P(H) has been constructed, it is straightforward to determine a corresponding feasible 

point H'. The volume V(H) of a 3-polytope P(H) is a homogeneous polynomial in II of degree 

3. Arly P(H) can be scaled by V(H)113 , yielding a coITesponding polytope P(H') with unit 

volume, (see Figure 3.5). The formula for VV(H) can be derived directly from the formula for 

V(H) . The gradient VV is used in <:omputing the minimizing step. 

3.5.3 Determining a Minimizing Step 

Constrained optimization is a well-studied problem, so many methods are available for deter­

mining the step direction and magnitude [Gill et al., 1981]. The reduced gradient method is a 

simple method which was chosen for implementation. A step in support space in the hyperplane 

perpendicular to VV(H) remains close to the constraint surface V(H) = 1. The step is in the 

direction which minimizes (A, H), that is, in the direction of the p~ojection of the vector -A, the 
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Figure 3.7: Minimizing step remains close to constraint surface 

n-vector of areas of the faces given by the EGI, onto the hyperplane perpendicular to VY (H). 

This step S is a multiple of: 

(A, VV(H)) VV(H) - A (3.8) 

The minimizing step is depicted in Figure 3.7, in an analogous situation to that shown in Fig­

ure 3.5. 

Determining the step size is an important factor in the minimization. Initially, step size is 

set to unity, A is normalized and the first evaluation point is at (1, 1, .. . 1). The magnitude of 

the step is adjusted during minimization. Should the step be too large, the value of the objective 

function for the next iteration may increase when the point is restored to feasibility . This is 

termed overahoot. When the step size is too small, the rate of convergence decreases. There are 

several ways of handling overshoot - one obvious way is to reduce the step size. In this particular 

problem, the gradient of the constraint surf ace is available at each step, as well as the values of the 

objective function at Pi and Pi+i, the positions in support space of the i th and i + 1 'h evaluation 

points. The line Pi+l - Pi and the direction A describe a 2-dimensional plane. In this plane, 

the behavior of the constraint can be approximated by a parabola using the gradient, Pi and 

Pi+l· The minimum of this parabola is used as a new Pi+2 when overshoot occurs. Essentially, 

this method computes a local approximation to the Hessian, the matrix of second derivatives of 

the constraint surface. More sophisticated methods, such as quasi-Newton methods, build up 

over all iterations an approximation of the Hessian for second-order information. Using the local 

parabola is effective in improving the convergence when overshoot occurs. After overshoot, the 

step size is reduced to the length of the vector connecting Pi and Pi+2• When several steps have 

been taken at this new size and no overshoot occurs, the step size is gradually increased. 
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In this particular problem, the actual Hessian is sparse; each element is: 

where the Cij are described in Equation 3.1 above. Solving a sparse system of linear equations may 

be linear, depending on the structure of the matrix, so moving to a method based on second-order 

information could be advantageous in this problem. 

3.5.4 The Method 

The iterative method for reconstructing a convex polytope from its EGI combines the procedures 

described above. It is a minimization which terminates when the objective function (A, H) 

decreases by less than a prescribed t: in some step. Initially, all faces are adjacent to the unit 

sphere in R3 , so H is ( 1, 1, ... , 1). The process of generating a polytope, scaling, and moving in 

a minimizing direction is repeated until (A, H) decreases by less than c 

1. Construct P(H): 

(a) Map then planes given by H into M, a set of n points in R3 , using the dual transform. 

(b) Compute the convex hull of M, CH(M). 

(c) Determine the adjacency relations of P(H) from O H(M). Calculate the locations of 

the vertices of P(H) . 

2. Compute V(H) and VV(H). Scale H by V(H) 1l3 to make its volume unity. 

3. Compute a step using Equation 3.8 and update H. 

3.S.5 Deficient Input 

The necessary condition on A for the existence of the convex reconstruction of shape is: 

which in effect is three conditions in R3 of the form 

where Wij is the J°'h coordinate of Wi. The vectors formed by collecting the w.;; are the spanning 

vectors of the subspace of polytopes related by translation (see Equation 2.6). Should , in practice, 

the vector A not satisfy the closure condition, the minimization will not succeed. There is no point 
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Hin the space for which v'V = A. Essentially, A has a component in the translation subspace. 

and v'V is always orthogonal to that subspace. The minimization may cycle and terminate with 

a result where the area vector is far different from A. 

The simplest remedy is to solve, instead, some similar vector A", such that 

and A• is suitably close to A, say that it minimizes 

3.6 Complexity 

The requirements of the reconstruction procedure can be factored into two components: the 

number of iterations required to find an acceptable solution and the number of operatioll!l per 

iteration. Each iteration requires 0( n log n) operations to compute the convex hull of the n 

dual points. In addition, O(n) operations are necessary to evaluate the volume. Each iteration 

thus requires O(n log n) computations. The number of iterations depends on the constrained 

minimization method. The convergence rate of an iterative method is linear if the error at step 

i, fi , satisfies: 

(3.9) 

where 1 < 1. A reduced gradient method [Gill et al., 1981] was implemented; its convergence rate 

is linear. To achieve quadratic convergence, i.e., lti+i I S 1ltil2 for i large, the Hessian matrix of 

V ( H) or an approximation to the Hessian must be used; the Hessian in this problem is sparse 

(see Section 3.3.1). This was not implemented but could be advantageous. Using the Hessian 

might impose excessive computational demands, suggesting a quasi-Newton approach. 

It is possible to start at each step with the hull of the previous dual polytope. The change in 

location of the primal planes in most cases is very small, so the change in the adjacency structure 

will be small. Recall that each point Pi in the dual polytope corresponds to face i in the primal, 

and will lie along a ray which is the extension of wi. In the initial stages of the miDimization, 

adjacencies change rapidly, later little is altered. AB implemented, the hull of the dual polytope 

is reconstructed anew at each step, in O(nlogn) steps. It would be expected that starting from 

the previous hull, the new hull would be easy to compute, since the change in the position of the 

dual points is small. However, Seidel 11984] demonstrated that, in the worst case, constructing 

the 3-d hull of a set of n points, even when starting from the previous hull, requires O(nlogn) 
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Figure 3.8: Stereo View of the EGI of a Distorted Octahedron 

Figure 3.9: View of the Original Polytope 

operations. In practice, starting from the previous polytope may speed things up considerably, 

but this was not implemented. 

3. 7 Performance 

An example polytope P has been reconstructed from its EGI, (Figure 3.8). The polytope P to 

which the EGI corresponds is shown in Figure 3.9. 

The faces of the polytope are parallel to those 0£ a regular octahedron, while the distances 

of the faces from the origin have been altered. The polytopes generated during reconstruction 

will be denoted P,, i = 0 ... a, where the subscript indicates the step number. The polytope 

constructed initially, Po, is shown (in stereo) in Figure 3.10. 

Po is an octahedron, in which each face is adjacent to three others. Duriug minimization, the 

polytopes generated change in adjacency structure. The adjacency structure at an early stage 
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Figure 3.11: Reconstructed Polytope 

becomes identical to that of P. The final reconstructed polytope P8 is shown in Figure 3.11. P8 

has the same adjacency. structure as P. 

Another polytope, Q, having 21 faces intersecting out of 40 randomly positioned planes . 

is reconstructed from its EGI (in Figure 3.12). Q is shown in Figu.·c 3.13. Q0 is shown in 

Figure 3.14. Q18 is shown in Figure 3.15. Reconstruction terminated after 22 steps when (A, H) 

had decreased by less than le - 5 on successive steps. 

3.7.1 Errors 

Let A and H be the calculated areas and support values, and A and H the actual areas and 

support values . 

The statistics for the two reconstructions are presented in Table 3.1. The procedure for the 

polytope with 8 faces required 8 steps, and 9 evaluations of intermediate polytopes, terminating 

when the mixed volume reached 1.240818, and the actual value of the mixed volume for the 

original polytope is 1.240818. The combinatorial types of the original and reconstruction are 
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Figure 3.12: Stereo View of the EGI of a Polytope with 21 Faces 

Figure 3.13: View of the Original Polytope 

Figure 3.14: View of the First Estimate Polytope 
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Figure 3.15: View of the Reconstructed Polytope 

Object Area error / Area Average 6A Max6A Average 6H Max 6.H 
) IA,-A,I ) 1,-t,-A;I 'IA,-Ad > IH,-H,1 !H·-H ·I 

LA; max, A; max· ' ' n n I H, 

8 faces 0.08 % 0.151 % 0.62 % 0.06 % 0.16 % 

21 faces 1.60 % 6.60 % 100% 1.70 % 30.1 % 

20 faces 0.61 % 1.93 % 20.8 % 0.28 % 0.63 % 

Table 3.1: Error statistics for reconstructions 

identical. 

The procedure for the polytope with 21 faces required 22 steps, and 26 evaluations of in­

termediate polytopes, terminating when the mixed volume reached 1.917301, while the actual 

value of the mixed volume for the original polytope is 1.91655. There were 4 more evaluations 

than steps because of overshoots, which result in reduction of the step size. The discrepancy 

between the achieved minimum and the actual minimum is reflected in the difference between 

the combinatorial types of the original and the reconstruction. The polytope denoted "20 faces" 

is an entry showing the effects of considering just those £aces which occurred in the reconstructed 

version, for which the errors are less. 

