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ABSTRACT 

Symmetric Runge-Kutta schemes are particularly useful for solving stiff two-point 
boundary value problems. Such A-st.able schemes perform well in many cases, but it is 
demonstrated that in some instances the stronger property of algebraic stability is 
required. 

A characterization of symmetric, algebraically stable Runge-Kutta schemes is given. 
The class of schemes thus defined turns out not to be very rich: The only collocation 
schemes in it are those based on Gauss points, and other schemes in the class do not 
seem to offer any ad,·antage over collocation at Gaussian points. 
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l. INTRODUCTION 

The use of symmetric difference schemes for the numerical solution of ordinary 

differential equations (ODEs) is particularly attractive for stiff boundary value problems 

(BVPs). Here, unlike initial value ODEs, the Jacobian of a well-posed problem may have 

both eigenvalues with a large negative real part and eigenvalues with a large positive 

real part. Hence, invariance with respect to the direction of integration is a very desir­

able property, which symmetric schemes possess. 

There are many collocation schemes, and more generally Runge-Kutta schemes, 

which are symmetric and A-stable. That is, for the test equation 

t ~o. ). constant (1) 

the approximate solution does not grow in magnitude when re(). ) < 0. HoweYer, this is 

not. always a sufficient stability requirement. To see this, let us compare the midpoint 

(box) scheme and the trapezoidal scheme for the problem 

t ~o. re(>.( t ))<O. (2) 

Thus consider a mesh 

0 = '• < t2 < ... < tN+l; h, := t,+1-t,, IS i $ N (3) 

and denote the approximation of 11 ( t, ) by 11, • With h = h, , the midpoint scheme gives 

1 
1 + 2 h >.( t, +112) 

1/1+1 = 1 
l - 2 h >.( t, +112) 

V, 

and dearly 

I 11, +1 I < I 11, I 1 Si SN. (4) 

The trapezoidal scheme, on the other hand, gives 



II, +1 == 

-a-

1 + ½" >.(t,) 

1 
l - 2h >.(t,+1) 

and when I >. I is very large, so that I >.h I >> 1, 

II, 

Clearly, then, if 1i-1 << I >.(t,+1) I << I >.(t 1) I we get a large increa.,e in the numerical 

approximation, w bile the exact solution actually decreases. 

Note that the midpoint and the trapezoidal schemes are both symmetric and A­

stable. They also have very similar properties for nonstiff problems. Their different 

behaviour for (2) has been observed before. In fact, it is known (Burrage and Butcher l8]) 

that all collocation schemes at Gauss points satisfy (4) for the test equation (2), while all 

collocation schemes at Lobatto points do not. This is because collocation at Gaussian 

points leads to Runge-Kutta schemes which are algebraicallu atable whereas collocation 

at Lobatto points leads to schemes which are not algebraically stable, see Burrage and 

Butcher l8], Hairer and Wanner Ill]. 

At this point one might wonder about the practical importance, for stiff boundary 

value ODEs, of this additional stability concept. Let us therefore consider a numerical 

example. 

Example 1 (Kreiss, Nichols and Brown (12]) 

Consider 

The solution is 

f.J/" == tu' + 1/2 11 

11(-l) = 1, 

-1 St S 1 

I/ (1) = 2 . 

{Sa) 

(Sb) 
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y (t) = e-<1+1)/1 + 2e<t-1)/1 + 0 M 

eo, there are boundary layers at the ends, but y (t) is smooth near the turning point 

t = 0. The numerical error propagate! from the boundaries to the middle or the interval 

1-1,1], see Ascher [2]. 

