
DEFINITE CLAUSE TRANSLATION GRAMMARS AND
THE LOGICAL SPECIFICATION OF DATA TYPES

AS UNAMBIGUOUS CONTEXT FREE GRAMMARS
by

Harvey Abramson
Technical Report 84-11

August 1984

Definite Clause Translation Grammars
and the

Logical Specification of Data Types as Unambiguous
Context Free Grammars

Harvey Abramson

Department of Computer Science
University of British Columbia

Vancouver, B.C. Canada

ABSTRACT

Data types may be considered as unambiguous context free grammars. The
elements of such a data type are the derivation trees of sentences generated by
the grammars. Furthermore, the generators and recognizers of non-terminals
specified by such grammars provide the composition and decomposition operators
which can be used to define functions or predicates over such data types. We
present a modification of our Definite Clause Translation Grammars {Abramson
1984) which is used to logically specify data types as unambiguous context free
grammars. For example, here is a grammatical specification of binary trees:

leaf :tree ::=string.

branrh :tree ::=" (" , le/ t :tree, " ," , right :tree,")".

The decomposition "operators", left, right, and (implicitly) string, are semantic
attributes generated by the compiler which translates these grammar rules to
Prolog clauses; these operators, together with the parser for trees, and the predi­
cates leaf and branch , can be used to construct more complex predicates over
the data type tree. We show bow such grammars can be used to impose a typ­
ing system on logic programs; and indicate how such grammars can be used to
implement Kaviar, a functional programming language based on data types as
context free grammars.

August 13, 1984

Definite Clause Translation Grammars
and the

Logical Specification of Data Types as Unambiguous
Context Free Grammars

1. Introduction

Harvey Abramson

Department of Computer Science
University or British Columbia

Vancouver, B.C. Canada

Several researchers have recently and quite independently converged on the idea that data.
types can be considered to be unambiguous context free gramm~rs: each non-terminal or a gram­
mar represents a type whose construction is specified by the right band side or one or more pro­
ductions; furthermore, the non-terminals in the right hand side of a production act as select.ors for
decomposing elements of the type, essentially, derivation trees. The constructor and selectors can
then be used to define functions or relations over the type and between types specified in this
manner.

1.1. Crltlclam of initial algebra approach.

Kanda and Abrahamson have approached this idea as a result of a critical appraisal or data
types considered as initial algebras (Kanda and Abrahamson 1983). To take a very simple exam­
ple, the initial algebra / (E.E) for the natural numbers may be specified by:

E = {0:-+nat, s :nat -+nat}

E = {}
where O is a constant and e is the unary successor operation. This gives the set or natural
numbers:

{0,s (0),e (e (0)), ... }

and the successor function eucc as the interpretation or nat and e respectively. Since there is
nothing in E but O and e, however, / (E.E) does not yield any other functions such as, for example,
the predecessor operation pred .

In order to obtain an interpretation which includes the predecessor function pred one must
start with a larger signature:

E '= {0:-+nat, e :nat -+nat, p :nat -+nat}

The initial algebra Icr::,E 1 generated from this is unsatisfactory in that there are too many terms
for the same natural number: e (0), e (p (e (0))), p (e (e (0))) all represent 1. A non-empty set or
equational axioms E ' must be introduced to enforce equality of terms denoting the same number
(see (Kanda and Abrahamson 1983), (Goguen et al. 1978)), and an undefined element to totalize
the pred function.

Kanda and Abrahamson suggest, however, that one could define the natural numbers by the
following unambiguous context Cree grammar:

zero :nat ::= " O".

eucc :nat ::= "e (" , nat , ")".

- 2 -

Here nat is the sole non-terminal of the grammar. A nat may be O or it may be of the form e (n)
where n is a nat. The names of the productions act as predicates: zero is true only when
applied to O; succ is true only when it is applied to a nat or the form B (n). On the right hand
side of the succ production, nat acts as a selector. Thus we could define the predecessor function
using some such clausal notation as:

pred (n) = zero (n) - unde/ined.

pred (n) = succ (n) - nat (n).

where unde/ ined is thrown in to totalize the data type of natural numbers. Using function com­
position, definition by cases, and general recursive definitions, all functions over the type nat can
be easily defined without having to respecify initial algebras and augment them with larger and
larger sets of equational axioms.

We might also mention here an interesting comment of (Kanda and Abrahamson 1983)
which relates polymorphism and language inclusion: if L 1 is a subset or L 2, and / is a function
from L 1 to L 1, then / is polymorphic in the sense that it is also a function from L 2 to L 2.

1,2. A grammatical problem ot Malu■zynakl and Nilnon.

