
RF-MAPLE: A LOGIC PROGRAt,t.'!ING LANGUAGE
WITH FUNCTIONS, TYPES, AND CONCURRENCY

by

Paul J. Voda and Benjamin Yu

Technical Report 84-8

April 1984

RF-Maple: A Logic Programming Language with Functions,
Types, and Concurrency.

Paul J. Yoda and Benjamin Yu.

Department or Computer Science, The University or British Columbia,
6356 Agricultural Road, Vancouver, B.C. Canada V6T 1W5

ABSTRACT

Currently there is a wide interest in the combination or functional programs
with logic programs. The adva.ntage is that both the compostion of functions and
non-determinism or relat.ions can be obtained. The language RF-Maple is an
attempt to combine logic programming style with functional programming style.
"RF" stands for "Relational and Functional". It is a true union or a relational
programming language R-Maple and a functional programming language F
Maple.

R-Maple is a concurrent relational logic programming language which tries to
strike a balance between control and meaning. Sequential and parallel execution
or programs can be specified in finer details than in Concurrent Prolog. R-Maple
uses explicit quantifiers and has negation. As a result, the declarative reading or
R-Maple programs is never compromised by the cuts and commits or both Pro
logs.

F-Maple is a very simple typed functional programming language (it has only
four constructs) which was designed as an operating system at the same time. It
is a syntactically extensible language where the syntax or types and functions is
entirely under the programmer's control.

In combining the two concepts or R-Maple and F-Maple producing RF-Maple, the
readability or programs and the speed or execution are improved. The latter is
due to the fact that many relations are functional and therefore, do not require
backtracking. We believe its power as well as its expressiveness and ease or use go
a litt.le beyond the possibilities or the currently available languages.

April 1984

RF-Maple: A Logic Programming L11.nguage with Functions,
Types, and Concurrency.

Paul J. Voda and Benjamin Yu.

Department or Computer Science, The University of British Columbia,
6356 Agricultural Road, Vancouver, B.C. Canada V6T lWS

1. Introduction
Applicative programming languages are languages without side effects. They are either based on
functions or predicates. The former are functional languages and the latter, logic programming
languages. Since functions yield only one result, the expressive power and readability or func
tional programming languages come from the possibility of composition or functions. However,
composition or relations is not as readily available. Functional relations, such a.s P (x ,11) where
there is exactly one 11 for each z, can be composed using the descriptions of Russell
R (i11P (z ,11)) !cf. ShoeJ. In the case or true relations, P (z ,11) need not be satisfied at all or it
can be satisfied by many values or 11. One can technically use the indeterminate descriptions of
Hilbert R (t11P (.:z: ,11)) which can be read as " R (y) is satisfied by a II such that P (.:z: ,II) pro
vided there is a such a 11 ". Descriptions are, however, quite unreadable and one should introduce
a function instead of a definite description and resort to an auxiliary variable
:111 (R (11) & P (z ,II)) instead or indeterminate descriptions. Note that the existential quantifier
is only implicit in antecedents or clauses or Prolog I Kowa, Clar J.
Relations, because or their nondeterminism are often prererrable over functions. Yet many rela
tions are functional and they should be replaced by functions in order to improve both the reada
bility or programs and the speed or execution. The latter is possible because there is no overhead
associated with backtracking. Moreover, due to the or -nondeterminism or relations, relation
based programming languages can exhibit a wider scale of control behaviour than the functional
languages. For these reasons there ha.s been quite a few attempts recently to combine logic pro
gramming style with functional programming style let, Symp J.
We believe that the programming language RF-Maple (RF is for Relational and Functional)
blends nicely these two styles or programming. It is a union or two separately designed program
ming languages: R-Maple I Yoda t J and F-Maple I Yoda 2 J.
R-Maple is a concurrent relational logic programming language which tries to st.rike a balance
between control and meaning. Sequential and parallel execution or programs can be specified in
finer details than in Concurrent Prolog I Shap J. R-Maple uses explicit quantifiers and has nega
tion. As a result, the declarative reading or R-Maple programs is never compromised by the cuts
and commits or both Prologs.

F-Maple is a very simple typed functional programming language (it bas only four constructs)
which wa.s designed as au operating system at the same time. It is a syntactically extensible
language where the syntax or types and functions is entirely under the programmer's control.

