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1. Introduction 

More than a decade ago, de Boor and Swartz (9} analyzed a class of collocation 

methods for the numerical solution of boundary value problems (BVP) for a higher t.irder 

ordinary differential equation (ODE). In that pioneering work, the authors put tools from 

functional analysis and approximation theory to good use, showing that under suitable 

assumptions there is a piecewise polynomial collocation solution which achieves a high 

order of convergence and may be obtained by an efficient and general implementation. 

This work was supplemented and extended in a number of ways, see RusseJI [18}, Weiss 

(22], Cerutti (13), Wittenbrink (23), Russell and Christiansen (19), Christian.sen and 

Russell [14] and others. Earlier, related work includes Vainikko [21) and Russell and 

Shampine [20) . A general purpose code called COLSYS (2,3) for mixed order systems of 

BVPs was written based on this knowledge. It proved to be a useful practical software 

package, and has increased interest in this type of collocation methods. 

But the approach taken in those of the above cited papers which deal with higher 

order ODEs is not without its drawbacks. In the first place, the relationship between 

these collocation methods and some finite difference schemes, which was recognized 

already in [9] and (22), is not obvioU5. As a result, questions of stability and condition­

ing are typically not addressed at all in this literature. Moreover, the relatively sophisti­

cated mathematics required, while being a source of excitement to some readers, is a 

source of anxiety to others. 

In this note we present. the theory for the class of collocation methods under con­

sideration from an alternative point of view, as proposed by M. Osborne and discussed 

in Ascher, Pruess and Russell [4]. Since the nonlinear treatment is rather similar in both 

approaches (consisting of quasilinearization and application of some variant of the 
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Newton-Kantorovitch Theorem, cf. Keller [l 5] and [9]), we concentrate mainly on linear 

problems. Even though our approach is simpler, we obtain high order convergence and 

superconvergence results with a better localization of the error than in [9] and [14], 

without putting any restriction on the mesh used (see Theorem 11 below). Moreover, we 

relate the collocation method for a higher order ODE to a nontrivial, efficient finite 

difference scheme for the corresponding first order system of ODEs, and show· that the 

condition number or the resulting linear systems of algebraic equations depends, under 

certain restrictions, on the number or mesh points and on the condition number of the 

equivalent 1st order BVP alone. In particular, no restriction is placed on the mesh. The 

latter fact was to some extent already pointed out in (4], but there this alternative 

approach was considered mainly in an implementation context, and no relation to the 

BVP condition number was made. 

In order to be specific, let us consider a two-point BVP or the form 

Nu= u(m) - 11 x u ti · · · Jm-l)) - 0 - J\ I I I I - I 0 < x < I, (la) 

g(y(O),y(l)) = 0, (1 b) 

where 

y(x) := (u(x),tl (z), · · · ,Jm-l)(z)f. (2) 

The basic idea or collocation is quite general: An approximate solution is sought in 

the form 

M 
u,..(x) = :E o,-<P;{x) 

i=-1 
(3) 

where </Jkr) are known linearly independent basis functions defined on [0,1], and o; are 
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parameters. These parameters are determined by requiring u,r( x) to satisry the ODE or 

the BC at M points (the collocation pointa ) in [0,1]. It is sometimes convenient to say 

that u1i-( x) is an element in a linear ,pace of dimenaion JJ which is ,panned by ba,ia 

function, t;6 1(x), · · · ,¢>~x). Here, this linear space is chosen to consist of piecewise 

polynomial functions. Thus, there is a partition 11' of [0,1) 

(4) 

such that any linear combination of the basis functions reduces to a polynomial on each 

subinterval [ Xj, Xi+ 1], 1 < i < N. Furthermore, we restrict the functions ¢,{ x), and 

therefore any of their linear combinations, to be in cm--1(0,1) (like the exact solution for 

piecewise continuous data). Also, the order or the polynomial pieces is restricted to be 

k+m, for some k > m. 1 

A k-stage collocation method under consideration is determined by a mesh 1r and a 

set or k points 

0 < Pt < P2 < ' ' ' < Pk < 1. (5) 