:Maluszynski and Nilsson reached the conclusion that types might be treated as context free
grammars by considering the problem or assigning types to programs of an object language, for
example, the lambda calculus as given by the following context free grammar (see (Maluszynski
and Nilsson 1981,1982a,b)):

prog ::= exp
exp ::= sexp
exp ::= appl
sexp ::= const
sexp ::= ident
sexp ::= abstr
sexp ::= "(", exp, ")"
appl ::= appl, sexp
appl ::= sexp, sexp
abstr::= "lambda", ident, "." sexp

The problem of assigning types to such programs is the determination or assignment or a unique
"type descriptor" to each expression of the language. The program is well-formed if the type
assigned to the function part of an application is a "function type" which conforms to the type
assigned to the argument expression. (Polymorphism is involved in the assignment of types to
some of these lambda expressions.)

In expressing the type assignment rules in the clausal form or logic, Maluszynski and Nilsson
note that the string representations of the lambda calculus programs as specified by the grammar
above could not be used directly; rather, some representation or these strings as terms had to be
introduced, and this, they felt, detracted from the clarity of the clausal description. There was
also the problem that the syntax of logic programs did not permit the introduction or any typing
or terms other than an arity constraint. Ir, for example, a term such as ident (N) were introduced
to represent the ident of the grammar above, ident (/1,2,3/) might be syntactically correct as far
as the logic program for assigning types was concerned, but from the point of view of the compu­
tation or types would cause failure or the computation. Such an error could have been ruled out
by a static check of the logic program if some type mechanism could have been used to impose a
well-formedness condition for the data to which it was applied (see (Maluszynski and Nilsson
1982)).

In order to accomplish this, Maluszynski and Nilsson are led to the notion or using an
unambiguous context ·free grammar (which they call a metagrammar) to specify the data
domains or a given program. In such a grammar, each non-terminal is associated with the deriva­
tion trees whose roots are labelled by the non-terminal. The non-terminals therefore "are sorts of

I

..

- 3 -

a many-sorted algebra of derivation trees, whose operations are the production rules of the gram­
mar". In some of the references mentioned, they consider the problem of unifying terms specified
by such grammars.

Each of the researchers mentioned above also emphasizes the importance or typing as an aid
to the production or correct and reliable software. This is a familiar argument and need not be
repeated here.

1.3. Definite Clause Translation Grammars - Background.

Neither of the sources or the not.ion or using grammars to describe types presents a logical
specification (i.e., implementation) or ~he idea. We show below that a modification or our Definite
Clause Translation Grammars can be used as a grammatical typing mechanism. As background
to our suggestions, we summarize the original Definite Clause Translation Grammar (DCTG)
notation and implementation method. The reader is referred to (Abramson 1984) for a full
description or DCTGs.

Definite Clause Trans{ation Grammars (DCTGs) are modelled on the attribute grammars or
(Knuth 1968), which, in addition to specifying syntax by context free rules, also specified seman­
tics by attaching "attributes" or properties and rules for evaluating these properties to nodes or a
derivation tree. Similarly, a DCTG rule specifies both synbx and semantics. When a string is
parsed by the syntactic component or a DCTG, a derivation tree is automatically formed to
record the parse; semantic attribute rules, copied from the semantic component of a DCTG, are
attached to nodes or this tree. When the tree is traversed the semantic rules are evaluated in
order to specify the attributes of a node. The semantic rules are in the form of Horn clauses, and
evaluation is accomplished by an interpreter written in Prolog: the semantic rules may be thought
or as a local data base containing information as to how· global meaning for the entire derivation
tree is to be constituted from local meanings attached to nodes or the derivation tree.

The general form or a DCTG rule is:

Le/ tPart ::= RightPart <: > Semantics.

The portion of the DCTG rule to the left or the <: > symbol specifies syntax; the portion to the
right specifies semantics. For example, here are two rules used in defining noun_phrase in a
DCTG for a small subset of English (see (Abramson 1984)):

noun_phrase ::=
determiner"D, noun· 'N, rel_clause· 'R

<:>
(agree(Num) ::- N"agree(Num),

D"agree(Num),
R .. agree(Num)),

(logic(X,Pl,P) ::- D' 'logic(X,P2,Pl,P),
N' 'Jogic(X,P3),
R' 'logic(X,P3,P2)).

noun_phrase ::= name· 'N
<:>
agree(singular),
(logic(X,P,P) ::- N' ·1ogic(X)).

