
Scale-based Description and Recognition or 
Planar Curves and Two-Dimensional Shapes 

Farzin Mokhtarian1 and Alan Mackworth2 

Technical Report 84- 15 
October IQ84 

Laborat.ory for Computational Vision 
Department of Computer Science 

niversitv of British Columbia 
Vancouver, B.C. 

Canada VGT IW5 

1 Current &ddress: Schlumberger-Doll Reeeuch, Old Quny Ro&d, Ridgefield, CT 06877. 
2 Fellow of thf Ca.udia.n Institute for Adva.nced Resca.rch. 





Abstract 

The problem of finding a description for planar curves and two-dimensional 
shapes at varying levels of detail and matching two such descriptions is posed and 
solved in this pap r. A number of necessary criteria are imposed on any candidate 
solu ·ion method. Path-based Gaussian smoothing techniques are applied to the curve 
to find zeroes of curvature at varying levels of detail. The result is the 'generalized 
scale space' image of a planar curve which is invariant, under rotation, uniform scaling 
and translation of the curve. These properties make the scale space image suitable for 
matching. The matching algorithm is a modification of the uniform cost algorithm 
and finds the lowest cost match of contours in the scale space images. It is argued that 
this is preferable to matching in a stable scale of the curve because no such scale may 
exist for a given curve. This technique is applied to register a Landsat aerial image or 
the Strait of Georgia, B.0. (manually corrected for skew) to a map containing the 
shorelines of an overlapping area. 
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I. Introduction 

Images interpreted by computational vision systems can be those or two- or 

three-dimensional objects. Two-dimensional shape.s (such as letters or the alphabet, 

chromosomes and shorelines in aerial photographs) are bounded by, or composed or, 

planar curves. Various curve representations have been proposed in the computational 

vision literature. A reliable representation, suitable for matching, should be essentially 

invariant with the rotation, scaling and translation or the curve to make recognition or 

the curve possible after arbitrary instances or those transformations. Moreover, it 

should represent the curve at varying levels or detail rather than at only one level. 

The goals of this paper are: 

(a) To find a method of obtaining a representation for a two dimensional curve 

which is invariant under rotation, scaling and translation of the curve. 

(b) To develop a matching algorithm to find the best match of two such 

representations. Such an algorithm should also be able to match one 

representation to part or another, to account for incomplete data. 

(c) To apply the techniques developed in (a) and (b) to register a Landsat satellite 

image or a.n area to a map which contains the shorelines of an overlapping area. 

2. Some criteria for a reliable representation 

A number of necessary criteria that any reliable method for curve description 

and recognition must satisfy are presented here: 

(a) The representation must be computable. 

(b) The representation should be essentially invariant under rotation, uniform scal­

ing and translation or the curve, otherwise, reliable recognition will not be 



possible. 

(c) The representation should contain information about the curve at varying levels 

of detail. Moreover, it should be clear from the representation which features of 

the curve belong to coarser levels of detail and which features to finer levels. 

( d) The amount of change in the representation should correspond to the amount of 

change made to the curve. In other words, a small change to part of the curve 

should create a small change in the representation. 

( e) Arbitrary choices should not affect the representation. 

(f) In case of open curves intersecting the frame, the representation should only 

change locally with the location of the cutoff points. 

(g) The representation should uniquely specify a single curve, otherwise it would be 

possible to match a curve against a class of curves all of which have the same 

representation. This criterion only requires uniqueness up to the curve 

equivalence classes induced by requirement (b) above. 

Several shape representation techniques may be judged by these criteria. For 

example, the Hough transform has been used to detect straight lines [1), circles [2] and 

arbitrary shapes (3] in images. O'Gorman and Clowes [4] used the direction of the gra­

dient to improve the efficiency and accuracy of the transform. In a typical Hough 

transform technique, edge elements in the image vote for the parameters of the objects 

they can be located on. All t.he votes are gathered in a parameter space. The highest 

peaks indicate the location of the objects in the image. The Hough transform can 

suffer from false peaks in the accumulator array due to accidental matches with the 

data. Poor results will be obtained for incomplete data even if the existing data 
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matches well with the model. In order to account for rotation, scaling and translation 

of the shape, more parameters must be added to the parameter space which makes the 

implementation impractical. The generalized Hough transform [3] also suffers from the 

arbitrary choice of the required reference point for the shape. 

