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Abstract 

In this paper, we give a generalization of the well-known Frank matrix and 
show how to compute its eigensystem accurately. As well, we attempt to explain 
the ill-condition of its eigenvalues by treating it as a perturbation of a defective 
matrix. 



1. Introduction 

Over twenty-five years ago, Frank ( IQ58) introduced two matrix examples as 

tests for an eigenvalue routine. The first, with 

ai; = n+l - max(i ,j), 

was the discrete Green's function matrix arising from the standard three-point 

difference approximation to d
211

2
• The inverse of this matrix is tridiagonal and 

dx 

its eigenvalues are known explicitly, so the computed eigenvalues could be 

checked. 

Frank had little trouble getting good approximations to the eigenvalues, so 

he tried a variant of this matrix by truncating it to upper Hessenberg form, pro­

ducing 

He had much more difficulty with this matrix (with n =12), and in the years 

since, this matrix has come to be recognized as a good test case for eigenvalue 

routines: the eigenvalues are real and positive, are extremely ill-conditioned for 

moderate values of n , yet can be calculated accurately by other means. For 

example, F 12 has eigenvalues ranging from 32.2 down to 0.031 (approximately) 

with condition numbers I 
8 

:>.) I increasing to more than 10+7 for the smallest 

few eigenvalues. Here we define, for a real distinct eigenvalue ). with left and 



. 3. 

right eigenvectors J!.1 and .I., the sensitivity 

As is well known (see e.g. Wilkinson (1Q65), pg. 68), 
8 

lx.) is effectively the first 

order perturbation coefficient in the expansion of the eigenvalue .>.( f) in a power 

series in f, when the original matrix A is subjected to a perturbation A + lB. 

Thus I s (>.) I < 10-7 means that a change in an element of F 12 of order 10-7 

can result in a change in the eigenvalue ). of order 1. 

In this paper, we shall give a generalization of this matrix, show how to 

accurately compute its eigenvalues and eigenvectors, estimate the condition 

numbers of its eigenvalues, and attempt to explain the seemingly pathological ill­

condition which ensues. We reel it is important to fully understand this matrix, 

as it illuminates the difficulties inherent in computing the eigenstructure, or 

invariant subspace structure, of general unsymmetric matrices. 

2. The Generalization 

Start with the symmetric tridiagonal matrix 

S= (2.1) 

with b, > 0. Then S has real eigenvalues µ 1 > · · · > µ" with 

µ,. +l-i = -µ;, and these are all well-conditioned. Let the corresponding 



eigenvectors be i(i)_ 

First from T = n-1 SD , with 

D d. ( 1 1 1 ). = ,ag 1,-b 1, b ib2' ... , b 1 b 2 • • . bn -1 

This gives 

T= 

0 
b 2 

1 

Now consider T - µI for each µ, and relate µ and X > 0 by 

for a > 0. Then X-µ-l~-a = 0 and hence 

(2.2) 

(2.3) 

(2.4) 

Each µ thus gives two X's, say X+(P), >._(µ). However since (-µ) generates the 

same pair of ).'s, we can make the identification for positiveµ, of+µ with A+(P) 

and -µ with X_(µ). Now form G(A) = ~D-1(T-µI)D, where 

D = diag(I,>. 1l2,>.,>.312, ••• ). Then 

and hence L-1a = F->.I, with 



-1 

" - 1 
and F = 

1 

-6-

a+6 1
2 a+b/ - a+b,/:.1 a 

612 a+bi 

bf 
(2.5) 

Since F-XI = ~LD-1( T-µJ)D, then (except possibly at ). = 0) the eigen­

values {.>.;} of F and {µ;} of S are related as ). and µ are related above. Thus 

if sx = /lX, then 

Fz = ).z' z = v-1D-1z 

wT F = .>.wT, wT = xT DDL. 

Thus given a matrix F as above, with any a, { 6; }, we can find its eigen­

values (X,) and eigenvectors (a-U),q,(i)) using the above technique. The {X.-} will 

be accurate, and so will the vectors as long as the {µ;} are well-separated. 