In a DCTG rule, logical variables may be attached by the symbol """ to non-terminal symbols
in the RightPart of the syntactic portion. During parsing, such a logical variable is instantiated to
the derivation subtree for the non-terminal to which it is attached. The Semantics consist of
zero or more Horn clauses specifying various attributes or the non-terminal in the Lef tPart .
Above, the rules for noun_phrase have two attributes, agree and logic. In the second rule,
agree (singular) is a unit clause attribute. In the semantic specifications attached to such a rule,
traversal or a subtree to evaluate a semantic attribut.e is specified by writing, for example,
N ·'logic (X ,P 3). This indicates that the logic attribute or the noun in the rule above is to be

- 4 -

evaluated.

A node in a derh·ation tree corresponding to use or the first production for noun_phraee
above has the following representation:

node(noun_phrase,
ID,N,R],
(agree(Num) ::- N' 'agree(Num),

D' 'agree(Num),
R' 'agree(Num)),

(logic(X,Pl,P) ::- D' 'logic(X,P2,Pl,P),
N. 'logic(X,P3),
R' 'logic(X,P3,P2)).

The second argument is a list or all the subtrees or noun_phraee, including terminal symbols, if
any; the third argument is accessed by the semantic interpreter during tree traversal.

The basic notion or our typing DCTGs may now be outlined. Given a production defining a
non-terminal X, the non-terminals in the right hand side or the production may be treated as
eemantic attribut ee or X. These attributes may be used either to decompose an object of type X
into its constituents or to compose an object of type X from an appropriate set of components.
These semantic attributes, in combination with automatically generated type checking predicates,
can be used to define relations over a type or between types. The automatically generated type
checking predicates may be used either to verify that an object is of a certain type, or to generate
an object of a certain type .

Section 2 introduces a modification or Definite Clause Translation Grammars for typing by
presenting several simple examples in which we specify types as grammars and subsequently
define one or more predicates over or between types. This provides a run-time typing mechanism
for Prolog programs. Section 3 explains the implementation as an extension of our Definite Clause
Translation Grammars. Section 4 draws some tentative conclusions and indicates future research
paths which include the logical specification of Kaviar, a functional programming langqage based
on types as context free grammars, and the implementation of a grammatically typed version or
Prolog.

2. Typing Definite Clau•e Translation Grammar■: Example■

In this section we shall introduce typing Definite Clause Translation Grammars by present­
ing several examples, each or them simple, but illustrating various aspects of the notat.ion and
different facets of logic programming with types. These typing DCTGs are not identical to the
original DCTGs, but there are some similarities or notation, and most importantly, of implemen­
tation in Prolog (see Section 3).

2.1. The Natural Numbers.

The natural numbers are specified by the following grammar:

zero:natural : := "O".
succ:natural ::= "s(", natural,")".

Terminal symbols which are strings or lists or charact.ers are enclosed within quotation marks.
(Terminals may also be indicated as a list of nullary function symbols, eg, /eymhol /.) The first
rule specifies that "O" is a natural (natural is the only non-terminal or this grammar). It also
specifies that the name of this production is zero and that there exists a predicate zero : zero (X)
is satisfied only if X is a derivation tree whose leaves, read in order rrom left to right, are in the
language generated by this production. The second rule specifies that the other form of a natural
is "s(" followed by a natural followed by ")", for example, s(O) or s(s(O)). The name of this pro­
duction specifies a predicate eucc: eucc (X) is satisfied if X is a derivation tree whose leaves read
in order from left to right are in the language generated by this grammar.

- 5 -

The relation pred specifics that N is the predecessor of X:

pred(X,N) :-
succ(X)' • lnatural(N)J.

eucc (X) specifies that X is or type natural and is generated by the production named eucc , ie,
X is a derivation tree for some sentence generated by the grammar for natural, and the first step
in the derivation of the sentence uses the production eucc. Reading the leaves of X would there­
fore give us something of the form s (N) where N is a natural. The notation introduced consists
of an infix operator "· ·" from our Definite Clause Translation Grammars which may be read a.s
"with subtrees such that", followed by a list or unary function symbols applied to logical vari­
ables. The unary function symbols a.re in the set of non-terminals which appear in the right hand
side or the applicable production, here the production named succ. Each such unary function
symbol (here only natural) selects the relevant sub-derivation tree of the derivation tree named in
the predicate to the left of the ,, •• ,, operator, and instantiates its argument to it. Thus, if the
leaves of X read in order a.re "s(", "O" and ")", then the natural number N is a subtree or X,
consisting or the leaf "O". Since pred is a relation, we are also specifying that X is the successor
of the natural number N. We can read succ (XV· {natural (N)/ as: for any natural number X
not equal to zero, if N is the predecessor of X, then the successor of N is X . In functional nota­
tion, we might write that X = succ (pred (X)). (We are also being slightly loose here: we should
mention "the leaves of X read in order Crom left to right", etc. Since the grammars we are using
are unambiguous we can identify derivation trees with the strings labeling their leaves read in the
right order.)