Another class of methods are those which find hierarchical straight line or 

angle approximations to the curve (5,6,7,8]. A hierarchy of straight line approximations 

to the curve is formed by initially joining the endpoints and recursively refining each 

approximation by breaking it at the point on the curve furthest away from it. The 

algorithm stops when every point on the curve is within some threshold distance from 

the straight line segment which approximates the portion of the curve containing the 

point. This method does combine information about the curve at various levels of 

detail but the representation can change greatly due to a small change in the curve. 

Moreover, if the curve is closed, an arbitrary choice of endpoints must be made which 

will certainly affect the representation. Strip trees also use a similar idea in order to 

represent a curve. The only difference is that a rectangle which contains all of the 

points on a segment is used to represent that segment. Smaller and smaller rectangles 

are used to give a finer representation of the curve. The deficiencies of the previous 

method also make this one unattractive. 

The "codon" representation proposed by Hoffman and Richards [OJ satisfies 

many of our criteria in that it is based on segmenting at minima of curvature. How­

ever, it does not reflect considerations of detail (c) or sensitivity (d). 

A final candidate method breaks the curve into several segments (if needed) 

such that each segment is a single-valued function 11 =y (x ). Then the Stansfield­

Witkin method [10,11] can be used to construct a scale space image of the curve. The 

effectiveness of this method depends on the number of segments the curve has to be 

divided into. In the special case where the curve already is a single-valued function, no 
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divisions are needed and the method would work but in general {when divisions are 

necessary), there will be problems with handling the boundary conditions at each break 

in the curve. This method violates criterion (b) in that the representation is not 

invariant under rotation. 

3. Scale-Based description of planar curves 

This section describes a method for computing a representation for a curve 

invariant under rotation, uniform scaling and translation of the curve as explained in 

112). This method is based on finding points of inflection on the curve at varying levels 

of detail using a path length parameter and combining them to obtain the scale space 

image of the curve. 

3.1. Finding points of inflection on a planar curve 

It is desired to find zero-crossings in curvature of the curve at varying levels of 

detail, that is, for varying degrees of smoothing of the curve. Since a planar curve 

does not behave like a single-valued function in general, a parametrization of the curve 

should be found which makes it possible to compute the curvature of the curve at 

varying levels of detail. Such a parametrization is made possible by considering a path 

length variable along the curve and expressing the curve in terms of two functions 

x ( t) and y ( t ) : 

C = { x(t),y(t)} 

where t is a linear function of the path length ranging over the closed interval [0,1). If 

the curve is closed, x ( t ) and JI ( t ) are periodic functions. The curvature ,c of a planar 

curve at a point P on the curve is defined as the instantaneous rate of change of the 

slope angle t/J of the tangent at point P with respect to arc length a, and is equal to 

the inverse of the radius p of the circle of curvature at point P. 
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df/; 1 
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ds p 
The circle of curvature at point P is a circle tangent to the curve at point P whose 

center lies on the concave side of the curve and whose curvature is the same as that of 

the curve at point P. The circle of curvature is also called the osculating circle 

because it has a higher degree of contact with the curve at point P than any other cir­

cle. 

K can be computed if it is expressed in terms of the derivatives of functions 

x ( t ) and y ( I ). 

Define 

It is known that: 

dy 
y' =­

dx 

therefore y ' and y '' should be expressed in terms of the first and second derivatives 

of x ( t) and y ( t ). 

