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ABSTRACT

Symmetric Runge-Kutta schemes are particularly useful for solving stiff two-point
boundary value problems. Such A-stable schemes perform well in many cases, but it is
demonstrated that in some instances the stronger property of algebraic stability is
required.

A characterization of symmetric, algebraically stable Runge-Kutta schemes is given.
The class of schemes thus defined turns out not to be very rich: The only collocation
schemes in it are those based on Gauss points, and other schemes in the class do not
seem to offer any advantage over collocation at Gaussian points.

+ Department of Computer Science, University of British Columbia, Vancouver, British
Columbia, Canada V8T 1W5 . Supported in part under NSERC (Canada) Grant A4306.

#+ Department of Mathematics, Simon Fraser University, Burnaby, British Columbia,
Canada V5A 1S6 and Inst. Angew. Mathematik, Universitat Heidelberg, D-6900 Heidel-
berg, Germany. Supported in part under NSERC Grant A4306 and the German
Research Council.



L Sy

LS m?.ﬂ. .w.l_ - o -

T



1. INTRODUCTION

The use of symmetric difference schemes for the numerical solution of ordinary
differential equations (ODEs) is particularly attractive for stiff boundary value problems
(BVPs). Here, unlike initial value ODEs, the Jacobian of a well-posed problem may have
both eigenvalues with a large negative real part and eigenvalues with a large positive
real part. Hence, invariance with respect to the direction of integration is a very desir-

able property, which symmetric schemes possess.

There are many collocation schemes, and more generally Runge-Kutta schemes,

which are symmetric and A-stable. That is, for the test equation

v =y t 20, Aconstant (1)

the approximate solution does not grow in magnitude when re(\ ) < 0. However, this is
not always a suflicient stability requirement. To see this, let us compare the midpoint

(box) scheme and the trapezoidal scheme for the problem

y' =ty t >0, re()\(t))<0. (2)

Thus consider a mesh

O0=1,<t;< " <yp; hi=4uyh4,1ST <N (3)
and denote the approximation of y(t, ) by y,. With A = b,, the midpoint scheme gives

1

Lt Zh Mty 1
Vp = 1 W ',.le = ‘.+-§’l
i "2"‘)"(‘1 +!/2)
and clearly
lval < 1ol 1<i <N (4)

The trapezoidal scheme, on the other hand, gives
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1
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and when | )| is very large, so that | Xh | >> 1,

)‘(‘l) x“l—l) ] x(‘l)
Vi1 7 —m Y m Yia = (-1) m Y1

Clearly, then, if A7 << | Mt 41)| << | M(t1)| we get a large increase in the numerical

approximation, while the exact solution actually decreases.

Note that the midpoint and the trapezoidal schemes are both symmetric and A-
stable. They also have very similar properties for nonstiff problems. Their different
behaviour for (2) has been observed before. In fact, it is known (Burrage and Butcher [8})
that all collocation schemes at Gauss points satisfy (4) for the test equation (2), while all
collocation schemes at Lobatto points do not. This is because collocation at Gaussian
points leads to Runge-Kutta schemes which are algebraically stable whereas collocation
at Lobatto points leads to schemes which are not algebraically stable, see Burrage and

Butcher [8], Hairer and Wanner [11].

At this point one might wonder about the practical importance, for stiff boundary
value ODEs, of this additional stability concept. Let us therefore consider a numerical

example.

Example 1 (Kreiss, Nichols and Brown [12])

Consider

=u' +1/2y 1<t <1 (5a)

y-1)=1  y@)=2. (5b)

The solution is
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y(t) = e/ 4 2.¢-D/ 4 0 ()

so, there are boundary layers at the ends, but y(¢) is smooth near the turning point
t = 0. The numerical error propagates from the boundaries to the middle of the interval
[-1,1], see Ascher [2].

