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Abstract 

A smooth opaque object produces an image in which brightness varies spatially even if the 
object is illuminated evenly and is covered by a surface material wit..h uniform optical propertie . 
Photometric methods relate image irradiance to objec~ shape and surra e ma.t,erial using phy ical 
models of the way surfaces reflect light. A reflectance map allows image irradiance to be writ­
ten as a function of surface orientation, for a given surface material and light source distribu­
tion. Shape from shading algorithms use a reflectance map to analyze what is seen. 

The development of photometric methods for determining shape from shading is discussed, 
beginning with examples from lunar astronomy. The results presented delineate shape informa­
tion that can be determined from geometric measurements at object boundaries from shape 
information that can be determined from intensity measurement,s over sections of smooth sur­
face. Recent work of lkeuchi and Horn is presented which relaxes the requirement that the 
image irradiance equation be satisfied exactly. Instead, the image irradiance equation specifies 
one const-raint that is combined wiLh another constraint derived Crom general surface smooth­
ness criteria. Shape from shading is expressed as a constrained minimization problem. 

Another method uses multiple images in a technique called pho ometric ster o. In pho­
tometric stereo, the illumination is varied between successive images while the viewing direct,ion 
remains constant. Multiple images obtained in this way provide enough information to deter-

• mine surface orientation at each image point, without smoothness assumptions. 

• This is a pre-publication version of a chapter to appear in Image Underatanding 198,1, 
S. Ullman & W.A. Richards {eds.), Ablex Publishing Co., Norwood, NJ . 

.. R.J. Woodham is a Fellow of the Canadian Institute for Advanced Research. 
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I. Introduction 

A smooth opaque object will produce an image in which brightness varies spatially even if 

the object is illuminated evenly and is covered by a surface material with uniform optical pro­

perties. Computational vision often does not exploit shading information, using intensity meas­

urements only to segment an image at locations where brightness changes abruptly. The pur­

pose of this chapter is to show that shading provides essential information about object shape 

and that algorithms have been developed to determine shape from shading. 

Thr key obserYation, derived from principles of physical optics, is that the apparent 

brightness of a surface element depends on the orientation of that element relative to the ,·iewer 

and light sources. Different surface elements of a nonplanar object reflect different amounts of 

light toward an observer because of their differing attitude in space. In computer graphics, 

shaded images are generated by choosing a suitable reflectance model and illumination to assign 

a brightness value at each visible surface element. For a given material, viewer position and dis­

tribution of light sources, image bright.nes~ is determined as a function of surface orient at ion . 

Figure 1 is a synthesized image of a sphere. In this -example, the object is assumed to be a per­

fectly diffuse reflector illuminated by a single distant light source oriented slightly above and to 

the right of the viewer. Sections 2.2 and 2.5 discuss this reflectance model in more detail. Real­

istic images have been produced for a wide variety of surface materials and illumination condi­

tions. Cook and Torrance (1982) present examples of current work in the computer generation 

of shaded images. 

In computational vision, the goal is to determine surface properties from image brightness. 

Shape from shading assigns a surface orientation to each visible surface element. The problem 

is difficult because surface orientation has two degrees of freedom and image irradiance, the 

quantity measurN) in an image, has only one. Image irradiance results from the interaction of 

several factors, some of which are properties of the objects in view and some of which are not . 



The effects of shape and surface material must be separated from each other and from the 

effects of illumination, shadows, viewing direction and path phenomena. In general, there are 

trade-offs that cannot be resolved. 

Figure 2 illustrates one trade-off. Figure 2(a) seems to show a container holding five eggs. 

But there are no eggs in the container. We are fooled at first because we are unaccustomed to 

interpreting scenes illuminated from below. Scrutiny is required to see the shapes as hollows. 

In Figure 2(b ), obtained under more natural lighting conditions, two eggs have been added and 

the three remaining hollows are easily identified. In the absence of other cues, the perception of 

convexity and concavity is reversed when a corresponding change occurs in the dir0ction of 

illumination. 

Figure 3 illustrates another trade-off. Often, it is impossible to disambiguate smooth 

changes in surface material from smooth changes in surface shape. If one assumes that surface 

material is constant then the perception of shape will be altered. This is exploited in the appli­

cation of cosmetic makeup. Figure 3(a) shows a model's face without makeup. Figure 3(b) 

demonstrates that makeup can alter the perception of shape. The face, with makeup, appears 

narrower and the cheek bones have been accentuated. 

To deal with these trade-offs, it is necessary to understand how images are formed. One 

aspect is the geometry of image projection. Of equal importance is the radiometry of image for­

mation. Relating image irradiance to object shape and surface material requires a model of the 

way surfaces reflect light. Fortunately, the needed analytic tools now exist. Section 2 develops 

an image irradiance equation to model how the physical world determines what we see. The 

reflectance map, originated by Horn (1977), allows image irradiance to be written as a function 

of surface orientation, for a given surface material and light source distribution. 
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In the photometric method for determining shape from shading one uses the image irradi­

ance equation to analyze what is seen. A reflectance map is not directly invertible since, as 

noted , surface orientation has two degrees of freedom and image intensity provides only one 

measurement. Additional information is required to reconstruct the underlying surface. Some­

times, special reflectance properties of the surface material simplify the analysis. The moon, for 

example, has remarkable photometric properties arising from the special structure of the lunar 

surface. Figure 4 is an image obtained at full moon. That is, it is obtained when the light 

source is directly behind the Yiewer. At full moon, the distribution of brightness over the lunar 

disk is about the same everywhere. Brightness varies spatially as a function of surface material 

but there is no general shading owing to the spherical shape of the moon. 

Figure 5 is an image obtained using a scanning electron microscope (SEM). Although 

different from a natural scene, shading in an SEM image provides a clear perception of object 

shape. In SEM images, there is a simple analytic relationship between image irradiance and sur­

face orientation. Therefore , shape from shading methods can be applied to SEM images. The 

method of Ikeuchi and Horn (1981), described in Section 3.3, has been demonstrated on a sam­

ple SEM image. 