Denote 

Then 

and 

. dy 
11 =­dt 

d ( y) 
dt x .. dy, 

y" --------- dx - x 
X 1/ - y X 

%3 
using the derivative rule: 
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So we obtain 

In order to compute the curvature of the curve at varying levels of detail, func­

tions x ( t ) and y ( t) are convolved with a one-dimensional Gaussian kernel g ( t ,u) of 

width t1 (13): 

X ( t ,u), the convolution of z ( t) and the Gaussian kernel, is defined as: 

00 

- (1 - u 12 

J 1 2 2 X(t,u)=z(t)@g(t,cr)= x(u) v'2,re (1 du 
O' 2,r 

-oo 

Y(t ,u) is defined similarly. 

. . .. 
In the smooth curve one needs X(t ,u), Y(t ,u), X(t ,u) and Y(t ,u) to compute 

curvature. These can be computed from x ( t) and y ( t) using 

X(t u) = BX (t ,u) = Blx(t)@g(t,u)) = z(t)@( og(t ,u)) 
' at at at 

and 

and similarly for Y ( t ,u). Figure l shows the coastline of Africa. Figure 2 shows an 

application of this method to that coastline, with the zeroes of curvature marked on 

each smoothed curve. 



3.2. How to handle the endpoints or the curve 

As mentioned earlier, if the curve is closed, functions x ( t ) and 1J ( t ) can be 

treated as periodic functions which eliminates all edge effects. But if the curve is open, 

these functions are not periodic. A way must be found to convolve the mask with the 

curve when part of the mask is beyond the endpoint since the convolution value for all 

points on the curve should be computed. 

There is a basic difference in the nature of two open curves, one of which is con­

tained completely inside the image and the other which ends at the frame boundary. In 

the first case there is in fact no missing information and the endpoint problem can be 

solved by creating an extension to the curve which is an extrapolation of points close 

to the endpoint. As long as one is consistent, the results for similar curves will be simi­

lar. In the second case there is indeed a loss of information around the endpoint. 

'There a.re several ways to handle this problem. Each one will be discussed: 

(a) One could still extrapolate the curve beyond the endpoints. Since this does not 

in general result in a reconstruction of the original shape, the results can be 

different for two similar curves which are cut at different locations by the frame 

boundary. 

(b) The endpoints of the curve can be joined with a straight line to change it into a 

closed curve. The arguments of section (a) also apply here. 

(c) When the endpoint of the curve is reached, turn back and go in the opposite 

direction, towards the other endpoint. This method will also not guarantee simi­

lar results and it also suffers from the fact that artificial inflection points will be 

introduced at the endpoints of the curve. 

(d) Repeat the endpoint of the curve as many times as necessary: treat x(t) and y(t) 
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as constant functions beyond the endpoint. This method does not introduce 

extra inflection points and seems like the appropriate thing to do in absence of 

other information. It is also the easiest method to implement and is the one 

used in this paper to handle the endpoints. 

3.3. The scale space image or a planar curve 

Section 3.1 described how to find points of inflection on the curve at varying 

levels of detail. This section will describe how to combine that information in the form 

of a generalized scale space image in order to obtain a representation for the curve. 

Compute a Gaussian mask using a value of <1 corresponding to the finest level of 

detail desired. The limit is <1=0 which is equivalent to convolving an impulse function 

with the functions x ( t) and y ( t ). In practjce a higher value can be used to avoid the 

excessive detail usually obtained at very fine levels of detail. Find points of inflection 

on the curve corresponding to this value of u using the techniques explained in section 

3.1. Mark these points in a coordinate system where the x-axi~ shows the value of the 

path-length parameter, t , a.long the curve and the y-axis represents u, the width of the 

Gaussian kernel. 

Increase the value of u by a small amount, find the new inflection points and 

mark them also in the scale space image. Repeat this process until no inflection points 

are found for some value of u. The whole scale space image has been derived (Figure 

3). 

The scale space image can be thought of as a binary image which is 1 wherever 

there is an inflection point on the curve corresponding to some values of the path­

length parameter and sigma and O otherwise. 

Sqme remarks about the scale space image are appropriate: 
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(a) The scale space image contains contours which are closed at the top and open 

at the bottom. There may be contours open at the top but these contours are 

incomplete ones which end at the edge of the scale space image and are due to 

incomplete information. 

(b) Contours in the scale space image never intersect each other but may "touch" 

at fine levels of detail. 