Denoting, similarly to (2), 

(6) 

an approximate solution u,r(x) defined on (0,1) is determined such that 

y,r(x) E C[0,1); (7a) 

1 We uy tha.t Vi~ in Pk+ if t( z) ia a polynomi.a.1 or order k+nlldcgm < k+m) on an a.ppropria.te inter­
val, a.nd that Vis in Pk+ m ,r tf t{ x) is a. piecwis, polynomia.l which ia in P k+m on ea.ch subiotervaJ or the mesh 1f'. 
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(7b) 

and 

(7c) 

where 

Z·· ·= Z· + h-n-'1 · • sr J' 
(7d) 

One important question is how to choose the basis functions ~,{z) so as to obtain 

an efficient, stable method. Choices of Hermite-type bases and of 8--splines are discussed 

in (9,2,10,4,17]. But here we actuaJly prefer not to explicitly l!lpecify any basis functions. 

Instead, we consider local representations of the polynomial pieces, caJled monomial 

baaea in (4]. This enables us to relate more directly to similar collocation methods for 

first order ODEs, and to see that the me.thod introduced here is just a fancy finite 

difference method. The reason for the importance of the local representation is that 

when using basis functions </>;{ x) as above, the continuity conditions on u,,. are already 

imbedded in the basis functions, while the collocation equations are satisfied only later. 

In §5 of [4], on the other hand, we first imposed the collocation equations, followed by 

local parameter elimination, and only then connected to the action in adjac.ent subinter­

vals. This is what Osborne had advocated in an unpublished manuscript. We proceed 

here with the latter, multiple shooting type approach, which allows us to capitalize on 

well-known theoretical results for one-step finite difference schemes, and to avoid intro­

ducing heavier functional analysis machinery. 

The linear form of the two-point BVP (1) is 

Lu= ulm) - cT (x) y = q(x), 0 < z < 1, (8a) 
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B0 y(O) + Bi y(l) = b, (8b) 

where 

are given coefficients, assumed to be sufficiently smooth and of a moderate size, and 

B0, Bi are mX m well-scaled boundary matrices. Corresponding to (8a,b) th~re is the 

first order BVP 

y' -

0 1 

0 1 

c1(x) c2(x) . cm(x) 

y+ 

0 

0 

q(x 

Bo y(O) + Bi y(l) = b. 

= A(x)y + q(x), (9a) 

(9b) 

Let H(x,t) be Green's function for (9) (assumed to exist) and 4>(x) the fundamental 

matrix satisfying 

Define the condition num her 

(10) 

We will show 

Theorem 11. 

Assume that there are integers p > k > m such that 

(a) the linear BVP of order m (8) is well-posed, in the sense that ,c of (10) is of a 

moderate size; has coefficients in GP[O,l); and has a unique solution u(x) in 
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(b) the k canonical collocation points p1, ..• ,Pl& of (5) satisfy the orthogonality condi-

tions 

(lla) 

Then for h small enough the following hold: 

(a) The collocation method (7) for the linear BVP has a unique solution u,r(:r). 

(b) There exists an implementation such that the solution scheme is stable, wit.h a sta­

bility constant K 0( Al 

(c) The following error estimates hold at mesh points: 

0 < j < m-1, I < i < N+l. 

(d) At any point in [0,1], the error satisfies 

Z-X· 
u01( x)-u~1( x) = h~+ m-iu(k+ml( xi)f-VJ( ,;?-)+ 0( h~+m-j+ 1 )+ 0( hP) 

I 

where 

For nonlinear problems, we define the linearization 

cz(x) := 8.Az,y(.r)) 
&y, 

(llc) 

(lld) 

[I 

(12a) 

(12h) 

where u and y are related by (2). For the boundary conditions, define B0,B1 depending 



on u by 

og 
Bo:= oy(O)' 

The following theorem is obtained: 

Theorem 13. 
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(12c) 

Let u(x) be an isolated solution or the BVP (1), where / and g have continuous 

second partial deriyatives and the assumptions of Theorem 11 hold for u and L[ u]. Con­

sider a k-stage collocation method, satisfying (Ila), for (7). Then there are positive con­

stants p and h0 such that for all meshes with h < ho, 

(a) There is a unique solution u,r(x) to the collocation equations (7) in a tube or radius 

p around u( x), Sp( u). 