Notice that for a > O, we get all X; > 0 and in pairs (X+ 1a 2/X+), with an extra 

root '). = a (µ = 0) for n odd. And for a = O, we get pairs >._ = 0, >-+ = µ 2, 

with an extra root ). = 0 (µ = 0) for n odd. In this latter case, the formulas 

above for z and w don't hold for >. = 0. The following special cases are of par­

ticular interest: 

I. 6.- = Jn -i , a = I, giving F = F,. (the Frank matrix). 

In this case, the matrix 
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0 v'n-=i 
Jn - l O Jn-2 

S= ~~l 
1 0 

which is (apart from a constant factor V2) the tridiagonal matrix arising using 

the recurrence relations for the Hermite polynomials H. ( z ). Thus the eigen• 

values {µ.-} of S are v'2 times the roots of H. (z ). 

2. b.- = ,,/n, a = l. 

This gives S with eigenvalues µ; = 2./n cos( ..J..!!_ ), and 
n +l 

n+l n.+l - n+l 

F = F. -
n n+l - n+l 

n ..........._ l 
~n+l 

n 

3. Estimating s (>.) 

1 
1 
I 
1 
1 

(2.6) 

Given a matrix F as in (2.5), and corresponding tridiagonal matrix S with 

eigenvalues {µ.- }, we can find F's eigenvalues {>.i} using (2.4), and for each ). 

>.-a 
the corresponding eigenvectors .l. and J4l by forming p = ~ and the 

corresponding eigenvector• of S. Then 

i -1 i-1 i-2 
Z· ( 7r b . ) 

Z.·). 2 Zj _JA 2 
' 1 , 1 

Z· - W· - i-1 i - 2 ' i -1 ' 
). 2 7r b. 

1 J 
7r b. 
I J 

w T z 
We are interested here in the sensitivity B (>.) = llw lbl lz I '2, for the smaller 
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eigenvalues X. First, w T z = x T DDLD-1IJ-1x = x T Lr, where 

- - T 
T T L +L - - T S Thus w z = z (---)z, and since L+L = 21- .n' 

2 VA 

w T z = z T x - x T Sx = I-_L 
2\-'X 2../).. 

Also, llz 112 > I z. I -

Note: for X << 1, z. is by far the largest component of A, so the above bound is 

quite sharp; however the bound for llw 112 is off by a factor v'2 in this case. This 

gives 

• -1 

11--L I x-2- .!!_1 
I s (>-) I < ___ 2_..J)._x _____ 1 _ < ___ µ __ x_2 -"---. - (3.1) 

I Z 1 I I x. I ( 7r bi ) 2 I X l I I x. I ( 7r bi) 
1 1 

For the Frank matrix F 12, this bound gives I s (>.) I < 1.2 X 10-7 !or the smallest 

>.. For the matrix F 12 (with a =1 and bi =Vl2), this gives I , (X) I < 2 X 10-f12 

for the smallest >.. In !act, the smallest few eigenvalues of F 12 and F' 12 are as 

follows: 
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>.(F 12) 8 (>.) >.(F 12) , (X) 

.08122 ... 3.8X 10-8 .03465 ... l.6X 10-12 

.04gso ... 2.6X 10-8 .02524 ... 7.8X 10-13 

. 03102 ... s.sx10-e .02117 ... 1.ax 10-12 

4. Understanding the Poor Condition 

To see why these matrices F have such poorly conditioned (small) eigen­

values, one can consider F as the sum of two matrices: 

H= 

F=H+aT, 

0 
0 

I 
0 

(4.1) 

and treat "a" as a small parameter. Note: in the examples used, a =l doesn't 

appear to be small, but both F. and F. can be scaled by 1/n so the elements 

are O ( 1) rather than O ( n ), and the eigenvalues will be scaled by the same 

amount. This is equivalent to using, for F., 6, = ~, a = .!., and for V--;;- n 

With a as a small parameter, F can be viewed as a special perturbation of 

H, and H has a well-defined eigenstructure: if we assume n is even, then H bas 

..!!. eigenvalues at ). = 0, corresponding to one Jordan block of order ..!!., and the 
2 2 

other ~ eigenvalues at ). = µi2, where {µ,} are the eigenvalues of S (recall 
2 
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these are in (+,-) pairs). 