(c) Yuille and Poggio [14] have shown that under certain assumptions, no new 

inflection points are created at higher levels or detail (more smoothing). This 

property can be used to speed up the computation of the scale space image by a 

considerable amount . Indeed once one is beyond fine levels of detail, one can 

track the inflection points by only computing the curvature and looking for 

zero-crossings in the neighborhood of the previous inflection points. 

(d) YuiJle and Poggio [15] have also shown that almost all signals can be recon­

structed up to a.n equivalence class from their scale space images. This implies 

that the scale space image is a unique representation for those signals. 

(e) For some open curves, there may be one or more incomplete contours in their 

scale space images. Since the "movement" of such contours towards the edge 

can be quite slow, a lot or unnecessary computation time will be spent if such a 

contour is allowed to take its normal course. A shortcut can be made by antici­

pating cases such as this. As soon as only one inflection point is ·obtained on the 

whole curve for some value of sigma, find the slope of the corresponding contour 

to determine whether it is moving towards the right or the left edge and con­

nect the contour to the correct edge. 
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4. An algorithm to match scale space Images 

The matching is carried out in the scale space image because of the invariance 

properties it displays. Furthermore, matching in the scale space image is pref er able to 

matching at a specific scale. A specific scale is usually chosen by imposing some stabil­

ity criterion on the features of the curve. It is not clear that there always exists a 

"most stable" scale for a given curve. That approach would be unreliable for such a 

curve. 

A scale space image can be considered to be a hierarchical representation for a 

curve. An imaginary super-contour exists at the root of this tree. This contour con­

tains all the real contours in the scale space image. Each real contour has zero or more 

children, contours which exist inside it, and zero or more siblings, contours which share 

the same parent. Every contour has a peak, a right branch and a lef~ branch unless it 

is incomplete in which case one branch is totally missing and the other one incomplete 

or both branches are incomplete. 

The algorithm described in this section is an adaptation of the Uniform Cost 

Algorithm [161 which is a special case of the A* algorithm [17]. It finds the lowest 

cost match between contours in the two scale space images. The image space transfor­

mation parameters which take one curve to the other are then computed from that 

match. There are 4 parameters which correspond to uniform scaling, rotation and 

translation of the curve. The two curves can then be registered to show the goodness 

of match between them. 

4.1. Creating the Initial matching nodes 

The algorithm starts out by creating a queue of nodes corresponding to the pos­

sible match of every pair of contours in the two scale space images. Since the two ori­

ginal curves could be at different scales, it is possible for contours at different levels to 
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match with each other. There are two scale space transformation parameters mapping 

one contour to another which need to be computed for each node. These two are the 

scale k and shift d parameters. The relationship between the old coordinates, t and 

u, and the new coordinates, t' and u' , is a.s follows: 

t' =kt+d 

"' = k<1 

Only one pair of scale space points is needed to compute k and d. These can be 

computed using the coordinates of the peaks of the two contours since peaks provide a 

pair of points on the contours which correspond to each other. 

These parameters are always used to transform the smaller contour so that it 

can be matched against the larger one. If the smaller contour is in the first scale space 

image, then the transformation is from the first to the second scale space image. If it is 

in the second scale space image, there is a reverse transformation. As a result, contours 

do not shrink and matching errors are better a.ccounted for. The same set of parame­

ters is used to match the next pairs of contours when a node is expanded. 

The cost of match between two contours is defined as the average distance 

between them after one of them has been transformed. The average distance between 

two contours is the average of the distances between the peaks, the right branches and 

the left branches. Incomplete contours are not matched since their true shape is not 

known. Since it is desirable to find a match corresponding to the coarse features of the 

curves, there is a penalty associated with starting a match with a small contour. This 

penalty is a linear function of the difference in height of that contour and the tallest 

contour of the same scale space image. 

4.2. Expanding a node 

The algorithm proceeds by finding the lowest cost node from the queue of initial 
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nodes and expanding it. The cost of expanding that node is computed and added to 

the previous cost.. Then the new node is added to the queue and this process is 

repeated until the lowest cost node can not be expanded any more. The correct. match 

is assumed to be the one indicated by this node. 