The type natural contains all deriYation trees generated by the grammar given above. We
can specify this by the clauses:

type(X,natural) :- zero(X).
type(X,natural) :- succ(X).

This is read "X is of type natural if it satisfies zero or succ ". We might consider X to be our
version of :Maluszynski and Nilsson's "grammatical variable of type natural", ie, X ranges over
derivation trees or sentences in the language generated by the grammar (see (Maluszynski and
Nilsson 1981,1982b)). The predicates zero, succ and type a.re generated automatically as the
grammar is compiled into Prolog clauses (see Section 3).

Information about each production for a type is also recorded in unit clauses of attributes:

attribu tes(succ ,natural, In atural{X)]).
attributes(zero,natural,IJ).

The first argument is the name or a production, the second a type, and the third a list or the
applicable selectors. This is intended for use by an eventual static type checker (see Section 4).

We specify the addition or two natural numbers by the Peano axioms translated into our
notation:

sum(X,Y,X) :­
type(X,natural),
zero(Y).

sum(X,Y,S) :­
type(X,natural),
succ(Y) .. lnatural{P)],
succ(S)' ·1natural(Q)J,
sum(X,P,Q).

Ir X and Y are instantiated in the second clause or sum, that is, if X and Y are derivation trees
for natural numbers, then succ (S V · {natural (Q)/ specifies that S is a derivation tree from pro­
duction succ with sub-derivation tree Q, a natural; Q is instantiated as a result or the recursive
call of sum. The predicate sum in fact specifies a relation between three naturals. The reader

- 6 -

may verify that if S=s(s(s(O))) then sum may be used to find all natural numbers X and Y
which add up to S. In this case note that type(X,natural) and eucc(Y)''/natural(P)}act as
generators or X and Y rather than as type verifiers.

We might note that the two lines or the first clause for sum and the first three lines or the
second clause arc suggestive or the type declarations, with initialization, or some Von Neumann
languages; the last line of the second clause is suggestive of the body or a block or procedure.

z.z. Lists.
Here is a grammar which defines simple lists:

nonempty:list ::= string, ",", list.
empty:list ::= IJ.

A list is either empty or it consists or a string followed by a comma followed by a list. string is
a primitive type and consists either or a sequence or numerical characters or of a lett~r followed
by zero or more letters or digits. (The original characters of the sequence are converted to a nul­
lary function symbol.) Thus, 123 and i 2 are strings. (The data type string is "hand-made" and is
defined by a few DCG rules . See Section 3.) The following are, therefore, acceptable lists: 1,2,3,
and abc ,def ,12,. We shall not list here the clauses or type and attributes defined for this gram­
mar.

We define the relation append between three arguments of type list:

append(E,X,X) :-
empty(E),
type(X,list).

append(X,Y,Z) :-
nonempty(X) · · !string(A), list(XX)],
type(Y,list),
nonempty(Z) • • lstring(A),list(ZZ)],
append(XX,Y,ZZ).

The types which have been specified prevent this version of append from the poor behaviour or
the usual Prolog append: with that version of append, for example, one may append a list la,b,c]
to a term such as 4, which is not itself a list. This version of append, of course, may be used
nondeterministically to generate all lists X and Y which when appended yield, for example,
abc ,def ,12,.

We specify a predicate length between the types list and natural as follows:

length(L,Zero) :-
zero(Zero),
empty(L).

length(L,N) :­
type(N,natural),
nonempty(L)' 'llist(Ll)j,
length(Ll,Nl),
one(One),
sum(Nl,One,N).

The predicate one specifies the successor of "O":

one(One) :-
zero(Zero),
succ(One)" '[natural(Zero)].

The specifications of the types of N 1 and One could be made explicit by adding
type (N !,natural), type (One ,natural) to the definition of the second clause of length, but could

- 7 -

also be inrerred horn the type requirements or one and eum by a static type checker (see Section
4).

2.3. Trees.

The following grammar specifies the type tree :

lear: tree:: =string.
branch:tree::= "(", left:tree, ",", rigbt:tree, ")".

In the previous grammars we were able to use the names or the non-terminals in the right hand
side or a production as the selectors (decomposers) or the type defined by that production, making
"puns", so to speak, with the names of'the non-terminals in the right band side: context clarifies
whether we are talking or a "selector" or a "type". We cannot do this here since there are two
occurrences or the type tree in the right band side or the branch production. These occurrences
or tree are, however, labeled left and right, and these labels are the selectors or trees which are
branches in the deeprwerse predicate below which reverses a tree at all levels. (We need not
label both uses or tree in the right hand side: labeling one would remove the ambiguity or which
subtree was meant). The clauses ror type are not shown.

attribu tes(branch, tree, lrigh t(R), lert(L)I).
attributes(lear, tree, !string(S)J).

deepreverse(X,X) :- lear(X).
deepreverse(X,Y) :-

branch (X)' '!left(Lert),right(Righ t)] ,
branch(Y)' '!left(RRight),right(RLeft)J,
d eeprev erse(Lert ,RLeft),
deepreverse(Righ t,RRigh t).