In combining the two concepts of R-Maple and F-Maple producing RF-Maple, we believe its
power a.s well as its expressiveness and ease or use go a little beyond the possibilities or the
currently available languages.

In this paper, we will first present the design principles or R-Maple in sections 2 to 3, and then in
sections 4 to 5 , we will present the features or F-Maple, and finally in section 6, we will present
the combination or the concepts or R-Maple \\'ith F-Maple to form RF-Maple. We have decided
to discuss R-Maple and F-Maple separate'ly becaust' both or them have their own characteristics
which are best explained independently. In combining the two languages we do not risk any

- 2 -

collusion or concepts because RF-Maple is a true union or both languages.

z. Description ot R-Maple.
Imperative programming languages are concerned mostly with control and complicated meaning
functions are required to give meaning to programs. On the other hand, logic programs I Kowa J,
at least in theory, being tomulas or predicate calculus, direcly express the meaning, but like Pro
log and Concurrent Prolog (hereafter referred to as C-Prolog), has limited control over the execu
tion sequ<'nce I Shap, Clar J. R-Maple strikes a balance between these two ends or the scale by
allowing sequential and parallel execution or predicates but still maintains that a program is
closely related by a meaning function to formulas or predicate calculus. Like C-Prolog, R-Maple
synchronizes parallel processes by distinguishing between the input and output variables. This
turns out to be esse11tial tor the synchronization or concurrent processes as confirmed by C
Prolog. Thus the symmetry or some or the relations of Prolog is sacra6ced. However, unlike Pro
log, R-Maple has quantifiers and logical connectives. Quantifiers eliminate the need for cuts and
commits, while connectives allow negation. A simple example is Genm (1st I z) which generates
all elements z or the list lat . A predicate such as Genm with output variables is called a genera
tor where a predicate without output variables is called a test . We use the vertical bar to
seperate the output arguments from the input arguments.

Gcnm (let I z) la case lat ot
nil I F

I hd ,tail J I z := hd or Genm (tail I z)

This generator generates the bead or the list let ir the list is not nil, otherwise it returns F (false).
Two new variables, hd and tail are declared in case the list lat is not nil. The declarative read
ing or this predicate is :

Genm (1st ,z) +-+ ~hd tl (I hd ,tail J=lst & (z =hd V Genm (tail ,z)))

Another example or g<'nerator is Add (B ,I I z) which has the declarative reading s + t =z.

3. Computation& ln R-Maple.

Before we describe how the control directs t.he execution of a R-Maple program, we first define a
postfix operator !. When a program C is to be computed, it is placed into the scope or the
operator ! which is called a process. C ! will then indicate a process that is ready to be executed.
Computation is performed by applications or rewriting rules or the form A > B where part A
always contains the operator !. For example:

(A or B) ! > A ! or B
(A orp B) ! > A ! orp B !

F ! or B > B !
T! or B > T!
F!; B > F!
T!; B > B !

The first rewrite rule specifies that, for a sequential or , control is first passed to A. Ir A is false,
then control will then pass on to B because of the rule F ! or B > B ! . In the second rewrite
rule, during a parallel or , control is passed to both A and B. That is, two processes are created
t.o execute A and B simultaneously. The rules or R-Maple are designed in such a way that there
is at most one rule applicable tor each process in the computed formula.

The rewriting continues until the program is transformed into the form where no rewriting rules
are applicable. This can either rail to terminate, terminate normally (in the form T !), or remain
deadlocked. We should note that the executing machine is not a full theorem prover and that if
the program never terminates, it does not mean that the original program was not a theorem.
(For instance: P or 3=3 will never terminate if P does not terminate although the declarative
reading or the formula is true. But since the sequential or is used, the executing machine will
try to compute P before starting to compute 3=3 and therefore the whole program will never

terminate.)

We saw earlier an example or the generator Add (s ,t I z). Add is a / unctional generator. In
general, a non-runctional generator G (I z) ! will be transformed into the Corm
z := a ! or H (I z) where a is tbe first value generated, and H (I z) is a generator ror the
rest or the values in case backtracking is required (i.e. when a is later rejected).