In order to expand a node, the next pair of contours in the scale space images to 

be matched must be found. Instead of randomly choosing any other cop.tour in the 

scale space image and finding the next match value, this algorithm makes use of the 

constraints of the scale space image as much as possible. 

To find the next two contours to match, a contour is searched for in the first 

scale space image using an order-by-height procedure. Ir it is found, then a contour is 

searched for (but not necessarily found) in the second scale space image which would 

correspond to the contour from the first image. The following is a detailed description 

of this procedure. Note that if at any step the program fails to find a contour from the 

first image, it will search for a contour in the second image using the same guidelines 

for finding contours in the first image before going to the next step. 

(a) Ir the last contour matched from the first scale space image has any children 

then its tallest child will be the next contour to be matched. In order to find the 

next contour in the second image to match, use the transformation parameters 

to estima.te its location. Since its parent is known, one can search for any chil­

dren of that parent whose peaks fall inside that range. Ir more than one such 

contour is found, choose the one whose height is closest to that estimated by 

the transformation parameters. If no corresponding contour is found in the 

second image, the first contour will be matched against the null contour, which 

has a height of zero. 

(b) If the last contour matched from the first image does not have any children, 
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search for its next smaller sibling. If such a sibling exists, it will be the next con­

tour to be matched. To find the next contour from the second image, use the 

procedure outlined in section (a). 

(c) If the last contour matched from the first image does not have any smaller 

siblings either, return one level and search for a smaller sibling of its parent. 

Repeat this process until either the first ancestor which has a smaller sibling is 

reached or there are no more ancestors left. In the latter case, no more expan­

sion is possible and the algorithm returns with the lowest cost node. 

If the curve for \vhich the scale space image is computed is dosed then the scale 

space image will be periodic: moving right when one is at the right edge of the scale 

space image will place one at. the left edge and t1ice versa. This must be taken into 

account when applying transformations to the contours since contours ma.y wrap­

around in the scale space image. 

4.3. Dealing with incomplete information 

If one of the curves being matched only matches with part of the other curve, 

the contours in the scale space image for that curve will correspond to only some of 

the contours in the other sea.le space image. This will not result in poor matches since 

it is easy to find a region in the larger scale space image which corresponds to the 

smaller scale space image (again wrap-around is possible for closed curves) and extract 

the relevant contours which should be used in the matching process. 

5. Application 

The Landsat registration problem was chosen to illustrate the curve description 

and recognition methods explained in sections 3 and 4. The Landsat registration prob­

lem is that of registering a Landsat aerial image of an area to a map which contains 
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the shorelines of the same area. Shorelines must be extracted from the Landsat image 

before they can be matched against the shorelines in the map. It should be noted that 

exact registration of the shorelines is not a goal of this paper. The purpose is to 

demonstrate that the method is successful in finding shapes which have basically the 

same Ceatures. 

Section 5.1 explains a simple method for extracting shorelines Crom the Landsat 

image. Section 5.2 describes a way or putting together the curve description and recog­

nition methods in order to create a working system to solve the Landsat registration 

problem. 

6.1. Obtaining shorelines from the Landsat image 

The Band 7 (near infrared) Landsat image of part of the Strait or Georgia, B.C. 

is a gray-level image showing a clear distinction between water and land in most areas 

(Figure 4). A histogram or gray•level distributions of all the pixels in the Landsat 

image was obtained (Figure 5a). There are two main peaks in this histogram 

corresponding to water and land respectively but there are also many smaller peaks 

due to noise and one at the very end of the histogram composed of saturated pixels 

due to snow patches. If one could locate the land and water peaks in the histogram, 

the value of the trough between those two peaks could be used to threshold the image. 

The contours of dark regions in the thresholded image could then be followed to obtain 

approximations to the shorelines. These peaks can in r act be found by smoothing the 

histogram, which can be treated as a function of one variable, with a mask based on a 

one-dimensional Gaussian function (18). The amount of smoothing is controlled by t1, 

the standard deviation of the Gaussian. 

