
The File System
of a Logic Operating System

Anthony J. Ku,alik

Technical Report 84-21

November 1984

The File System
of a Logic Operating System

Anthonv J. Kuulik

Computer Science Department
University of Britisb. Columbia

Vancouver, B.C., Canada V6T 1W5

Technical Report 84-21
November 1984

ABSTRACT

This paper describes the file system of an operating system for a
logic inference machine. The file system is composed of a file system dev
ice and a collection of file system servers. The former provides the basic
services of creation, access (reading or writing), removal, and stable
storage or files. It realiLes a simple, though powerful model: a file store as
a special type of name server maintaining associations between identifiers
and entities. A file is then a pair, <fil name, file content>, or terms.
Clients gain access to a file by sharing the file content term with the file
system device. Reading the file corresponds to examination of the term;
wri1,ing, to instantiation. The.re is no need or explicit read or write oper~
tions, or or file closure. File system servers enhance or modify this basic
file abstraction. They can provide features of more conventional file sys
tems, such as hierarchical directories or fixed, structured file formats.

Concurrent Prolog is assumed as the underlying machine language
and the operating system implementat ion language. However, the ideas
are also applicable to other parallel logic programming languages, such as
PARLOG.

As a prerequisite to describing the file system, the Concurrent Prolog
machine model is presented, as well as an overview of the entire operating
system design.

- 2 -

1. Introduction

The evolution of "Fifth Generation" computers requires novel approaches to com
puter languages, architecture, and applications (Moto-oka 82). No less important than
other areas, efforts in systems programming and operating systems call for inno,·atio~
and pragmatism.

Recent work by the author has concentrated on the design of a logic operating sys
tem, an operating system intended for a logic inference machine and implemented in a
logic programming langua,ge. Concurrent Prolog (Shapiro 83a), hereafter denoted "CP",
is the implementation language chosen, and an abstract CP machine serves as the target
hardware. Though the design is not yet complete, many concepts and features have
been determined. Certain portions of the logic operating system have been implemented
and tested using a CP interpreter.

In this paper the file system is outlined. The operation of a computer system is
often critically tied to the methods used to store, retrieve, and manage information. A
file ystem is tnerefore of gr at signifi ance in characterizing an operati~g system: it is
generally indicative of the overall design phiJosophy; it usually serves as a basis for other
software; and in describing it, many other aspects of the operating system are revealed.

The applicability of the concepts in this paper are not restricted by the m;e of CP.
Other logic programming languagrs, such as PARLOG (Clark & Gregory 84] or Flat
Concurrent Prolog [Shapiro 84], would serve equally well. No special property of CP is
utilized within the machine or file system models or the program segment describing the
file system components.

This presentation is structured as follows. The Introduction provides a brief
review of related work, a description of the assumed CP machine model, and an over
view of the operating system. The bulk of the work, the description of the file system, is
given in Section 2. The feasibility of implementation is discussed in Section 3, together
with motivation for several facets of the design. Alternatives to various aspects are the
subject or Section 4. Section 5 summarizes and concludes the paper.

1.1. Related Work
Though much published re. earch in associated areas (logic programming languages,

machine architectures, etc.) has appeared, only a small amount concentrates on systems
programming and operating systems for inference machines. Shapiro l1983c] presents a
feasibility study of CP as an operating system kernel language. A number or common,
representative operating system functions are specified in the language. However, no
attempt is made to describe a single, complete operating system. The operation of a
peripheral device is described as a process, with the device "contents" regarded as an
argument in the process state. It is proposed that the cleanest way to implement 1/0
functions in a CP machine is for peripheral devices to consume or generate CP streams.
Clark and Gregory [Hl84) demonstrate that PARLOG, a language related to CP, is ah,o
an attractive systems programming language.

Hattori and Yokoi [1983) present basic concepts and constructs of SIMPOS
(Sequential Inference Machi.ne Programming and Operating System) for PSI (Personal
Sequent,ial Inference Ma.chine). Further details are provided by Takagi et al. [rn84},
including a very brief, general description or the file system. Unfortunately, the design
or PSI is not suited to the proliferation of small-sized processes characteristic of CP
[Yokota et al. 83] . The machine language, KL0, and the implementation language, ESP,
are forms or Prolog with depth-first search, backtracking, and " ut" !Chikayama 83].

- 3 -

Hence, some fundamental aspects of SIMP0S are incompatible with a CP environment.