2.4. Infix and prefix notation.

Our final example is one which was outlined in (Maluszynski and Nilsson 1982b). We
specify inf ix and pref ix expressions and a predicate f i:r which allows one to convert between
them. The predicate fix may be used, or course, in either direction and may be thought or as
specifying a source-to-source translation or a simple kind, translating between expressions such as
a* (b + c) and *a ,+ b , c . As in the previous examples, the definition or f i:r is recursive and split
into cases depending on the grammatical structure or its arguments. The use or "cut" has not
been necessary in any or these examples: the type specifications act as a sort or guard to the
"body" or the clausal definitions. The predicates type and attributes generated for this grammar
are not shown.

- 8 -

pl:infix ::= expression.
p2:expression ::= term, "+", expression.
p3:expression ::= term.
p4:term ::= primary, "•", term.
p5:term ::= primary.
p6:primary ::= string.
p7:primary ::= "(", expression, ")".

rl:prefix ::= "+", prel:prefix, ",", pre2:prefix.
r2:prefix ::= "*", prel:prefix, ",", pre2:prefix.
r3:prefix ::= string.

fix(In ,Pre) :-
p l(In r. lexpression(E)],
type(Pre,prefix),
fix(E,Pre).

fix(In ,Pre) :-
p2(1n)'. I term(T),expression(E)],
rl(Pre)' '[prel(PT),pre2(PE)j,
fix(T,PT),
fix(E,PE).

fix(In,Pre) :­
p3(In)' '[term(T)J,
type(Pre,prefix),
fix(T,Pre).

fix(In ,Pre) :-
p4(In) · • lprimary(P),term(T)],
r2(Pre)' 'lprel(PP),pre2(PT)],
fix(P ,PP),
fix(T,PT).

fix(In,Pre) :-
p5(In)' 'lprimary(P)],
type(Pre,prefix),
fix(P,Pre).

fix(In ,Pre) :-
p6(In)'. [string(S)J,
r3(Pre r. !string(S)].

fix(In ,Pre) :-
p7(In r 'lexpre::.sion(E)J,
type(Pre,prefix),
fix(E,Pre).

3. Implementation detalla.
Typing DCTGs differ syntactically from the original DCTGs in that each production must

be named (for example, leaf and branch are the names or the productions defining the type
tree), and non-terminals in the RightPart may optionally be named (for example, left and right
name the different subtrees or a branch). Typing DCTGs differ semantically from DCTGs in that
the non-terminals (or names or non-terminals) in the RightPart are used to construct attributes
which may be used for selection and composition. The adaptation or the representation of DCTG
parse tree nodes and semantic rules (see Section 2) to typing DCTGs is quite simple and straight­
forward. A node in a derivation tree which represents use or the production named branch in the

grammar or Section 2.3 would look, for example, like:

node(branch:tree,
I [(], L, I,], R, I)]],
(ldt(L), right(R), true)).

In the DCTG node representation the first argument names only the non-terminal which is at the
root of a derivation subtree; in a typing DCTG we also incorporate the name of the production
used in forming that node. The second argument is a list or all subtrees or the node. Further­
more, the subtrees indicated above by L and R are node structures themselves which insure by
unification that L and R are or type tree :

L = node(N':tree, L', S')
R = node(M':tree, R', T')

The semantic attributes or the branch :tree node are formed from the names or non-terminals in
the right hand side, or if the non-terminals in the right hand side are labeled, from the labels;
such attributes are unary function symbols which give access to the relevant subtrees of the node.
Considered as Horn clauses "for the semantic interpreter, they are unit clauses. We may attach
other semantic attributes to typing DCTG rules if we wish. (Ir a nonterminal z is decorated with
a logical variable X as in the original DCTG rules, z "X, then . X is instantiated to tL.e deriva­
tion subtree for z, and the selector for z is compiled as z (X). Semantic attribute rules which go
into the local data base for such a rule may then traverse X to evaluate attributes, eg,
X · ' logic (A ,B). Semantic rules are specified as in the original DCTG rule format following a
<: > symbol. None or the examples illustrated this possibility, however. A later paper will
include such examples. See also Section 4.) The generated attributes are appended to any such
specified attributes to form the third argument of a node. The atom true is used as an empty
marker in a node for DCTG productions in which no t1emantic rules have been explicitly
specified.