Following the development of the image irradiance equation in Section 2, Section 3.1 traces 

the historical development of photometric methods for determining shape from shading, begin­

ning with examples from lunar astronomy. Methods for determining object shape from a single 

view embody assumptions about surface curvature. For several classes of surface, surface orien­

tation can be determined locally. This is demonstrated, in Section 3.2, for planar surfaces form­

ing trihedral corners. These results help to delineate shape information that can be determined 

from geometric measurements at object boundaries and shape information that can be deter­

mined from intensity measurements over sections of smooth surface. Recent work relaxes the 



requirement that the image irradiance equation be satisfied exactly. Instead, the image irradi­

ance equation specifies one constraint that is combined with another constraint derivrd from 

general surface smoothness criteria. Finally, in Section 3.3, shape from shading is expressed as a 

constrained minimization problem. 

Another photometric method uses multiple images. Section 4 discusses the technique 

called photometric stereo. Binocular stereo determines range by relating two images of an 

object viewed from different directions. If the correspondence between picture elements Vi 

known, then distance to the object can be calculated by triangulation . Unfortunately, it 1s 

difficult to determine this correspondence. The idea of photometric stereo is to vary the illumi­

nation between successive images, while holding the viewing direction constant. Multiple images 

obtained in this way provide enough information to determine surface orientation at each image 

point, without smoothness assumptions. Since the imaging geometry is not changt>cl, the 

correspondence between image points is fixed. The technique is photometric because it uses the 

image irradiance values recorded at a single image location, in successive views, rather than the 

relative position of displaced features . 

2. Developing the Tools 

Image formation is modeled by an image irradiance equation that determines image bright-

ness as a function of surface orientation. The development presented here was first given by 

Horn ( 1977) and incorporates extensions from Woodham ( 1981) and from Ikeuchi and 

Horn (1981). Section 2.1 describes the orthographic image projection. Section 2.2 defines a 

viewer-centered surface reflectance function. Section 2.3 presents three representations for sur­

f ace orientation: gradient space, spherical coordinates and stereographic coordinates . Section 2.4 

defines the Hessian matrix representation for surface curvature. Section 2.5 introduces the 
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reflectance map. Finally, Section 2.6 uses the reflectance map to define the image irradiance 

equation . 

2.1 Image Projection 

In general, optical systems perform a perspective projection. If the size of the objects in 

view is small compared to the viewing distance, then a perspective projection can be approxi­

mated by an orthographic projection as illustrated in Figure 6. To standardize the geometry, it 

is convenient to choose a left-handed Cartesian coordinate system with the viewing direction 

aligned with the negative z-axis. Without loss of generality, the image plane can be scaled so 

that surface point (z ,Y ,z) projects to image point ( u ,v) with u = z and v = y. With these 

assumptions, image coordinates (z ,Y) and surface coordinates (z ,Y) can be used interchange­

ably. Image projection simply discards the z coordinate of a visible surface point (z ,y ,z ). 

2.2 Surface Reflectance 

The amount of light reflected by a surface element in a given direction depends on its opti­

cal properties, on its microstructure and on the distribution of scene irradiance. For most sur­

faces, the fraction of illumination reflected in a particular direction depends only on the surface 

orientation. The reflectance characteristics of such a surface can be represented as a function 

t/>(i ,e ,g) of the three angles i, e and g defined in Figure 7. These angles are calld the 

incident, emergent and phau angles. The reflectance function ¢>( i ,e ,g) determines the ratio of 

surface radiance to irradiance measured per unit surface area, per unit solid angle, in the direc­

tion of the viewer. That is, t/>(i ,e ,g) determines how bright a surface element appears when 

illuminated in a particular way and viewed from a particular direction. Surface orientation, as 

given by a surface normal vector, determines the angles i and e. (With a distant point light 



source and an orthographic projection, the phase angle g is constant at all surface points.) 

Although the angles i and e are defined in an object-centered coordinate system, the function 

¢(i ,e ,g) itself is defined with respect to the viewer. As such, it is a viewer-centered definition 

of surface reflectance. 

The reflectance function ¢( i ,e ,g) is assumed to be symmetric about the surface normal. 

There are some materials that are not isotropic in this way. Rotation of the surface about the 

surface normal can be included by making reflectance a function of four angles instead of three. 

The general case is discussed in Nicodemus et al. (1977) and leads to what has been called the 

bidirectional reflectance diatribution function (BRDF). 

Surface reflectance characteristics can be measured empirically, derived from analytic 

models of surface microstructure or developed from phenomenological models of surface 

behavior. To illustrate, consider the model of a perfect specular or mirrorlike surface 

illuminated by a single distant point source. In specular reflection, the incident angle equals the 

emergent angle ( i = e) and the incident, emergent and normal vectors lie in the same plane 

(i +e = g ). Expressing this formally, one obtains the function ¢> 1(i ,e ,g) given by 

if i = e and i +e = g 

otherwise 
(1) 

Equation 1 implies that there is only one surface orientation correct for reflecting the light 

source towards the viewer. This is familiar to anyone who has used a pocket mirror to direct 

rays from the sun towards a desired target. 

A second model is given by 

1 
p coa ( i) if i < ~ 

¢z(i,e,g) = 0 otherwise 
2 (2) 

This reflectance function describes a diffuse surface illuminated by a single distant point source. 
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The cosine or the incident angle i accounts for the variation in irradiance due to the inclination 

or the surface element from the light source. The reflectance factor p is a constant between O 

and 1 and accounts for the general brightness of the surface. \\'hen p = 1, all the incident light 

is reflected and the surface is called perfectly diffuse. Since ¢,z( i ,e ,g) does not depend on the 

emergent angle e , a diffuse surface appears equally bright from all viewing directions. As we see 

in the third model below, this is not equivalent to a surface that reflects an equal amount or 

light in all directions . 

A third model, similar to that of material in the maria of the nioon, is given by 

l (' C0 3 ( j) if I 

C03 (e ) 
0 otherwise 

(3) 

This reflectance function describes a surface, illuminated by a single distant point source, that 

reflects equal amounts of light in all directions. The terms p and co~ (i) are as described for 

equation (2). Recall that ¢(i ,e ,g) is defined with respect to the viewer. A surface appears 

foreshortened as a function or emergent angle e . T_hat is, as the surface becomes more inclined 

from the viewer a larger surface area is captured per unit solid angle subtended at the Yiewer . 