1.2. Concurrent Prolog

CP was chosen as the implementation and machine language for the logic operating
system because it is powerful, concise, and supports concurrent computation. Many
effective programming constructs and techniques, such as objects, class hierarchies,
stream communications, and message-passing, can be cleanly realized using the language
(Shapiro 83a, Shapiro 83c, Shapiro & Takeuchi 83, Takeuchi & Furukawa 83).

It is assumed that the reader is familiar with CP. An in-depth description is pro
vided by Shapiro (1983a). Papers by Shapiro [1983c], and Shapiro and Takeuchi [1983)
provide summaries. A computational model for a CP machine is given by Shapiro
[1983a). The same author also presents ideas on the basic architecture of such a machine
[Shapiro 83b).

1.3. Concurrent Prolog Machine

The characteristics of the target CP machine are very important to the operating
system and file system designs. As such a machine does not yet exist, it is necessary to
define and assume a hardware model. The model is summarized as follows.

A CP machine consists of an arbitrary number of individual processing elements.
Each process of a conjunctive goal system can be thought of as executing on an indivi
dual processor. The machine is responsible for mapping processes to available proces•
sorst. Hardware supports the efficient access and propagation of shared variable bind
ings.

Each physical 1/0 device has associated with it a special "device processor,,. This
processor provides an interface between the remainder or the CP machine and the dev
ice. Viewed by other processing elements, a device processor supports a single, charac
teristic, pc--.·petual process called a "deYice process" (DP). A DP is logically indistinguish
able from other CP processes, and describes the operation of a device processor and 1/0
device. Software access to an 1/0 device (through its device processor) is achieved by
communicating with the corresponding DP using CP streams. Device processes may
vary in specific protocol details.

The machine language of the CP machine may be CP, in which case its operation is
described by a meta-interpreter. Alternatively, the hardware may execute a logic-based
language in which higher-level logic-based systems programming languages can be
specified (cf. ESP and KLO [Chikayama 83}). A CP interpreter is then written in this
low-level language, but viewed as part of the machine. In either case, unification and
goal reduction are provided by the machine model.

1.4. Operating System Overview
The operating system design follows principles of multi-process structuring (pro

gram structuring using multiple concurrent processes). Several characteristics of CP
make this approach at.tractive: large numbers of small processes, easily attained interpro
cess communication, dynamic process creation and destruction, and the ability to share
data structures among processes. The operating system resembles Verex [Cheriton 79,
Lockhart 79) , a multi-process structured system for a conventional architecture.

t Shapiro lrn83bJ presents an alternate view in which CP pro;;-rams are augmented with process-to-processor
mapping notations. The operating system design would not be adversely affected by such a change.

- 4 -

The logic operating system is composed of small, complementary, and cooperating
servers. Each server provides a compact set of related services to other processes.
Servers are generally constructed as CP objects, or occasionally ru, object hierarchies.
They may dynamically create and destroy constituent processes. Servers communicate
via object-based protocols using message-passing over streams. They may each call on
the utilities of devices and other servera in their operation. Progressively more substan
tive services are generated in this manner. Clients normally communicate directly with
the server responsible for the utility being sought. Servers may be transient (dynami
cally created to fill a temporary need, then removed) or permanent (created at system
initialization for the duration of system execution).

The operating system does not include a kernel. Fundamental capabilities such as
unification (for data transfer and message-passing), process creation, and process destruc
tion are described by metalanguage and incorporated into the CP machine model.

In a conventional operating system, the bulk of the software cannot access physical
1/0 hardware directly. A device driver is introduced to provide an interface. Here,
directly accessible devices are provided by the machine model. Olients may access an
1/0 device by communicating with its corresponding device process. The opera.ting sys
tem need only assist in identifying the appropriate stream.

A device process exists independently of the operating system servers; it exists
whenever its device processor is active. During system initiation (bootstrapping), the
operating system obtains a channel to each device process. These channels are preserved
for the duration of system execution.

2. File System

The file system of the logic operating system is composed of a file system device
(FSD) and a set of servers. The FSD is the lowest-level component and is discussed here
at length. Individual file servers are not described in detail; they will be the subject of
future papers. However, examples of the type11 of 1mpplementary sen·ice that could be
provided are given, as well as program segments illustrating how they might be realized.

2.1. File System Device

The fundamental purpose or any file system is providing wier applications and
other system software with the ability to store and retrieve information in identifiable,
nonvolatile entities called files. The design of the file system device (FSD) addresses
directly this fundamental capability. The result is a simple, though powerful, file
abstraction.

The FSD is a device process having the characteristics of a name servert. It is sup
ported by a device processor and maintains a nonvolatile database or <file name,
file content> associations as part of its state. The associated physical device is some
form of stable storage. Individual associations {files} are affirmed, accessed, or recalled
on receipt or appropriate messages.