The method used to compile typing DCTG rules into Prolog clauses is a \'ariant of the one
used to compile DCTG rules into Prolog clauses, and need not be detailed here (see (Abramson
1984)). The differences are th at:

111

121
13]

semantic typing attributes are formed and added to the list or other specified semantic attri­
butes;

a predicate is formed from the name of each production and asserted; and,

clauses for type and attributes are asserted for each typing DCTG rule.

In a brief appendix we list the predicates t_lp and t_rp (translate left part, right part) used
in compiling typing DCTG into Prolog clauses: these differ from the corresponding predicates in
(Abramson 1984); all other predicates used in the compilation are identical to those in the cited
reference.

Here is the way the grammar for natural numbers appears as Prolog clauses:

natural(node(zero:natural, !IO]],true),SO,Sl) :­
c(SO,O,Sl).

natural(node(succ :natural,
lls,'('J,node(Name:natural,Nodes,Semantics),ltJI,
(natural(node(Name:natural,Nodes,Semaotics)), true)),
SO,S4) :-
c(SO,s,Sl),
c(Sl,'(',S2),
natural(oode(Name:natural,Nodes,Semaotics),S2,S3),
c(S3,')',S4).

The first argument to natural is instantiated to the derivation tree, the second and third are the
"input" and "output" lists ust'd in parsing. The following list or goals shows how the Prolog

parser natural of arity 3 may be used:

:- natural(Nl,"s(s(O))" ,II),
natural(N2," s(s(s(O)))" ,II),
sum(Nl,N2,N3),
writetype(N3).

- 10 -

write type is a polymorphic predicate which traverses the derivation tree N 3, printing its leaves
from left to right to obtain:

s(s(s(s(s(O))))).

The interpreter which traverses derivation trees and evaluates semantic attributes of typing
DCTG rules follows:

node(_,_,Sem) • • Args :- Sem • • Args.

x· 'SpecifyList :-
X = .. !Type,YI,
X, !,
specify(Y ,Specify List).

((Args::-Traverse),Rules)' 'Args :­
!, Traverse.

(Args,Rules)' • Args :- !.

(_,Rules)'· Args :-
Rules·· Args.

(Args::-Traverse)" Args :- ! , Traverse.

Args • 'Args.

specify(X,[I) :- !.

specify(X,[TreelTreesl) :-
x · 'Tree,
specify(X, Trees).

The second clause of "· .,, is the one which is used to evaluate, for example,
branch (X)'. fief t (Le/ t), right (Right)/ in Section 2.3 above. The argument to the left or " •• ,, is
verified to be a unary function symbol and is called. If the call is successful, for example, if
branch (X) succeeds, then specif 11 accesses the relevant subtrees of the branch instantiating
Le/ t and Right ; or, if branch (X)'. fief t (Le/ t),right (Right)/ is being used to generate a
branch, then specify instantiates the subtrees of X to Le/ t and Right . The remaining clauses
of "· .,, complete the specification of the semantic interpreter, and are applicable also to pure
DCTG rules.

As a final point, we mention that the primitive type ,tring is defined by several Definite
Clause Grammar rules which act as a lexical scanner for identifiers and numbers. Extra argu­
ments attached to non-terminals of these DCG rules are used to produce nodes of the kind
described above for the "hand-made" type Btring with the following semantic attributes: if a
Blring is a sequence of numerical characters, we may access the numerical atom formed from the
characters by:

string(S)' • !value(V)J

if a string begins with a letter which is followed by zero or more letters or digits, we may access
the atom formed from those characters by:

string(S)'. [id(I)J

Listings of the implementation of typing Definite Clause Translation Grammars and all the
examples are available from the author.

- 11 -

4. Summary and tuture research.

Typing DCTGs provide a very simple method or imposing an optional type discipline on
logic programs. In effect, they allow one to program directly with that most useful or all data
structures, the tree. Context free grammars, suitably analy1,ed, provide all the necessary selectors
and constructors for manipulating derivation trees or the gr~mmars.

Traditionally, grammars have been viewed as devices for analysing and generating terminal
strings or a language. Here, the focus is on the derivation trees, possibly only partially instan­
tiated, which the grammar can analyse and synthesise: the derivation trees or terminal strings are
a special case. Typing DCTGs can, or course, be used in the traditional manner to parse an input
string: witness in Section 3 the example or how the parser natural (Tree ,Input , Output) is used.
Once the string has been parsed, however, the interest generally lies in manipulation or Tree.