(b) This solution ur.( x) can be obtained by Newton's method, which converges qua­

dratically provided that the initial guess for ur.(z) is sufficiently close to u(z) . 

(c) For the linearized BVPs, there is a stable implementation with stability constants 

,c0(/\1, where K is given by (10) for the linearized problem at u. 

(d) The error estimates (llb,c) hold. 

[I 

Remarks. 

(a) For reasons or brevity and simplicity, we concentrate here on one higher order 

ODE and, to the extent needed for this purpose, also on 1st order systems or 

ODEs. But our results can be extended for mixed order systems of ODEs and for 

multipoint boundary conditions, cf. [13,2). Moreover, the above smoothness 
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aCJsumptions can also be weakened. In particular, the coefficients may be only 

piecewise smooth if points of discontinuity are included in the mesh 7r used. For a 

1st order system of ODEs, collocating at the points of (7d) with a continuous piece­

wise polynomial vector function of order k+ 1, Theorems 11 and 13 hold with 

m=l. Therefore, considering such a collocation process for (9) and comparing it to 
. , 

the collocation method for (8), a similar error estimate (llb) at mesh points is 

achieved (see example in §3). On the other hand, the result (llc) shows that, when 

x is not a mesh point, u1r( x) is a better approximation to u( x) than the correspond­

ing collocation approximation for the equivalent 1st order system. High order con­

vergence results away from mesh points are useful for approximating functional 

diilerential equations, see Bader[13}, and have been used in a genera! purpose 

implementation [3] as well. 

(b) Consider the approximation space to which u1r( x) belongs. This is a linear space of 

piecewise polynomials of order k+m. A result from approximation theory states 

that, unless u( x) itself is in the approximation space, we cannot get a global 

approximation order of more than O(hk+m). Hence, for p > k+m, the collocation 

approximation is, by (llb), of optimal global convergence order. Furthermore, if 

p > k+m then at mesh points we obtain a ,upercont•ergence order, i.e. an order 

of convergence higher than the best possible global order. It is interesting to note 

that the superconvergence result, which (as the name implies) is perhaps less 

natural from the point of view of approximation spaces, is most natural from the 

point of view of one-step difference schemes, as will become evident in the sequel. 

We recall that choosing p1, .. ,Pr to be Gaussian points yields p = 2k, Radau points 

give p = 2k-l, whereas Lobatto points give p = 2(k-l), cf. [22]. 

(c) A restriction on the mesh in Theorems ll and 13 is remarkably absent. We have 
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not assumed that the mesh is quasiuniform, nor that it has a locally bounded mesh 

ratio. Consider, in particular, the error bound (llc) when p > k+m (Otherwise 

the error is simply O(_ hP) everywhere). The error is seen to consist of two contribu­

tions: A global, supcrconvergence order term, and a local term. The leading order 

of this local term is explicitly given - an unmually strong result. This explicit result 

was derived in [14] and used in [2], but under a quasiuniformity assumption. Our 

proof helps to better explain the robust perf'ormance of the mesh selection strategy 

in COLSYS [2,3], which is based on (llc). Also, the condition number of the 

implementation involved is O(_N). In many methods for higher order BVPs one 

finds condition numbers which depend on 
h 

. h and/or on pyrm_ Even the collo-
mm i 

cation met.hods considered here, when implemented using B-splines or Hermite--type 

basis functions, involve a condition number of O(_ _h )m-l, see [4] and Paine and 
mmhi 

Russell [17]. 

(d) Note that we are not dealing here with problems of singular perturbation type. 

