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Abstract 

Numeration models of extensional A-calculus have been studied (see [5,7]). 
In this paper, we study numeration models of >.,8-calculus. Engeler's graph alge­
bra construction [3] is applied to the category of numerations and is used as a 
tool to obtain numeration models of >.,8-calculus. Several classes of numeration 
models are studied and several examples of them are presented. 
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§1. >-.~calculus 

The >-.~calculus developed by Church [2] is the following formal system: Let 

V be a countable set or variables. A >.-term is either a variable xEV, application 

(MN) or >.-terms M and N, or abstraction (>.x.M) of a >.-term by a variable x. T 

denotes the set or all >.-terms. 

We assume a natural meaning or a >.-term occurring in some other >.-term. 

An occurrence or a variable x in M is bound if it is inside a part or M or the form 

(>.x.M). Otherwise it is free. For any terms M, L and a variable x, the result or 

substituting L for each Cree occurrence of x in M (and changing bound variables 

to avoid clashes) is denoted by M[x:=L]. 

The calculus has the following two reduction rules: 

Reduction Rules 

(o:):(>-.x.M) - (>-.y .M [x :=y]) 

(,B):((>-.x.M )L) - M [x :=L] 

x is not bound in M and 

y does not occur in M 

[I 

By Godel numbering variables and >.-terms we can realize constructions or 

>.-terms as a system of recursive functions. Let v :N - V and r.N - T be com­

putable bijections. The syntax or >.-terms corresponds to the following system of 

recursive functions: 

is-var(n) ~ 7(n)EV 

is-appl11(n) ~ 7(11) == (ML) for some M,LET 



is-abst(n) ~ r(n) = (Ax.M) for some xEV and MET. 

T(inc (n)) = v (n) 

is-var(n) =} v(var(n)) = r(n) 

is-apply(n) =} T(applu(rator(n),rand(n))) = r(n) 

is-abst (n) =} 1{ abst ( bound (n),bodu (n))) = r(n). 

§2. NUMERATION MODELS OF >.,8-CALCULUS 

Definition 2.1. (Ersov {4}). 

A numeration ( of a set X) is a surjection 1:N -+ X. A morphism from a 

numeration -.,1:N -+ X 1 to another -.,2:N -+ X 2 is a function / :X 1 -+ X 2 such that for 

some recursive function r1 , f ·11 = -.,2·r, . Such r1 is called a realization of f. In 

case r I is primitive recursive, we say f is primitive. 

[I 

It can readily be seen that numerations and morphisms form a category. 

(See Ersov [4]). 

Let 1:N -+ X be a numeration such that for some numeration 

1t :N -+ Hom ('Y,1), 'Y t> 1t in the category or numerations. Let v:N -+ V be the 

computable bijection discussed in §1. Furthermore let (4>:1-+1t,'11:1t-+1) be the 

retraction pair, i.e. 4>('11(f)) = f. 

An environment (or valuation} is a primitive morphism from v to ')'. We 

write Env to denote the set of all environments. Using a Godel numbering <1/1, > 
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or primitive recursive functions N --+ N, we can introduce a numeration cr:N --+ 

Env as follows: 

C7 1 = p where r P = VJ, 

It can readily be seen that updating an environment 

plz:=dl(z)=ifz=z then d else p(z) 

where xEV and dEX has a realization, i.e. 

<71 Iv (n ):=,(m )j = Uupdah(1 ,n,m) 

for some recursive function update: N 3-+N. In other word, updating operation is 

a morphism from er X v X "I to er. 

Definition 2. 2. 

Let "/ be as above. We say "/ is a numeration model of >..{3-calculus iff the fol­

lowing interpretation function f 

((r(n ),C11 ) := if is -var (n) then u1 (r(n )) 

else if is -apply (n) then 

4>(!(r(rator (n ),C11 ))(e(r(rand (n )),C11 )) 

else if is -abet ( n ) then 

\Jl(>..z EX. ((1( body (n )),u1 Ir( bound (n )):=z I)) 

is well-defined and it is a morphism from T X u to "1· 

[I 



It is important to notice that since ! is a morphism from rXu to 1, 

XzeX.e(r{body(n)),u,lr{bound(n)):=zl) is a morphism from 1 to 1 realized by 

X m EN.rel. body (n ), update ( i ,bound (n ),m )). Thus 

lfl(Xz EX. {(r{bodu (n )), <11 !r{bound (n )):=z I)) 

lS defined. Furthermore the next theorem supports the relevance of this 

definition: 

Theorem 2.3. 