Table 3.2 displays the combinatorial structure of the 21 faced polytope, as lists of face inci­

dences. The absence of one face, with small area, from the reconstruction distorts the combina• 

torial structure. In fact, the only error in the combinatorial structure is the absence of that face; 

were it to be introduced into the adjacency lists where it would become tangent, the structures 

would be identical. Metric comparison of the original and the reconstruction shows that measures 

- involving the support function Hare more robust, and are appropriate measures for comparing 

38 



Face Original Estimated 

1 (2 14 21 16 15 9 12 13) (2 14 16 15 9 12 13) 

2 (113 14) (1 13 U) 

3 (7 15 8 16 14) (7 15 8 16 14) 

4 (7111715) (7 1117 15) 

5 (10 20 14 19 13 18) (10 20 14 19 13 18) 

6 (9 15 17) (9 15 17) 

7 (3 14 20 11 4 15) (3 14 20 11 4 15) 

8 (3 15 16) (3 15 16) 

9 (11561712) (115 6 17 12) 

10 (5 18 17 11 20) (5 18 17 11 20) 

11 (47201017) (4 7 20 10 17) 

12 (1917 18 13) (1917 18 13) 

13 (1 12 18 5 19 14 2) (1 12 18 5 19 14 2) 

14 (1 2 13 19 5 20 7 3 16 21) (1 2 13 19 5 20 7 3 16) 

15 (1 16 8 3 7 4 17 6 9) ( 1 16 8 3 7 4 17 6 9) 

16 (1 21 14 3 8 15) (1143815) 

17 (4 1110 18 12 9 6 15) ( 4 11 10 18 12 9 6 15) 

18 (5 13 12 17 10) (5 13 12 17 10) 

19 (5 14 13) (5 14 13) 

20 (5 10 11 7 14) (5 10 11 7 14) 

21 (1 14 16) nil I 

Table 3.2: Combinatorial Structures 

polytopes with similarly oriented faces. 

An advantage of this minimization formulation is its indifference to the adjacency relations in 

the polytope. A correct adjacency structure is guaranteed, in principle, by Minkowski's original 

argument. The difference in the second example between the combinatorial structures of the 

original O and the reconstructed polytope R is due to the implementation of the method, and i:; 

not due to the method itself. It is not an error so much as an omission. The missing face is very 

small in area, and any step to improve the objective function will only step in its direction a small 

amouut. Very early in the minimization, the face is moved outside the polytope, at a distance 0.10 

from its correct placement. Since the component of the step in the i1h coordinate is proportional 

to Ai, the corrections are small. At termination, the face has not moved in far enough. Fact>s can 

be eliminated and re-introduced by the minimization, as implemented. This face, however, was 
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Figure 3.16: Log of Error vs. Iteration for Example 1 

not re-introduced into the polytope. A straightforward modification to the implemented method 

brings each face which has zero area, in the estimate, inwards until it becomes tangent with the 

estimated polytope. Since all faces are known to exist in the reconstruction, this is sound. A 

naive method for finding tangency could take O(n) operations. 

Errors can arise from several sources: for example, incorrect calculation of the adjacency 

structure of the polytopes, leading to incorrect estimation of the volume and its gradient. This 

may slow down convergence, and may be introduced by rounding error during computation of 

any of these quantities . 

Pictured in Figures 3.16 and 3.17 are graphs of the natural logarithm of the truncation error 

in the mixed volume versus the number of iterations. Both are approximately linear which is in 

agreement with the expected behaviour of the reduced gradient method. The ratio of successive 

errors (, in Equation 3.9) is approximately 4.0 for the first example and 1.3 for the second, which 

is reduced to 1.02 by the later iterations. · The larger number of iterations in the second case 

can be explained by the small angles between some of the randomly oriented faces causing large 

changes in A by small changes in H, so that in a sense the problem is ill-conditioned. 

3.8 Reconstruction from Partial Information 

It is possible to reconstruct the shape of the visible portion of an object, P, given the visible 

hemisphere of its EGI and the occluding contour, so that the faces in the reconstruction are 

identical to the visible portion of the object. 

The complete EGI is a set of vectors N = {nill $ i $ A:}. Assume that the partial EGI 

consists of the first m of these vectors. The occluding contour may be specified as the contour 
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Figure 3.17: Log of Error vs. Iteration for Example 2 

Figure 3.18: Visible Hemisphere of a Polytope, and the Contour Generator 

generator, G, a path in R 3
, containing c vertices, or as the 2-d projection, C, of G. 

The procedure for reconstruction will be described as if G itself is given; later, a method for 

generating G from C will he specified. To reconstruct shape from the visible hemisphere and 

the contour generator G, producing a new polytope D, proceed as follows (making reference to 

Figure 3.18): 

I. Project G onto a plane normal to the viewing direction, incident upon the lowest vertex of 

G in that direction, producing C, as described above. 

2. Connect each vertex in G with its projection in C. This produces a set of new faces whose 

orientations a.re normal to the viewing direction aud the segment in C. 

3. Compute the areas and normals of these faces, as well as the area of the face enclosed by 

C. Its normal is taken to be the opposite of the viewing direction. 
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4. Add the products of these areas and normals to the set of vectors comprising the partial 

EGI, giving a new EGI, N' with m + c + 1 elements. 

This N' is equilibriated, since it is the EGI of an object which is convex, by the construction. 

Since it is equilibriated, by Minkowski 's theorem, it uniquely corresponds to a polytope D. The 

portion of D corresponding to the partial EGI is shown to be the same as the polytope P which 

gave rise to N' by the following argument. 

If the same sequence of operations is performed on P, namely, projection of G, giving C, and 

creation of the c faces connecting G with its projection C, a polytope Q is constructed. Its faces 

have the same orientation as those of P in the visible hemisphere and the vectors in its EGJ 

correspond one-to-one with the vectors in the new EGI N'. By the uniqueness of reconstruction) 

this polytope Q is the polytope reconstructed from N'. By the construction, it has the same 

faces as P within G, hence the faces in D correspond to the faces of P within G. 

Given only the projection C and the viewing direction z, proceed as follows. There are c edges 

in C, and m faces in the partial EG I . Consider assigning a face i to edge i; this determines the 

slope of the line in R3 since one component of the direction of the line is fixed by its projected 

direction - the second comes from the intersection of its assigned face ( i) with a plane passing 

through the edge normal to the viewing direction z. The assignment of a face to an edge provides 

a direction in R3 to the projected edge. Continue in this fashion assigning faces to edges. If each 

face is assigned to only one edge the number of possible assignments is (m - c)!; since a face 

may be assigned to more than one edge, the number is larger but is bounded above by m' . The 

assignment is feasible if the path in R3 generated by following the (un)projected edges closes. 

At least one assignment will generate a closed path, but there may be several which are feasible. 

For each feasible assignment, compute the reconstruction using the procedure described above. 

In this way a projected contour C can be transformed into a generator G, allowing the use of the 

previous reconstruction method. Its results are reliable when there is a unique back-projection 

(assignment of faces to edges), otherwise, the method can fail, in the sense that the reconstructed 

shape may not be unique. 
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Chapter 4 

Support and Area Functions 

4.1 Introduction 

The algorithm described in the previous Chapter shows how the support vector for a polytope 

can be determined from its area vector. In order to facilitate arguments about mixed volumes 

in the succeeding Chapter, the continuous support function is described in terms of the area 

function for curves, permitting a qualitative comparison of the smoothness of the two functions. 

The next Section describes a method of curve segmentation based on extrema of the support 

function. Because the support function varies with translation, its behaviour under translation 

is studied, leading to proposals for several candidate centres of support. The study of these ideas 

suggests some interesting problems in computational geometry. 

4.2 The Relation Between Support and Area Functions 

For polytopes, the support function Jl(w) is a continuous ftmction of w, but the area function 

A(w) is not. To study the relation between these two functions of orientation one must move to 

the area of continuous descriptions; to describe their smoothness their Fourier descriptions are 

used. 

4.2.1 Continuous Curves and Surfaces 

A curve (a function c: R - R2 ) will be parametrized by arc length, i.e., the length of the tangent 

vector is unity [DoCarmo,1976]. A parametrized differentiable curve c(.,) is regular if and ouly if 

c'(.,) never vanishes. For any such curve the normal vector n(a) is a unit vector perpendicular to 
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c'(.,), a.nd 

k(a)n(a) = c"(a) 

k ( s) is the cu"ature. For the purposes of discussion in this section, orientation will be identified 

by the angle w made by the normal vector with the x-axis. So, at any point on the cu"e, 

c'(a) = dc/da = (-ain(w),coa(w)) ( 4.1) 

Consider the curve parametrized by w; this is an invertible map if the curvature is strictly 

positive. Then 

c(w) = {" c'(,p)d1/J + a constant ( 4.2) 

by the fundamental theorem of calculus. By moving the point c(O) to the origin; the constant of 

integration becomes 0. Now 

d Id = dc/da 
c w dw/da 

At the point parametrized by a, whose orientation is w, 

where k(s) is the curvature. Let 

A(w) = 1/A:(.,) ( 4.3) 

by identifying the points on the curve. In R2 the area function is the radius of curvature. 

Therefore, from Equation 4.1 and Equation 4.3, 

( 4.4) 

The definition of the support function is 

Jl(w) = (c(w), (co.,(w), ain(w))) ( 4.5) 

which can be expanded to 

N(w) = coa(w) fo'..J .A(1/,)(-ain(tj,))d1/, + ain(w) lo"' A(1/J)coa(,p)d1P ( 4.G) 

This formulation allows comparison of the Fourier spectrum [Oppenheim et al.,1963] of A(w) and 

the Fourier spectrum of Jl(w) from which an evaluation of their relative smoothness can be made. 

In the following analysis, negative frequency components will be ignored and magnitudes will be 

considered. Let 

a(f) = A(t) 
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indicate that a is the Fourier transform of A. Then 

Jf(t~(t) = a(! - 1) 

where t is in units of 2,r and f represents frequency. Then 

and 

!-- . a(J - 2) 
cos(t) A(t)sm(t)dt = i(f _ l) 2,r 

Now the last equation represents the Fourier transform of the first half of the formula for }I in 

terms of A. The formula in terms of a, the Fourier transform of .A, shows that JI is shifted to lower 

frequencies and its amplitude is reduced by the factor i2,r, so that JI is in fact much smoother. 

A similar argument holds for the second component of the expression for JI (Equation 4.6). The 

relative smoothness of JI compared to A will later be used to strengthen, in a qualitative fashion , 

arguments for the superiority of attitude determination using mixed volumes (Section 5.2.6). 
' 

4.3 Curve Segmentation 

Mackworth and Mokhtarian[1984] have extended the scale-space approach, first described by 

Stansfield in 1980, and then by Witkin in 1983, to curves in the plane, for describing the points 

on a curve as scale varies. This method depends on the existence of inflection points in the 

curve, i.e. points at which the curvature vanishes, hence on non-convexity in general. Weldon 

and Horn[l984] discuss smoothings of the extended circular image of curves in the plane. 

Segmenting a convex curve can be based on the support function of the curve. Because the 

support function is not translation invariant it becomes important to find a suitable location in 

the plane for the curve. 