While collocation at Gaussian points has been found to be rather useful for such 

problems, see [l-3,5-7], the type of analysis required there is different than the one 

described here. Specifically, we have already assumed that the BVP coefficients are 

of moderate size, so for h "small enough", h-1 is the large quantity in the numeri­

cal approximation. This allows m to use the good approximation to the fundamen­

tal solutions in each mesh subinterval, as in standard multiple shooting. These 

assumptions also allow us to relate to ,c of (10) as the condition number of (9), see 

de Boor, de Hoog and Keller [11], Lentini, Osborne and Russell [16] and de Hoog 

and Mattheij [12] for refinements. 

[I 
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2. One-step schemes for first order linear systems 

In this section we consider the BVP or size m 

Ly(x) = y '(x) - A(x)y(x) = q(x) (14) 

and (9b), with the condition number ,c of (10) and the smoothness and boundedness 

assumptions or §1. We do not assume that A(x) necessarily has the form as in {9a). For 

this BVP, consider a one-step difference method on a mesh 7r, 

1 < i < N, (15) 

which we also write as 

{16a) 

and 

(16b) 

Herc, Yi is to approximate y(x,), I<i<N+l, and qi= q(x.-) + O(h.-). 

In (16) we have a system or m(N+l) linear equations 

s. R1 Y1 qi 

S2 R2 Y2 42 

- {17) 

SN R q 

Bi YN+l b 

Denote the matrix in (17) by A. Methods for the solution of (17) w,ing the sparseness 

structure of A have been dicusscd in the literature. The finite difference method (16) is 

said to be ,table if there are constants K and ho > 0 such that Cor all meshes 7r with 
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(18) 

and K is a constant of moderate size if K is. Recall [15) that the local truncation error 

ri[Y] is defined as 

(19) 

and that the finite difference scheme (16) is said to be conaiatent of order p (p a positive 

integer) if for every (smooth) solution of (14) there exist constants c and ho > 0 such 

that for all meshes ,r with h := max hi < ho, 
1$i$N -

(20) 

Here I · I denotes the max vector norm. Note that when substituting the error 

1 <; < N+l (21) 

in the difference scheme, one obtains 

(22) 

This is why we need K of (18) to be of a moderate size. 

Theorem 23. 

Suppose that the finite difference scheme (15) is consistent (of at least first order) 

and satisfies 

lw(u,v;h)I < c(lul + lvl) (23a) 

c a constant independent of h, and that the BVP (14) is well-posed with condition 

num her K • Then the scheme is stable with stability constant 
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K = K + O(h) (23b) 

Moreover, A of (17) can be equilibrated so that 

(23c) 

[I 

The proof is very simple and is also contained in the results of (11] and (16]. We 

sketch it here following R.D. Russell (private communication): by (23a) we can write 

h-R- = I+ O(h•) I I I' 

so ( 16a) can be written as 

(24a) 

r• ·= R:1q• = O(h•) I ' I I I (24b) 

with f, = / + 0( h.-) a well-defined m X m matrix. It then follows that 

where 11 x; t) is a fundamental matrix defined by 

Ll1 · ;t) = 0, }1t;t) = I. 

Thus, if we multiply the rth block of m rows of A by ~ 1, we obtain a matrix approxi­

mating a standard multiple shooting matrix with an explicitly known inverse, first given 

by M. Osborne {16]. This inverse involves the Green's matrix H(z,t), see (10), and the 

results (23b,c) foJlow. 

[I 

t-.fany one-step difference schemes are in the clas, of Runge-Kutta achemea 
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(25a) 

k 

h71(Y.-;- y,) = ,E
1
o,-,{A(x.,)Yit + q(x .. ,)} (25b) 

with x,, given in (7d), I<i<N. The unknowns y,1, ... ,Yik can be eliminated locally 

for each subinterval of the mesh, and a difference scheme (16) re~iults. 

Collocation schemes are a subclass of Runge-Kutta schemes, whereby the 

coefficients o;1, /31 appearing in (25) are given, for points Pj satisfyint (5), by 

1 < j, / < k. (26) 

Here L1 a.re Legendre polynomials. Recall that for any function v E CW[xi,xi+l] we can 

write 

where 

( t- pi) ... ( t- Pl- 1 )( l- P1+1 ) ... ( t- pk) 
Lit):= - - - ------­

(PrPd · .. (PrP1-1 HPr Pt+ i) ... (P,P.d 

and the remainder term 1/J( x) is expressed in a (bounded) divided difference form 

(27a) 

(27b) 

(27c) 

It follows that any such collocation method is consistent of order at least k, and 110 

Theorem 23 applies to it. 