In its fundamental form, the FSD is specified as

t A name server is a common operating system component which suirtains a set or "entity" and "identifier"
associations, and facilitates the modification and query or them.

- 5 -

fad{ /Req/ lnatrm/, FileSyaDB) :-
proceu_requeat(Req, FileSvaDB, NewFileSvaDB),
fad{ lnatrmP, NewFileS111DBP).

where proce,a_requeat represents the clauses nece!lsary for errch file operation. The first
argument of fad is a shared communication variable. The second is the file system data
structure. A file is a pair, {FName,FContent), of terms recorded in this data structure.
FName must be ground and serves as the file identifier. Using simple atoms as
identifiers provides a flat name space. Structured terms result in a hierarchical naming
scheme. FContent is the file content and is an arbitrary term. Communications from
clients are in the form of incomplete messages.

The FSD offers a nontrivial, easy-to-use set of services. To create a new file, the
request

affirm(FName, FContent)

is sent to the FSD. Its operational meaning is "affirm the association between the
identifier F'Name and the term FContenl". In response, the device process adds
{FName,FContent) to its state. There is no need for messages or special operations to
write into the file: the client simply instantiates FContent. Since the variable is shared
by the FSD, any instantiations made to it (writes) are propagated to the device process.
Unification is responsible for the actual data transfer. The active participation of the
FSD is not required.

For an existing file, a different. request is used:

acce11(FName, FContent)

Again FName identifies the desired file. FContent is instantiated by the FSD to the
current content of the file. Reading is then the examination of the term bound to FCon
tcnt. Read requests of the device process are unnecessary. The file is modified by
instantiating variables in the file content term.

One last type of message is needed:

recall{ FNamc, FContent)

It requests that the device process query its database for a file identified by FName.
The file content is unified with the second argument, FContenC. The association of
FNamc and FContent is subsequently removed from the FSD's internal state, as sug
gested by the predicate name. A typical U8e of such a request is removing a file:

recall{ FName, _)

A minimal FSD with this functionality can be concisely specified:

- 6 -

fad{ /affirm(FName, FContcnt)/ ReqStrm/, FileSyaDB) :- (al)
add_flle{ FName, FContent, Fi"/eSyaDB, NewFileSy3DB),
fad(ReqStrmP, NewFileSyaDBP).

fad{ /acceaa{ FName, FContent),' ReqStrm}, FileSJJaDB) :- (a2)
find_file(FNamc, FileSyaDB, FContent, _ },
fad(ReqStrmP, FileSyaDB).

J,d(/recall(FName, FConttmt),' ReqStrm}, FileSyaDB} :- (a3)
find_file(FName, FileSy3DB, FContent, NewFileSyaDB),
fad(ReqStrmP, NewFileSyaDBP).

find_file(FName, /(FName,FContent}tFileSyaDBJ, FContent, FileSyaDB.). (a4)
find_file(FName, /F/FileS11aDBJ1 FContent, /F/NewFileSyaDB}} :- (a5)

otherwiae I
find_file{ FName, FileSvaDB?, FContent, NewFileSyaDB).

add_file{ FName, FContent, FileSyaDB, /(FName,FContent),' FileSyaDB}). (aO)

Program (a): File System Device

For clarity, the file Bystem data structure is portrayed as a simple list. Use of a more
practical structure, surh as a tree, requir·es modification of the local predicates find_file
and add_file only. The basic form of the program, clauses (al), (a2), and (a3), remains
uncbang d. The program is e3,!jily translated to other parallel logic programming
languages such as PARLOG (cf. the file store manager program of Clark and Gregory
(1984}).

The program semant.ics are straightforward. The J,d process is executed with two
arguments, a commun.ication tream represented by ReqStrm, and an internal database,
FileSy8DB. It is normally suspended awaiting a message. If an affirm request is
received the pair (FName FContent) is added to FileSy1DB to form NewFileS1rsDB. On
a recall r quest, a find_file process is invoked with FNamc and FileSyaDB. It returns
the appropriate file con.tent bound to FContwt and the database, less the
(FName)FContent) pair bound to NewFileSy,DB. In both cases the fad process re~urses
with the remainder of the input stream and NewFileSyaDB. On an acceu request, fad
again uses find_file, but retains the existing file data structure. Finally,

find_file(FName, FileSyaDB, FContent, NewFileSg,DB)

names the relation "NewFileSy,DB is FileSyaDB with the item (FName,FContent)
removed".