A typical setup for a program is or the form

ftnd z In { G (I z); T (z)}

This program has a declarative reading 3 z (G (z) & T (z)). G (I z) could be a runctional
generator, in which case, we obtain find z In {z := a !; T(z)}, and eventually T(a) ! since
:b (z :=a !; T(z)) ++ T(a). In case G (I z) is a relational generator, we successively obtain

ftnd z In { (z := a I or H (I z)); T (z) } >
flnd z In { (21 : = a ! ; T (z)) or (H (I z) ; T (z) }} >

find z In {x := a !; T(x)} or flnd z In {H (I z); T(z)} >
T(a)! or find z In {H (I z); T(z)} (1)

That is, backtracking is done using computational rules only. These rewritings are justified by
the distributivity or conjuction, and by the quantifier splitting tautology

3z (A V B) ++ 3x A V 3z B

Should the test T(a) in (1) rail, the control will Call back into the backtrack search employing
H (I z). On the other hand, ir the test T (a) ! is satisfied the whole program is transrormed to
T ! automatically erasing the backtrack program. Another
Append (M l,lst 2 j result) which appends list Isl 1 t.o 1st 2 to form the output list

Append (lst 1,lst 2 I result) la
Case 1st 1 of

m'./ I result := fat 2
I hd ,ti J I find res 1 ln {Append (ti ,1st 21 res 1);result := I hd ,res 11}

example
in result.

is

R-Maple is more flexible in expressing parallel execution than C-Prolog. To execute the generator
and the test in ftnd z In { G (I z); T (z)} in parallel, we can use the same expression with only
one minor change; i.e. find z ln { G (I z) I I T(z)}.
Computations or R-Maplc are invariant to the declarative reading of programs. This is because
each rewriting rule is justified by a logical tautology. In case or tests, computation employs the
truth tables or logical connectives. In case of generators, an aBSignment z :=B ! reached by the
control is propelled backwards through its enclosing connectives and quantifiers by relying on the
a.ssociativity and distributivity or conjunctions and disjunctions until it reaches its associated
quantifier. The quantifier is then discharged by the rewriting rules:

find z In {r. :=8 !; A (z)} > A (s) !
find z In {z :=s ! II A (z)} > A (8)

We should mention here that there are no rewriting rules ror guiding an aesignment through a
negation. This is because there is no good declarative reading for such a transrormation. A pro
gram that attempts this will result in a deadlock. Moreover, there is no need ror this in logic pro
grams as the practice or Prolog confirms.

Thus R-Maple is a simple, purely declarative, logic programming language with explicit control
over sequencing and parallelism. By the employment or logical connectives, the use of explicit
quantifiers (find) coupled with the use of caBe statements, all the cuts and commits of Prologs
can be eliminated. Moreover, a wide scale of control behaviours is now possible without
compromising the declarative reading of programs.

4. Description of F-Maple.

F-Maple (F stands for Functional) is typed and provides, not only for semantic extensibility (new
types and functions), but also for syntactic extensibility. The grammar or data types and

- 4 -

functions is completely under the user's control. Schemes for data types specified by grammars
have been proposed, among others, by I Kand J and I Malu J. F-Maple generalizes this approach
by providing grammars for the specification of functions as well. Moreover, only four constructs
are all that is needed, making F-Maple a simple but powerful functional programming language.

The basic types or F-Maple are Number and String. From these basic types, a user can define
new data types by means or productions. For example, we can define the data type Comple:z
which defines all complex numbers as follow:

Comple:z - Number + Number i

Similarly, to define the type for a list of numbers Numlist, we can express this new data type by:

Numlist - nil
Numlist - head Number and tail Numlist

Such productions are called the generoling productions. The non-terminal on the left band side
of a generating production is an F-Maple type. Sentences produced from a non-terminal are
values or the data type. For example:

head 2 and tail head 4 and tail head 6 and nil

is a data value for the type Numlist denoting a number list containing elements 2, 4, and 6,
whereas

42 +35 i

is a data value for the type Comple:z denoting a complex value with the obvious meaning. Thus
the use or grammars at once specifies the data type and permits the concrete Bynta."t to the con
structors. The user bas complete control over the syntax. Ambiguous grammars are permitted in
F-Maple. Rather than attempt to parse the basic values or terms specifying bodies of functions,
we use an interactive structure editor to prompt the user for the value of the type needed at any
moment. This also elimates the need for the user to type in the long descriptive names as termi
nals because he simply enters the needed value to the production that he selects from the menu .
It is apparent that the use of a grammar (or productions) gives the user a very powerful syntacti
cally and semantically extensible tool for constructing types and their values.

