
Nystrom's Method versus Fourier Type 

Methods for the Numerical Solution of 

Integral Equations 

Manfred R. Trammer 

Technical Report 84-23 

December 1084 





Nystrom's ?'.-iethod versus Fourier Type 

Methods for the Numerical Solution of 

Integral Equations t 

Manfred R. Trummer 

University or British Columbia 
Department or Computer Science 

Vancouver, B.C., CANADA 
V6T 1W5 

and 

Seminar rur Angewandte Mathematik 
Eidgenossische Techni.sche Hochschule 

CH-8092 Zurich, Switzerland 

ABSTRACT 

It is shown that Nystrom 's method and Fourier type methods pro­
duce the same approximation to a solution of an integral equation 
at the collocation points for Nystrom 's method. The quadrature 
rule for numerical integration must have these collocation points as 
abscissa. 
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• 2. 

1. Description of the methods. 

In this note we will prove a result on the equivalence of Nystrom's and 

Fourier type methods for the numerical solution or integral equations. We 

ran into this question while trying to implement the conformal mapping 

method described in [KT85) with Fourier methods, like in (BE84,BE85). 

Throughout the sequel we will assume that the discretized versions of 

integral equation ( 1) below have a unique solution. The restriction to the 

interval [O, 1] is only made for the sake or convenience. 

We consider the integral equation 

I 

~ f ( t ) + f k ( t , s ) f ( s ) ds 
0 

g ( t ) , t E [O, 1], (1) 

where k E L2([0,l]X[0,1]) is a Hilbert-Schmidt kernel. We will show that 

Nystrom's method and Fourier type methods result in the same numerical 

approximation under certain conditions on the quadrature rule Q which is 

used to evaluate definite integrals numerically. 

We choose n collocation points t; , 1 < J < n and weights w; , and 

we will use the quadrature rule Q defined by 

n I 
Qh := E w;h(t;) ~ fh(s)ds (2) 

j=I 0 
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Nystrom's method consists of collocation at the points ti and approximating 

the integral in (I} using the quadrature formula (2), which leads to a system 

of equations 

n 
AXi + E w;k(ti,t;)x; =g(td, 1 <a< n, (3) 

j=l 

where the X; are approximations to / { ti ). For second kind equations 

(A -:f 0) (1) can then be used to obtain approximations at any point t in the 

interval by means of 

(4) 

See [AT76] for details. 

To explain what we mean by Fourier type methods we use the space 

L 2[0, l] of square integrable functions on [O, 1] endowed with the scalar pro­

duct 

I 

< I , g > := I I ( t )g ( t )dt 
0 

(5) 

Let </>1, ... , <Pn be an orthonormal Chebychev system (see e.g. (S170)). 

We try to approximate the solution in the subspace spanned by the <Pi : 

n 
J(t)~ ~c;<l>;(t) 

j=l 
(6) 
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This can be achieved by expanding k and g in "Fourier" series: 

and 

n 
g ( t ) ~ E d; </> i ( t ) 

i=l 

n n 
k ( t ,s ) ~ E E a;;</>; ( t )</>; ( s ) , 

i=l j=l 

where the "Fourier" coefficients d; and a;; are given by 

d; = < g ,</>; > ' 
1 1 

a;; := J J k (t ,s )</>;(t )<l>;(s )dtds 
00 

Equation (1) is then approximated by 

(7) 

(8) 

(7a) 

(8a) 

_f [>..c, + _E a;; c;] </>;{t) = E d;</>;(t), (0) 
t=l J=l i = l 

or, written in matrix form 

(>..I + A ) C = d . {10) 

Computing the Fourier coefficients in {7a) and (8a) numerically using the 

quadrature rule (2) we obtain 

n n 
a;;= E E wp¢>;(tp)k(tp,tq)<l>;(t9 )w

9 
{11) 

p=l q=l 

and 
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n 
d; = E WP <P; ( tp )g ( tp) . 

p=l 

The system ( 10) can then be rewritten as 

n n n 
).c; + E E E wp</>;(tp)k(tp,tq)<P;(t9 )w9 c; 

j=l p=l q=l 

n 
- E WP ¢>..(tp )g (tp). 

p=l 

(12) 

(13) 

1· 
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2. Equivalence of Nystrom's and Fourier methods. 