3. Collocation for a linear ODE of order m 
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Recall the monomial basis of Osborne and [4]: Let us focus on one subinterval 

[ xi, xi+Il and express the polynomial U,r( z) in terms of its Taylor series about Zj, 

k+,n (x- x-)f-1 

( ) 
- \'"'\ I (j--1)( ) 

tl;r X - _LJ ( • )! tl,r X, 
, ... 1 ,-1 

This can be written as 

. I 
m (x- x,Y- k z-X· 

u,r(z) = .E (. ~)' 1/ij + hr'.E t/J,{-h 
1 

)z,, ,-1 J- . ,-1 j 

where, corresponding to (2), 

and 

Z •. = 1.,:..1.,(m+i-l)(x•) z . (z z )T IJ 'ta ... ,r , , i .= ,1,···, ik · 

The functions t/J,{ t) are therefore defined as 

tm+j- 1 

t/J,{t) = (m+i- 1)! 

(28) 

(20) 

Note that ¢1( t), ... ,¢1(t) are linearly independent polynomials of order k+m on [0,1), 

satisfying 

(30) 

These functions are independent of i and can be used for each subinterval as in (28). 

Now, we can write down the constraints (7) which define the approximate solution 

U,r( z) in terms of the parameters y i and Zj of the representation (28). For the linear 

problem (8) we write 
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so the collocation conditions (7 c) give 

(31a) 

where 4i = ( q( xil), ... , q( xik) f, V is a k X m matrix with entries 

(32a) 

and Wis a kX k matrix with entries 

m 
lV . = .;,lml(p ) - E cl X· )h,;1+1-l.1,U-l)(p ) 

rJ "t" J r I- I l\ Ir I 'f' J r 1 < r, j < k. (32b) 

The continuity conditions in (7a) are even easier to write down. We evaluate u,r( x) 

and its first m-1 derivatives at x = Xi+l by (28) and equate to Yi+t, the corresponding 

values at the (i+ 1 )st subinterval. This yields 

where C is an mX m upper triangular matrix with entries 

N:' 
c,.,-=-(.· )' J-r. 

and Dis an mX k matrix with entries 

(31b) 

(32c) 

(32d) 

Note that the obvious dependence of C, D, W and V on i has been suppressed in the 

notation. 

The specification of the collocation constraints (7) for the linear problem is com-

pleted by writing for (7b) 
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(31c) 

Our next strp 1s to eliminate the local unknowns zi. We note that as 

hi - 0, W,.,- - p1;1/(j-1)!, so for hi small enough Wis nonsingular. Eliminating :!:i 

from (31a) and substituting in (31 b), we arrive at the form 

(33a) 

with 

(33b) 

The similarity between (33) and (24) is quite clear, noting that C = I+ O(h;) and 

D = O(h.-). 

In (33a), (31c) we have, once again, a linear system of equations of the form (17) for 

u,r( x) and its first m-1 derivatives at mesh points. After obtaining the values of y i we 

can easily obtain z.- from (31a), and hence u,r(x) from (28), if we store the values of 

111-1 V and iV-1q.- which are computed while a'.!sembling r i• for each i, 1 < i < N. 

Example 

Consider the problem 

u, , 

u'(O) = u(I) = 0. 

The exact solution is 

7 
u( x) = 2 In( 8-x2 ). 

We have solved this problem numerically, using collocation at Gauss points with 
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k = 2, 3, and at Lobatto points with k = 3. Uniform meshes were used. The process 

was then repeated for the corresponding 1st order system (9) using collocation at the 

same mesh points. The maximum errors at mesh points for tl,r(=yi) and '-',r '(=Y:?) are 

listed in the table below. The results were identical (to the number of digits shown) in 

both computations. 

[I 

Remarks. 