The minimum value of t1 which results in two peaks can be obtained using 

binary search. The resulting smoothed histogram is shown in Figure 5b. To find the 
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location of the peaks one can simply convolve the first derivative of the Gaussian, 

using the correct value of u, with the histogram and look for transitions from positive 

to negative (since the first derivative measures the slope of the smooth curve and a 

peak is where the slope goes from a positive value to a negative value). Similarly the 

trough between the two peaks can be found by looking for a transition from negative 

to positive. 

Once the location of the trough is known, the Landsat image can be thresholded 

using the intensity value of the trough as the thresholding value. Every pixel in the 

image will be classified as water if its gray-level is less than the thresholding value and 

as land if its gray-level is greater than or equal to the thresholding value. The result is 

a binary image where 1 pixels represent land and O pixels represent water. 

If the land and water pixels are assumed to be normally distributed with the 

mean of the distribution at the location of the peak then the intersection point of the 

land and water distributions, when chosen as a thresholding value to threshold the 

image, results in a minimum total number of land and water pixels classified 

incorrectly. A thresholding value larger than this Yalue would result in fewer water 

pixels classified in correctly but even more land pixels classified incorrectly. Similarly, a 

thresholding value less than this value would result in fewer land pixels classified 

incorrectly but even more water pixels classified incorrectly. It was decided to use the 

intensity value of the trough to threshold the image since the algorithm to find the 

trough was easier to implement: the difference in results is not significant for the pur­

pose of this paper. 

To obtain the land-water boundaries from the thresholded image, one need only 

follow the contours of the land masses. One simple algorithm for following the con­

tours of light regions in binary images [19] starts from any point on the contour and 

turns left if it is on a light pLxel and right if it is on a dark pixel. This process is 
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repeated until one of the neighbors or the starting point is reached. As a result the 

contour or the region will be traversed in a clockwise fashion. Ir it is desired to traverse 

the contour of the region in a counter-clockwise fashion, one should turn right when on 

a light pixel and left when on a dark pixel. This may be necessary in order to traverse 

the contour of a region only partly contained in the image. 

Duda and Hart indicate that the algorithm may show 4-connected or 8-

connected behavior depending on the starting point and the direction in which it is 

entered. One can easily force consistency on this algorithm by finding all the light pix­

els in the image which are only connected diagonally and disconnecting them. All the 

resulting regions will be 4-connected therefore the algorithm will always show 4-

connected behavior also. Disconnecting pixels which are only connected diagonally is 

not an undesirable effect since two such pixels do not have any common boundary and 

can be considered as disconnected. Figure 6 shows the approximations to the shorelines 

extracted from the Landsat image after manual correction for skew. 

6.2. A working system 

The complete working system to register the Landsat image and the map func­

tions as follows: 

(a) Threshold the Landsat image using the value of the trough between the land 

and water peaks in the smoothed histogram of the gray-level distribution or the 

pixels in the image. Follow the contours of dark regions to find land-water 

boundaries. 

(b) Eliminate as much or the skew in the shorelines from the Landsat image as pos­

sible. This is done manually by finding corresponding pairs of points in the 

Landsat image and a map (different from the one used in part (c) ) and usiug 

them to estimate the parameters of an affine transformation which takes the 



Landsat image to the map. A transformation of uniform scaling, rotation and 

translation still exists between the Landsat image and the map used in part (c). 

(c) Choose only a few contours from the Landsat image and the 1Il1J> which are 

longer than all the other contours. The purpose of this is to improve the 

efficiency of the program but also to eliminate very low cost matches 

corresponding to very small contours which may not have any significance. 

From these contours keep only the ones which are closed. 

(d) Compute the scale space images for the contours which were selected by the 

pre·vious step and create a hierarchical representation based on that image. 

(e) Match every model curve against every object curve and remember the cost of 

match for all those pairings. Since every curve considered in the matching pro­

cess has a significant length, the lowest cost match should also be a correct one. 