\Ve now rewrite (5a) as a first order system 

Ey 1 = ty + z 

z' =-1/2y 

(5c) 

(5d) 

and apply collocation at k Gauss points and at k+ 1 Lobatto points, see Ascher and 

Weiss [5] , Ascher (l]. The meshes are determined as follows. For a given error tolerance 

6, layer meshes are constructed as described in [5, eqns. (3.46}-(3.48)]. These are dense 

meshes which cover the boundary layer regions. They are then overlayed by a uniform 

mesh with h = .2 to create a mesh on the whole interval 1-1,lJ. The resulting number of 

mesh points is listed in the table below under N. The maximum error in y away from 

the layers (but including sampling at t=O) is listed under e. We take E = 10~ = .1-5 

and use the notation .a -6 for .a* 10-&. 

k echeme 6 N e 

1 Gauss (midpoint) .1-1 24 .14-1 
2 Lobatto (trapez.} .1-1 24 .10+2 
3 Gauss .1-5 28 .19-5 
4 Lobatto .1-5 28 .59-1 

Table 1 - Numerical results for (5) with E == .1-5 

Clearly, the Gauss schemeB give better reBults 

[I 

The above example motivates us to look for symmetric, algebraically stable 

schemes. (In § 2 we define these terms more precisely.) It turns out that the class of 



symmetric, algebraically stable Runge-Kutta schemes is much smaller than the class of 

symmetric, A-stable schemes. In particular, for continuous piecewise polynomial colloca­

tion schemes (see, e.g. [4, §3]) we obtain in §2 that 

The only symmetric, algebraically stable collocation schemes 

are those based on Gauss points. 

If we consider symmetric, algebraically stable Runge-Kutta schemes which are not 

necessarily equivalent to collocation, then more schemes qualify. The basic motivation 

for considering these is that collocation at Gauss points gives a fully implicit method. So, 

the hope is to find a scheme which allows a cheaper implementation (even after taking 

into account a lower accuracy) without giving up desired properties. In §3 we first give 

some characterization of the class of symmetric, algebraically stable Runge-Kutta 

schemes and then show that some recent suggestions for a cheaper implementation do 

not yield schemes in this cla.!s. 

The result. that highest order collocation schemes are also the most stable sym­

metric ones is somewhat counter-intuitive. But we recall that for very stiff problems 

these schemes suffer an order reduction (see Ascher and Weiss [4,6] and references 

therein). In §4 we discuss this property. We have not found any other symmetric, alge­

braically stable scheme which has a better reduced order than that of the corresponding 

Gauss scheme. 

We conclude that the best Runge-Kutta schemes known to us, which are symmetric 

and algebraically stable, are those equivalent to collocation at Gaussian points. 
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2. Symmetric, algebraically stable schemea 

A k-atage Runge-Kutta scheme is given by k(k+2) coefficients 

(6) 

la.u · • · •1_·.t] 
A= : 

Ot1 • ' • Gu 

k 

where O S c 1 S · · · S Ct S 1 and Ea,, == c1, 1 < j S t. Then, for a first order sys-
1-=1 

tem of n ODEs 

'¥ I = f (t ,7 ), (7) 

an approximating mesh function { y 1 } ,!;t"1 is determined on a mesh (3) by requiring that 

the boundary conditions associated with (7) be satisfied, and that 

k 

Y,+1=71 + Eb,K,, 
1-S. 

1 < i 5: N (8a) 

t 
K, = h, f (t,1 , 7, + :E a,,K i) 

/-=l 
lSiSk (8b) 

,., = ,. + h1 c1 1 S j !5: k (8c) 

(the dependence of K 1 on i has been suppressed.) 

The scheme (8) is called ,gmmdric if it remains invariant under a change in the 

direction or integration, from t to 1-t. This implies, without loss of generality (cf 

Scherer and Turke [14]), that 

Ot+l-J ,t+l-1 + .,, = b, = 61-+1-1 1 s j' , < t 

In matrix-vector notation we may write (9) as 

c + Ee == 1, b = Eb 

where 

(Oa) 

(Ob) 

(10a) 

(10b) 



E=i:..:1 1 
= 1:1 (10c) 

(Note that Er = E-1 = E ). 