4.3.1 Centre of Support 

To study the behaviour of the support function under translation, first consider where JI reuches 

a local maximum or minimum. At an extremum, 

Jl'(w) = 0 

Jl(w) = (w, c(w)) 

Jl'(w) = (w', c(w)) + (w, c'(w)) 
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But this last term is O because w, the normal vector, is perpendicular to the tangent of the curve, 

by definition. 

Jl'(w) = 0 = (w', c(w)) = k(w)(c'(w), c(w)) 

and since the curvature is strictly positive 

0 = (c'(w), c(w)} ( 4.7) 

Thus the tangent vector is orthogonal to the position vector, or the normal is collinear •:.-ith the 

position vector. 

The support function JI (w ), see Section 2.6.2, varies with translation. In all mixed volume cal­

culations involving the complete figure, translation has no effect; apart from these considerations, 

what does translation mean? One can consider several candidate points as centres of support. a 

point which should be moved to the origin to get a suitable form of the support function. 

Theorem 4. I: 

The centre of the minimal circumscribed circle minimizes the maximum value of )I. 

Proof: 

From Equation 4. 7, at a local maximum of JI, the position vector of the curve and the normal are 

collinear. The maximum occurs at a vertex having this property. The maximum of JI is then iden­

tical to the maximum of the distance function from the centre. So the quantity to be minimized is 

the same as that for the minimal circumscribed circle. 

The minimal circumscribed circle is unique. If there were two, the figure would lie in their 

intersection, If one circle were entirely contained in the other, then it would be smaller, a con­

tradiction. Hence their intersection forms a lune, the region formed by two partially overlapping 

circles. Its vertices are the endpoints of the chord shared by both circles. The length L of the 

segment connecting the vertices of the lune is less than the diameters of the circle, since the 

longest chord in a circle is the diameter. The circle with diameter L whose centre lies at the 

midpoint of the segment contains the lune, and thus the figure. Its diameter L is less than that 

of either circle, contradicting the assumption. Hence the minimal circumscribed circle is unique. 

Theorem 4 .2: 

The centre of the maximal inscribed circle maximizes the minimum value of JI. 

Proof: 

I 

The maximal inscribed circle will be tangent to the curve at no less than two points. There the 

normal of the curve and the circle coincide, so the position vector and the normal are collinear 
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and JI is a local minimum, by Equation 4.7. The global minimum of H occurs at these points 

also, since all other points on the curve are outside the circle. The global minimum is maximized 

since there is no larger inscribed circle, by definition. 

The maximal inscribed circle is not unique. Consider a rectangle; the maximal inscribed circle 

has diameter equal to the shorter of the two sides of the rectangle and its centre can lie along a 

segment parallel to and halfway between the longer sides. 

I 
One can also consider determining points which minimize various integrals of derivatives of 

JI. First consider the integral: 

lJl(w)dw ( 4.8) 

The domain of integration O is the unit circle. Recall the definition of JI: considering c as a 

function of w, where w is an orientation, i.e. a unit vector pointing in the direction of the normal 

to c, then 

Jl(w) = (w, c(w)) ( 4.9) 

After any translation t, the above integral becomes 

(4.10) 

which equals 

(4.11) 

Now the second integral vanishes because the curve is closed, so the integral of JI over orientation 

is invariant under translation. However, the integral 

lo (w, c(w) + t)2dw (4.12) 

does vary with translation; in fact, it increases without bound as I t I- oo. It has a minimum, 

since it is bounded below by zero, and is a monotonically increasing function oft. The minimum 

is achieved when 

t = ( _!_ { Jl(w)coa(w)dw, !._ { Jl(w).,in(w)dw) 
1r lo 1r ln 

The integral of the derivative of the support function: 

l (w, c(w) + t)'dw ( 4 .13) 

is invariant under translation, since the integral evaluates to: 

47 



Figure 4.1: Lobes of a curve, bounded at minima of the support function 

The integral of the derivative squared 

varies with translation, and is minimized at: 

t = (.!_ f Jl'(w)(-ain)(w)dw,.!. f Jl'(w)co3(w)dw) ~10 ~10 

4.3.2 Segmenting Curves at Extrema of N 

For a polygonal curve, curvature reaches a local maximum at every vertex, so curvature segmen­

tation is at best confusing. Instead local maxima of the support function are examined. Let 

a region between minima of JI be termed a lobe; the size of the lobe is the angular difference 

between the normals at the enclosing minima. In Figure 4.1, the boundaries o{ large lobes of the 

convex curve are bounded by longdashed lines from the centre, and small lobes by dotted lines. 

To describe a curve in terms of JI, the best centre must be chosen. The number of extrema 

of }I depends on the location of the curve in the plane; by translating the curve away from the 

origin, the number of extrema can be reduced to 2, a maximum in the direction parallel to the 

translation vector and a minimum in the opposite direction. It becomes interesting to consider 

where the number of extrema of JI is maximized. There, in a sense, the curve is maximally 

segmented. A point on a curve is an extremum of JI if condition 4.7 is met, so that the normal 

of c(w) is collinear with the position vector. Minima of JI on a polygonal cul'Ve occur on edges. 

There will a minimum of JI along an edge if the origin lies in a region of the plane bounded by 

two lines orthogonal to the edge, passing through the endpoints of the edge. Such a region can 

be called a a/ab. The overlay of all slabs originating on the edges of a polygonal curve subdivides 

the interior of the closed curve into a set of regions, each of which lies within a varying number 

of slabs, see Figure 4.2 . So to ~aximize the number of extrema of }I on a polygonal figure, move 
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Figure 4.2: Slabs on a polygonal curve; region of maximum overlap is shaded 

the curve so that the origin lies in the overlap region which sees the most edges. Since there are 

2n segments which may each intersect n/2 other segments, the intersection of these slabs can 

take O(n2 ) time. Each region generated can be annotated with the number of edges it can see , 

and the maximum region chosen. Of course, there may be several regioD.S with the same value, 

so the choice is not unique, as with the maximal inscribed circle. In fact, any point in the region 

with highest cardinality will produce the same number of extrema. 
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Chapter 5 

Determ.ining Object Attitude fro1n 

the EGI 

5.1 Introduction 

The representation of objects by their EGis leads to a method for determining object attitude. 

Hom a.nd Ilceuchi[1984] have demonstrated the feasibility of using EGls for attitude determina­

tion. The EGI functions as a.n area histogram for the object; the sensed portion of a.n EGI is 

compared directly with the EGI of a prototype. 

The reconstruction method developed in chapter 3 provides a new method for attitude deter­

mination, based on the mixed volume. It is shown that this method is both practical a.nd more 

robust than direct comparison of EG!s. Experiments in determining attitude with a variety of 

polytopes are presented. 

5.2 Determining Attitude 

Determining the attitude from the EGI of a known object is equivalent to finding a rotation R, 

such that 

R(EGlp,ololr,,) = EGI,,.neu (5 .1) 

Attitude in R3 ca.n be identified with a rotation R( 0, n ), where O is the angle by which the 

object is rotated around the axis n. Alternatively, attitude ca.n be described by a quaternion 

[Salamin,1979] [Brou,1983], (q0 ,q1 ,q2 ,qa), which may be divided into a real part q0 and a vector 

part, (q1 ,q2 ,q3 ). Multiplication, addition a.nd scalar multiplication are defined for quaternions. 

A pair of unit quaternions, q(O,n),q(-0,n) are associated with a rotation. Rotation by q is given 
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Figure 5.1: Icosahedron and Dodecahedron 

by: 

where 
• 

q-1 = ~I' and the conjugate of q,q• = (qo, -qi, -q2, -q3) 

It can be shown that multiplying quaternions is equivalent to composition of rotations. For a 

detailed discussion of methods for representing and quantizing attitude in R3 see Brou[1983]. 

5.2.1 Quantizing Orientation 

In order to access an object's area function in a general fashion it is necessary to quantize ori­

entation - U must be tessellated. Brou[l983] has discussed in detail the criteria for tessellating 

U. Initially, a tessellation of U can be created by projecting a regular polyhedron onto U. The 

regular polyhedron with the most faces is the icosahedron with 20. The number of facets in ates­

sellation of U can be increased by subdividing the triangular faces of the icosahedron into smaller 

triangles. The quantization on U used here is based on subdivisions of the icosahedron, following 

Brou's use of that polyhedron. Hom and Ikeuchi l1984] use subdivisions of the dodecahedron, to 

achieve better distribution of angles in the cells. The results presented here should not be affect,~d 

by the difference in tesellations. Figure 5.1 shows the icosahedron and the dodecahedron used to 

produce the tessellations. At frequency 1 the faces of the icosahedron are mapped into 1 triangle, 

and at frequency i, each face is mapped into i2 triangles. Figure 5.2 shows the frequency 2 and 

frequency 3 subdivisions of U generated from projection of the icosahedron onto the sphere. 
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Figure 5.2: Icosahedra Subdivided at Frequency 2 and Frequency 3 

5.2.2 Quantizing Attitude 

Attitude is quantized using the rotation group r60 which brings the vertices of the icosahedron 

into correspondence with each other. One can envision this rotation group by imagining taking 

each of the 12 vertices of the icosahedron successively into correspondence with one particular 

vertex. Each vertex on the icosahedron has 5 incident edges. The rotations about the vertex 

generate 5 attitudes for each vertex mapped to the selected vertex, giving 60 rotations altogether. 

The rotations which constitute this group are those at which experiments are done in this 

chapter. The difference between two attitudes is the angle of the rotation (axis and angle) which 

takes one into the other . The minimum difference between attitudes in r6o is 72°. 

5.2.3 Attitude Determination 

From a suitable closed-form description of a prototype and its sensed area function, it may be 

possible to determine its attitude analytically. In practice, the description of an object does not 

have such a succinct representation. An EGI quantizes orientation and records the object area 

accumulated in each cell on U. First, it is useful to consider the problem of attitude determination 

without the effects of quantization. 