Find surh a match, compute the transformation parameters predicted by that 

match and choose a subset of all the matches which are consistent with that 

match, in that they predict roughly the same transformation parameters. Use a 

least squares method to estimate the parameters of an affine transformation 

from the Landsat image to the map using the data gathered from all the correct 

matches. 

(f) Generate the transformed image of the Landsat shorelines and transform the 

original Landsat image if so desired. 

8. Results and discussion 

Figure 7 shows the map to which the Landsat image was to be registered. It 

should be noted that the transformation between the Landsat image and the map is a 

general affine transform. Since currently only rotation, uniform scaling and 
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translation can be handled by the matching algorithm, the skew in the Landsat image 

had to be corrected before the scale space images for its shorelines could be computed. 

Since a, relatively small amount of skew still remains in the Landsat shorelines even 

after manual correction, it is necessary to compute the parameters of an affine 

transformation which takes the Landsat image to the map once a consistent subset of 

matches have been found. Figures 8 and g show two correct matches f<>und by the 

matching algorithm and figure 10 shows the Landsat ima.ge registered to the map using 

the same matching algorithm. The goodness of match between the Landsat image and 

the map indicates that a small number of shorelines matched correctly can give a good 

estimate for the transf orrilation parameters. 

It was stated in section 5 that only closed curves were chosen for matching pur­

poses. One reason for this is that the scale space images corresponding to closed curves 

are complete and it is preferable to use complete information when available. The 

other reason is a potential problem with the matching algorithm as described in section 

4 when matching open or incomplete curves. It was stated that an initial cost is asso­

ciated with every node w~ it is created which is a linear function of the difference in 

heights of the cont.our for which the node is created and the highest contour of the 

scale space im-a~. This ~~ is 'to ~n-oour,rgie -matches corresponding to larger con­

tours of the image and is reasonable when both images are complete since the correct 

match does correspond to the large contours of the image (usually the largest ones) but 

it can run into problems when there is incomplete information since a correct match 

might not correspond to one of the largest contours. The matching algorithm in its 

present form is good at finding shapes which have the same basic features but to over­

come the problem associated with open curves, cne can eliminate the necessity of 

attaching initial costs to nodes by matching all contours in the scale space image 

(including parents and ancestors and siblings of those) which should match as a result 
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of matching any two contours in the two images (not just the smaller siblings and sub­

contours of them) and making sure that duplicate nodes are not created. 

Since computing time is always an important constraint in every working com­

putational vision system, the following is an evaluation of the computation time 

requirements of the various components of the system described in this paper: 

The system was implemented in UBC's Laboratory for Computational Vision on 

a Vax3 11/780 with 4 megabytes of main memory running BSD 4.2 Unix4• Those parts 

of the system concerned with extracting shorelines from the Landsat image and com­

puting the scale space images of t.he curves to be matched were implemented in C. The 

matching algorithm was implemented in Franz Lisp. 

Tracking the zero-crossings in the scale space image can reduce the required 

computation time from hours to minutes for a typical curve. It took approximately one 

hour of CPU time to compute the scale space images of all the curves fo the map and 

slightly less than that to compute those of the shorelines in the Landsat image. The 

matching algorithm took roughly 30 minutes of CPU time to estimate the transforma­

tion parameters. As mentioned earlier, only a subset of the scale space images were 

used in the matching process. 

If real time response is expected from the system described in this chapter, its 

CPU requirements must be decreased further. Parallelism would significantly reduce 

the CPU requirements of the system described in this paper. 

The whole scale space image of a curve is not more compact than the curve 

itself in general (this is obviously not true for convex or nearly convex curves). There­

fore the program which computed the scale space image of various curves usually pro­

duced fairly large binary images but this should not be viewed as a shortcoming of the 

3 Vu is & tr&dema.rlr of Digital Equipment Corp. 
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scale space image since it has value as a representation for planar curves. Furthermore, 

the scale space image could be efficiently encoded. 