If reflection is equal in all directions then the surface appears brighter as it becomes more 

inclined from the viewer. The cosine of the emergent angle e accounts for surface foreshorten-

ing as seen by the viewer. 

A fourth model, similar to that of scanning electron microscope (SEM) images, is given by 

¢i i ,e ,g) = 1 
C 03 ( e ) 

(4) 

This reflectance function describes a surface for which the only consideration is surface foreshor­

tening as seen by the imaging system . 
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2.3 Surface Orientation 

There are many ways to specify surface orientation. For a point on a curved surface, one 

can use the tangent plane or, equivalently, the surface normal vector. If the equation of a sur­

face is given explicitly as z = f (x ,Y) then a vector in the direction of the surface normal is 

given by 

[
8/(x,y) 8/(x y) -l] 

az I ay 1 

If parameters p and q are defined by 

p = 8/(xy) 
ax and q = fJJ(:r ,y) 

By 
(5) 

then the vector can be written as [p ,q ,-1]. The quantity (p ,q) is called the gradient of f (x ,Y) 

and gradient apace is the two-dimensional space of all such points (p ,q ). Gradient space is one 

representation for surface orientation. 

Another way to represent surface orientation is to use points on the unit sphere, called the 

Gauaaian aphere after Hilbert and Cohn-Vossen (1952). Each point on the Gaussian spherl' 

identifies the unit v,:,ctor formed by joining the center of the sphere to that point. Spherical 

coordinates ( ¢,,0) can then be used to specify a direction. Figure 8 illustrates. 

There is, of course, a mapping between points on the Gaussian sphere and gradient space. 

If (¢,0) is a point on the Gaussian sphere then the gradient (p ,q) is given by 

p = cos( 0) tan(¢) and q = sin( 0) tan(¢) (6) 

This mapping has the simple geometric interpretation illustrated in Figure 9. Let the viewer be 

located far above the north pole of the Gaussian sphere looking southward along the positive 

z -axis. If a plane is constructed tangent to the sphere at the north pole then gradient space is 

the projection of the Gaussian sphere formed by extending each unit vector outwards until it 

intersects this plane ( z = -1 ). Gradient space represents the northern hemisphere of the Gaus-
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sian sphere. That is, gradient space represents all surface orientations that have a positive com­

ponent in the direction of the viewer . These surface orientations correspond to visible surface 

elements. 

A third way to represent surl'ace orientation uses another projection of the Gaussian sphere 

onto the plane tangent at the north pole. If the center of projection is the south pole, not the 

center of the sphere, then the atereographic projection is obtained. The stereographic projection 

is illustrated in Figure 10. The coordinates of the stereographic plane are called / and g to 

avoid confusion with the p and q coordinates of gradient space. Stereographic coordinates 

(/ ,g) can be determined from the corresponding gradient (p ,q) as follows 

I = 2p (J1+p z+q 2- l) and g = 2q(J1+p2+q2-l) 
p z+q z p2+q2 

(7) 

A representation for surface orientation is chosen for the particular task at hand. Spheri-

cal coordinates, gradient space and stereographic coordinates are all used in the specification of 

surface reflectance. The bidirectional reflectance distribution function (BRDF), mentioned in 

Section 2.2, uses spherical coordinates to represent directions. Often, one is faced with multiple 

or extended light sources. The resulting dependence of image brightness on surface orientation 

can be derived by integrating the particular BRDF over the full range of light source directions. 

Spherical coordinates simpli(y the formulation and evaluation of the required integrals. Horn 

and Sjoberg (1979) show how to derive the reflectance function ¢,(i ,e ,g) from the BRDF for 

both single and extended light source configurations. 

Gradient space has been used in work on the scene analysis of linedrawings 

(Huffman (1971), Mackworth (1973), Draper (1981)). Many geometric properties have a simple 

formulation in gradient space. In shape from shading, gradient space is used because it 

corresponds directly to the first partial derivatives of surface height z , allowing height to be 

computed by integrating p and q. 



Gradient space does have one serious draw back. Points where a surface smoothly disap-

pears from view ( e = rr/2) form what is called an occluding contour after Marr (1077). Points 

on an occluding contour map to infinity in gradient space, as can be seen in Figure 9. Conse­

quently, constraints at occluding contours cannot be expressed using the gradient (p ,q ). Stere­

ographic coordinates (/ ,g) are used instead. In the stereographic projection, points on an 

occluding contour lie on the circle / 2 + g 2 = 22
. 

2 .4 Surface Curvature 

Three parameters are required to specify the curvature at a point on a surface. Again, 

there are several possible choices. One familiar representation uses the two orthogonal principal 

curvatures and associated azimuthal direction about the surface normal. Another representa­

tion is based on the second partial derivatives, with respect to :r and y, of the surface 

z = f ( x ,Y ). Let H be the. 2x2 matrix given by 

tJZJ (:r y) 82/(:r,y) 
I) ;r 2 axay 

(8) H - {)'! I ( X ,Y) azJ(.z,y) 
ayax ayz 

H is called the Hessian matrix of the function z = f ( .z ,Y ). The Hessian matrix is used in non­

linear programming and is the representation of surface curvature used in \Voodham (1981 ). H 

is indeed a three parameter function of .z and y since, for surfaces of class C 2, the order of 

differentiation can be interchanged and H is symmetric.1 If the Hessian matrix H and the 

corresponding gradient (p ,q) are known at a point, then the corresponding principal curvatures 

and associated direction are also determined (Woodham 1978 pg. 68). 

1 A function is of cla.ss Ck if it has continuous partial derivatives of order k 
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The Hessian matrix H is used because H directly determines the change m gradient 

[dp ,dq] corresponding to a small movement [dx ,dy] in the image. That is 

Conversely, if two linearly independent [d.x ,dy J's and the corresponding [dp ,dq j's are known at 

a given point in the image, then H is determined by 

H- ( 10) 

2.5 Reflectance Maps 

The surface normal relates surface geometry to image irradiance because it determines the 

angles i and e appearing in the surface reflectance function ¢,(i ,e ,g ). An ideal imaging device 

produces image irradiance proportional to scene radiance. Thus, for a fixed light source distri­

bution and viewer geometry, the ratio of scene radiance to scene irradiance depends only on the 

surface normal. Provided each surface element receives the same irradiance, scene radiance, and 

hence image brightness, depends only on surface orientation. 