Consider next the k X k matrix M = ( m 11 ) defined by 

(lla) 

i.e., 

1$,j,I $.k (llb) 

The scheme (8) is called algebraically ,table if B ~ 0 and M ~ 0. Burrage and Butcher 

18] show that algebraically stable schemes are AN-stable (i.e. they satisfy (4) for the test 

equation (2)) and BN-stable (i.e. they retain dissipativity for nonlinear problems). The 

converse is also true in general, if the c1 are distinct. In particular, algebraic stability is 

necessary for AN-stability in this case. 

We will assume throughout this paper that B > 0. If some 6J -= 0 then M ~ 0 

implies that thi: j-th row and column of M are identically zero, and the scheme becomes 

reducible. 

Let us now consider schemes which possess the two properties of interest. 

Lemma 1 

A symmetric Runge-Kutta scheme is algebraically stable if and only if 

M =O 

Proof: Trivially, if M =O then M is positive semidefinite, hence the scheme is algebrai-

cally stable. To show the other direction, note that by (10b) 

EME =-M 

So 
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[I 

Now, the coefficients a 11 and 61 , 1 S I S k, can be viewed as quadrature weights 

for integrations on IO,c1 J and ID,11, respectively. Con.sider their precision, letting P, 

denote the class of polynomials of order tJ (degree < tJ) on a suitable domain. Following 

Butcher [9] we define properties B ( q ), C ( q ) and D ( tJ) depending on a positive parameter 

q as follows. 

t c, 
C(q): Ea11P(ci)=fp(a)da allpEP,,lSiSk 

1-.l 0 

t l 

B (q): Eb,p(ci) = fp(s)da aU p E P, 
1- 1 0 

Clearly these properties can be defined an terms of the monomials 

p (s) = s ,-1, 1 ~ r ~ q, alone. Similarly define 

t 
D (q ): E 61 c;-1

0,1 = 61(1-ci')/r 1 ~ l ~ k, 1 S r S q. ,-1 
Let us paraphrase some or Butcher's results [9]: 

Theorem 1 

(a) Ir C (e), D ('1) and B (e+11) then the method is of (non.stiff) order e+r,. 

(b) Ir the method is of (nonstiff) order e+r, then B (!+11). Ir, in addit.ion, the points 

c1 are distinct, then C (e) and D (77). 

[I 

Let now c1 be distinct. It is well-known (see, e.g. [4]) that collocation at the points 

t,1 or (8c) by a continuous piecewise polynomial function of order k+ 1 yields a Runge­

Kutta scheme (8). In fact, the following lemma is easy to prove 



.. ' .. 
Lemma 2 

With c-1 distinct, the Runge-Kutta scheme is a collocation method if and only if 

B (k) and C (k ). 

Proof: This follows Crom the facts that, on one hand, when starting from collocation, 

the a 11 and 61 are integrals or the k-th order Lagrange interpolating polynomials and 

that, on the other hand, the conditions B (k) and C (k) determine the coefficients (6) 

uniquely for given points c . 

[I 

Suppose now that B (q) and C (q) hold for some integer q, 1 ~ q ~ k. Let us mul­

tiply ( 11 b) by c ;-1
, 1 ~ r S g , and sum on j. The right hand side yields, by 

B ( q ), C ( q ), 

t 
= E 61 c;-1

0 11 + (c/-l)b1 /r 
J a.l 

Hence, if M =O then D (q ). Also, if g =k then D (k) implies M =O. 

Further, let us now multiply (llb) by c;-1cr1, 1 S r,, S q, and sum on j and I. 

'When M =O we obtain 

Using C ( q ) and B ( q) this gh·es 

0 1 ~ 6 r+•-1 + 1 ~ 6 r+•-1 1 = - LJ J CJ - LJ I Ct - -',-1 '1-a r, 

so, 

~ b c•+•-1 = _1_. 
LJ 1 1 r +s 
J=l 

The last equality means B (2q ). By theorem I, therefore, the method must be of order at 



least 2q in general and precisely 2q if the c, are distinct. In particular, for collocation 

q =k by lemma 2, so the method must be of order 2k and only collocation at Gauss 

points achieves that. We have proved 

Theorem 2 

Let the k-stage Runge-Kutta scheme (8) be symmetric and satisfy B (q) ~nd C (q) 

for some positive integer q S k. Then the following holds: 

(a) If the scheme is algebraically stable then D (q ). 