Determining attitude from EG Is can be solved by correlation. A rotation can be considered 

an offset; for a curve, the EGI represented as a function on the range O - 2,r is shifted until it 

matches itself. A procedure for determining attitude finds an offset (the independent variable in 

correlation) which is appropriate. For a symmetric object, there will be more than one rotation 

bringing it into correspondence with itself, so there will be several equally good attitudes. Where 

the object is not symmetric the uniqueness of the EGI guarantees there will be only one correct 

52 



attitude. In the presence of noise both of these assertions are untrue. The solution which 

maximizes the correlation can be chosen. AIJ. exact match may not be found. Variability of the 

solution with noise is dependent entirely on the object shape. For the EGI, this can be expressed 

by the autocorrelation function. AIJ. autocorrelation has its maximum M at O by definition. 

When the autocorrelation has several other maxima near M in value, it is possible that noise in 

the data will bring the correlation of the prototype EGI and the sensed EGI aboYe Mat incorrect 

offsets. Again this is dependent on the autocorrelation. Attitude determination is unstable in 

the presence of noise. 

Later in this chapter arguments will be advanced to show why attitude determination with 

the mixed volume is more effective (stable) in practice than direct correlation. These arguments 

will depend on an analysis of area and support functions. Both methods select optima of the 

respective functions. In the presence of noise, both can fail. It will be argued that the mixed 

volume method is more stable. Finally, experiments with both methods will be examined to 

support the claims . 

5.2.4 Attitude from Graph Matching 

Seidel[personal communication,1984] has suggested a procedure for matching complete EGis in 

an error-free environment. An EGI under this interpretation is a set of measurements of area at a 

fixed set of orientations. The procedure is discussed in Appendix B. Attitude can be determined 

by this procedure in O(nlogn) operations. 

Where only some of the orientations are present in the seruied EGI, it is necessary to match 

a graph derived from the sensed EGI with a subgraph of the prototype graph. Determining 

whether a particular graph is isomorphic to a subgraph -of a graph is NP-complete, in general. 

Where both graphs are three-connected, with a unique planar embedding, subgraph isomorphism 

has a polynomial-time solution. A method similar to that of Sugihara (1984] can be u~ed. What 

prevents the use of a graph-matching method in practice is that. selll!ing error in measured area 

will alter the order of the sorted area values, invalidating the use of a discrete algorithm based 

on exact ordering. 

5.2.5 Attitude by Comparin.g Area Functions 

To determine the attitude of an object from its EGI, Horn and• Ikeuchi [1984] match the prototype 

EGI and the sensed EGI at a discrete set of attitudes. At each sample attitude a measure M of 
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matching between the two area distributions on U is computed. 

m 

I: M(Ai, A1wi) ( 5.2) 
i=l 

where Ai is the sensed EGI area function evaluated in direction w; and AR(i) is the prototype area 

function evaluated at the direction to which w; is transformed by R, and the matching function 

Mis 

(5.3) 

This technique and matching function work well when the attitude of the semed object is 

close to one of the sample attitudes. Brau [1983,p. 113] admits that "high mismatch values 

are obtained if the object's orientation is not in the discrete set". The area matching method, 

at frequency 1, "leads to relatively low values of M1 even if the object's orientation is slightly 

different from the ones in the see'. M1 is the match value at frequency 1. "Unfortunately, large 

M5 's ",the value at frequency 5, "are obtained when the object's orientation is slightly different 

from the ones in the set." This leads to the suggestion that 5880 different attitudes should be 

used to compare frequency 5 tessellations. 

With increasing resolution the effectiveness of area matching decreases. As the resolution of 

orientation increases, the number of empty cells increases. A polytope with m fa('es will always 

fill at most m cells on U. If the difference in attitude between the prototype and the sensed 

object is near the cell resolution, the faces of the prototype and the object. will not lie in the 

same cells, even at the correct attitude. Cells with values will be compared with empty cells . 

. The maximum matching error increases and the minimum value will not necessarily indicate the 

correct attitude. 

5.2.8 Determining Attitude with Mixed Volumes 

Recomtruction selects a polytope whose area function fits the EGI; in attitude determination an 

attitude is sought which rotates the sensed EGI into correspondence with the prototype EGI. Both 

seek an appropriate area function; for attitude determination the choice is restricted to rotated 

versions of the prototype. In Section 3.4.4 it is shown that, of all polytopes P with fixed volume, 

the polytope whose support function H minimizes the mixed volume (Hp, AQ) is homothetic 

to the polytope with the given area function Aq. The relevant equations for 3-polytopes are 

described in Section 3.4.2: 

(1/3 I: HpAQ)~ = V3 (P, Q)~ ~ V(P)V( Q)2 

0 
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P and Q "'•"· th..: prototype polytope and the completed sensed polytope. This equation leads to 

(1/3 L HpAq) 3 /V(P) ~ V(Q)2 ( 5.5) 
n 

The mixed volume cubed divided by the volume of P is minimized when P is homothetic to Q. 

Rota.ting a polytope preserves volume, so among all P' which are rotated versions of P that P' 

which has the same attitude as P minimizes the mixed volume. So, to determine object attitude, 

mllllm1ze: 
ffl 

L(BR(,1 • Ai) 
i=l 

Hi is the prototype support function, A, the sensed area function, and R(i) is the position at 

which i occurs in rotation R. 

For polytopes, the area function A(w) is discontinuous; in contrast, the support function Jl(w) 

varies smoothly on U. In fact, the area function of a polygon, for example, consists of a finite 

set of non-zero points in the interval O - 2,r. Its autocorrelation is O almost-everywhere. Not 

surprisingly, when the attitude of the sensed object is slightly different from the prototype (or 

any attitude in the sample set), the value of the area matching is 0. Discretizing A by sampling 

U is helpful, as Brou remarks, in introducing a smoothing effect, widening each of the pulses to 

the resolution. With discretization, small changes in attitude do not affect the area function, 

until the size of the attitude difference exceeds the resolution on U, when the errors recur. 

The support function is an integral transform of A and is much smoother. A more complete 

discussion is in Section 4.2.1. Because A varies rapidly, the prototype, under a small rotation, is 

very different in A from the actual attitude. Mismatches then occur. The support function varies 

less and the error rate is correspondingly lower. For a polygonal curve, the support function is 

piecewise sinusoidal, (Equation 2.5). The mixed volume of a polygonal curve and itself is also 

piecewise sinusoidal, since it is the convolution of a set of impulses of height A(wd with the 

support function Jl(w) which is piecewise sinuso:dal. 
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5.3 Experiments in Determining Attitude for Complete EGis 

There are two variables in these experiments: first, the resolution at which orientation is quan­

tized, and, second, the difference between the attitude of the prototype and that of the test 

object. For each prototype, several experiments were performed. First, the attitude is held 

constant (usually at 0°), and resolution varies. Second, at a specified resolution, the difference 

between the attitude of the object and the prototype changes. 

The first series of experiments uses several different polytopes and compares the effectiveness 

of the area and mixed volume methods at determining attitude from a complete EG I, at varying 

resolutions on U. Both area matching and mixed volume methods succeeded. The theory of 

mixed volumes predicts that minimizing mixed volume will perform correctly when given the 

exact support function and the exact areas. Quantization effects can introduce error. That the 

increase in resolution of models and sensed values produces correct behaviour agrees with the 

theory. 

The results in the following tables describe two values: first, the number of degrees between 

the attitude selected by the matching method (aA or al\lV) and the correct attitude (ao), and, 

second, the rank at which the correct attitude is placed by the method ( Rank( ao) ). In both 

methods, the values of matching at all test attitudes are computed and sorted. The minima 

identify an attitude, which is ranked 0. The correct attitude is the nearest attitude in r6o to the 

actual attitude of the prototype. When Rank(ao) is not 0, r "# 0, the correct attitude occurs 

in the r + I th position in the sorted list. The higher Rank(a0 ) is, the more poorly attitude has 

been determined. Each box is subdivided vertically into the measurements for area comparison 

aud mixed volume. Each element in the tables has the form described in Figure 5.3. 

The experiments with varying resolution on U, complete EGls, used 4 different polytopes. 

The first, with 21 faces, is in Figure C.l, the second, with 40 faces, in Figure 5.5, the third with 

20 faces, in Figure C.3 and the last in Figure C.4. The results of these experiments are shown 

in Table 5.1. These experiments demonstrate that the mixed volume method at frequency level 

2 performs as well as area comparison. At resolution level 1 the coarseness of the quantization 

prevents the mixed volume method from working on some objects. 

The second form of experiment varies the difference in attitude between the prototype and 

the test object. The results of that experiment, using the complex polytope (having 21 fares) 

in Figure C.l, are shown in Table 5.2 . The area matching method fails when the angle between 

the attitude of the prototype and the test object is as little as 15.0° . Even more serious failure 

occurs in this set of rotations (Table 5.3). Also, the mixed volume method fails in this example, 
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Area Mixed Volume 

0A - Oo OMV - ao 

Rank(ao) Rank(a0 ) 

Figure 5 .3: Form or entries in the comparison tables 

Object Frequency l Frequency 2 

21 faces at random distances 
oo 144° oo oo 
0 5 0 0 

oo 180° oo oo 
40 faces on sphere 

0 6 0 0 

oo oo 
20 faces on ellipsoid 

oo oo 
\ 0 0 0 0 

oo oo 
80 faces ellipsoid 

oo . oo 
0 0 0 0 

Table 5.1: Errors with varying resolution or orientation 

Frequency 2 

Axis 50 10° 15° 200 

oo oo oo oo 144° oo 72° oo 
1,0,0 

0 0 0 0 2 0 
I 

4 0 

Table 5.2: Errors at frequency 2 with varying attitude, axis (1,0,0) 

Frequency 2 

Axis 50 100 15° 20° 

oo oo oo oo 
0,1,0 

72° oo 120° 72° 

0 0 0 0 6 0 
I 

21 2 

Table 5.3: Errors at frequency 2 with varying attitude, axis (0,1 ,0) 
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Frequency 3 

Axis 50 100 15° 20° 

oo oo 72° oo 144° oo 72° oo 
1,0,0 

0 0 9 0 8 0 17 0 

oo oo oo oo oo oo 72° 180° 
0,1,0 

0 0 0 0 0 0 11 2 

oo oo oo oo 72" oo 72° 144° 
0,0,1 

0 0 0 0 21 0 23 1 

Table 5.4: Errors at frequency 3 with varying attitude 

but its failure is less severe in two respects: the incorrect attitude selected is closer to the correct 

attitude and the number of incorrect attitudes lower in rank is smaller. Both methods are correct 

for all rotations about axis (0,0, 1). 