A reflectance map determines image irradiance as a function or surface orientation. Typi­

cally, a reflectance map is expressed as a function R (p ,q) or the gradient (p ,q ). One way to 

interpret a reflectance map R (p ,q) is as a transformation or a surface reflectance function 

¢,( i ,e ,g) into a function or p and q. Expressions for coa ( i ), coa ( e ), and co~ (g ) can be 

derived using normalized dot products of a surface normal vector {p ,q ,-1], the vector [p, ,q, ,-1] 

that points in the direction or the light source and the vector [0,0,-1] that points in the direc­

tion of the viewer. The reflectance map corresponding to ¢,ii ,e ,g ), defined in equation (2), is 

given by 
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P (I + PPa + qqa ) 

R 2(P ,q) = J1 + p2 + q2 J1 + p/ + q/ (11) 

Similarly, the reflectance map corresponding to ¢,3(i ,e ,g ), defined in equation (3), is given by 

R ( ) 
_ P (1 + PPa + qq,) 

3 p ,q - ., J1 + p,~ + q/ (12) 

(Note that the reflectance map R iP ,q) is linear in p and q .) It is convenient to represent 

R (p ,q) as a series or contours of constant brightness in gradient space. Figures 11 and 12 illus­

trate the reflectance maps R 2(p ,q) and R 3(p ,q ), defined above, with p = 1.0, Pa = 0.7 and 

q, = 0.3. 

Figure 1 was generated using the reflectance map R 2(p ,q) with p = 1.0, Pa = 0.7 and 

q, = 0.3 as in Figure 11. For each image point (x ,Y ), the gradient (p ,q) at surface point 

z = / (x ,y) was determined analytically. A brightness value was then assigned using the func­

tion R iP ,q ). (The resulting value is normalized to match the dynamic range or the image 

display device.) 

A reflectance function ¢,( i ,e ,g) can also be expressed as a function R (I ,g ) of stereo­

graphic coordinates (/ ,g ). Again, using the example or </J 2(i ,e ,g) defined in equation (2), one 

obtains 

(13) 

A reflectance map provides a uniform representation for specifying the reflectance proper­

ties or a surface material, for a particular light source distribution and viewing geometry. 

Reflectance maps can be derived analytically from a known ¢,(i ,e ,g) and a given distribution of 

source radiance. A reflectance map can also be measured empirically. A calibration object of 

known shape determines the reflectance map for a particular imaging situation. A reflectance 

map measured in this way can be used to analyze other objects made of the same material and 
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viewed under the same conditions of illumination . Determining the reflectance map empirically 

has the added benefit of automatically correcting for the transfer characteristics of the imaging 

device . A sphere serves as a useful calibration object. All visible surface element orientations 

are present in the image. In addition, the orientation at each surface element is easily deter­

mined from the object boundary. 

2.6 The Image Irradiance Equation 

Image formation can now be described by a single equation called the image irradiance 

equation. If gradient space 1s used to represent surface orientation then the image irradiance 

equation becomes 

J(x,y) = R(p,q) ( 14) 

where /(z ,!/) is the brightness at i1llage point (z ,Y) and R (p ,q) is the reflectance map value at 

the corresponding surface gradient (p ,q ). Photometric methods for shape from shading recon­

struct a surface z = f (z ,!/) to satisfy equation (14). I (x ,!I) is the measured image. The 

reflectance map is known as a function of surface orientation. The problem is to determine the 

particular gradient (p ,q) at each point ( z ,!/ ). Recall that p and q, defined in equation (5 ), are 

the first partial derivafrves of / (x ,y) with respect to z and y. Thus, equation (14) is a first 

order partial differential equation. Photometric methods that use gradient spare to represent 

surface orientation have used techniques developed to analyze such differential equations. 

Alternatively, one can view image irradiance equations of the form /(z ,Y) = R (p ,q ), 

I ( z ,Y) = R (f ,g ) or / ( z ,Y) = R ( ¢,0) as single equations in the two unknowns chosen to 

specify surf ace orientation. Measured image brightness determines a relation the unknowns 

must satisfy. But, to determine surface orientation precisely, additional constraint must be pro­

vided. Properties of surface curvature, surface material and surface smoothness are one soi..:rce 
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of additional constraint. Multiple images are the other. 

3. Development of the Photometric Approach 

3.1 Historical Background 

The study of the photometric properties of a surface is a standard method of investigation 

in astronomy, especially when applied to the lunar surface. At full moon when the source is 

directly behind the viewer (i = e ), the distribution of brightness over the lunar disk is about 

the same everywhere. Galileo considered this particular property of the moon three centuries 

ago in bis "Dialogues on Two Systems of the World". 

Since then, many investigators have carefully measured the surface reflectance function 

¢,(i ,e ,g) of the moon. The goal was to predict physical properties of the lunar soil. Investiga­

tors experimented with hundreds of terrestrial materials and surface microstructures in an 

attempt to replicate the photometric properties of the moon. These experiments led to correct 

predictions of the composition, particle size and porosity of the lunar soil. The conclusion was 

that the lunar surfac{' is an assembly of closely packed, randomly pointed, deep tunnels of all 

sizes, super.imposed and juxtaposed. The photometric properties of the moon are determined 

primarily by the shadows cast by surface detail and not by the reflection of light from surface 

material. Indeed, the lunar surface is uncommon in that the same material and structure would 

collapse under its own weight if it were replicated in the gravitational field of the earth. Some 

earth vegetation, however, can have similar photometric properties. One natural material that 

provides a good approximation is a thick layer of the lichen Cladonia rangi/erina. This lichen 

has a porous macrostructure and an opaque, somewhat rough microstructure. Minnaert (1961) 

and Hapke (1971) provide excellent reviews of the study of the photometric properties of the 
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moon . 