Let "( be a numeration model of X{J-calculus with an interpretation morphism 

frxu-1, then we have: 

r{n) ~ r{m) implies for all i EN, {(r{n ),u,) = {(r{m ),u,) 

where r{n) ~ r{m) means that 7(n) can be reduced to 7(m) by one of the reduction 

rules of X{J-calculus. 

[I 

Definition 2.4, 

A numeration model "( is A-representable iff there is a recursive function rep: 

N-N such that 

'Y(n) = e(1{rep(n)),u1 ) for all iEN. 

A A-representable numeration model 1 is A-definable iff there is a recursive func­

tion def such that if a morphism r: 1-1 is realized by a recursive function ~"" 

then 
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/ ('y(n )) = {((r(de/ (m ))r(rep (n ))),u,) for all i EN 

where <<I>,> is a Godel numbering of partial recursive functions. 

[I 

Note . In a A-representable numeration model 7: N-+X, every element of X can 

be represented by a closed A-term. If 7 is >.-definable then every morphism 7-+7 

can be defined by some closed A-term. Outstanding point here is that we can 

obtain such A-term from a Godel number of a recursive function which realizes 

the morphism. 

§3. NUMERATED FUNCTIONAL DO1\WNS 

This section consists of modification of results in [5,7] for non extensional A­

calculus. Proofs of theorems can easily be obtained by suitably modifying proofs 

in [5,7], thus they are omitted. 

Definition 9.1. 

Let -y1: N -+X 1 and -y2: N -+X 2 be numerations. A numberation -y: N -+Hom ('Y1,-y2) 

is acceptable iff there are recursive functions realize, numerate: N-+N such tha.t 

(1) r'l(11) = <l>mtue(n) 

(2) if ¢> 11 realizes /: 71-+72 then ""1(numerate(n)) = f. 

[I 

It can readily be seen that (1) is equivalent to the existence of a (universal) 

recursive function U: N 2-+N such that 
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Also it is known that all acceptable numerations of Hom (71,•·12) are recursively iso­

morphic (see [5]). This means that there is at most one acceptable numeration of 

Hom ('y1,,y2). Thus we write hi-+,y2) to denote the acceptable numeration of 

Hom b1,'Y2), if any. 

Definition 9. 2. 

A numerated functional domain (NFD) is a numeration 7: N-X satisfying: 

(1) The acceptable numeration ("'1-7): N-Hom("'l,ry) exists. 

(2) 'Y ~ ('Y-+-r) in the category of numerations. 

[I 

Proposition 9. S. 

If 7: N-X is an NFD then it is a numeration model of >-,8-calculus. 

[I 

The converse of 3.3 does not hold. The existence of an interpretation mor­

phism is not strong enough to prove that ryf is acceptable. 

~ 
We can given an algebraic characterization of NFD's. A countable applica-

tive system is an algebra (X ,·) where · is a binary operation over a countable set 

X. The set T(X) of terms (using countably many variables z 0,z 11 ... ) over (X,·) is 

inductively defined as follows: 

z, er (X) 



oEX~oET(X) 

A ,BET(X) ~ (A ·B)ET(X). 

We assume that · associates to the left, also we drop · if it does not cause confu­

sion. To denote that a term A has variables %0,% 1, ... ,%", we write A (zo,z 1, ... ,zn ). 

Let p: N-+T(X) be a Gci del numbering of terms. 

Definition 9.,4.. 

A realizably combinatory algebra (RCA) is a 5-tuple (X ,·,8,"f,P) such that: 

(1) (X,·) is a countable applicative system 

(2) 7: N-+X is a numeration 

(3) · is a morphism from 7X 7 to 7. 