We now rewrite (5a) as a first order system

ey =ty +:z ’ (5¢)

z! =-1/2y (5d)
and apply collocation at k Gauss points and at k+1 Lobatto points, see Ascher and

Weiss [5], Ascher [1]. The meshes are determined as follows. For a given error tolerance
6, layer meshes are constructed as described in [5, eqns. (3.46)-(3.48)]. These are dense
meshes which cover the boundary layer regions. They are then overlayed by a uniform
mesh with & = .2 to create a mesh on the whole interval [-1,1]. The resulting number of
mesh points is listed in the table below under N. The maximum error in y away from
the layers (but including sampling at t=0) is listed under e. We take ¢ = 10° = .1-5

and use the notation .a-b for .a+10°%.

k  scheme ] N e

1  Gauss (midpoint) .1-1 24 .14-1
2  Lobatto (trapez.) .1-1 24 .10+2
3  Gauss Jd-5 28 195
4 Lobatto 1-5 28 .59-1

Table 1 - Numerical results for (§) with ¢ = .1-5

Clearly, the Gauss schemes give better results
Cl

The above example motivates us to look for symmetric, algebraically stable

schemes. (In § 2 we define these terms more precisely.) It turns out that the class of



symmetric, algebraically stable Runge-Kutta schemes is much smaller than the class of
symmetric, A-stable schemes. In particular, for continuous piecewise polynomial colloca-
tion schemes (see, e.g. [4, §3]) we obtain in §2 that

The only symmetric, algebraically stable collocation schemes

are those based on Gauss points,

If we consider symmetric, algebraically stable Runge-Kutta schemes which are not
necessarily equivalent to collocation, then more schemes qualify. The basic motivation
for considering these is that collocation at Gauss points gives a fully implicit method. So,
the hope is to find a scheme which allows a cheaper implementation (even after taking
into account a lower accuracy) without giving up desired properties. In §3 we first give
some characterization of the class of symmetric, algebraically stable Runge-Kutta
schemes and then show that some recent suggestions for a cheaper implementation do

pot yield schemes in this class.

The result that highest order collocation schemes are also the most stable sym-
metric ones is somewhat counter-intuitive. But we recall that for very stifi problems
these schemes suffer an order reduction (see Ascher and Weiss [4,5] and references
therein). In §4 we discuss this property. We have not found any other symmetric, alge-
braically stable scheme which has a better reduced order than that of the corresponding

Gauss scheme.

We conclude that the best Runge-Kutta schemes known to us, which are symmétric

and algebraically stable, are those equivalent to collocation at Gaussian points.



2. Symmetric, algebraically stable schemes

A k-stage Runge-Kutte scheme is given by k(k+2) coeflicients

c =(cl,...,c,)1, b =(bl,...,bg)r, (6)
an 81
A= .
LT3 Gy
k
where 0 < ¢, < '+- < ¢ <land Y6, =¢;, 1 < j <k Then, for a first order sys-
=1
tem of n ODEs
y' =f(ty) 0<t<1 (7)

an approximating mesh function { y , } Y1! is determined on a mesh (3) by requiring that

the boundary conditions associated with (7) be satisfied, and that
x
Y=Y, + LbK,, 1IS¢i{ <N
=1

k
K1=htf(t1;1YI‘+2¢ﬂK1) 1<, <k
fa]

by =14 +hc, 1<j <k
(the dependence of K , on i has been suppressed.)

(8a)

(8b)

(8¢)

The scheme (8) is called symmetric if it remains invariant under a change in the

direction of integration, from ¢ to 1-t. This implies, without loss of generality (cf

Scherer and Turke [14]), that

c,=l-—c,+,_, ls‘<k

Bipr-y k-t + 65 = b = by 1<, Lk

In matrix-vector notation we may write (9) as

e +Ee=1 b=EDb

EAE + A =1bT

where

(92)
(9b)

(10a)

(10b)



E

0o 1 1 bnb 0
_1] 1=[1] B = 8 (10c)

(Note that ET = E-' = E).