With this view of file storage, a fil e is logically "open" as long as its file content
term is being shared by a client and the FSD. A file is "closed" when no part of the
term is being shared. The device process is oblivious to a file being open or closed.

Any number of proc:esses may access a file simultaneously. Multiple access is
achieved by an existing client or the FSD sharing the file content term with other
proc sses. Ir there are multiple attempt.s to write, all "writers" must agree on the
binding(s) made, as with any case or concurrent processes instantiat.ing the same shared
variable {Shapiro 83a] . Otherwise uni.fication fails for all the writers.

The ability to write a file is not enforc d by the file system device. Rather, a file
may be written only if some portion of it is uninstant.iated, i.e. if one of its constituent.
terms is a variable. For example, if the file cont.ent is the list of atoms

- 7 -

/t,la,i,a, ,f,i,l,e, ,la,a,a, ,,,e,t, ,c,o,n,t,e,n,t}

alteration is not possible. Ir it is instead

/a,p,p,e,n,d, ,t,o, ,t,la,i,,, ,f,i,l,e/X/

further instantiations can be made.

An obvious shortcoming of program (a) is its susceptibility to failure. For example,
the fad process fails if FName does not unify with au identifier in FileSyaDB, or if an
unrecognized request is received. Also, there is no check made for duplicate or uninstan
tiated identifiers. These potential problems can be solved using previously described
techniques !Shapiro 83a). For example, to prevent failure on an unrecognized message,
the following clause can be added:

f,d{ /Req/ ReqStrm/, FileSvaDB} :
otlaerwiae I fad(ReqStrmY, FileSvaDB }.

A practical enhancement of program (a), especially in the case of error, is to include
an explicit reply in each type of request. This requires modest changes to fad, inc Jding
a change in message format. Known techniques (Shapiro 83a) are again sufficient. For
example, the form of an acceu request can be altered to

acceu{ FName, FContent, Replv)

where Reply is bound by the FSD to either ,ucce.,, or failure. The corresponding
modification to fad is:

fad{ /acceu{ FName, FContent, ,ucceaa }IReqStrm/, FileSyaDB} :- (a2')
find_file(FName, FileSyaDB, FContent, _) I
fad(ReqStrmY, FileSvaDB).

fad{ /acceu{ FName, FContent, failure)/ReqStrm}, FileSyaDB) :- (a2")
othertl.'iae I
fad{ ReqStrmf', FileSyaDB).

It may appear that the fad process is characteristic of a CP object, with FileSyaDB
corresponding to the internal state. This is not strictly correct. Certainly, insertion and
deletion of {FName,FContent} pairs is performed only by the process on receipt of
appropriate messages. But FContent terms are meant to be shared with client processes.
This violates the requirement that an object's internal state be operated upon from the
outside only by sending a message to the object. Despite this, it is sometimes convenient
and illustrative to treat fad as an object.

The presence of more than one FSD in a computer system poses no difficulties.
Device processes, as any CP processes, are distinguishable by their communication chan
nels. Clients specify a particular FSD by the channel on which they select to send a
message.

2.2. File System Servers
The FSD supports the basic services of file creation, access (reading or writing),

removal, and stable storage. Servers extend this functionality. As a result, the logic
operating system may provide a variety of alternate file abstractions, including diverse
file formats, naming schemes, access methods, etc. The nature of the file system 8.'3 per
ceived by a client process depends upon which file system entity it is communicating
with. Users may introduce their own servers which add localized, custom features.

- 8 -

This approach allows a great deal of flexibility. A multitude of differing servers and
file abstractions are possible. This section describes some, especially those of a more con
ventional nature.

Structured terms can be used a.s file identifiers to realize a hierarchical file naming
scheme (U 1IX pathnames [Ritchie & Thompson 74J are one example). To alleviate the
need to always specify complete hierarchical names, users can employ a server. Such a
server could be designed as follows. It retams a "base name" as its internal state. It
combines this with the name specified in each FSD request channeled through it. The
base name can also be replaced. The server might take the following form:

file_aerver({change_ba,e_name{ BaaeName }/ReqStrm/, OldBa,eName, F,dStrm) :
file_,crver(ReqStrm P, Ba,eName, FadStrm).

file_aervcr(/acceu(ShortNamc, FContent JI ReqSlrmj, Ba,eName, FadStrm) :
con,truct_jul/_name(BaacName, ShortName, FullNamc),
,end(acceu{ FullNamc P, FContcnt), F,dStrm, NewF,dStrm),
fiie_aerver(ReqStrm ?, BaaeName, NcwF,dStrm).