Properties other than surface microstructure were of interest. The idea that photometric 

measurements can be used to derive quantitative information about surface shape seems to have 

originated with van Diggelen (1951). His work did not make use of the surface reflectance func­

tion t/>(i ,e ,g) but exploited properties of surface points near the terminator (the boundary 

between the light and dark l,l'mispheres ). Only one component of surface orientation could be 

determined along the terminator. Nevertheless, the reconstructed one-dimensional elevation 

profiles for hills in the maria delineated height differences as small as 10 to 20 m. Interestingly, 

van Diggelen noted that a second image corresponding to a different position of the sun would 

enable the determination of both components of surface orientation. This idea could not be 

pursued since regions were not near the terminator in both images. 

A photometric method for lunar topography was developed by Rindfleisch (1966 ). He for­

mulated an image irradianc_e equation as a first order partial differential equation and presented 

a solution method that applied if the surface reflectance function was constant for constant 

co~ (i )/cos (e ), as happens for the moon. With this restriction the reflectance map is similar to 

R 3(p ,q ), defined in equation (12), so that the image irradiance equation (14) is linear in p and 

q. The method was applied to images returned by the three Ranger impacting spacecraft. 

Rindfleisch also noted the possibility of using a second image in his photometric method. The 

idea was not pursued since only single views were available from the Ranger spacecraft. In any 

event, multiple views obtained by a moving spacecraft would first have to be registered. This 

begs the question since precise registration requires the determination of stereoscopic parallax. 

Ir stereoscopic parallax were known then elevation could be determined by traditional photo­

grammetric techniques. 
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Horn (1975) generalized the photometric method for determining shape from shading by 

removing the requirement for linearity in p and q. The image irradiance equation Wa!! form u­

lated as a nonlinear first order partial differential equation. A modified method of characteristic 

strip expansion was used to transform this equation into a set of five ordinary differential equa­

tions that were solved numerically. The method was successfully applied to several sample 

images including one of a human face. 

Horn's method can be interpreted using the reflectance map, the image irradiance equation 

and the Hessian matrix H. By ta l:ing partial derivatives of the image irradiance equation ( 14 ), 

first with respect to z and then with respect to y, two equations are obtained that can be writ­

ten as the single matrix equation 

(15) 

/s and ly denote partial derivatives of I(z ,Y) with respect to z and y. Similarly, RP and Rq 

denote partial derivatives of R (p ,q) with respect to p and q. Note that [Rp ,Rq] defines a nor­

mal to the contour of constant brightness in the reflectance map at the current (p ,q) and that 

[Is ,ly J defines a normal to the contour of constant brightness in the image at the current ( x ,Y ). 

If a small movement [dz ,dy] is made in the image in the direction [RP ,Rq] then, by equa­

tions (9) and (15), the corresponding movement !dp ,dq] in gradient space is in the direction 

[Is ,ly ]. More precisely, 

(16) 

where da is a differential element of path length. Thus, the image irradiance equation (14) 

determines one [dz ,dy] for which the corresponding [dp ,dq] can be calculated. From equa­

tion (ID), we know that two linearly independent [dz ,dy j's and the corresponding [dp ,dq j's are 

required to determine H completely . It is not possible to choose an arbitrary direction for 

[dz ,dy] and determine the corresponding [dp ,dq ]. 
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Horn's method confined the choice of [dx ,dy] to the direction determined by equation (16). 

Suppose image point (z 0 ,y 0 ) is known to have gradient (p 0 ,q 0). [Rp ,R9 ] and [/:r ,ly] are calcu­

lated at this point. A small step size da is selected and equation (16) is applied to move to the 

point (x 1,y 1) = (x 0+dz ,y0+dy) with gradient (p 1,qi) = (p 0+dp ,qo+dq ). This procedure is 

repeated to trace a path through the image along which the gradient is determined. This path 

is called a characteriatic atrip. 

Several problems remained. Points where the gradient is known are required as initial con­

ditions for characteristic strip expansion. But, initial conditions are difficult to establish. In 

particular, constraints at occluding contours cannot be used since they cannot be represented by 

the gradient (p ,q ). Full surface reconstruction requires interpolation of surface points between 

neighboring characteristic strips. Brightness measurements are also influenced by noise and 

uncertainty. Errors accumulate as the computation iterates so that characteristic strips begin 

to deviate more and more from their correct path. Attempts to control error propagation and 

to interpolate intermediate surface points em bodied assumptions about surface smoothness. 

\Vben ass um pt ions about surface smoothness are suitably formulated, relaxation or 

cooperative computation methods can be employed. Local constraints propagate to determine a 

global solution. Constraints flow in all directions so that errors don't accumulate in particular 

directions. This leads to better numerical stability in the presence of noise. 

Several results followed Horn in an attempt to capture these ideas. Woodham (1977) used 

local assumptions about convexity and concavity to determine monotonicity relations between 

gradients at selected image points. These relations were embodied in a network consistency 

algorithm to restrict the possible surface orientations at each image point. (See Mack­

worth (1977) for a discussion of network consistency algorithms.) 
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Brooks (1979) noted that if the solution surface is of class C 2 then the integral of (p ,q) 

along any closed curve must be zero. That is, if height z is determined along a curve then one 

must end with no net gain or loss in height when the curve returns to its starting point. 

Brook's iterative algorithm eliminated surface orientations that were locally possible, according 

to the image irradiance equation, but violated the loop integral criterion. 

Fundamental questions about conditions that R (p ,q) and /(:z ,Y) must satisfy to guaran­

tee the existence of a unique solution z = f (:z ,Y) remained open. Recently, Bruss (1981) has 

provided some formal answers. Her results ;;,re technical in nature and are not reproduced in 

detail here. Suffice to say that there are few imaging situations in which every different surface 

produces a different image. Without initial conditions, the solution is not unique. Results have 

been established to integrate the photometric method with constraints determined from 

geometric measurements at surface discontinuities. Section 3.2 presents results for the domain 

of planar surfaces with trihedral corners. lkeuchi and Horn ( 1981) reformulated the shape from 

shading problem to include initial conditions obtained at occluding contours. Their approach is 

discussed in Section 3.3. 

3.2 Planar Surfaces with Trihedral Corners 

Objects whose surfaces are planar form the familiar polyhedral domain. Horn (1977) 

demonstrated hat when three visible planes meet at a point the orientation of each plane can 

be determined locally. The technique combines the quantitative approach to interpreting 

linedrawings of polyhedra, developed by Mackworth (1973), with the quantitative constraint 

provided by image irradiance. 