Consider next the ¥ Xt matrix M = (m, ) defined by

M=BA +ATB-bbT (11a)

ie.,
my, =b,0, +ba,-bb 1<j, 1<k (11b)
The scheme (8) is called algebraically stable if B > 0and M > 0. Burrage and Butcher
[8] show that algebraically stable schemes are AN-stable (i.e. they satisfy (4) for the test
equation (2)) and BN-stable (i.c. they retain dissipativity for nonlinear problems). The
converse is also true in general, if the ¢; are distinct. In particular, algebraic stability is
necessary for AN-stability in this case.
We will assume throughout this paper that B > 0. If some , = 0 then M >0
implies that the j-th row and column of M are identically zero, and the scheme becomes

reducible.

Let us now consider schemes which possess the two properties of interest.

Lemma 1

A symmetric Runge-Kutta scheme is algebraically stable if and only if

M=0
Proof: Trivially, if M =0 then M is positive semidefinite, hence the scheme is algebrai-
cally stable. To show the other direction, note that by (10b)

EME = -M
So



M >0 =EME =E'ME >0 =-M >0 =M =0

C

Now, the coefficients a; and ,,1 < { < k, can be viewed as quadrature weights
for integrations on [0,¢c,] and [0,1], respectively. Consider their precision, letting P,
denote the class of polynomials of order ¢ (degree < g) on a suitable domain. Following
Butcher [9] we define properties B (¢), C(¢) and D (¢) depending on a positive parameter

g as follows.
£ ]

C(g) Yeyp(c))=[fp(s)ds allp€P,,1<j <k
{==] 0

B (¢): Iz':b,p(c,)ﬂp(s)da alp €P,

Clearly these properties can be defined in terms of the monomials

p(e)=2"11<r < g, alone. Similarly define

E
D(g) Y b,¢/", =b(-¢)r 1<51<k 1<r <y
==l

Let us paraphrase some of Butcher's results [9]:

Theorem 1
(a) If C (€), D (1) and B ({+n) then the method is of (nonstiff) order £+ .

(b) If the method is of (nonstiff) order £+n then B (£+75). If, in addition, the points

¢, are distinct, then C (£) and D (n).

Cl

Let now ¢, be distinct. It is well-known (see, e.g. [4]) that collocation at the points
t,, of (8¢c) by a continuous piecewise polynomial function of order k+1 yields a Runge-

Kutta scheme (8). In fact, the following lemma is easy to prove



Lemma 2

With ¢, distinct, the Runge-Kutta scheme is a collocation method if and only if
B (k) and C (k).
Proof: This follows from the facts that, on one hand, when starting from collocation,
the a; and b, are integrals of the k-th order Lagrange interpolating polynomials and
that, on the other hand, the conditions B (k) and C (k) determine the coeflicients (6)

uniquely for given points e .

C
Suppose now that B (¢) and C(g) hold for some integer ¢, 1 < ¢ < k. Let us mul-
tiply (11b) by ¢/, 1<r <g¢, and sum on j. The right hand side yields, by

B(g), C(q)

k k k
r-1 7-1 r-1
Yoo/ oy b Yaye - b Y b e =
==l J==l J =]

k
= 2 b] CJ'_IGJ'[ + (C['—l)b[ /r
1==
Hence, if M =0 then D (g). Also, if ¢=F then D (k) implies M =0.
Further, let us now multiply (11b) by ¢/ ¢/}, 1< r,s < ¢, and sum on j and /.