(b) If the scheme is algebraically stable then it is of order at least 2q; the order is pre­

cisely 2q if the points c1 are distinct. 

(c) If q =k then the converse to (a),(b) holds as well, i.e . either B (k ), C (k ), D (k) or 

B (2k ), C (k) imply algebraic stability. 

(d) A symmetric algebraically stable collocation scheme has to be at Gaussian points. 

[I 

The uniqueness result for collocation at Gaussian points fallows also from a result 

in Burrage (7]. 
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3. Further considerations 

We address ourselves first to the question, what Runge-Kutta schemes (8) are there, 

which are symmetric and algebraically stable, and are not equivalent to collocation at 

Gaussian points. We know that these cannot be collocation schemes. 

Following Hairer and Wanner (11] we define the J: X k matrices Wand X such that 

wrBW==l i.e. w-1 - wrB 

and 

x = w-1AJV-= wr BAW 

It follows [11] that 

W r MW = X + X r - e e r, 

If M=O then 

X + X 1 = e er 

so, in our case, X is skew-symmetric with the exception 

(12a) 

(12b) 

(13a) 

(13b) 

Moreover, if we multiply (10b) from the left by wr B and from the right by W, we 

obtain 

DXD + X = e er 

D := wr BEW = diog (1,-1,1,-1, ... ) 

Thus 

z,, = 0 all I j -I I even, ezcept j ==I ==l. 

(13c) 

(13d) 

(13e) 

Let us now assume that a symmetric, algebraically stable Runge-Kutta scheme 

satisfies B (2q ), C (q ), D (q) for some q, 1 S q S k. Hairer and Wanner (11] show that 

in this case the elements or the first 9 -1 rows and columns of X are all r.eros except for 

z 11, given by (13b), and the first super- and sub-diagonals, given by 

l· 



(14) 

Let X be the (k +1-q )X(A: +1-q) lower right block of X. By (13), X is skew-symmetric 

(with the exception (13b) which is relevant when f =l ), and satisfies (13e). 

In particular, taking I/ = k-1, we obtain a one parameter family of schemes with 

x = (~ -oa) 

w bile I/ = A:-2 gives a two-parameter family 

Example 2: k=2, q=l 

Here 

( 
0 -a O ) x = a o -/J 
0 /j 0 

X = (1{2 -0a), b (1/2) w (1 -1) ._. = 1/2 I = 1 1 

so the scheme is given by b and 

( 1/ 2-a: ) 
e = 1/2+o: ' ( 1/4 1/4-a) 

A = 1/4+a 1/4 ' 0 Sa< 1/2. 

(15a) 

(15b) 

Two interesting choices of o are a= 1/4, giving a singly diagonally implicit Runge­

Kutta scheme, 

( 1/4) 
C = 3/4 ' ( 1/4 0 ) 

A = 1/2 1/4 

and a = O, giving a scheme with a singular matrix A, 

( 1/2) 
C = 1/2 ' ( 1/-t 1/4) 

A = 1/4 1]4 · 

The latter scheme is nothing but an unusual way of writing the midpoint scheme 

e = A = 1/2, b = 1. Indeed, the other schemes in this class (except for a= -I; 
which gives q == k == 2, see (14) for j = l ) are similar in stability and accuracy proper­

ties to the midpoint scheme (which is the I-stage Gauss coJlocation scheme), and are 

inferior to it on efficiency grounds. 
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[I 

Collocation at Gauss points is well-known to be equivalent to a family of Runge­

Kutta schemes with highest order of (nonstiff) accuracy for a given number of stages k. 

However, these schemes also have the well-known disadvantage of being fuJly implicit. 