Suppose three planes A, B and C meet to form a vertex as illustrated in Figure 13(a). 

Mackworth (1973) showed that the line in gradient space joining the gradients of two planes is 



perpendicular to the line in the image formed by the intersection of the two planes. A possible 

triangle in gradient space formed by the corresponding gradients GA, GB and GC is shown in 

Figure 13(b). The edges formed by the planes A, B and C provide three constraints. The posi­

tion and scale o( the triangle shown in Figure 13(b) remain to be determined. Three other con­

straints are provided by measurements of image intensity for the three planes. If the intensities 

measured on the three planes A, B and C are a, fJ and 1 , then GA, GB and GC must lie on gra­

dient space contours R (µ ,q) = a, R (p ,q) = /J and R (p ,q) = ,. The six constraints, taken 

together, are generally enough to determine the orientation in space of the three planes A, B 

and C. 

The idea is illustrated graphically in Figure 14. Two triangles that satisfy the geometric 

constraints have been superimposed onto the reflectance map of Figure 11. The correct triangle 

is the one whose vertices also satisfy the brightness constraints. The position and scale of the 

triangle can be adjusted until GA, GB and GC lie on the required iso-brightness contours. More 

than one triangle can satisfy all six constraints. Often, however, the solution is unique. 

In an ideal polyhedral domain, surface orientation is discontinuous at each edge. This is 

not true in practice, however, since even carefully prepared polyhedra tend to have edge imper­

fections that result in sharp but neYcrtheless continuous changes in surface orientation from one 

plane to the other. Figure 15 shows edge imperfections. The change in surface orientation from 

plane B to plane C of Figure 14, for example, can be continuous, taking on all orientations lying 

on the line joining GB and GC in gradient space. Often, intensity measurements across the 

edge joining B and C will have values outside the range spanned by fJ and 1 . Indeed, if the 

larger triangle of Figure 14 is correct then there would be a highlight on the edge joining B and 

C because the line joining GB and GC passes through brightness values larger than both /3 and 
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Figure 2 is an example or edge effects. The initial ambiguity arises smce, for most 

reflectance functions, the image produced by a surface z = f (x ,Y) illuminated from direction 

(p, ,q,) is identical to that produced by the surface z = - f (z ,Y) illuminated from direction 

(-p, ,-q, ). Intensity measurements across edges help to resolve the ambiguity. Horn (1977) sug­

gested that an analysis of intensity profiles across edges can determine whether the edge is con­

vex, concave or occluding. In Figure 2(a), a highlight can be seen around the lower edges or the 

egg hollows. Such a highlight is inconsistent with the interpretation that the edge is occluding, 

as required for an egg to be present. Instead, it suggests that the edge is convex, which is the 

correct interpretation. 

3.3 Occluding Contour 

An object's silhouette provides additional information that can be used to establish initial 

conditions. Parts of a silhouette may correspond to sharp edges on the surface, as in the 

polyhedral domain. Other parts of a silhouette correspond to places where the surface curns 

around smoothly. The latter is referred to as an occluding contour, as we have seen. At an 

occluding contour, surface orientation can be computed directly from the silhouette 

(Marr (1977), Barrow and Tenenbaum (1981 ), Ikeuchi and Horn (1981 )). In an orthographic 

projection, a normal to the silhouette in the image plane is also a normal to the surface at the 

corresponding point on the occluding contour. 

Ikeuchi and Horn (1981) developed an iterative algorithm to determine sw·face orientation 

using the image irradiance equation and a smoothness criterion as constraints. Surface orienta­

tion at occluding contours is the main source or initial conditions although information from 

singular points, specular points and sel(-shadow boundaries is also included. The stereographic 

projection is used to represent surface orientation. 
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Consider first the continuous case. The goal is to find functions / (z ,y) and g (x ,Y) that 

make error in the image irradiance equation small, while keeping the solution surface as smooth 

as possible. Error in the image irradiance equation is given by 

ff (I(x ,y) - R (! ,g ))2 dxdy (17) 

Departure from smoothness is given by 

ff ((! / + f /) + (g/ + g/)) dxdy ( 18) 

where / s, / y, 91 and Uy are the first partial derivative of / and g with respect to x and y . 

Ikeuchi and Horn minimized the error term e defined by 

e = JJ[(f/+//) + (g/+g/) + >.(/(x,y)-R(J,g))2]dxdy (19) 

Error in the image irradiance equation is weighted by >. compared to departure from smooth-

ness. If the reflectance map is known accurately and if the brightness measurements are precise 

then >. can be made large. On the other hand, if >. is small then a smooth surface is determined 

despite noise and uncertainties about reflectance and illumination. 

In the discrete case, the local error in the image irradiance is given by 

r · = (/· · -R(f · · g · · ))2 
I , J I ,J I , J 1 I , J (20) 

where I,,f is the measured brightness at image point (i ,j) and (/i ,f,gi,f) is the corresponding 

surface orientation in stereographic coordinates. The local departure from smoothness is given 

by 

Ui+l,f - , .. ,,. )
2 + (/,,j+l - /,,,. )

2 + (U;+1,j - Ui,j )
2 + (g, j+l - 9; j )2 , , • = I I 

I ,J 4 (21) 

The problem is to minimize the sum of the local error terms over all points (i ,j ). That is, we 

wish to minimize the error term e given by 

e = EE (-',,i + >- r; ,,) 
I J 

(22) 

where >. is as in the continuous case. 
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The solution method requires that equation (22) he differentiated with respect to / 1 ,i and 

gi ,i . For a minimum, these partial derivatives are all set to zero resulting in a large, sparse set 

of equations. These equations are solved using an iterative method and the set of values for 

I . · and n- · determine the solution surface. 1,J ll'I ,J 

lkeuchi and Horn applied their algorithm to several test surfaces. The algorithm works 

well when all information is precise. It continues to work reasonably well even when the 

reflectance map is only a crude approximation. 

4. Using !•,fultiple Images 

Another approach uses multiple images to provide additional constraint . These images are 

taken from the same viewing direction, but under different conditions of illumination. This 

technique is called photometric atereo and it allows one to determine surface orientation locally 

without smoothness assumptions. 