Program (b): Server to aid with hierarchical names

The server process has thrt-e arguments: a channel for incoming messages, the base name
retained as its internal stat.e, and a channel to the file system device. On a
change_bau:_name request, it replaces the base name with that specified in the message.
For other requests - only the acceu case is "hown above - the server constructs a ful)
hierarchical name from the base name ancl thr. name in the message. It then forwards
the modified request to the FSD. The predicate

,end(Mag, Strm, NewSlrm)

names the relation "the result of sending Mag on stream Strm is stream NewStrm" and is
specified by

,end(Mag, {M,g/Strmf, Strm).

(Shapiro 83c].

The FSD allows file contents to be arbitrary terms, such as atoms, variables, lists,
difference lists, trees, and other, more complex constructions. A file system server can
use these data structures to provide more conventional file formats, such as character
stream files, indexed or keyed files, and record format files. Different formats can be
supported simultaneously by different servers.

Since variables are single assignment in logic programming, it is not possible to
update nonvariable portions of files stored by the FSD. To update, the existing file must
be discarded and a new version createdf. However, a server can emulate a more conven
tional view of the file system, where updates are possible, and separate requests are
necessary for opening, reading, writing, ancl closing a file. On an open message, tbe
server recalls the desired file from the FSD and retains it as part of its illternal state.
read and write requests are processed with respect to this local information. On a clo,e,
the server affirms the revised form of the file.

f This characterist.ic is compatible wiLh new laser disk technology in which data ca.n only be written once,
Also, it is consistent with the behavior or many con,·entional operating system utility programs which
read a file, modify the content, 11.nd rewrite t.hc file in its entirity (e.g. ti editor or UNIX).

- g -

The following program is a simplified example of a file server with this functional
ity:

file_aerver{ {open(Name)/ ReqStrm}, _, _, _, FadStrm) :
aend{ recall(Name, File), FadStrm, NewFadStrm),
file_aerver(ReqStrmf, Name, Fi/d, /], NewF,dStrm).

file_,erver(/read{ Atom)/ReqStrmj, Name, /Atom,'Re,tO/Filej, RevFile,
F,dStrm) :-

file ,erver{ ReqStrmf, Name, ReatOfF'ilef', /Atom/RevFilej, F,dStrm).

file_aerver{ /write(Atom }IReqStrm}, Name, /Old.Atom/Re,tOfF'ilej, RevFile,
FadStrm) :

file_,erver(ReqStrmf, Name, ReatOJFiief, /Atom/RevFile/, F,dStrm).

fi/e_,erve.r{ /cloae / ReqStrm}, Name, Re,tO[File, RevFi/e, F,dStrm) :
append{ ReatOJ'File, RevFile, FinalReuFile),
reverae{ FinalRevFileP, N ewFile },
,end{ affirm{ Name, NewFileY), F,dStrm, NewF,dStrm),
file_aerver{ ReqStrm f, _, //, //, NewF,dStrm).

Program (c): Server providing four customary file operations

The file abstraction maintained by the server is of a file a., a sequence of atoms.
Read/write operations are sequential and operate on single atoms.

The semantics of the program are straightforward. The first argument of
file_aerver is a stream of incoming requests; the second, the file name; the next, the pre
vious contents of the file; the fourth, the revised contents; and the final argument, a
communication stream to the FSD. The server is initiated by an open request. It
processes read and write messages until receiving a final cloae. A read request causes the
next atom in the file to be returned to the client. The atom is also added to the revised
file content. On a u•rite request, the next atom is discarded, and the one sup:r;!ied by the
client is added to the revised file content. On receiving a cloae, the server appends the
remaining contents or the file to the revised content, reverses it to form the new file con
tent, and stores the new file. Thi~ last append operation would be more efficient, and
the reversal unnecessary, if a difference list was used.

Binding large data structures to variables and propagating such bindings are poten
tial bottlenecks in a logic-programmed computer. Accordingly, files stored by the FSD
should be kept small in size. However, very large files are commonplace on present-day
computer systems. The observation that most large data collections have some form or
internal organization (records, rasters, function or subroutine hierarchy, etc.) suggests a
solution to this dilemma. Large collections c,f information can be etored in a num her or
emaller files, one logical unit per filet. A server can ~sist by accessing constituent files
and emulating the larger view of the information. A user need not be aware or the
actual granularity or storage. Any necessary directory or dictionary-type information is
also stored in separate files.