When M =0 we obtain

k k k k k k
-1 -1 -1 r-1 r-1 -1
0= Eb, C; Eaﬂ C;' + Eb‘ 7} Ea,,-c, - 26, CJ Eb[C['
g ==l {m=] lo} J =} Jed { o=y

Using C (¢) and B (¢ ) this gives

SEET N WP
s 27 F re

80,

1
r+s

! +5-1

r4s-1
Eb.!cl .
=1

The last equality means B (2¢ ). By theorem 1, therefore, the method must be of order at
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least 2¢ in general and precisely 2¢ if the ¢, are distinct. In particular, for collocation
¢=k by lemma 2, so the method must be of order 2k and only collocation at Gauss

points achieves that. We have proved

Theorem 2

Let the k-stage Runge-Kutta scheme (8) be symmetric and satisfy B (¢) and C (¢)
for some positive integer ¢ < k. Then the following holds:
(a) If the scheme is algebraically stable then D (¢).
(b) If the scheme is algebraically stable then it is of order at least 2¢; the order is pre-
cisely 2¢ if the points ¢, are distinct.
(c) If g=k then the converse to (a),(b) holds as well, i.e. either B (k), C(k), D (k) or
B (2k), C (k) imply algebraic stability.
(d) A symmetric algebraically stable collocation scheme has to be at Gaussian points.

U

The uniqueness result for collocation at Gaussian points follows also from a result

in Burrage [7).
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3. Further considerations

We address ourselves first to the question, what Runge-Kutta schemes (8) are there,
which are symmetric and algebraically stable, and are not equivalent to collocation at

Gaussian points. We know that these cannot be collocation schemes.

Following Hairer and Wanner [11] we define the £ X ¥ matrices W and X such that

WIBW =1 ie. W'=WTB (12a)

and

X = WIAW = WTBAW (12b)
It follows [11] that

WIMW =X +XT -ee’, e :=(10,.07 =WwTb

If M =0 then

X+XT=eeT (13a)

80, in our case, X is skew-symmetric with the exception

= %‘. (l3b)

Moreover, if we multiply (10b) from the left by WTB and from the right by W, we

obtain
DXD + X =e eT (13¢)
D := WTBEW = diag(1,-1,1,-1,...) (13d)

Thus
z; =0 all |j-1| even, ezcept j=I=1. (13e)

Let us now assume that a symmetric, algebraically stable Runge-Kutta scheme
satisfies B (2¢), C(¢), D(g) for some ¢, 1 < ¢ < k. Hairer and Wanner (11} show that
in this case the elements of the first ¢-1 rows and columns of X are all zeros except for

z,,, given by (13b), and the first super- and sub-diagonals, given by
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1
z = Y == —
141 1N = S
Let X be the (k+1-¢)X(k +1-¢) lower right block of X. By (13), X is skew-symmetric

» 187 < ¢-1 (14)

(with the exception (13b) which is relevant when ¢ =1 ), and satisfies (13e).

In particular, taking ¢ = k-1, we obtain a one parameter family of schemes with

-0 (152)

while ¢ = k-2 gives a two-parameter family

. 0 - O
X = la 0 -8 (15b)
0 8 0O
Example 2: k=2, q=1
Here
x=(F5 e =) w=07)
so the scheme is given by b and
1/2-
= (Jf3s) A= lda M), osesi

Two interesting choices of a are a = 1/4, giving a singly diagonally implicit Runge-

Kutta scheme,

. - (:}.ﬁ)' i = (i% 1/4)

and a = 0, giving a scheme with a singular matrix A,

1/4 1/4
L= (1/2) [1/4 1/4]
The latter scheme is nothing but an unusual way of writing the midpoint scheme
¢ =A =1/2, b =1. Indeed, the other schemes in this class (except for a = l/-ﬁ_i

which gives ¢ = k = 2, see (14) for j = 1 ) are similar in stability and accuracy proper-
ties to the midpoint scheme (which is the 1-stage Gauss collocation scheme), and are

inferior to it on efficiency grounds.
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C

Collocation at Gauss points is well-known to be equivalent to a family of Runge-
Kutta schemes with highest order of (nonstiff) accuracy for a given number of stages k.
However, these schemes also have the well-known disadvantage of being fully implicit.
Thus, in (8b) there are nk nonlinear equations to be solved, with a full nk X nk Jacobian
matrix, for each i,1 < i < N. This is too expensive for initial value problems, where
y . is known when (8b) is solved and the accuracy to which the K ; are needed depends
on the overall tolerance desired. Hence, other schemes have been proposed. Particularly
popular are diagonally implicit schemes, where

a; =0 > (16)
(The explicit schemes, where a; = 0, ! > j, are hopeless for stifl problems.)