Thus, in (8b) there are nk nonlinear equations to be solved, with a full nk X nk Jacobian 

matrix, for each i, 1 S i < N. This is too expensive for initial value problems, where 

y I is known when (8b) is solved and the accuracy to which the K 1 are needed depends 

on the overall tolerance desired. Hence, other schemes have been proposed. Particularly 

popular are diagonally implicit schemes, where 

I > j. (16) 

(The explicit schemes, where a11 = 0, I ~ j, are hopeless for stiff problems.) 

For boundary value problems, the situation is somewhat different. Firstly, the vari­

ables y 1 ,Y 1 +1, and K 1 of (8) are equally unknown, so if a Newton iteration is executed 

for the mesh values y 1 , no more than one inner iteration is done for (8b). Secondly, 

using (8a) to eliminate Ki in (8b) yields only n (k-1) equations for the local elimination 

(inevitably depending on y , and on y 1 +1). 

Still, more efficient schemes are desired. In addition to diagonally implicit schemes, 

an idea more suitable for BVPs is to use 

y •, y 1+1, K 1 -= la, f (t, ,Y,) and Kt -= "• f (1,+i.7 1+1) and make the other stages expli­

citly dependent on these values, see van Bokhoven [6), Gupta [10), Muir [13]. We now 

examine such schemes, when they are required to be symmetric and algebraically stable. 

Consider first a diagonally implicit scheme, i.e. a.,sume that (16) is satisfied. Then 

from (9b) 



- u-

att = 61 1 S I S k-1, au = ht - c 1, a 11 = c 1 

Trying to check for C (2) (assuming B (2)), we obtain 

This holds only when c 1 = 0. But then a 11 = 0. Now, for an algebraically stable scheme, 

1 < j S k. (17) 

Thus, no symmetric algebraically stable diagonally implicit scheme can satisfy more than 

C (1) if B (2). (That C (1), B (2) can be achieved we have seen in example 2 with 

a= 1/4.) Also, since M =0, we cannot have here more than D (1), because D (2) =tC (2). 

In general, a diagonally implicit scheme which satisfies B >0 and M =0 must satisfy 

(16), (17), and therefore 

j > I. (18) 

Hence, 

i.e. the points c1 are distinct. By theorem l{b) we then obtain 

Theorem 3 

A symmetric, algebraically stable, diagonally implicit scheme is of order at most 2. 

[I 

Next, coruiider a scheme using K 1 = la; t (t; 3; ). This means a 11 -= 0, 1 S I S k. 

In particular, a 11 - 0 and (17) is again violated. Note also that a scheme using 

K t -= la, f ( t, +i,:Y 1 +1) must use, by symmetry, K 1 -= A, t ( t, ,;y ; ) and again cannot be 

algebraically stable. In particular, collocation based on Lobatto points is not algebrai­

cally stable. 



The schemes studied in (6,10,13] are written as (8) with 

a,1 == a,, + o, 61 1 S j, I S i, 

a 11 ... 0 I~ j. 

Now, if such a scheme is required to satisfy M -=O then, by {17), 

o, = 1/2 1 S j Si. 
Moreover, setting mJ/ == 0 for j > I we obtain 

61 (a 11 + 1/2 6i) + 61 (0 + 1/2 61 )- 61 61 - 0, 

(19a) 

(19b) 

so a 11 = 0. The only interesting scheme remaining in this class is again the midpoint 

scheme. 



4. Order reduction 

In Ascher and Weiss [4,5], Ascher [l], it is shown that when solving very stiff boun­

dary value problems involving different time scales, there is a reduction in the supercon­

vergence order or Gaussian collocation schemes. No such order reduction is present for 

collocation with Lobatto or Radau points. 

To investigate the question of order reduction, it is sufficient to consider the ODE 

(20) 

with ).. a constant or moderate size and ¢,(t) a smooth inhomogeneity, as t - 0. We write 

the corresponding numerical scheme (8) as 

t 
Eh, - 1(11,J -11, ) = L >. a Jt 1/,i + 6,1 , 

1-=t 

t 
th, -1(11, +1-J/,) = L >.b, J/11 + ,, ,t+1 

1-=l 

and restrict consideration to symmetric, A-stable schemes with A nonsingular. 