THEOREM: Let { </>; } 1 1 < i < n , be an orthonormal Chebychev 

system, and suppose, the quadrature rule (2) has nonzero weights and 

integrates the Gramian matrix < </>; ,</>; > exactly, i.e. 

(14) 

where 6- • denotes the Kronecker symbol. Then the approximate values of the ., 
solution at the points t; obtained by the Fourier type method described above 

are the same as the values X; obtained by Nystrom 'a method. 

Proo(: In view of (14) equation (13) can be written as 

n 
E wp</>;(tp)µp = o, 

p=l 

where 

n 
µp = A E C j </> j ( tp ) 

j=l 

n n 
+ E E wqk(tp,tq)</>;(tq)c; 

j=l q=l 

(15) 

(16) 

The matrix L , defined by L;p := WP</>; ( tp ), has independent columns ill' 

the matrix [</>;(tp)] has independent columns, because all weights are 
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different from 0. Since { ¢;} is a Chebychev system, the matrix (¢; ( tp )] is 

regular. 

Therefore, (15) implies that µP = 0 for all p. From (16) we conclude 

that 

n 
zP := E c; ¢,; (tP ) 

j==l 

is a solution of (3). Since this solution is unique, the proof is complete. 

(17) 

□ 

Remark: For first kind equations (~ = 0) the result holds even if the 

Gramian is not integrated exactly. 

Final1y, we present two situations where the theorem can be applied: 

Example 1: "Classical" Fourier method (see e.g. [HE79,BE84,BE85l). If the 

kernel and the right band side of equation (1) are both periodic, Fourier 

methods are extremely powerful. \Ve approximate the solution of (1) by a tri­

gonometric polynomial. 

Let m be a positive integer, and n = 2m + 1. The orthonormal Che­

bychev system is given by 

<Pi( t) = 1 

<P2k +1( t) = V2 sin(2rrkt) , for 1 < k < m , (18) 
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</>2" (t) = v'2 cos(21rkt), for I < k < m . 

The corresponding quadrature rule is the trapezoidal rule (for periodic func­

tions) 

I 
wk = - , I < k < n . 

n 
(rn) 

This rule integrates the functions cos(21rkt) and sin(21rkt) exactly as long 

as k < n. Using trigonometric identities of the form ([AS65, p.72]) 

2cos( a )cos(,8) = cos( a-,B)+cos( a+,B) {20) 

it is easy to see that the Gramian is integrated exactly. 

If n =2 m is even, the choice of the orthonormal system is more deli­

cate, since neither cos2(21rmt) nor sin2(21rmt) are integrated exactly by 

the trapezoidal rule (rn). In this case the Chebychev system consists of the 

functions in (18) with m replaced by m -1, and the function 

</>,. ( t) = cos(21rmt) + sin(21rmt) ; (21) 

then < </>,. ,</>n > will be integrated exactly, thus satisfying the assumptions 

of the theorem. This choice corresponds to interpolating the solution by an 

"unbalanced" trigonometric polynomial (see e.g. [HE82, p.335]). Most imple­

mentations of the classical Fourier method use the balanced trigonometric 

polynomial (the Fourier coefficient of sin(21rmt) is equal to O); however, as 

pointed out by Berrut ([BE85a]), the difference between these two methods is 
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in general negligible. 

This example explains why Nystrom's method with the trapezoidal rule 

performs so well for an integral equation with a periodic kernel and inhomo­

geneity. It thus justifies the choice of this method for the conformal mapping 

algorithm presented in (KT85,TR84). 

Example 2: Take the Legendre polynomials of degree < n -1 as the ortho­

normal Chebychev system, and the n -point Gauss-Legendre quadrature for­

mula for Q (see e.g. (AS65]). The Gramian is integrated exactly, because 

polynomials of degree < 2 n -1 are integrated exactly. 

Acknowledgement: This work originated from discussions with 

Jean-Paul Berrut, who found the experimental evidence for the equivalence of 

Nystrom's method and the Fourier method as presented in Example 1. Berrut 

gives a proof of the equivalence in this special case ([BE85a]), and treats this 

example in more detail. 
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