(a) The results of the above example indicate a rather strong connection between the 

collocation method for the higher order BVP (8) and the corresponding collocation 

method using the same k points P; ( k > m) for the transformed 1st order system 

(9). Indeed, the linear equations (33a) form a one-,tep d,"fference acheme for (9). 

This will allow us to connect to the theory of one-step schemes, briefly reviewed in 

§2. But first we must ask if we have gained anything in the treatment here; 

indeed, is anything different than the corresponding collocation methods or §2! In 

answer, let us first point out that while here u,r(x) E Pi+m,1r n cn-1[0,l}, the 

N e(v1) 
2 .20-3 
5 .64-5 
10 .46-6 
20 .33-7 
40 .23-8 
80 .16-9 

2-Gauss 3-Lobatto 

e(y,,) e( Y1) e( v.,) e(y1) 
.71-4 .17-4 .11-3 .14-6 
.19-5 .57-6 .29-5 .70-9 
.12-6 .37-7 .18-6 .13-10 
.77-8 .23-8 .11-7 .27-12 
.48-9 .15-9 .72-9 .60-14 
.30-10 .91-11 .45-10 .13-14• 

Higher order collocation schemes for a simple example 
• - These values are mainly roundoff errors 

3-Gauss 

e(112) 
.37-6 
.17-8 
.27-10 
.42-12 
.71-14 
.94-15• 



corresponding collocation approximation or y1 in (9) is in P~1,,r n C[0,1), so gen­

erally the approximations are not exactly the same when m>l. Next we note that 

in (28) we have k+m parameters per mesh subinterval, whereas the corresponding 

method for a 1st order system would have m(k+l) , i.e. (m-l)k additional parame­

ters. or course the treatment of these parameters is slightly more cumbersome 

here; still, the matrix W for (9) is mkX mk and Vis mkX m, whereas in (32) Wis 

merely kX k and Vis kX m. We can view (33) as a ,ophi,ticated hi[Jh order one­

atep ,cherne for (9 ), which take, advantage of the ,pecial ,tructure of the 

coefficient, in the tran,formed 1,t order 111atem. We hasten to point out, however, 

that this view is beneficial only at mesh points. 

(b) While the entire treatment here is done for h "sufficiently small", we point out in 

passing t.hat. collocation at symmetric points can be applied to advantage also 

when h is not so small compared -to the coefficients in (8). In that case, however, 

the matrix Wis not necessarily nonsingular, and the matrix 

has to be considered instead. 

(c) The representation for the polynomial u,r(x) in (28) is not unique. In particular, 

other choices for ¢,( t) can be considered, requiring (30) to hold [4). Two such 

choices are mentioned: Requiring 

(34a) 

implies z,; = u~ml( x,,-). It is easy to see that (34a), (30) defines ¢,{ t) well. More­

over, (or m = 1 we have 
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with Or;·,/3; given by (26). This is suitable for proving Theorem 11. Another choice 

which we mention is 

1 < j, r < k (34b) 

The importance of this is that D of (32d) becomes very simple, so this is the 

recommended variant for implementation. 

[I 

\Ve are now ready to prove the convergence results stated in §1. 

Proof of Theorem 11. 

Consider the represe~tation (28) for xi<x<xi+J, with t/J,{x) defined by (30), (3.fa). 

We can write 

lt is easy to see that µ(x) = O(hf+m) : In fact, recalling (27), 

(36a) 

(36b) 

From this we obtain that y( x) of (2), which is the exact solution of the 1st order BVP 

(9 ), satisfies 

This means that. the finite difference scheme (33a), {31c) is a one-step scheme for (9), 

which is consistent of order k, with (23a) holding. From Theorem 23 we obtain existence 

of a unique collocation solution and stability, as claimed in (a), (b). Moreover, the error 
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at mesh points satisfies, by (22), 

(37a) 

Let us use the notation d,..(x) := u,..(x) - u(z) and write as in (28) 

(37b) 

with ( ei1, .•• ,eimf = ei = 7,7(xJ EquatioD.!I (31a) for the error give the estimate 

and so, taking derivatives in the expression (37b) for d,r(z) we obtain 

with 

O(hk) O < j < m 
Zj < Z < Zi+l 

0( hk+ m-i)~-m m < j < k+ m-1 
(38a) 