Small changes in the shape of the curve usually result in small changes in its 

scale space image; however this may not seem to be true if a relatively small but 

highly convex feature is added to the curve. Such a feature may last through many 

levels of scale despite its relatively small size and therefore create a relatively large 

contour in the scale space image; but it can be argued that such a feature is easily dis­

tinguishable and hence a major feature of the curve. Figure 11 illustrates this. 

Shorelines have quite a.rbitrary shapes and rich scale space images as a result, 

but. the scale space image may not be a suitable representation for curves which consist 

of long straight segments or curves which are convex or nearly convex to begin with. 

7. Extensions 

The shapes of the contours in the scale space image indicate certain facts about 

the underlying features on the curve and can be studied further. This is useful if no 

explicit model curve is available but certain shapes (cues) are searched for on the 

curve. For example, a contour which is relatively large in the scale space image but 

has a small base (distance between the points where its left and right branches inter­

sect the path-length axis of the scale space image), possibly indicates the presence of a 

highly convex feature which is small in size. 

Scale space images can be obtained for planar curves which consist of more than 

one segment by finding a suitable parametrization. They can also be computed for 

curves which intersect themselves, but it should be noted that the scale space images 

for this class of curves will be fundamentally different. It is, for example, possible to 

obtain new inflection points at coarser levels of detail. 

4 Unix is a. tra.dcmuk or AT. I:: T. Bell Labor1.tories . 
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Ir it can be shown that the skewing or a planar curve translates to skewing of 

its scale space image then the matching a.lgorithm can be modified to detect skew in a 

planar cur-ve also. \\'hat is needed is to find at least one more pair of corresponding 

points on the contours in the scale space image (in addition to the peaks) in order to 

estimate the skew parameters. 

Once the Landsat image is registered to the map, the results can be used to 

improve the initial segmentation or the Landsat image. An edge detector can be used 

to find the location or land-water boundaries at various levels or scale. 

\Ve have demonstrated that the method satisfies the necessary criteria ( a)-(f). 

However, it does not satisfy criterion (g). The generalized scale space records only the 

sign of the curvature. Thus, for example, any two wholly convex shapes are indistin­

guishable to the method. Various possible extensions could be considered to cope with 

this problem. Using the locations or curvature maxima and minima a.t varying scales 

would reduce the size of the equivalence classes but would not eliminate the difficulty. 

A second extension would follow or combine scale space matching with image space 

matching based on a Euclidean distance. The third (and the most satisfactory) possible 

extension requires generalizing the scale space image again to record not just. the sign 

or curvature but also its magnitude. The matching algorithm and its associated cost 

metric would have to be extended to cope with this. 

Last but not least, it is possible to extend these results to thr0e dimensions by 

obtaining the scale space image of a surface (which is three-dimensional) and using a 

generalized contour matcher. 

8. Conclusions 

We have posed the problem of scale-based description of planar curves, pro­

posed a number of criteria for any solution method and described a method which 
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more nearly satisfies those criteria than do the other candidate methods. We have also 

described a matching algorithm which can optimally match two such shape descrip­

tions. 
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Fi~re 1. Shoreline of Africa 
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Figure 2. Smoothing a Curve: Scale-based effects . 
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Figure 2. (Continued) Smoothing a Curve: Scale-based e[ccts. 
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Figure 3. Generalized Scale Space image of Africa 
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Figure 4. Band 7 Landsat image or part or the Strait or Georgia, B.C. 
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Figure 5. Gray-level distribution of pixels in Landsat image. 
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Figure 6. Shorelines from the Landsat image after correction for skew 
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Figure 7. Map of part of the Strait of Georgia, B.C. 
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( a) Complete shoreline of Africa (b) Part of the same shoreline 

( c) Result of the match 

Figure 8. Matching shorelines of Africa. 
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( a) Scale space image of map island (b) Scale space image of Landsat island 

( c) Result of the match 

Fisure Q. Matching islands from the map and the Landsat image. 
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Figure 10. Registration of the Landsat image to the map . 
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(a) Isla.nd from the map (b) Island from the Landsat image 

(c) Scale space image of (a) (d) Scale space image of (b) 

Figure 11. Effects of features on the scale space image. 