Suppose two images / 0 (z ,Y) and lb (x ,Y) are obtained by varying the direction of illumi­

nation. Since there is no change in the imaging geometry, each picture element (x ,y) in th? 

two images corresponds to the same object point and hence to the same gradient {p ,q ). This 

means that one doe~ not have the problem of first identifying corresponding points in multiple 

views, as happens in binocular stereo. The effect of varying the direction of illumination is to 

change tlie reflectance map R (p ,q) that characterizes the imaging situation. 

Let the reflectance maps for the two imaging situations be R 0 (p ,q) and Rb (p ,q) respec­

tively. Suppose the point ( z 0,y 0) h:15 measured intensities 

/ 0 (z 0 ,y 0 ) = a and h(z 0 ,y 0 ) - /3 

One obtains two equations for the gradient (p ,q) 

{23) 
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(24) 

The intersection of the corresponding iso-brightness contours in gradient space determines the 

surface orientation at (x 0 ,y 0). There may be more than one solution. Additional information, 

such as a third image, may be needed to determine the answer. This idea is illustrated graphi-

cally in Figure 16. 

Sometimes, three or more images also allow the determination of the reflectance factor p at 

each ( x ,Y ). For reflectance given by equation (2), three views are enough to determine both the 

surface orientation and the reflectance factor p at each image point, provided the three direc-

tions of illumination are not coplanar (Woodham (1980a)). 

Photometric stereo is easy to implement. The stereo computation, after an initial calibra­

tion step, is purely local and may be implemented by table lookup, allowing realtime perfor-

mance. Photometric stereo is a practical scheme for environments, such as industrial inspection, 

where the illumination can be controlled. 

The multiple images required for photometric stereo can be obtained by moving a single 

light source, by using multiple sources individually calibrated or by rotating the objr'ct and 

imaging device together to simulate the movement of a single light source. An equivalent to 

photometric stereo can also be achieved in a single view by using multiple sources that can be 

separated by color. 

Several practical implementations of photometric stereo have been attempted. 

Silver (1980) achieved high accuracy under conditions of precise calibration. lkeuchi (1981) used 

extended light sources to improve accuracy by altering the shape of the reflectance map. This 

proved useful for specular surfaces. Coleman and Jain ( 1982) obtained qualitatively correct 

results using only an approximation to the correct reflectance map. Initial experimentation, 

however, has been confined to single convex objects to avoid the effects of mutual illumination. 
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4.1 Comparison with Binocular Stereo 

Photometric stereo is complementary to methods based on the identification of correspond­

ing points in two images obtained from different viewpoints: 

( 1) Binocular stereo allows the accurate determination of distance to the surface. Photometric 

stereo is best when surface orientation is to be found. 

(2) Binocular stereo works well on rough surfaces with discontinuities ID surface orientation. 

Photometric stereo is best when surfaces are smooth with few discontinuities. 

(3) Binocular stereo works well on textured surfaces with discontinuities in surface reflectance. 

Photometric stereo is best when surfaces have uniform optical properties. 

Photometric stereo does have some distinct advantages: 

( 1) Since the images are obtained from the same point of view, there is no difficulty identifying 

corresponding points in two images. This is the major computational task of binocular 

stereo. 

( 2) In certain circumstances, the surf'ace reflectance factor p can also be found because the effect 

of surface orientation on image brightness can be removed. Binocular stereo does not pro-

vide this capability. 

(3) In many applications, a description of object shape based on surface orientation is preferable 

to a description based on range or altitude above a reference plane. 

6. Discussion 

The fundamental problem in computational vision is to reconstruct a three-dimensional 

representation of the scene from its two-dimensional projection onto the image plane. Substan-

tial progress has been made both to define the levels of representation required and to identify 

specific modules working at each level. Using the terminology of Marr (1982), three levels of 
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representation emerge. They are: 

1. the primal sketch 
2. the 2 1/2-D sketch 
3. 3-D representation 

The primal sketch represents locations in an image where brightness changes abruptly. The pri­

mal sketch is a description of image properties. Surface properties are assigned to the locations 

described in the primal sketch to form the raw 2 1/2-D sketch. Surface properties include: 

reflectance changes, illumination changes, discontinuities in depth and discontinuities in surface 

orientation . Information in a raw 2 1/2-D sketch is likely to be sparse. The raw 2 1/2-D sketch 

is interpolated to define surface properties everywhere in the image. The result is called the full 

2 1/2-D sketch. A representation of properties of the visible surfaces in a scene has also been 

called intrinsic images by Barrow and Tenenbaum (1978). When the particular property is sur­

face orientation, it has also been called a needle diagram by Horn (1982). Both primal sketch 

and 2 1/2-D sketch representations are defined in a viewer-centered coordinate system. That is, 

they define spatially varying functions over the plane forced by the imaging geometry . 

Photometric methods attempt to determine surface orientation directly from image inten­

sity at each location in the image plane. To the extent that the laws of physical optics are ade-

quatcly represented, the image irradiance equation must, of necessity, be correct.. At this level, 

it represents a theory of the problem, but not a theory of solutions to that problem. The 

requirements of photometric methods for determining shape from shading may seem overly res­

trictive in comparison to the robustness of the human visual system. Nevertheless, the theory 

confirms that there are trade-offs between shape, surface reflectance and illumination that can­

not be resolved. One must accept the notion that the perception of shape, although apparently 

unambiguous, may sometimes be incorrect. 0( course, the assumptions and constraints imposed 

by the methods discussed in this chapter say nothing about the assumptions and constraints 



that may be found to underly the human visual system. 

There are two paths to follow. One path involves restricting the scene domain. Generic 

knowledge of surface properties and illumination can lead to precise scene reconstructions in a 

variety or circumstances. This is the path taken by the photometric approach, the results of 

which have been summarized in this chapter. The other path involves discovering general per­

ceptual principles that apply regardless of scene domain. Constraints imposed by the perceiver 

may imply a unique reconstruction even though the physics of the problem does not. It seems 

that this must apply in human vision. Current work in shape from shading and shape from 

stereo may be retreating from the notion that a precise numeric reconstruction of shape is 

required, arguing instead that qualitative symbolic descriptions are sufficient. 