(38b) 

As in [9], let G(x,t) be Green's function for (8) and denote G
1
{x,t) = {}J·. G(x,t). 

a:rJ 

Then from the assumption on the problem coefficients, G
1
{z,t) is smooth as a function or 

t in [O,x) and in (x,1); but at t = x, G
1
{x,t) ha., only m-1-j derivatives. Writing for 

0 < j < m-1 

J N 
u~)(x) - ub)(z) = rG,{z,t) L(u,..(t) - u(t))dt = E E.(x) 

t, •-1 

with 

Z1+1 

E,,(z) = f G1{x,t)(Lu,..(t) - q(t))dt, 
z. 



·1 

I 

we note that Lu,r(t) - q( t) = 0 at k collocation points t = Znt· Thus, we can ·write the 

integrand as the remainder or its polynomial interpolant at these points, 

where ~ t) involves the kth derivative of the integrand. From (38a) and the smoothness 

assumptions, O';;k+l L{ u,r( t)-u( t)) has p-k bounded derivatives. If z ft. (zn,zn+l) then we 

can therefore write 

and obtain, by (lla), 

Summing up on n, the superconwrgence conclusion (llb) follows, because for a mesh 

But, if z E (xi,x,+Jl then the limited smoothness of G,{z,t) allows us to conclude 

only that 

To obtain the error estimate (llc) for points other than mesh points, without imposing 

any mesh restriction, we use (31a) for the error, obtaining 

and substitute into (37b). This yields 

Using the ODE (8a) which both u and U,r satisfy at the collocation points, we obtain 

that for the choice of t/J,{ t) satisfying (34a), 



(39) 

Hence, the leading error term when p > k+m is µ(x). Now (36) yield (llc), because 

This completes the proof. 

[I 

Recall from [14,2] that as a consequence of (llc), there are additional "superconver­

gence" points, i.e. points other than mesh points where the order of convergence is 

higher than what is possible everywhere. In particular, any roots of p(;\ {) or (lld) in 

(0,1) correspond to such points for the j-th derivative or the error in (xi,Xi+d, 

1 < i < N. We have already mentioned the roots of pm) in (39). Let us also point 

x";-x.- _ l If 
- h - = t := -k E P1, 

i l=l 
(40a) 

so the piecewise constant u~+m-l) satisfies 

(cf. [14,2]). If the collocation points are symmetric then x.- = zi+t/2. 

4. Nonlinear problems 

For the generally nonlinear BVP (1) we con.sider the method of quasilinearization. 

Recalling (12), the method of collocation with quasilinearization reads ~ follows: Given 

an initial approximate solution u71'(x), repeal (i) solving by collocation the linearized 

problem 



(41a) 

(41b) 

where w(x) := (z(x),z '(x), ... ,Jm-l){x)), and (ii) improving the approximate Bolution by 

(41c) 

until I z1rl is below an error tolerance. 

The quasilinearization method out.lined above can be seen to be equivalent to 

Newton's method for solving (7). Note that, with the linear implementation advoc~ted 

here, if we wish to use the same Jacobian matrix for more than one iteration (this is a 

mod(ficd Newton'::. method, see [3]) then we need to retain lt'-1 in some form, for each 

8U binterval i. 

The convergence results for the method of collocation and quasilinearization a.re 

contained in Theorem 13. \Ve omit a foll proof, since the nonlinear analysis is not 

different in principle from the usual, d. [0,15,7]. Thus, one considers the collocation solu­

tion of t,he linearized BVP at the exact solution u(x), for which Theorem 11 applies. 

This unknown-but-existing piecewise polynomial, call it say ti,r(:r), is then used as a 

starting guess for the quasilinearization process and the Newton-Kantorovitch conditions 

are verified. This yields conclusions (a) and (b) of the theorem. The proof is then com­

pleted by showing that the error in U,r is the same as that in ti,r, up to O(h2k) terms. 
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