&. Terms over F-Maple Type■ •

Terms over the types of F-Maple are used to llpecify functions operating on the data types. They
are obtained by adjoining to the generating productions three new kinds of productions. These
are called /unction, case, and variable productions. To distinguish them from the generating
productions we will write them with > as the produce, symbol. Each term io F-Maple bas a
type. Terms stand for the basic values. Basic values are constructed from generating productions
only and terms are reduced by computations to basic values.

Examples of function productions may be the following ones.

Number > Number + Number
Numlist > append Numlist a/ ter Numlist

Nonterminals on the right hand side specify the types of formal arguments while nonterminals on
the left band side speciCy the types of the function result. Thus the first function takes two
values or type Number and yields a Number again. Addition is a predefined F-Maple function.
On the other band, the two-argument function append operating over the type Numlist must be
defined at the same time as its production is adjoined to the grammar or F-Maple.

The above function productions combined with generating productions are used to produce the
following term from Numlist .

append nil a/ ter head 5 + 7 and tail nil

Computation or F-Maple reduces this term to head 12 and tail nil. The computation rule for
append may be specified as follows.

append LB 1 a/ ter /Js 2 =
case LB 2 or

nil I Ls 1

- 5 -

head H and tail TI head H and tau append L, 1 a/ ler T

In the body or append, we use variables LB 1 and L, 2 which are automatically declared by the
addition or two new variable productions:

NumliBt > Ls 1
Numlisl > LB 2

Note that only types and variables are capitalized.

When append is invoked, Ls 2 will be bound to the actual argument or type NumliBl. There are
two generating productions for the type Numlisl thus there are two possible forms for Ls 2. Ir
Ls 2 is nil, the first case is executed. The result or this function is just the value or Ls 1, other
wise, Ls 2 must be a list consisting a bead and a tail. In the latter case, the bead or the list Ls 2 is
given the name H, and the tail T. Now these variables can be used in the body or the production
or this second case. This is because two new variables are now declared.

Number > H
NumliBl > T

The result or the function would be combining the head or Ls 2 with the result or appending Ls 1
after the tail or Ls 2.

Generally, case product.ions are or the following form.

S > cue T of a 1 I S 02 I S · · · aft I S

where each a, is called a ca■e label. This case production is legal iff the case labels correspond
exactly to all the generating productions for the type T. The user may adjoin a case production
for any combinations or types S and T using his own variable names in the case labels.

AB mentioned above, the scale of possible control behaviours or functional programs is very lim
ited. We did not attempt to include any explicit control mechanism in F-Maple. The computation
is by lazy evaluation.

e. Description of RF-Maple.

In combining functions and relations together, we have a choice or introducing functions in a rela.
tional environment, or introducing relations in a functional environment. In the first case -we
obtain the standard predicate logic with functions in terms. The 11econd case leads to a logic
without formulas but only with terms. This kind or logic, although not as common as the first
one, is perfectly legal from the logical point or view and is called term logic. Actually it is
slightly simpler than the traditional presentation or predicate logic because the Bometimes
superfluous distinction between lormulas and terms dissappears.

In the design or RF-Maple we have opted for the term logic. Relations are simply functions with
Boolean values. The type Bool is defined as follows.

Boo/ - true
Boo/ - f alee

Functions in applicative languages have all arguments input only. Therefore relations in a func
tional programming language are only tests of R-Maple. The power or logic programming comes
from generat.ors, that is Doolean functions with output arguments. Thus any extension or a func
tional programming language to a relational one must permit Boolean functions with output argu
ments.

One has to be careful to limit Boolean functions u the only kind or-.. runctions that can generate
output. It is easy to give the declarative reading :lz (G (z) & T (z)) to the program
8nd z In G (z); T (z) no matter how many values satisfying G (z) where G (z) is a genera
tor. On the other hand, if we allow the intei~er function / (z ,II) with II being the output

- 6-

argument, we would have difficulties determining what number does the term f (6,u) + 3 stands
for.

The computation or RF-Maple is taken over from the component languages without any changes.
Functions are computed by the lazy evaluation of F-Maple. Generators are computed by the
rewriting rules or R-Maple. The latter computation is necessarily slower because it must cater to
the backtracking. Functions execute without this overhead.