Eliminating y, 1 , ... , J/,t from (21a) and substituting in (21b), we obtain 

From (22a), 

I I I 

11,+1 = rn 1(s-dl111 + E, n 'Yfo )J\!11 
1-=l Jmol 1-=J+l 

Now, letting E - 0 in (22b) we obtain 

Denoting 

x r := b r A-1 

we obtain, upon multiplying (I0b) by x + Ex , that 

lSi SN. 

(21a) 

(21h) 

(22a) 

(22b) 

(22c) 

(23) 

(24) 

(25) 



• l'I. 

k 
i.e. ( E z1 - 1), x are an eigenpair of E. There follow two possibilities: 

1-1 

k 

(a) E z, - 1 == 1 ~ 'Yoo-= -1; Zt+H -= .r, ,1 ~ j < k 
1- 1 

k 

(6) E z, - 1 -= -l ~ 'Yoo== l; Zt+l-i -= -z1 , 1 < j < k. 
1-i 

Setting E == 0 in (23) yields 

,-1 
I 

(-1)' 111 + E (-1>•-, "11 
j-=J. 

'Yoo=-1 
(26) 

which shows the marginal stability, in the limit, of symmetric Runge-Kutta schemes 

with nonsingular A. 

Next, consider the error e, := 111 - 11 ( t1 ), e;1 := 1111 -11 ( t,1 ). If a scheme satisfies 

C (q ), B (2q ), q ~ k, then the difference equations (21) a."e satisfied for the error with 

the inhomogeneities 

91,t+1 == EO(h, 2
~. 911 == EO(hi'), 1 <; ~ k. (27) 

The functions in (27) vary smoothly with i. Assuming that I e1 I is very small (see (4,5,1] 

for error control in boundary layers), we obtain from (26) 

Theorem 4 

Let e, be the error at mesh point I, when approximating (20) for f - 0 by a sym­

metric Runge-Kutta scheme with a non.singular coefficient matrix. A11sume 

I e 1 I ~ const h •+1
• Then 

(28a) 

Furthermore, if 700 = -1 and h,+i = h, (l+O (h, )) for all i odd or all i even, then 
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(28b) 

[I 

T~e error estimates (28) are sharp ror collocation at Gaussian points (where q=k 
r-. 

and (28~ bolds for k odd) and are of a significantly lower order than the nonstiff order 
··/' 

2k. In contrast, no such order reduction occurs with collocation at Radau or Lobatto 

points (4]. For these schemes 01;1 =61 ,1 S I S k , hence lit """ g, ,t+t· Furthermore, for 

the Ra;d~u schemes (which are nonsymmetric with 'Yoo .. 0) x r ~ (0, ... ,0,1), and for the 
l 

,, 
LobaU1f: points (which are symmetric, with 'Yoo== :1::1) z1 == 0, j "F 1,k. Indeed, with the 

latter t~o families of schemes the error for (20) at mesh points vanishes, and the usual 

superconvergence order shows up only when adding slow solution components to the 

BVP u~der investigation (cf [1,4]). However, as noted before, Lobatto schemes are not 

algebra.I' ally stable, essentially ror the same reason that allows superconvergence order 
·:/ 

to be retained; namely, au = bt implies a 11 = 0, violating (17). 

T~~orem 4 basically says that the additional accuracy at mesh points due to higher 

acc:urJf B (2q ) is lost. \Vhat we have is the error estimate obtainable from C ( q ), B ( q ). 

The question remains, whether it is possible to find a symmetric, algebraically stable 

scheme·\•it.h q > .!, so that its nonstiff order is >k, with a reduced order also exceeding ;_c. 2 

k. The ~swer is conjectured to be negative. 
' { ·' ', 

,.\ ··' 
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