Table 5.4 shows the results for all rotations at frequency 3. The results for the 20° rotation are 

shown in another form in Figure 5.4. The graph shows the values of area matching, in a dotted 

line, and mixed volume, in a solid line, on the vertical; the horizontal axis shows the attitudes 

(from f60) at which the matchings were evaluated. The horizontal axis is separated by dashed 

lines into regions which are 0, 72, 120, 144 and 180° from the prototype attitude. In this figure, 

point A is the minimum of the mixed volume method, which is also the global minimum and 

correctly identifies the object attitude. B, the value of the area matching method for the correct 

attitude, is rather high. There are 21 attitudes with lower values. The area function achieves a 

minimum (point C) at an attitude in the 72° set, while the mixed volume goes to a minimum at 

0°. The minimum difference between rotations in f60 is 72°. 

In general, the area matching method performs worse at a finer resolution: out of 12 cases, 

it is worse in 5, better in 2 and the same in 5. The mixed volume is worse in 2 cases, better iu 1 

and the same in 9. The MV method is in error in only 2 out of 12 cases, while the area matching 

method fails for 6 out of 12 cases, at frequency 3. 

Finally, when the two methods are compared at frequency 5 subdivisions on U, the number 

of errors increases, as expected, from 6 out of 12 for area matching to 8, while the mixed volume 

method fails in two cases (see Table 5.5). 

The behaviour of the two methods under changing resolution of the tessellation on U agrees 

with the analysis; at frequency 3 the magnitude of the rotation is approximately the same as the 

size of the cells of U (15° vs. a range of 6 to 14° on U) [Brou,1983,p. 116]. There the smoothing 
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0 72 120 144 180 

Frequency 5 j 
Axis 50 100 15° 20° I 

I 

oo oo 180° oo 144° oo 72° 180° 
1,0,0 

0 0 1 0 20 0 16 1 

oo oo oo oo 120° oo 120° oo 
0,1,0 

0 0 0 0 5 0 21 0 

o• o• 120° oo 72° oo 72° 144° 
0,0,1 

0 0 17 0 26 0 17 1 

Table 5.5: Errors at frequency 5 with varying attitude 
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Figure 5.5: Polytope (40 faces) visible edges solid, invisible dotted 

effects on A at lower resolution are significantly reduced. At frequency 5 on U the errors are 

larger because the cells on U are even smaller ( a range of 4 to 9° on U). The mixed volume 

method does err in several cases for rotations of 20°, but since the rank of the correct attitude is 

second or third, the error can be attributed to a quantization effect on H. The analysis supports 

these results; since H is smoother, the effects of the difference in attitude from the prototype 

are significantly smaller for the mixed volume method. It should be possible then to trade off 

resolution on U against the number of test attitudes, so that a significant improvement in the 

accuracy of the attitude determination could be achieved. 

5.3.1 Using Visible Hemispheres 

The previous section demonstrates the mixed volume method can be effective in determining 

attitudes from complete EGis. In practice, without fortuitously situated mirrors or multiple 

cameras, only the portion of a surface corresponding to a single visible hemisphere of the EG I is 

sensed. In Figure 5.5, the polytope used in the example (with 40 faces on sphere) is shown in 

stereo; a vector is drawn showing the view vector, and edges not visible from that view direction 

a.re dotted. Can the MV method be effective with only partial information? The MV method 

will only utilize the support function and areas of visible faces, as will the area method. In the 

following tables the MV technique is contrasted with the area method for several objects. In 

these example the area matching is: 

I:(A,, AR(i) )
2 

n. 
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8 face polytope at resolution level 3 

Axis 50 10° 15° 20° 

oo oo oo oo 180° oo 120° 120° 
1,0,0 

0 0 0 0 4 0 19 5 

oo oo oo oo 72° oo 120° 72° 
0,1,0 

0 0 0 0 14 0 16 3 

oo oo 72° oo 72° oo 120° oo 
0,0,1 

I 0 0 5 0 5 0 7 0 

Table 5.6: Errors with subsets at frequency 3 with varying attitude (8 faces) 

40 face polytope at frequency 3 

Axis 50 10° 15° 200 

oo oo oo oo 180° oo 144° oo 
1,0,0 

0 0 0 0 1 0 2 0 

oo oo oo oo 180° oo 72° oo 
0,1,0 

0 0 0 0 1 0 3 0 

oo oo oo oo 72° oo 72° 72° 
0,0,1 

0 0 
I 

0 0 2 0 17 4 

Table 5.7: Errors with subsets at frequency 3 with varying attitude (40 faces) 

and the mixed volume matching is: 

where Ov is the set of visible cells on O at the given viewing orientation; only a visible hemisphere 

affects the results. 

These results show the MV method performing as well as and better than area methods for 

visible hemispheres. 

The MV method integrates around the entire object the product of the support function and 

the area function. Using MV for attitude determination depends on the fact that volume remains 

constant (see Equation 5.5). The volume of the visible hemisphere of an object, however, does 

not remain constant. Thus, the volume of the subset of the prototype being compared mu11t be 

estimated for scaling the mixed volume. Also, the area of the invisible face(s) of the polytope 

must be estimated ag well as the support function for the direction(s) away from the viewing 

direction. 
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21 face polytope at frequency 3 

Axis 50 10° 15° 20° 

ao oo oo oo oo oo 180° oo 
1,0,0 

0 0 0 0 0 0 10 0 

oo ao oo oo oo oo oo ao 
0,1,0 

0 0 0 0 0 0 0 0 

oo oo 72° 120° 72° 120° 72° 120° 
0,0,1 

0 0 5 1 7 1 21 2 

Table 5.8: Errors with subsets at frequency 3 with varying attitude (21 faces) 

80 face polytope at frequency 3 

Axis 50 100 15° 20° 

oo oo oo oo 180° oo 144° oo 
1,0,0 

0 0 0 0 2 0 1 () 

oo oo oo oo oo oo 72° oo 
0,1,0 I 

0 0 0 0 0 0 1 0 
·-oo oo D° oo 72° oo 72° 72° 

0,0,1 
0 0 0 0 1 0 6 1 

Table 5.9: Errors with subsets at frequency 3 with varying attitude (80 faces) 
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Figure 5.6: Polygon Completion: shortdashed=direct, dashed=sprea.d,dotted=reflection 

There are many methods of completing a subset of the faces of a polytope. The orientations 

and areas for the introduced faces must cause the polytope to close, i.e., if 0., are the visible face 

orientations and ni the invisible orientations, then 

(5.6) 

There is some freedom in selecting appropriate orientations for the introduced face(s). Early 

experiments were done on polygonal figures with fixed orientations of the faces, so that completion 

of the invisible portion naturally meant selecting some of the invisible orientations for faces. The 

area of the invisible portion must satisfy Equation 5.6, so that the solution in 2-d is determined 

for two orientations; for any more the system is underdetermined and some optimality criterion 

must be used. The spread completion, as this is called, for a figure is shown in dashed lines 

in the Figure 5.6. If the orientation of the added face need not arise from a specific set then 

the direct completion (in shortdashed lines) can be wed. Finally, a simple solution in 2-d is to 

reflect the figure about the line connecting the endpoints of the visible portion, so that areas and 

orientations from the visible portion can be used. All of these methods work equally well in 2-d, 

and because a completed polygon is used, the support, and area functions are complete for the 

entire circle and volume is computed, so that the mixed volume can be appropriately scaled. 

The discussion above is situated in R2 for two reasons: clarity, and because completion is 

simple in R2 , retaining the same two points at the boundary of the visible and invisible portion 

of the polytope. The reconstruction method for partial information described in Chapter 3 will 

complete a polytope from a visible hemisphere and a bounding 3-d contour. The area of the face 

appended to the visible portion is equal to the sum of the projected areas of the visible faces, so 

that is easy to acquire, but the support function of that face is dependent on the coordinates of 

the boundary contour. In general, the 3-d shape of the bounding contour is not known, and is 
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difficult to determine, without performing reconstruction. In 2-d the shape and support function 

can be easily be reconstructed. In 3-d the three completion methods can be implemented. Spread 

completion requires 3 normals; direct completion uses the closure condition in Equation 5.6 to 

define a new face, and reflection can be accomplished by using the opposite of the normals for 

all visible faces. Thus, the reflection method generates a symmetric polytope. None of these 

methods will necessarily generate the same bounding contour as the real polytope; however, the 

areas of the visible surfaces will correspond with the real polytope. 

The justification for the mixed volume method depends on area functions and support func­

tions over the entire Gaussian Sphere, but it does work well for subsets in practice. H the area 

and support for the invisible face(s) of the completed polytope were available, the product of the 

estimated area of the completing face for the seill!ed EGI would be muitiplied by the support 

value of the prototype in that direction (with completion) . This back face lies near the centroid 

of the object (the origin), so its support value is small. Thus the contribution of the invisible 

face would be negligible. What about estimating the volume of the visible half of the prototype? 

As mentioned before, the mixed volume to be minimized is: 

(1/3 L HpAq):s /V(P) ~ V( Q)2 

fl 

so the quantity to be minimized is: 

(1/3 L HpAq)/V(P)½ 
fl 

The cube root of the volume should vary linearly with the support function so this factor is 

minimal. 

Returning to completion methods, the least expensive would be direct completion since for a 

prototype only one additional number is stored at each cell on U, indicating the support f1mction 

value of the invisible face when that point is closest to the view direction. Thus storage doubles. 

For spread completion three values are required. Symmetric reflection cau be accomplished using 

the reconstructed polytope - the polytope is symmetric along any line through the centre of 

gravity, so its support function in any direction w is the same as in the opposite direction. 

5.4 Non-Convexity and Attitude 

Brou[1983] conjectured that one can compare the area function of a non-convex body with the 

area function of its convex hull. This approach has many difficulti~s, not the least of which may 

be that the convex hull must be calculated for each image. One might conjecture that the support 
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Figure 5.7: Non-convex object 

function of the convex hull should be used and the mixed volume method applied. The convex 

hull of the prototype need only be computed once and stored. This h~ been tried in R 2 , using 

the complete EGI, for several objects, and is ineffective. In Figure 5.7 such a polygon is shown. 