RF-Maple has, in addition to the four basic constructs or F-Maple, four new ones. These are the
find, aaeignment , parallel and, and parallel or constructs.

find is a schema or productions of the rorm:

Boo/ -+ flnd a: T In Boo/

where a is an identifier and T is a type. For each find production, two more productions are
automatically added. These are the variable production T > a and the assignment production
Bool > a:=T. The productions may be used in the body of flnd . For example:

flnd X : Number In X :== 5

is a correct, ir not particulary useful, term or type Bool because it uses the production
Boo/ > flnd X: Number In Bool.

We would also like to extend RF-Maple to include the control structures or R-Maple. This
includes both parallel and sequential and and or. Sequential and and sequential or can be
predefined using the case construct as follows :

and

Bool > Boo/ ; Boo/

A;B -=cue A of
true IB
f alee I f alee

Bool > Bool or Boo/

A or B = cue A of
true I true
false I B

For parallel and and parallel or , we introduce two new productions:

Bool => Bool II Boo/
Boo/ > Boo/ orp Bool

Control will be passed on to the two bodies as in the case in R-Maple.

Boolean runctions can have output arguments. These are called generator,. Generators can con
tain the find, aeeignmenl, the parallel and and parallel or constructs as well as calls to another
generators. Thus an example is:

Boo/ ==> generate Number from Numliet

generate X from Let - cue Let of
empt11 I f alee ;
head H and tail T I X :== H or generate X from T

By mixing all eight kinds or productions, we can create arbitrarily complicated terms over our
types.

Let us give as an example ror the RF-Maple implementation of parallel Quicbort. It is a genera
tor or type Boo/.

Boo/ > sort Numlisl into Numlist

- 7 -

Bort JI into Ol = append already Borled nil a/ ler ll giving ,orled 01

The body of sort calls another generator append. At this point we urge the reader to reflect on
how the syntactic extensibility or RF-Maple self-describes the intended effect or both generators
down to the level of indicating the output variables. This can be contrasted with the quite cryptic
Prolog counterpart.

The definition of the generator append is a recursive one.

Bool => append already eorted Numlist a/ ter Numlist giving ,orted Numliet

append already ,orted SI a/ ter UI giving ,orted Ol =
cue Ul or

nil I 0/ :=SI
head N and tail TI

cue partition T by N ot
emaU Sml and forge Lrg

flod X: Numlist In
append alreadv eorted Sl a/ ter Lrg giving 1orted X II
append alread11 eorted head N and toil X a/ ter Sm/ giving Borted 01

Two partioned sublists Sml and Lrg are sorted in parallel. We use the speeded up version or
Quicksort where the concatenation or the two sorted sublists is done on the fly.

Both predicates above are generators. However, there is no need to program partition as a predi
cate. Partition is, then, simply a function yielding two lists. The relevant definitions are as fol
lows.

Pair - ,mall Numlist and large NumliBt
Pair > partition Numlist bu Number

partition NI bu Num =
case NI ot

nil I email nil and large nil
head H and tail T I

case partition T by Num ot
,mall S and large L I

cue Num < H ot
true I email S and large head /I and tail L
/ alee I email head H and tail S and large L

U the reader finds such a style ot programming too Cobol-like let us note that

a) the syntax or constructs is entirely under the control or the programmer. Ir the user prefers
the terse Prolog-like style, he just bas to define the types, predica~s and functions accord
ingly,

b) bodies of functions are not entered by a programmer. A structured editor is used. The edi
tor knows from the given context what type and what kind or productions are available and
the programmer needs only to select from a menu listing all the productions available at the
moment.

On the other hand, the use or functions instead or functional predicates should speed up the exe
cution because there is no backtracking needed.

Another well known advantage or using functions over predicates is that they can be composed
(nested) without the annoying auxiliary variables.

~ the second example of combining functions and generatoftl we present the RF-Maple imple
mentation for the eight queens problem. Solutions are obtained by the invocation or the genera
tor

give a solution S to 8 queens

- 8 -

Should the correct solution S or the problem turn out to be unacct'ptable for some reasons later,
the generator wiU be backtracked to produce the next solution by the l!ltandard methods or R
Maple computations.