For boundary value problems, the situation is somewhat different. Firstly, the vari-
ables y ,,y , 41, and K, of (8) are equally unknown, so if a Newton iteration is executed
for the mesh values y ,, no more than one inner iteration is done for (8b). Secondly,
using (8a) to eliminate K ; in (8b) yields only n(k-1) equations for the local elimination

(inevitably depending on y , and on y , ).

Still, more efficient schemes are desired. In addition to diagonally implicit schemes,
an idea more suitable for BVPs is to use
YLYisn, Ki=ht(,y,)and K; = b ¢ ({,41,¥ ,41) and make the other stx;ges expli-
citly dependent on these values, see van Bokhoven [8], Gupta [10], Muir [13]. We now

examine such schemes, when they are required to be symmetric and algebraically stable.

Consider first a diagonally implicit scheme, i.e. assume that (16) is satisfied. Then

from (9b)



ah’=bl ls’st—l, au=bk-clv 6y = ¢

Trying to check for C (2) (assuming B (2)), we obtain

1-¢y

E E

1

= [ode =Y 05¢ =Y b¢ -cye =—2——c1(l—c,)
0 = =1

(1-¢,)?
2

This holds only when ¢, = 0. But then s,, = 0. Now, for an algebraically stable scheme,
by (11b), m,, = 8,(24,,-b,) =0, s0

o, =1/2b, 0, 1<j <k (17)
Thus, no symmetric algebraically stable diagonally implicit scheme can satisfy more than
C (1) if B(2). (That C(1), B(2) can be achieved we have seen in example 2 with

a = 1/4.) Also, since M =0, we cannot have here more than D (1), because D (2) =C (2).

In general, a diagonally implicit scheme which satisfies B >0 and M =0 must satisfy

(16), (17), and therefore

b, 1> L (18)

dﬂ

Hence,

[3 -1
e, =Ya, =58 +1/25 < ‘f_)ib, < ¢

{ =] ==

i.e. the points ¢, are distinct. By theorem 1(b) we then obtain

Theorem 3

A symmetric, algebraically stable, diagonally implicit scheme is of order at most 2.

l

Next, consider a scheme using K, = A, f (t;,,¥ ;). This means a,, =0,1<{ <}k
In particular, a,, =0 and (17) is again violated. Note also that a scheme using
K; =ht (4,4,y 1) must use, by symmetry, K, = A, f ({,,y ;) and again cannot be
algebraically stable. In particular, collocation based on Lobatto points is not algebrai-

cally stable.



The schemes studied in [6,10,13] are written as (8) with

oy = ay; + 0, 1< 5,1 <k, (19a)

a, =0 1> (19b)
Now, if such a scheme is required to satisfy M =0 then, by (17),

6, =1/2 1<tk

Moreover, setting m,; = 0 for j > | we obtain

b, (a,«, + 1/264)"' bl (0+ 1/251)—5) b[ B0,

so oy = 0. The only interesting scheme remaining in this class is again the midpoint

scheme.
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4. Order reduction

In Ascher and Weiss [4,5], Ascher [1], it is shown that when solving very stiff boun-

dary value problems involving different time scales, there is a reduction in the supercon-

vergence order of Gaussian collocation schemes. No such order reduction is present for

collocation with Lobatto or Radau points.