Other plausible, useful f acilitics which could be supplied by servers include data
encryption/decryption, access restrictions, read-only files, and UNIX-like directories.

t Waterloo Port (Malcolm et al. 83J and Waterloo UNIX Prolog {van Emden & Goebel 84J are examples or
an operating system and a language l!l.lbsystem, respectively, where storage of related information over a
hierarchy or small files is the norm.

- 10 -

3. Di.scul!lsion

The FSD is the formative heart or the file system. It is also the most innovative
aspect. This sect.ion argues that its implementation is not unreasonable and provides
motivation for certain of its characteristics.

3.1. Term-based 1/0
Predicate calculus dictates that arguments in an atomic formula be terms. Hence,

terms are the basic data construct in logic programs. It seems only proper, then, to con
sider 1/0 within a logic inference machinr and within logic programs on the basis of
terms.

A term is a variable, a constant symbol, or an expression of the form

I(t1, ... , ti J
where/ is a j-pla.ce function symbol and 11, ••• , t; are terms. In most logic program
ming languages, goals and clause can also be treated as terms. The Prolog system
predicates clauae and call are cases in point.

Computation in a logic inference machine involves the manipuJatiou and interpreta
tion of terms. Certainly, if hardware with such capability can be designed and built,
peripheral devices can be deYeloped which accept, supply, or store information on a term
basis. For example, the operation of a logic inference machine requires that terms be
transferred between main memory and the CPU. ~ a magnetic disk is another form of
memory, it should not be unreasonable to transfer terms to and from nonvolatile
storage.

lmplementationally, terms are represented by collections or binary digits. It is con
venient and customary to impose a higher-order structuring on bits, such as bytes, fields,
words, etc. A term may therefore be represented by a collection or bytes or other fixed
sized units. These units may be utilized in physical transfer of the term. However, as a
computational step of an infer nee machine Yicws all the bits representing a term as a
single entity, so an 1/0 operation should involve the entire term.

3.2. Implementation or a File System Device

The FSD is a device process. The exact nature of its supporting hardware (device
processor and associated physical 1/0 device) is not part of the operating system design.
However, an implementation should be conceivable. This section explores avenues
towards this end.

The idea of a device processor is compatible with the evolution of microprocessors
and the trend toward more uintelligent" hardware. This migration of uintelligence" is
demonstrated by, for example, IC0T's PSI where unification and many common operat
ing system kernel functions are implemented in firmware [Uchida et al. 83,
Yokota et al. 83]. The sophistication necessary to realize a FSD is not unreasonable
given such advances in hardware design.

A major concern in implementing a FSD is ensuring that the file system data struc
ture is nonvolatile. Methods of fulfilling thi requirement are dependent upon the nature
of the CP machine, and in particular, the techniques used to support, shared variables
and propagate their bindings.

With a number of techniques - a large, multiple-access, global memory, for example
- stable st.orage might be accomplished by period:cally checkpointing the proct :;· state
onto a medium such as a magnetic disk. The operation need not be active on the part

- 11 -

of the device processor. It can be instigated and controlled by a separate microprocessor
associated with the physical media. The frequency of the checkpoint operation must
ensure reasonable data accuracy, yet not impede the operation of the processor, or the
OP machine as a whole. The idea of providing nonvolatile storage by checkpointing is
not unknown. In the Eden system [Black 83), files are active entities rather than data
structures. A checkpoint primitive is the only kernel mechanism by which files access
stable storage.

Ir the machine architecture is a network or proce88ors, variable bindings may be
disseminated by interprocessor "packets" (e.g. Bagel (Shapiro 83b]). In this case it is
possible to treat file storage as a database application. The state or the FSD is recorded
in the database. Notification of a new variable binding is treated as an update transac
tion by the device processor. Requests for binding information are handled a., database
queries.

Another approach is possible in a distributed architecture. The device processor
supporting the FSD can be similar to other, nonspecialized processors. However, it must
be able to accommodate larger data structures - that or the file system - as part of its
process state. It can do so by making use or elower, nonvolatile storage as part of a vir
tual memory. Caching techniques expedite references to recently accessed files.

The storage and retrieval of information based on the file identifier is not difficult
to achieve. In a conventional architecture, information is retrieved from stable storage
through a numerical address lying within a predetermined range. In the case of the
FSD, the file identifier, a ground term, can be transformed into such an address by
applying hashing r unctions.

Obviously, all of these points are deficient in implementational detail. They do
euggest, however, that the construction of a FSD is conceptually plausible.

3 .3. Efficiency

For a logic inference machine to be efficient access to shared terms must be
efficient, the amount of information that is stored to accommodate large shared data
structures must be minimized, and shared variable bindings must be disseminated
rapidly. The efficiency of accessing files stored by the FSD is dependent on precisely
these considerations. Consequently, the methods used to satisfy them have a direct
bearing on the efficiency of the FSD. A similar case may be made for file system servers.