The solid lines describe the object, the dotted lines delimit the object in the position at which 

the mixed volume (using the convex hull) is minimized. 

Dashed lines in this figure delimit the convex polygon reconstructed from the area function 

of this non-convex object . A mixed volume method can use the support function of this recon­

structed object and the area function of the sensed object. Using complete EGis and ignoring 

the effects of self-occlusion, this mixed volume method correctly determines attitude for a set 

of sample polygons for which using the convex hull fails . Lyusternik[l963] mentions that the 

Brllllll-Minkowski inequality ( volume of mixture is greater than or equal to mixture of volumes) 

holds even for non-convex figures. This holds the promise that the mixed volume method can be 

extended to even non-convex objects, for attitude determination, especially where the effects of 

self-occlusion are small. 
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Chapter 6 

Non-convex Objects 

6.1 Introduction 

Mathematical results about support functions, area functions, and EGis have mainly concerned 

convex bodies. In practice, these form only a proper subset of the objects to which EG Is have been 

applied for recognition and attitude determination. The method for reconstructing shape from 

an EGI has only been described, in this thesis, for convex bodies. This chapter collects known 

results on the behaviour of the Gauss map for non-convex bodies, and investigates several of the 

possible ways in which EGis might be applied to non-convex bodies. It is shown how simple 

generalizations of EGis to non-convex bodies fail to allow shape reconstruction. Statements 

about shape reconstruction for non-convex bodies depend, in general, on the existence of (unique) 

solutions of systems of partial differential equations, a question in differential geometry which is 

beyond the scope of this thesis. Instead, an analysis of the requirements of a general solution is 

provided. 

EGis have been applied to reconstruction, attitude determination and recognition. Even 

cursory examination of these applications indicates that some form of segmentation of the surfaces 

will be necesssary. For any map to be invertible, it must be one-one, and, so, for reconstruction 

from an EGI, which is an inverse problem, the Gauss map must be one-one . On a non-convex 

body, at least one point on the Gaussian sphere will have a multiple inverse image under the 

Gauss map. The surfaces of non-convex bodies must be subdivided to allow reconstruction. 

Surfaces of revolution form a class of objects in which segmentation by the sign of the Gaussian 

curvature can ensure a one-one Gauss map. Although estimating derivatives is not numerically 

well-behaved, such segmentation can be done at a coarse scale. 

It must be mentioned at the start that other object representation schemes, such as polyhedral 
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models, u'" uewmposition into generic primitives, (as described in Chapter 2) do not have such 

inherent difficulty in handling non-convex objects. It is nevertheless useful to ask the question 

"How hard is it to apply the EG I to non-convex objects?" 

6.2 EGis for Non-Convex Bodies 

In practice, an EGI is computed from an orientation map by adding the area of the surface 

subtended by a pixel to the appropriate sum for the orientation of the pixel. At each pixel the 

subtended area is calculated by dividing the area of the pixel on the image by the cosine of the 

angle between the viewing direction and the surface orientation. .AJ3 mentioned in Chapter 2, 

curvature is inversely related to area. Horn[l983] notes that this method of computing the EGI 

is effectively adding the absolute value of the inverse of curvature, ignoring possible negative 

curvature regions. This allows an extension of EGis to non-convex objects, which lkeuchi et 

al.[1983] have utilized in a system for manipulating objects. 

Under this definition of EGis for non-convex objects, the Gauss map is no longer an injection. 

Multiple points have the same orientation on a non-convex object, and all are similarly mapped. 

Horn provides an illustrative example. The EGI of a torus, produced by summing II/ Kl for all 

points, is equivalent to the EGI of a convex body whose silhouette is the curve of least energy 

[Horn,1982]. This interpretation of the EGI cannot discriminate between these two objects and 

is ineffective for recognition, except where, as in an industrial environment, conditions can be 

controlled so that no two objects with similar EGis occur together. This example, the torus, 

shows that this variant of an EGI is not invertible. The use of this form of the EGI in attitude 

determination [lkeuchi et al., 1983] shows its value in practice. 

Ikeuchi[l983] has suggested using multiple EGis of a non-convex object, where a separate EGI 

is maintained for each possible attitude, incurring an enormous penalty in storage. 

6.2.1 Curvatu:re and the GauBS Map 

All previous uses of the EG I described in this dissertation have depended on the fact that the 

Gauss map is one-one. For a strictly convex body, a body strictly containing the line between 

any two points in the body, Gaussian curvature is everywhere positive, and there exists only one 

point on its surface having any particular orientation. A line parallel to the axis of a cylinder 

and tangent to the cylinder will lie entirely in the cylinder; all points on the line will be mapped 

to the same point by the Gauss map. To prevent multiplicity under the Gauss map, curvature 

must be strictly positive. For polytopes, conditions are slightly different; since all points on a 
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face of a polytope have the sa.me orientation, convexity ensures that no two faces have the same 

orientation. 

The Gaussian curvature, K, of a surface is a real-valued function on that surface, the de­

terminant of the Jacobian of the Gauss map. Curvature dissects a surface into regions by the 

sign of K: elliptir:, where curvature is positive, the principal curvatures are either both positive, 

denoted ( ++) or both negative (- - ) ; hyperbolir:, curvature is negative, the signs of the princi­

pal curvatures are different ( +-); parabolic, at least one of the principal curvatures is zero (0). 

Along parabolic lines the Gaussian curvature vanishes; these lines separate elliptic and hyperbolic 

regions. Refer to Section 2.3 for a discussion of the Gauss map, and curvature. On regular 0 00 

surfaces [DoCarmo,1976], the Gauss map is continuous, so parabolic lines form smooth closed 

loops [KoenderiDk and van Doorn, 1080). Koenderink has studied parabolic lines, both in the 

context of their photometric invariance[1982], and as characteristic lines of the surface, following 

Klein[in Hilbert and Cohn-Vossen,1952]. Stevens [1981] discusses the analysis of surface shape 

into regions of constant sign of Gaussian curvature. 

When EGI methods are applied to non-convex objects, the underlying powerful theoretical 

results do not all generalize. The Gauss map is no longer an injection on the surface of a non­

convex body. To use the EGI for reconstructing non-convex objects, the mapping from the object 

to the Gaussian sphere must be segmented in some fashion so that portions of the surface with 

the same orientation are not confused. 

6.2.2 Segmenting Surfaces 

Hoffman and Richards [1983] offer a theory for decomposing objects into parts as the human 

visual system. They cite the property of tranaveraality regularity: two interpenetratiug objects 

meet along a concave discontinuity of curvature. Based on this geometric principle, their seg­

mentation scheme can account for reversals in perceived shape. This scheme is: segment bodies 

at minima of curvature along lines of curvature. While this scheme may account for some human 

perceptual behaviour, it does not lead to a simple decomposition scheme for machine vision based 

on orientation. A simple example shows (Figure 6.1) shows that the Gauss map is not one-one 

for a segmentation of a planar curve, using minima of curvature. 

Differential geometry supplies a wealth of global results on convex bodies; it is much more 

difficult to discover relcYant material for non-convex bodies. Here several of the known results 

are collected. 

It would be very useful to know to what extent the curvature of a portion of a surface 
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Figure 6.1: Plane Curve, Hoffman decomposition, not 1-1 Gauss map 

constrains the multiplicity of the Gauss map. The degree of the Gauss map (deg(G)), the "signed" 

(by curvature) sum of the number of points in c-1(p) for any regular value p on U is: 

deg(G) = X(M)/2 = 1 - g (6.1) 

where X(M) is the Euler characteristic, g = genws = number of holes [Spivak,1970,V.3,p.414]. 

At a regular point the determinant of the Jacobian does not vanish. The determinant of the 

Jacobian for the normal map is the Gaussian curvature, so deg(G) is not defined for parabolic 

points. deg(G) is coW1tant for all other points on S. 

For example, the degree of the Gauss map on a torus is zero, since the torus has one hole 

(g = 1); there are two points mapping into any point on U, one at positive curvature and the 

other negative. All points on parabolic lines l\re excluded, which are the points aligned with the 

axes of the torus . 

The function on U, the Gaussian sphere, denoted #p, is the number of points in c-1 (p), for 

ptM, a 2-manifold: 

f IKldA = f #da = total absolute curvature JM lu-e 

The integration is on U except for c, the set of critical points in G, but c is of measure 0, by 

Sard's theorem. The total curvature is : 

It can be shown that : 

f KdA = 4,r <=:>, G is one-one OD {ptM: K(p) > O} 
){p(M:K(p)>O} 

(6.2) 
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Figure 6.2: Plane curve and Curvature Regions Segmented at Vertical Normals 

Spivak [1970, V.3, pp.414-419] shows that on a surface in R3 for which the condition 6.2 holds, the 

regions of positive curvature form a subset of the boundary of a convex body. The boundaries 

of this subset of the body are convex plane curves, which are just the parabolic lines of the 

surface. This is a general characteristic of surfaces satisfying condition 6.2. The torus satisfies 

condition 6.2 so the positive curvature portion of the torus has a one-one Gauss map. Since the 

degree of the Gauss map is O for the torus, the region of negative curvature has one-one Gauss 

map. The torus is well-behaved; the sectioning of the torus at parabolic line gives two complete 

sheets each covering the entire Gaussian sphere. 

6.3 Reconstruction 

Consider accumulating in an EG I at each orientation, the total surface area which bears that 

orientation, but instead of summing the absolute value of the inverse of curvature, separating the 

different parts of the surface. The Gaussian sphere would then be multiply covered. Covering the 

Gaussian sphere with multiple sheets cannot, in general, be a unique object representation. In R2 

the separation into sheets is sufficient, since the topology (adjacency) is unambiguous. The simple 

example in Figure 6.2 shows plane curve where segmentation at points of inflection (K = 0) (the 

o's in the figure) does not produce one-one regions under the Gauss map. Segmentation at the 

points drawn with vertical normal vectors will divide the curve into one-one regions . Once a 

correct segmentation is done, reconstruction is possible. In R3 the familiar topological difficulty 

recurs, so that the class of objects which are equivalent under a multiple sheet representation 

includes those in which translation of segmented elements in faces is allowed (see Figure 6.3). 