The solution S is encoded as a list or column positions of queens. The i -th element of S is the
column position or the queen in the row i.

We need two auxiliary functions

Bool ==> queen in column Num6er u compatible with aolution Numlut
Numliet c:.> attach new position Number at the end of 1olution Numli,t

The first one is a test verifying the compatibility of the next p06ition or a queen with a partial
solution. Note that although it i! a predicate, it behaves, and indeed is, an ordinary F-Maple
function which can be executed faster than a generator. The second function yields an extended
solution from an accepted new position and a partial solution. We do not give the bodies of func
tions here as they are quite straight-forward.

The main generator is defined a.s follows.

Boo/ => give a 10/ution Numliet to Number queen,

give a solution S to N queen, ==
ca&e N=O of

true I S :=nil
false I

find X: Numli,t In
gfoe a solution X to N-1 queen, ;

find C: Num6er 1n
C :==l or C :=2 or C :-3 or C :==4 or C :=5 or C :-=6 or C :==7 or C :=8;
cue queen in column C i8 compatible with Bolution X of

true I S := attach new position C at the end of 10/ution X
f alee I f alee

This genel'ator is quite simple. Arter finding the partial solution X the eight candidates C are
tried. In the case or an acceptable candidate the partial solution X is extended to the required
length by generating the solution S. In the case that all candidates are rejected the recursive
invocation or the generator is reentered to generate a new partiaJ solution X.

'I. Conclusion.

In the process or combining the power or a relational logic programming language with a typed
extensible runctional programming language, we find that RF-Maple offers a solution to a wide
variety or applications. We have a syntactically extensible programming language with a fine
scale or control behaviour. Moreover, the declarative reading is not compromised by any opera
tional aspects. The declarative reading or RF-Maple programs specifies only the partial correct
ness. Programs may etill lail to terminate. But if they terminate, the declarative reading bas been
achieved. Cuts or Prolog are not invariant to the declarative reading.

Finally we should say a few words on the current state or the languages. We have a running pilot
implementation or R-Maple done by the second author. There is an almost running implement~
tion or F-Maple done by the first author. Almost running is because there is a lot more than a
mere interpreter to F-Maple. F-Maple has been designed as its own operating system with a struc
ture editor and a virtual Ole system. A function is not aware whether the arguments come from
another function, from a file, or from the input. In the last case we reenter the structure editor
and the user constructs the vaJue or the requested type via menus or applicable generating pro
ductions. Thus there is never a need tor a program to parse the input from the characters.

RF-Maple is a true superset or F-Maple. One needs a separate interpreter for the execution of gen
erators in addition to the changes in the structure editor. This interpreter will be added to the F
Maple system as soon a.s F-M3.ple becomes operational. With the capability to sequence the

- 9 -

execut.ion or a program sequentially or in parallel, and the power or both functional and relational
programming, RF-Maple goes a little beyond the possibilities or the currently available languages
without compromising the declarative reading or programs by cuts and commits.

I Malu J Maluszynski J., Nilsson J., A Notion or Grammatical Unification Applicable to
Logic Programming Languages, Department or Computer Science, Technical University of
Denmark, Doc. ID 967, August 1981.

I Clar J Clark K.L., McCabe F.G., Gregory S., IC-Prolog Reference Manual; Research
Report Imperial College, London ig31,

(Kahd J Kanda A., Abramson H., Syrotiuk V., A Functional Programming Language Based
on Data Types as Context Fr~ Grammars; (submitted for publication), December 1983.

I Kowa J Kowalski R., Logic for Problem Solving; North Holland, Amsterdam 1079.

I Shap J Shapiro E., A Subset or Concurrent Prolog and its Interpreter, TR3 Institute for
New Generation Computer Technology, Jan 1983.

I Shoe J Shoenfield J., Mathematical Logic, Addison-Wesley, 1967.

I Symp J 1984 International Symposium on Logic Programming, Feb. 6-9, 1984.

I Voda 1 J Voda P. J., R-Maple: A Concurrent Programming Lnnguage B3.5ed on Predicate
Logic, Part I: Syntax and Computation; Technical Report or Dept. Comp. Science UBC,
Vancouver August 1983.

I Voda 2 I Yoda P. J., F-Maple: A Simple Typed Extensible Functional Programming
Language Designed as an Operating System (in preparation).