The photometric approach also provides a theory to account for certain qualitative effects 

that occur in real images. Section 3.2 argued that an analysis of intensity profiles across edges 

in the polyhedral domain can often lead to their direct interpretation as convex, concave or 

occluding. An image irradiance equation also helps to constrain what isn't seen. For example, 

Grim son ( 1981) uses the image irradiance equation in his work on binocular stereo to constrain 

surface interpolation in areas that did not produce assertions at the level or the raw 2 1/2-D 

sketch. 

Photometric methods are being applied to problems in remote sensing. Computer-based 

analysis or remotely sensed data typically assumes that image irradiance can be related directly 

to ground cover. This has been successful for wheat and other crop inventories in the flat plains 

of North America. But, it has been largely unsuccessful for forest inventory in British Columbia 

and other areas of rugged terrain. Models or surface reflectance predict conditions of illumina­

tion and terrain that cause the effects of topography to dominate those of ground cover. The 

ability to predict image features for known terrain and illumination has been used to automati-
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cally register Landsat images to digital terrain models (DTM's) (Horn and Bachman (1978), Lit­

tle (1982)). Even when a remotely sensed image has been registered to a surface model, it can 

be difficult to separate changes in ground cover from topographic and illumination effects 

(Woodham (1980b), Sjoberg (1982) and Teillet et al. (1982)). Work in this area is continuing. 

In conclusion, it seems that any algorithm for surface reconstruction that determines a 

unique solution must either embody assumptions about the scene domain or about the perceiver. 

The tools summarized in this chapter can help to make those assumptions explicit. They help 

to make computational vision a theoretical science as well as an experimental one. 
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Figure 1. A synthesized image of a sphere. For a given object material, viewer position 
and distribution of light sources, image brightness is a function of surface orientation. 
In Computer Graphics, images are synthesized by using a suitable reflectance model and 
,illumination to assign a brightness value at each visible surf ace element. 

Figure 2.· Lighting conditions alter the perception of shape. The image in (a) seems to 
show a container holding five eggs. But there are no eggs in the container. In (b), the 
image is obtained under more natural lighting conditions. Two eggs have been added 
and the three remaining hollows are easily identified. To see image (a) "correctly", turn 
it upside down. (Adapted from Light and Viaion, LIFE Science Library, Time Inc., New 
York, NY, 1966) 





Figure 3. Altering surface properties can alter the perception of object shape. The 
image in ( a) shows a model's face without makeup. The image in (b) demonstrates the 
use of makeup to alter the perception of shape. (Adapted from an advertisement for 
Merle Norman Cosmetics, Inc., Los Angeles, CA, 1979) 

Figure 4. The full moon. The moon has remarkable photometric properties arising 
from the special structure of its surface. Quantitative shape from shading methods were 
first developed to deal with the lunar surface. 
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Figure 6. "Spheres within spheres" as seen by a scanning electron microscope (SEM). 
Shading in a SEM image, although not natural, still provides strong cues to shape. 
(Adapted from Fisher, G. L. et al., "Fly Ash Collected from Electrostatic Precipitators", 
Science, Cover, Vol. 192, May 7, 1976) 
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Figure 6. An orthographic projection. In an orthographic projection all rays from 
object surface to image are parallel. With appropriate scaling of the image uv -plane, 
image coordinates (z ,'!/) and surface coordinates (z ,'!/) can be used interchangeably. 
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Figure 7. Defining the angles i c and g. The incident, angle i is the angle between 
the incident ray and the urfacc normal. The emergent an.gle c is the angle between the 
emergent ray and the surface normal. The phase angle g is the angle between the 
incident and emergent rays. 
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Figure 8. Spherical coordinates. The azimuth angle 8 is measured counter-clockwise 
from the z -axis in the zy-plane and the polar angle ¢, is measured from the z -axis. 
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Figure 9. The gradient (p ,q) is obtained by extending the point on the Gaussian 
sphere outward from the center·(i.e., from the point (0,0,0)) until it intersect the plane 
z = -1. Only the northern hemisphere of the Gaussian sphere is represented in gra­
dient space. 

s 
Figure 10. Stereographic coordinates (/ ,g) are obtained by extending each poin t on 
the Gaussian sphere outward from the south pole (i.e., from the poin t (0 0 1)) until it 
intersect the plane z = -1. All points on t he Gaussian sphere, except the south pole 
itself, are represented in the stereographic project ion. 
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Figure 11. The reflectance map R 2(p ,q) for a perfectly diffuse surface illuminated 
from a distant point source with gradient p, = 0.7 and q, = 0.3 (p = 1.0). The 
reflectance map is plotted as a series of contours spaced 0.1 units apart. 
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Figure 12. The reflectance map R 3(p ,q ), similar to material in the maria or the moon, 
with illumination from a distant point source with gradient p, = 0.7 and q, = 0.3 
(p = 1.0). The reflectance map is plotted as a series or contours spaced 0.2 units apart . 
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TRIHEDRAL JUNCTIONS 
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(a) IMAGE (b) GRADIENT SPACE 

Figure 13. A trihedral vertex formed by planes A, Band C is shown in (a). The trian­
gle joining the corresponding gradients GA, GB and GC is shown in (b ). The line in gra­
dient space joining the gradients of two planes is perpendicular to the line in the image 
formed by the intersection of the two planes. 





A 

C 

Figure 14. Two possible gradient space triangles corresponding to the trihedral vertex 
formed by planes A, B and C (shown inset). Intensity measurements on the three planes 
determine the true position and scale or the triangle in gradient space. 
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EDGE IMPERFECTIONS 

(a) PERFECT EDGE (b) ACTUAL EDGE 

Figure 15. Edge imperfections. In (a), surface orientation is discontinuous where the 
two planes intersect. Real edges are often rounded. In (b), surface orientation Yaries 
continuously from one plane to the other. 
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Figure 16. !so-brightness contours from three reflectance maps are superimposed. 
Each corresponds to the intensity value at (z ,1/) obtained from three images obtained 
under different conditions of illumination. The three intensity measurements were 
I 1(z ,!/) = 0.942, / 2(z ,11) = 0.723 and / 3(z ,!/) = 0.505. The common point of intersec­
tion determines the gradient (p ,q ). 
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