Parts A and B have the same EG I. Translating these parts in the supporting planar face will 

not affect any multiple sheet EGI. The effectiveness of the EGI for attitude determination and 
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Figure 6.3: An object for which multiple-map EGI is not uniquely invertible 

I ++ +-

Figure 6.4: Elliptic parabolic and hyperbolic regions 

recognition is its insensitivity to local coordinates. To capture fully the structure of the object in 

Figure 6.3, not only the topology of the regions but also the relative coordinate axes are nec~ssary. 

An augmentation of the EGI with some structure to relate local coordinate axes of parts may be 

necessary, but is, in a sense, contrary to the spirit of the representation. 

Reconstruction of general surf aces meets serious difficulties, because most surfaces will not 

subdivide into easily described regions for which the Gauss map is invertible. In general, non­

convex bodies can have multiple inverse images of the Gauss map, even after sectioning by 

parabolic lines. An indication of the difficulties in segmentation for non-convex bodies cau be 

found by examining a counterexample by Brou[1983,p.98J, a spiralling figure , showing a large 

connected region of positive curvature in which the Gauss map covers U many times. A re­

gion of elliptic curvature ( ++) can be defined in which the Gauss map is not one-one (see 

Figure 6.4). This surface, an example from Koenderin.k[1982J, has an elliptic(++) region sur­

rounding a hyperbolic(+-) region; in the elliptic region there are two points with the same 

normal. Higher degrees of covering are possible, by several methods, which a.re detailed by Koen­

derink. His analysis does not, however, suggest segmentations. The covering of U by the surface 

in Figure 6.4 can be segmented into regions for which the Gauss map is one-one. The boundarie5 
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of these regions, however, are not defined by local measures such as curvature. Other criteria can 

be used to segment, such as tracking the inverse image (under of the Gauss map) of the parabolic 

lines on other parts of the surface. 

6.3.l Surfaces of revolution 

It is shown here that a surface of revolution can be sectioned at parabolic lines into regions in 

which the Gauss map is one-one. A surface of revolution can be parametrized by 8, the angle 

about the axis of revolution, and r(z), a function of z, which is taken to be the axis of revolution 

of the solid (following [Hom, 1984]). The derivation shows: 

(6.3) 

The curvature vanishes when ru does, so that the parabolic lines on the surface of revolution 

coincide with the revolution of points of inflection in r(z). Because r(z) is a plane curve and a 

one-one function of z, between the points of inflection the normal map on the unit circle is unique. 

The normal map on the surface is parametrized by 8 around the surface, and by z vertically, so 

the Gauss map is unique between parabolic lines . 

For example, the description of the curvature of the torus, parametrized by coordinates on 

the Gaussian sphere (as in [Hom,1984]} is, for portions of positive curvature: 

K 1 coa(r,) 
+(~,'7) = pR + pcoa('1) 

Consider two tori To and T1 which have the same curvature function. By identifying the two 

functions, 
1 C0-'('7) 1 C0-'('7) 

=------
Po Ro+ pocoa('1) Pi R1 + p1co-'('1) 

Solving for R1, by eliminating co.,( '7) ::/- 0: 

Ri = PoRo + (Po
2 

- P1
2)coa('7) 

Pl 

Since R1 is independent of coa(r,), the coefficient of coa(r,) must vanish, so: 

Po= P1 

Substituting in the eadier expression, this shows that 

A similar arguments holds for negative Gaussian curvature. This demonstrates that the torus 

is uniquely specified by the E.GI on the two portions of negative and positive curvature. From 
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two vah.i.c6 uf the curvature within a region of positive curvature, the two radii of the torus 

can be identified, completing the inversion of the EGI. This shows that inversion is possible for 

some non-convex bodies, specifically tori. For arbitrary surfaces of revolution, inversion requires 

solution of the differential Equation 6.3, which may be difficult. 

6.4 Attitude Determination 

The area function of a non-convex object N is equilibriated, since the surface is closed. The area 

function will correspond to some convex object C under shape reconstruction as described in 

Chapter 3. The visible area function of N may be identical to that of C from some viewpoints. 

For these viewpoints, the attitude determination method using the mixed volume of the support 

function of C and the area function of N will behave s if C in fact were the object, and correctly 

determine attitude. The situations are indistinguishable. The effects of self-occlusion play an 

important role in non-convex objects. The visible portions of a non-convex object are not neces­

sarily those with orientations toward the viewing direction;self-occlusion obscures portions of the 

surface. Attitude determination by the method of mixed volumes requires well-behaved variation 

of the visible-area function with changing viewpoint. 

ff a suitable segmentation method can be described, then convex portions of a non-convex 

object can be treated in the same way as visible portiow of convex objects. The attitude de­

termined the portion of the object can be found in the same way as the attitude of the visible 

portion of a convex object is found. Should such results be unreliable in practice, the attitudes of 

portions hypothesized to belong to a single object could be combined into a more reliable global 

estimate of attitude. 

6.5 Curvature Graphs and Recognition 

Consider the connectivity graph of the regions generated by segmenting along parabolic lines. 

This graph inherits the invariance of curvature under Euclidean motion, and thus is an appro­

priate descriptor for recognition tasks. To facilitate intuition, one can consider the graph of an 

object such as a stylized baseball bat (Figure 6.5). The bat has three curvature r~gions: the tip 

of the bat (A) (elliptic ( ++ )), the shaft (B)( +-) and the knob at the end (C)( ++ ). Its graph 

consists of three nodes: 

A++ - B+- - C++ 
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Figure 6.5: Curvature Regions on a bat 

In an intuitive sense, this captures the notion of shape of a bat. Note that one can distinguish a 

bottle from a bat rmder this description - the bottle has two more regions: one hyperbolic and 

the other elliptic (--), both at the bottle opening. Koenderink and van Doorn[1980] describe 

some of the local structure of these graphs. Nackman and Pizer [1985] suggest similar curvature 

regions in their analysis of the use of the symmetric axis transform. They also mention slope 

districts which depend on the underlying axes generated by the transform. Curvature regions, of 

course, can be described without reference to these axes. The work of Asada and Brady [1983] 

on smoothed local symmetries generates decompositions of boundaries of regions at significant 

changes in curvature. 

The powerful results involved in the fingerprint theorems for zero-crossings [Yuille and Pog­

gio, 1984] apply to the analysis of parabolic lines, as they are zero-crossings of curvature. Cur­

vature patches [Brady, 1984] segment surfaces into domains of curvature, bounded by parabolic 

lines and supplied with the coordinates curves by lines of principal curvatures. Such further 

decomposition of surfaces may be of significant use for recognition. 

6.6 Estimating Curvature 

Estimating curvature requires calculating derivatives, which is not numerically well-behaved. It 

may be possible to estimate the average derivative effectively for a region. Spacing is important. 

since a set of data may support a reliable estimate of orientation at one scale, and an estimate 

of curvature with similar reliability at a coarser scale, as higher derivatives are required. Ter­

zopoulos[1983] gives examples of curvature estimation, using multi-resolution techniques. For the 

reconstruction results described above, the estimate of curvature must be accurate for segmenta­

tion. Of course, only the sign of curvature is necessary, and it may be possible to divide a surface 

roughly into elliptic, hyperbolic and (almost) parabolic regions. 
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Chapter 7 

Conclusions and Open Questions 

The constructions m MinkowskPs proof of the uniqueness and existence of an inverse to an 

Extended Gaussian Image lead to a useful iterative algorithm for inversion. The novel geometric 

computation, the mixed volume, is central to this procedure. To reconstruct shape from an 

EGI, the mixed volume of the area function from the EGI and the support function of the 

reconstructed object is minimized. The development of this procedure answers the open question 

of the inversion of Extended Gaussian Images corresponding to polytopes. 

This same minimization forms the core of a method for determining the attitude of a known 

convex object. The experiments described herein demonstrate the effectiveness of attitude deter­

mination by mixed volume and its insensitivity to small changes in attitude which affect other 

methods . 

Non-convex objects require modification of the concept of EGI. Segmentation into curvature 

regions does not ensure uniquene~:, nf the Gauss map, except for surfaces of revolution, which form 

a class of well-behaved non-convex objects. Generally, the. Gauss map is not unique, however, 

even for convex regions of non-convex objects. 

7 .1 Open Questions 

Several open questions arise from this analysis and implementation. The mixed volume measures 

shape similarity. How can it best be used to compare shapes? The mixed volume maps two poly­

topes at particular attitudes into a scalar value. What transformation of the two polytopes will 

leave the mixed volume unchanged? Does the mixed volume distinguish recognizable differences 

between polytopes? 

It is possible to reconstruct the shape of a tetrahedron analytically from its EGI. No reduction 
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was found to show the possibility or impossibility of solving the set of area equations generated iu 

reconstructing shape from the EGI analytically. It would be informative to find such a reduction. 

Another issue is the realizability of combinatorial types with faces of fixed orientations. 

What is the expected behaviour of the convex hull step in the reconstruction, given the 

previous hull? The analysis of support functions suggested a new method for segmenting convex 

curves. Can this be generalized to surfaces? Finding centres of support provided several questions. 

Can the overlap regions for a polygonal curve be computed in less than O(n2) time, say in the 

size of the output? How long does this computation take for polytopes in R3? 

Recovering shape from an EGI can be posed as a discretization of a continuous non-linear 

problem. Pogorelov [1952] discusses general solutions to the so-called Min.kowski problem. The 

differential equation to be solved is nonlinear, of the Monge-Ampere type. Assuming the surface 

is given by a function of two coordinates F(x, v), then the equation is: 

G is a function on the unit sphere. In a discussion of the regularity of the solution to this eql~ation, 

Cheng and Yau[l976] state: 

"Minkowski solved the problem for the category of polyhedrom. Then A.O. Alek­

sandrov and others solved the problem in general. However, this last solution does 

not provide any information about the regularity of the (unique) convex hypersurface 

even if we assume K is smooth. 

In the two-dimemional case, H. Lewy[l938] was the first one who proved that if I( is 

analytic,then the solution to the Minkowski problem is also analytic. Around 1!)53, 

A.V. Pogorelov and L. Nirenberg solved the regularity problem in the smooth category 

independently." 