The compilation or DCTG rules to Prolog clauses, in fact, forces a restriction on the use or
typing DCTGs as parsers: Prolog's top down lert to right strategy rules out left. recursive produc­
tions. Practically, this is not too important. Just as all practical languages can be parsed by
recursive descent using grammars without left recursion, so it is asssumed that all reasonable data
structures can be specified by typing DCTGs without left recursive productions. The restriction
could be removed by using Earley's general context free parsing algorithm (see (Aho and Ullman
1973)); this would permit one to specify all data structures in their most "natural" form even iC it
meant using left recursive rules.

The restriction, we repeat, applies to DCTGs used as Prolog parsers. Ir one uses the gen­
erators and composers or a grammar to form derivation trees without parsing, then even left
recursive rules may be used:

leal:tree ::= string.
branch:tree ::= left:tree, right:tree.

These rules specify a more abstract ,·ersion or tree than the grammar or Section 2.3. t11pe and
attributes are:

type(X,tree) :- leaf(X).
type(X,tree) :- branch(X).

attri bu tes(leal, tree, !string(S) J).
attributcs(branch ,tree,lleft(L),right(R)J).

This type definit-ion differs from the previous one in the node structure which represents
branch es. Elements of this type tree can be formed using string, left, right, leaf and branch
without parsing input strings at all, and indeed, must be so formed! There is a connection to be
explored in a later paper between such a grammatical specification (which is used to specify trees
rather than a parser) and the Puzzle Grammars of (Sabatier 1984).

We note that we could extend typing DCTGs to specify data types which are not context
free by placing restrictions or constraints on derivation trees. For example:

is_p:prime ::= natural"P, { is_prime(P) }

would specify a natural number which is verified by a Prolog predicate is_prime to be a prime
number. In writing predicates over this type, we would have to allow Prolog predicates to be
included in the specification lists operated on by "' '":

is_p(X)" lnatural(P), {is_prime(P)}J.

In order to keep the compilation or typing DCTG productions to Prolog clauses simple, the gen­
erated predicate is_p would only require that X be a natural; the additional constraint must
then be applied. It seems, since the constraints might appear anywhere in a DCTG rule, and
might involve any number of nonterminals, that this simple scheme is preferable to trying to
incorporate the constraints in the predicate generated from the name or the production.

- 12 -

Another interesting line or investigation which we shall follow is to permit types to be
parameterized, eg, trees not only with string leaves, but with any other type such as natural,
list , etc. A later report will detail these extensions.

Typing DCTGs provide a run-time type checking mechanism based on unification. This can
prove expensive for large data structures. One way to remedy this would be to provide a syntac­
tic sugaring or Prolog programs which would permit types to be specified and statically checked
by a grammar based type checker (see (Kanda and Abrahamson 1983) Cor an indication as to how
such a type checker would function; other typing schemes for logic programs and Prolog have
been suggested in (Mycroft and O'Keefe 1983), (Mishra 1984)). A well-typed Prolog program
could then utilize a simpler and more efficient representation or types than the node structure
shown above, and potentially expensive unifications could be avoided: the program would work
because it had been shown to be well-typed.

One other line of research is the design of a simple functional programming language which
utilizes the notion or types as context free grammars. This language is intended for instructional
purposes and is to be called Kaviar (the name is formed from the italicized letters in its
designers' names: Akira Kanda, Violet Syrotiuk, and Harvey Abramson). A report on its design
and implementation both in logic and in C is being prepared. The logic implementation will rely
on typing DCTGs and the transformation or Kaviar functions into Prolog predicates.

Acknowledgements.

I would like to t.hank my colleagues on the Kaviar project, Dr. Akira Kanda and Violet
Syrotiuk, for many helpful discussions. This work was supported by the National Science and
Engineering Research Council or Canada. I must also thank the UBC Laboratory for Computa­
tional Vision for time on its VAX running Berkeley Unix. The UBC Computing Centre is in no
way to be thanked Cor not supplying modern and adequate Unix-based research computing facili­
ties to the Computer Science Department.

References.

Abramson, H., Definite Clause Translation Grammars, Proceedings 1984 International Symposium
on Logic Programming, Feb. ~9, 1984, Atlantic City, New Jersey, pp. 233-241.

Aho, A.V. & Ullman, J.D., The Theory of Parsing, Translation, and Compiling, 2 volumes,
Prentice-Hall, 1973.

Colmerauer, A., Mt:tamorphosis Grammars, in Natural Language Communication with Comput­
ers, Lecture Notes in Computer Science 63, Springer, 1978.

Goguen, Thatcher, Wagner & Wright, Initial algebra approach to specification, correctness and
implementation of abstract data types, in R. Yeh (editor) Current Trends in Programming Metho­
dology, Prentice-Hall, 1978.