4. Restriction, and Altern&tives

As with any computer system component, there are alternatives possible in the
design of this file system. Such alternatives are the subject of this section.

As described in Section 2.2, it is desirable to keep files stored by the FSD email in
size. Implementationally, it may prove practical to impose size restrictions, both of file
names and contentst. Attempting to exceed the set limits would result in a hardware
error, probably reported to the user as a goal failure or error-indicating reply message.

The inability to update files stored by the FSD need not be an encumbrance. Sec
tion 2.2 suggests one method to conceal the limitation ming a server. A list of atoms is
supported as the file content. Another possibility is for the server to treat a file as the

t This is part or a ~ea.ter problem with CP, and logic pro~a.mming languages in genera.I. In theory, it is al
ways possible that some process will construct a. term that exceeds the memory capacity available to con•
tain it.

- 12 -

history of a set of data, in the spirit of mutable arrays [Eriksson & Rayner 84]. For
example, a file could contain lists of the current and previous values or each logical data
element. On update, a new value is prepeaded to the beginning of the appropriate lists.

An alternative to having the file content as an a!'bitrary term is requiring it to be a
list of terms. The file system device could then support "read" and "write" requests for
accessing the constituent terms of a file. However, this alternate approach still relies on
a file system data structure stored as a procesB etate and data transfer through
unification and shared variables. Therefore, con.5ideratioqs regarding file siz.e and the
efficiency of variable binding propagation would be no less important. Further, the two
approaches can be seen as comparable by noting that a list of terms is still a term, and
that an arbitrary term can be stored as a list of exactly one term.

A significantly different scheme for file storage (Cleary 84) involves turtle annota
tions for CP [Shapiro 83bJ. Turtle notation is extended to allow absolute locations:
designations that a process must be executed on a specific processor. Using this idea,
files are regarded as active processes created on demand. They modify their states in
response to "read" and "write" messages. A "close" message, however, is processed as
follows:

file{ {cloae ,' R eqSt,m/, File Content) :-
file(ReqSt,mP, FileContent ftJdiak.

That is, the cloae simply dire ts the process to the processor designated as diak. This
processor stores a nonvolatile representat-ion of any (file) process which migrates t.o it for
later retrieval and activation. This idea is promi~ing, though many details have yet to
be determined.

It is possible to drop the requirement that file identifiers be ground. However, the
properties of the resulting file system model have yet to be explored.

6. Summary and Concluding Remarks

This paper has described the file system of an operating system for an abstract
logic inference machine. Many aspects of the design are noteworthy. The file system
device (FSD), the tmtity responsible for nonvolatile storage of information, is a special
type of name server. The FS0 facilitat s the creation, access (reading or writing), :ind
removal of files. File contents and file identifiers are arbitrary terms, though identifiers
must be ground. A file is open when its content term is being shared between client and
FSD. Unification supplants typical data transfer operations. File system servers build
on the capabilities of the FSD, and can provide useful features of conventional file sys
tems. This novel and simple view of a file system is due to the power anc1 versatility of
CP - and similar languages - and the characteristics of the machine model. Implemen
tation of this file system is not unreasonable given the ability to construct efficient paral
lel logic inference machines.

An advantage of this approach is that there is no need to introduce new constructs
to CP, or make use of novel programming techniques or unique properties of the
language. The design is based on first-order logic, without recoul"!te to side effects.

Research into this file aystem design, as well as that of the overall operating aystem
and CP machine model, is ongoing. A ~mall set of file system servers which seem com
plementary and particularly useful are being developed. Future papers will elaborate on
aspects of the operating system and CP machine model present d here in summary form.

- 13 -

Acknowledgements
Credit is due to Harvey Abramson for his encouragement, suggestions, and recep

tive ear during the evolution of this paper. Also, John Cleary, Steve Gregory, Nir Fried
man, and Colin Mierowsky contributed valuable comments and criticism.

References

[Black 83).
A. P. Black, "An Asymmetric Stream Communication System," in Proceeding, of
the Ninth Sv,npoaium an Operating S11atema Princr"plea, p. 4-10, ACM, Brctton
Woods, New Hampshire, October 10-13, 1983.

[Cheriton 79).
D. R. Cheriton, "Multi-Process Structuring and the Thoth Operating System,"
Tech. Rep. 79-5, Computer Science Department, University of British Columbia,
Vancouver, B.C., Canada, March 1979.