For a discrete solution of the continuous problem, a regular mesh on U could be used. Is there 

a way of employing relaxation methods, perhaps even multigrid methods [Brandt, 1977], to the 

solution of this version of the problem? When reconstructing a portion of a polytope from partial 

information (see Section 3.8), using the projection of the occluding contour C, a number of dif­

ferent assignments of faces to edges may result in a closed path. It is an interesting combinatorial 

problem to determine bounds for the number of feasible assignments. Even more challenging is 

to give a method for determining this number exactly. 
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7.2 Future Work 

Because minimizing the mixed volume is at the root of attitude determination method, any 

investigation of shape recovery may be beneficial for attitude determination. For a practical 

implementation of the reconstruction procedure, the convergence rate can be improved. It may 

be possible to take advantage of the ready availability of the Hessian matrix . The procedures for 

determining attitude for convex bodies are shown in experiments to work satisfactorily, without 

completing the EGI to the full sphere, but completion, which requires reconstruction, improves 

its reliability. So practical reconstruction implementations could become usefui for attitude de­

termination. 

It has been pointed out [Mackworth, personal communication, 1985] that the optimization 

used in shape reconstruction can be accomplished by staying on the constraint surface (A, H) = c, 

a hyperplane, and maximizing the volume V(H). Since the constraint and objective function are 

convex, it is possible to switch their roles in this way. In either method, the volume and the 

gradient of volume must be computed, but in the proposed scheme, less scaling is performed. 

The performance of this method may be less subject to accumulated rounding error. Near the 

optimum, of course, the tangent hyperplane and the plane (A, H) = c are nearly parallel. 

The minimization converges slowly when many small, almost-parallel faces occur in the EGL 

Simplifying the EGI by removing these small faces, and redistributing the excess area to close 

the EGI, may speed convergence. In fact, the overall performance may be improved significantly 

by this technique, since the number of faces can be reduced by some constant ratio, leading to a 

hierarchical method. Each step would be less expensive and there would be fewer steps overall. 

Attitude determination for non-convex objects may be solvable by methods similar to those 

for convex objects, provided the effects of self-occlusion are small. A better characterization of 

the limits of these uses and the behaviour of orientation-based representations under occlusion 

will be valuable. 

The EGI can serve as a description of surfaces useful for finding significant features and for 

analyzing surfaces. Features on EGis could be employed in recognition or attitude determination. 

These features could be interpreted topographically, as peaks and pits. On an EGI of a convex 

object, a pit corresponds to a large, slowly curving region . If the curvature of the EGI surface 

is high, then this slowly curving region is surrounded by edges in the object . A pit on the EGI 

corresponds to a vertex of the body, a point of high curvature. 

Segmentation into curvature regions is not a general method for segmenting objects into 

regions in which the Gauss map is invertible. However, characterizing objects by the connectivity 
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graphs of curvature regions can be useful in preliminary processing for both recognition and 

attitude determination. 

These representation schemes open up a large class of problems and provide new and interest­

ing interpretations of problems in vision. That the solution of a problem of converting between 

object representations has suggested practical techniques for attitude determination is a happy 

result of the process of research. 
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Appendix A 

Volumes of Mixtures and Mixed 

Volumes 

In this appendix it is proved that the volume (area) of the mixture of two polygons P and Q 

can be expressed in terms of A, the mixing parameter, and in terms of the volumes of the two 

polygons and a term called the "mixed volume", which expresses the relation between the shapes 

of the two polygons. The treatment of the proof that follows is from Lyusternik[1963]. Translate 

a convex polygon P so that the origin is an interior point of P. Its area can be expressed in 

terms of the triangles formed by the origin and the endpoints of the sides of P. The area of 

each triangle is the product of the length of its base, the side Ap,, and its height, which is the 

perpendicular distance from the origin to the line containing the side. If w, is the normal to side 

i, the height of any triangle is Bpi, the value of the support function .'1/p(wi)-

The area of P, termed V(P), is 

n 

V(P) = 1/2 L Api * Hpi (A.I) 
i=l 

Consider two polygons P and Q whose sides are ordered to correspond in direction. By means of 

introducing sides of zero length any two arbitrary polygons can be made to satisfy this condition. 

Denote the vertices of P by Pi and the corresponding vertices of Q by q,. Lengths of corresponding 

sides are denoted by Ap, and Aqi. Let the support functions for the sides of P and Q be Bri 

and HQ,· Then the areas of P and Q are 

n 

V(P) = 1/2 L Ap, * Bpi (A.2) 
i=l 

n 

V(Q) = 1/2 L Aq, * IIqj (A.3) 
i=l 
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Figure A.1: Construction showing mixed volumes a.re equa.J 

Let R = ).p + ( 1 - ). )Q. The support functions for the sides of R a.re 

(A.4) 

The area. of R, from Equations 3.2, A.4, and A.1 is 

n n 

V(R) = 1/2 L AR,* HR,= 1/2 I:P * Ap; + (>. - 1) * Aq,) *().*Hp,+ (). - 1) * Hqi) (A.5) 
i=l 

Combining terms, one obtains a. new expression for V(R): 

n n n n 

>. 2[1/2 L Ap;•Hp;]+2>.• (>.-1)[1/2 L Ap,*HQ;+l/2 L AQ;•Hp;]+().-1)2[1/2 L AQ;*HQ;] 
i=l i=l i=l i=l 

(A.6) 

By Equations A. 2 and A.3 the coefficients of ). 2 and (). - 1 )2 in Equation A.6 a.re respectively 

equal to V(P) and V(Q). 

Consider the two sums in the coefficient of ). * (). - 1). From the origin O drop perpendiculars 

to the sides of P and Q, denoting the feet of the perpendiculars by cp, and cq,. The lengths of 

0 cp, and O cq, a.re Hp, and Hq, respectively. Connect ea.ch point cq; with the two corresponding 

vertices Pi and Pi+l of P (all indices a.re modulo n). The resulting polygon is shown in Figure A.I, 

a.s the outer border of the area shaded with vertica.J lines. Its area. can be calculated as the sum 

of the quadrilaterals OpicqiPi+i, ea.ch of whose area. is one ha.If the product of the lengths of its 

diagonals, since they a.re perpendicular, and is 1/2Ap; * HQ,· Its area is 

n 

1/2 L Ap; * Hqi (A.7) 
i=l 

Similarly construct the polygon q1cp1q2cp2 ... qnCPnq1, shown as the outer border of the area 

shaded with horizonta.J lines in Figure A.I. It is composed of the triangles Ocp;cq, and Oqi+1cp,. 
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Each triangle has base Ocpi and altitude equal to the length of the segment qi+1cqi (denoted 

Qi2), - its area is 1/2HpiQi2; also the triangle OqiCPi has the same base and its altitude is the 

length of the segment cqiqi (denoted Qii) - its area is then 1/2HpiQi1• Since Qi1 + Qi2 = A.Qi• 

the sum of these areas equals 1/2.AQiHPi; the sum of the areas of all pairs of such triangles equals 

the area of the polygon q1 cp1 q2cp2 ... qn cpnq1, 

n 

1/2 L AQi * Hpj 
i=l 

(A.8) 

The polygon p1cq1p2cq2 .. •PnCqnPl consists of the polygon P plm the 2n triangles (shaded 

with vertical lines) P1Cq1CP1, cp1 cq1P2 ... PnCqnCPn, cpncqnPl· The polygon q1CP1q2CP2 ... qnCPnQ1 

comprises the polygon P plm the 2n triangles (shaded with horizontal lines) P1q1cp1, 

cp1q2p2 • • •PnqnCPn, Cpnq1p1. 

The triangles horizontally and vertically shaded are pairwise of equal area in the order in 

which they are written. For example, cp1q1p1 and p1cq1CP1 have the common base p1cp1 and the 

vertices opposite them, q1 and cq1 , lie on a line parallel to the base, so they have the same altitude. 

Thus the triangles have the same area. The areas of the two polygons, q1cp1q2cp2 ... qnCPnq1 and 

p1cq1p2cq2 .. •PnCqnP1, mmt therefore be equal. It follows that 

n n 

1/2 L ApjHQj = 1/2 L AqjHPi 
i=l 

I 
The expression 

n n 

1/2 L ApjHQj = 1/2 L AqjHPi 
i=l i=l 

is called the mixed volume of polygons P and Q, and is denoted 2V(P, Q). Equation A.6 may 

then be written in the form 

(A.9) 

When the two polygons are homothetic, i.e., related by translation and scaling, the mixed volume 

is related to the volumes of P and Q by the appropriate scaling. 

Minkowski's proof for d-polytopes relies on a similar decomposition into d-simplices (tetra­

hedra for d = 3). 
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Appendix B 

Matching EGls Discretely 

Orientations are a set of points on the unit sphere U; form a tesselation of these points on U. The 

area measurements are sorted, so they can be considered as integers from 1 to n, the number of 

orientations. The tesselation of points on the unit sphere forms a planar graph. Use an algorithm 

for planar graph isomorphism [Hopcroft and Wong, 1974] which takes linear time, to determine 

an isomorphism between the EG I of a prototype and a sensed EG I. This isomorphism describes 

a one-to-one mapping between the two graphs from which one can determine the rotation taking 

the sensed EGI into the prototype EGI. The tesselation graphs of the EGls are identical. But 

Seidel has suggested annotating each node of the graph with a small planar graph indicating the 

order of that particular node's area measurement in the sorted list of areas. Each graph would be 

composed of a chain of log n nodes, from each of which is attached either a single node, indicating 

a O in that bit position, or a chain of two nodes, indicating a 1 in that bit position. These small 

graphs are planar, there are n different such graphs, and each contains at most 2 • log n nodes, 

so the annotated tesselation graph contains at most 2 • n • log n. nodes. Determining graph 

isomorphism on such a graph can be performed in O(n • log n) time, which is required in any 

case for sorting the areas. 
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Appendix C 

Example Polytopes 

Contained herein are the figures showing the polytopes used in many of the examples in the text. 
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Figure C.1: Polytope with 21 faces 

Figure C.2: Polytope with 40 faces 

Figure C .3: Polytope with 40 faces on ellipsoid 
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Figure C .4: Polytope with 80 faces on ellipsoid 
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