Notice that F is a very special perturbation of H; the eigenvalues remain 

real, and look asymptotically as follows, using the formula (2.4) for X(µ): 

X_(µi) = a 2 / Pi2 + 0 ( a 3) (perturbed from zero). 

An arbitrary perturbation of H of order a , would result in generally complex 

eigenvalues, with >. = 0 ( a 2/• ) perturbation from zero, whereas these are O ( a 2). 

However, the sensitivities Is(>.) I are still very small for these ).'s: 

s(>.) = O(a"-1) again using the formulas given earlier. 

For the special examples, a = .!. implies B (X) = 0 ( ..!...), and this is 
n ' nn 

independent of any constant scaling. These very small values for , (X) can be 

seen in the smaller eigenvalues of F 12; for the larger eigenvalues, and for F 12, 

the other constants involved serve to increase the actual values obtained. 

We feel this matrix F serves as a very instructive example in connection 

with the general computational problem of resolving eigenspaces, or more gen­

erally invariant subspaces, of unsymmetric matrices. Although all the eigen­

values of F are distinct, as long as a > O, the smaller ones are remarkably ill­

conditioned, and the corresponding eigenvectors are not well-determined. Thus 

one should treat F as a matrix with an invariant subspace of order ; , 

corresponding to the ..!!. eigenvalues perturbed from zero in H. However it is not 
2 
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easy to discern this, given only F, since the amount of the perturbation (a) from 

H is much larger than the machine precision q. Indeed, all those matrices which 

differ from F by O (11) look much like F, and the canonical matrix H which is 

strongly influencing F, is a much greater distance away. 

5. A Note on Computing Eigenvectors 

In the course of checking the eigenvectors or these matrices, the author had 

occasion to return to the standard "inverse iteration" algorithm for computing 

eigenvectors. Even with a matrix like F, with poorly conditioned eigenvalues 

and thus poorly determined eigenvectors, we should at least expect each com­

puted eigenvectors I (corresponding to computed eigenvector X to give a small 

residual: IIF1-5:..III = 0 (q). This in fact occurred using the EISPACK routines, 

which however do not use inverse iteration explicitly, but instead perform a back­

substitution, using the triangularized form or the matrix. 

If inverse iteration is used (normally with the Hessenberg form) for F and 

computed eigenvalue X, one solves (F-X/)JL = .ll for some vector .ll, Almost 

always, using a reasonably clever choice of .ll, IIY II ~ 1/q1 so that the normalized 

vector z = y /IIY II gives a small residual. However it can happen that IIY II is 

not "large enough", and one is tempted to do another inverse iteration, solving 

(F -XI )l = Jl. For badly conditioned eigenvalues, this is not a good idea: the 

computed 1. vector will not give a small residual, because the vector Jl is not a 

good choice of "initial" vector for the inverse iteration. 
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Because of this phenomenon, it is much safer (although a little more expen­

sive) to iterate with the matrix (F-5:/) T (F-'5':/) (with transpose replaced by con­

jugate transpose in the complex case), as suggested by Wilkinson (1979). The 

enforced symmetry avoids the possible embarrassment of large residuals when 

more iterations are used, essentially because we are now dealing with the orthogo­

nal singular vectors not the eigenvectors of F. The algorithm is: 

1. decompose F ->:I = PLU. 

If F is upper Hessenberg, IIL II and IIL -111 are not large, so the near­

singularity of (F -X./) ic, reflected in U; so 

2. perform a ( double) inverse iteration: solve UT U,&: = .!! , for .!! your favorite 

initial vector; in the very unlikely case that llz 11/llr!I << ,,-~, do another 

iteration. 

3. get the left-hand eigenvector JQ T as well: solve VU T Jl = Jl (and again if 

necessary as in 2.) with finial1y J/2 T (PL ) = JCT. 

4. fina11y, compute s (>.) using the computed~ r and l.. 

We cannot emphasize the last step enough; most eigenvalue routines do not 

compute s (>.), and it really is a reliable estimate of the accuracy or the computed 

eigenvalue. 
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