(Chikayama 83).
T. Chikayama, "ESP - Extended Self-contained Prolog - a., a Preliminary Kernel
Language of Fifth Generation Computers," New Generation Computing, vol. 1, no.
1, p. 11-24, Tokyo, 1983.

(Clark & Gregory 84].
K. L. Clark and S. Gregory, "PARLOG: Parallel Programming in Logic," Research
Rep. DOC 84/4, Department of Computing, l:nperial College, London, April 1984.

(Cleary 84).
J. G. Cleary. Personal communication.

(Clocksin & Mellish 81).
W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, 1981.

[Eriksson & Rayne:r 84).
L.-H. Eriksson and M. Rayner, "Incorporating Mutable Arrays Into Log-ic Program
ming," in Proceeding, of the Second International Logic Programming Conference,
ed. S.-A. Tarnlund, p. 101-114, Uppsala, Sweden, July 2-6, H)84.

[Hattori & Yokoi 83].
T. Hattori and T. Yokoi, "Basic Concepts of the SIM Operating System," New
Generation Computing, vol. 1, no. 1, p. 81-85, Tokyo, Japan, 1083.

[Lockhart 79).
T. W. Lockhart, "The Design of a Verifiable Operating System Kernel," Tech. Rep.
79-15, Computer Science Department, University of British Columbia, Vancouver,
B.C., Canada, November 1979.

[Malcolm et al. 83).
M. Malcolm, B. Bonkowski, G. Stafford, P. Didur, "The Waterloo Port Program
ming System," Technical Report, Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, January 1983.

[Moto-oka 82].
T. Moto-oka (ed.), Fifth Generation. Computer S11atema, North-Holland, Tokyo,
Japan, 1982.

[Ritchie & Thompson 7 4].
D. M. Ritchie and K. Thompson, 11The UNIX Timesharing System," CACM, vol.
17, no. 7, p. 365-375, July 1974.

- 14 -

[Shapiro 83a).
E. Y. Shapiro, "A Subset of Concurrent Prolog and Its Interpreter," TR-003, ICOT
- Institute for New Generation Computer Technology, Tokyo, Japan, January
1Q83. Also available as CS83-06, Department or Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel.

{Shapiro 83b].
E. Y, Shapiro, "(Lecture Notes on) The Bagel: a Systolic Concurrent Prolog
Machine," TM-0031, IOOT - Institute for New Generation Computer Technology,
Tokyo, Japan, November 1983.

(Shapiro 83c).
E. Y. Shapiro, "Systems Programming in Concurrent Prolog," TR-034, ICOT -
Institute for New Generation Computer Technology, Tokyo, Japan, November
H)83.

(Shapiro 84).
E. Y. Shapiro, "Updates from the Weizmann Institute," Prolog Digeat, vol. 2, no.
24, internetwork mail, June 27, 1984.

[Shapiro &. Takeuchi 83].
E. Y. ~h.apiro and A. Takeuchi, "Obje<'t Oriented Programming in Concurrent Pro
log, 11 New Generation Computing, vol. 1, no. 1, p. 25-48, Tokyo, 1983.

[Takagi et al. 84].
S. Takagi, T. Yokoi, S. Uchida, T. Kurokawa, T. Hattori, T. Chikayama, K. Sakai,
J. Tsuji, "Overall Design of SIMPOSi'' in Proceeding, of tl,e Second International
Logic Programming Conference, ed. S.-A. Tarnlund, p. 1-12, Uppsala, Sweden, July
2-6, 1984.

[Takeuchi & Furukawa 83].
A. Takeuchi and K. Furukawa, "Interprocess Communication in Concurrent Pro
log," in Proceeding, Logic Programming Work,hop '89, p. 171-185, Algarve, Portu
gal, June 26 - July 1, 1083. Also as ICOT Technical Report TR-006, Hl83.

[Uchida et al. 83].
S. Uchida, M. Yokota, A. Yamamoto, K. Taki, and H. Nishikawa, "Outline of the
Personal Sequential Inference Machine: PSl, 11 New Generation Computs"ng, vol. 1,
no. 1, p. 75-79, Tokyo, 1983.

(van Emden & Goebel 84].
M. H. van Emden and R. G. Goebel, "Waterloo Unix Prolog User's Manual," Ver
sion 1.2, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, August 1984.

[Yokota et al. 83).
M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa, and S. Uchida, "The Design and
Implementation of a Personal Inrerence Machine: PSI," New Generafion Comput
ing, vol. 1, no. 2, p. 125-144, Tokyo, 1983.