Kanda, A. & Abrahamson, K. Data types as term algebras, University of British Columbia,
Department of Computer Science Technical Report 83-2, March 1983.

Kanda, A. & Abramson, H. & Syrotiuk, V. Kaviar, a Functional Programming Language Based
on Data Types as Context Free Languages, in preparation.

Knuth, D.E., Semantics of Context-Free Languages, Mathematical Systems Theory, vol. 2, no. 2,
1008, pp. 127-145.

Maluszynski, J. & Nilsson, J.F. A notion of grammatical unification applicable to logic program­
ming languages Department of Computer Science, Technical University of Denmark, Doc. ID 007,
August 1981.

Maluszynski, J. & Nilsson, J.F. A version of Prolog based on the notion of two-level grammar.
Prolog Programming Environments Workshop, Linkoping University, March 25-27, 1982a.

Maluszynski, J. & Nilsson, J.F. Grammatical U,1ification, Information Processing Letters, vol. 15
no. 4, October, 1982b.

. 1

- 13 -

Mishra, P. Towards a theory of tupee in Prolog, Proceedings 1984 International Symposium on
Logic Programming, Feb. ~9, 1984, Atlantic City, New Jersey , pp. 289-298.

Mycroft, A. & O'Keefe, R. A polymorphic type eyetem for Prolog, Proceedings Logic Program­
ming Workshop '83, 26 June - 1 July 1983, Praia da Falesia, Algarve, Portugal.

Pereira, F.C.N. (editor), C-Prolog Ueer'e Manual, University of Edinburgh, Department or Archi­
tecture, 1082.

Sabatier, P. Puzzle Grammars, Proceedings or the Workshop on Natural Language Understand­
ing a.od Logic Programming, Rennes, France, Sept. 18-20, 1984 .

- 14 -

Appendix

t_lp(Name:LP ,StL,S,SR,TypeSem,Semantics,H) :­
add_extra_args([node(Name:LP ,StL ,Semantics),S,SRJ ,LP ,H),
IsName = .. IName,oode(Name:LP,StL,Semantics)J,
asserta(IsName),
CalllsName = .. [Name,XI,
assert((type(X,LP) :- CalllsName)),
reverse(TypeSem,RTypeSem),
asserta(attributes(Name,LP,RTypeSem)).

t_rp(!,St,St,S,S,!,Sem,Sem) :- !.

t_rp(ll,St,IIJISt],S,Sl,S=Sl,Sem,Sem) :- !.

t_rp(IXJ ,St,l[NXJ IStJ ,S ,SR,c(S,X,SR),Sem,Sem) :-
char(X,NX).

t_rp(IXJ,St,l[XJIStJ,S,SR,c(S,X,SR),Sem,Sem) :- !.

t_rp(IXIR] ,St, l[NXINRJ ISt.J ,S,SR,(c(S,X,SRl),RB),Sem,Sem) :­
ch ar(X,NX),
t_rp(R ,St,INRI StJ, SRl ,SR,RB,Sem ,Sem).

t_rp(IXIRl,St,l[XIRJIStJ,S,SR,(c(S,X,SRl),RB),Sem,Sem) :- !,
t_rp(R,St,IRIStJ,SRl,SR,RB,Sem,Sem).

t_rp({Prolog},St,St,S,S,Prolog,Sem,I {Prolog}ISeml) :- !.

t_rp((T,R),St,StR,S,SR,(Tt,Rt),Sem,TypeSem) :- !,
t_rp(T ,St,Stl ,S ,SRl,Tt,Sem,Seml),
t_rp(R,Stl,StR,SRl,SR,Rt,Seml,TypeSem).

t_rp(Name:T,St,INIStJ,S,SR,Tt,Sem,IType!Seml) :­
add_extra_args(IN,S,SRJ ,T ,Tt),
N = oode(Namel:T,Nodes,Sernaotics),
Type= .. [Name,NJ.

t_rp(Name:T· • N,St,INIStJ ,S,SR, Tt,Sem,IType!SemJ) :­
add_extra_args(IN,S,SRJ ,T,Tt),
N = oode(Namel:T,Nodes,Semantics),
Type= .. IName,NJ.

t_rp(T' ·N,St,IN!StJ,S,SR,Tt,Sem,IType!Seml) :­
add_extra_args(IN ,S, SR], T, Tt),
N == oode(Namel:T,Nodes,Semaotics),
Type= .. IT,NJ.

t_rp(T ,St,!NIStJ,S,SR,Tt,Sem,IType!Seml) :­
add_extra_args(IN,S,SRJ ,T,Tt),
N = node(Namel:T,Nodes,Semaotics),
Type= .. IT,NJ.

r

I