To investigate the question of order reduction, it is suflicient to consider the ODE

ey! =y + ¢(t), 0<t <1

(20)

with X\ a constant of moderate size and ¢(t) a smooth inhomogeneity, as ¢ — 0. We write

the corresponding numerical scheme (8) as
t .
by, -u) = Lheiw + 9, 1<j <tk
=

k
eh N pp-1) = L Abyy + gk
=

and restrict consideration to symmetric, A-stable schemes with A nonsingular.
Eliminating y,, , ..., yu from (21a) and substituting in (21b), we obtain
v =10s)u + ¥, 1SiSN
M)=1+b7 (T -A)"N, G =—

¥, = f—lhn [ﬂi g4t b T(f:ll -A )_l' l']; g: = (Vil yoy ﬂlk)r-
From (22a),

Yo = lll'Il'r(o)lvﬁ BRI ] 1<i <N

gl [=3y 4]

Now, letting ¢ — 0 in (22b) we obtain

)= 1-b TA 1= Voo
Denoting

xT:=bTA?

we obtain, upon multiplying (10b) by x + Ex , that

(21a)

(21b)

(22a)
(22b)

(22¢)

(23)

(24)

(25)
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Ex = (f:’t - 1)x

(=)

k
i.e. (3 z - 1), x are an eigenpair of E. There follow two possibilities:

{ =]

k
(8) Yo-1=1 = qu=-1; 2,4, ,=12,1<;j <k
fe==]

k
() Yo -1=-1 = =1 24y; =-2,, 1< j <k
| ==]

Setting € = 0 in (23) yields

Vi + Z !1’, 'Yco=1
ha = ;'—1 ) (26)
(_l)' Vi S 2 ("l)l—, w; '7oo="l
s=l

which shows the marginal stability, in the limit, of symmetric Runge-Kutta schemes

with nonsingular A.

Next, consider the error ¢, :=y, - y(4), &, == n,;-y(4,). If a scheme satisfies
C(g), B(2¢9) ¢ < k, then the difference equations (21) are satisfied for the error with
the inhomogeneities

D41 = 50("02')» gy = ‘O(,‘l')v 1<j £ k. (27)
The functions in (27) vary smoothly with i. Assuming that | e, ]| is very small (see [4,5,1]

for error control in boundary layers), we obtain from (26)

Theorem 4

Let ¢, be the error at mesh point ¢, when approximating (20) for ¢ — 0 by a sym-
metric Runge-Kutta scheme with a nonsingular coefficient matrix. Assume
| ey] < const h?*, Then

e, =O(h') 1<i <N, (28a)
Furthermore, if 7, = -1 and 4,,, = h,(1+0 (h,)) for all i odd or all i even, then
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e, = O(h'H) 1<i <N. (28b)
O
Thc error estimates (28) are sharp for collocation at Gaussian points (where q=k
and (28b) holds for k odd) and are of a significantly lower order than the nonstifl order
2k. In édntrast, no such order reduction occurs with collocation at Radau or Lobatto
points [4]. For these schemes a,=5,,1 <! <k , hence g; = g, ; ;. Furthermore, for
the Radau schemes (which are nonsymmetric with 7, = 0) x T = (0,...,0,1), and for the
Lobatto‘points (which are symmetric, with 7, = %1) z;, =0, j $ 1,k. Indeed, with the
latter ti;'o families of schemes the error for (20) at mesh points vanishes, and the usual
superconvergence order shows up only when adding slow solution components to the
BVP under investigation (cf [1,4]). However, as noted before, Lobatto schemes are not
algebr'air;;ally stable, essentially for the same reason that allows superconvergence order
to be rep;_ﬁned; namely, a;; = b, implies a,, = 0, violating (17).
Théi;rem 4 basically says that the additional accuracy at mesh points due to higher
accuracyB (2¢) is lost. What we have is the error estimate obtainable from C(g), B (¢).

The question remains, whether it is possible to find a symmetric, algebraically stable
scheme W|th ¢ > -;—, so that its nonstiff order is >k, with a reduced order also exceeding

k. The answer is conjectured to be negative.
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