(4) There is a recursive function >. such that if p(n) = A (z 1, ... ,%") then 7(>.(n)) 

= f is a unique element of X satisfying: 

where A (z 1:=u 1, ... ,z" :=un) is the result of substituting u, for z, m A 

(1 <i<n). 

(5) 8%0%1 = ZoZ1 

Vz ex. (zo% == %1%) ~ho== Oz1 

ee = e 

[I 

Definition 9. 5. 
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An RCA (X ,·,8,1,P) is computationally complete iff there is a recursive function 

alg such that if <p,.. realizes f: 1-1 then er( alg ( n)) is a term with a free variable, 

say x and 

I (z) = (o(a/g (n )))(:r: :=z) 

[I 

Proposition 9.6. (Characterization Theorem I) 

(1) If (X ,·,8,1,P) is a computationally complete RCA then 1 is a NFD, where 

(1-1):N-Hom(1,1) is defined by (1-+1)(n) = 4>(1(n)) where 4> maps elements 

of X to functions x-x defined by 4>(:r: )(y) = :r: ·y. 

(2) If 1: N-X is a NFD with a retraction pair (4>:1-+b-+1), 111:(1-+1)-+1) then 

(X ,·,0,1,P) is a computationally complete RCA where · is defined by: 

:r:·11 = 4>(:r:)(y). 

and 

0 = e((A:r: Ay.zy ),o-, ). 

[I 

This proposition is a numeration version of Barendregt's (l] and Meyer's [9] 

result. It is very important to notice that the class of computationally complete 

RCA's (or equivalently NFD's) is not the same as the class of numeration models. 

This indicates a difference between numeration models and set theoretical models. 

As shown in Meyer [9], in set theoretical case, models of A,8-calculus are the same 

as combinatory algebras. This difference is due to the following reasons: 

(1) 1 i;:> 1t being a numeration model is not strong enough to imply 
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,yf: N -+Hom ('Y,,y) being acceptable. 

(2) To obtain the corresponding numerated combinatory algebra from 1t, it is 

crucial to have acceptability of 1t. 

(3) To obtain a numeration model from a RCA, it is crucial to assume the com­

putational completeness of the RCA. 

§4. CHARACTERIZATION OF >.-DEFINABLE NUMERATION MODELS 

Even though we can not show good characterization of numeration models of 

>.~calculus, we can nicely characterize >-.-definable models as a sub-class of 

NFD's. 

Definition 4- 1. 

A NFD 1 is >.-representable iff there is a recursive function rep :N-+N such 

that: 

,y(n)=((7{rep(n)),u1 ) for all iEN. 

where e is the interpretation morphism which makes "f a numeration model of >-.­

calculus. 

[I 

By a slite modification of arguments for extensional >.-calculus (see [7]), we 

have: 

Theorem ,1..2. 



If a numeration 1 1s a .>..-definable numeration model then it 1s a .>..­

represent.able NFD. 

[I 

Theorem ,4.S. 

If 1 is a .>..-representable NFD then it is a >.,8-definable numeration model of 

.>..-calculus. 

[I 

Corollary 4-4- (Characterization Theorem Il) 

A numeration 1 is a .>..-definable numeration model iff it is a .>..-representable 

NFD. 

[I 

The proofs for these theorems establish the following relationship between 

acceptability of 1l and .>..-definability of a numeration model 1 of >.,8-calculus: 

( 1) If 1 is .>..-definable then 1f is acceptable. 

(2) If 1t is acceptable and 1 is .>..-representable then 7 is .>..-definable. 

This correspondance supports the relevance of the concept of acceptable numera­

tions of morphism spaces discussed in (5]. 

By adding an extra condition to computationally complete RCA, we can 

characterize .>..-definable numeration models. A computationally complete RCA 

(X ,·,8,"f,P) is .>..-representable iff there is a recursive function rep: N-+N such that 
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'Y(n) = {(r{rep (n )),0-1 ) for all i EN. 

Theorem 4, 5. (Characterization Theorem ill) 

A numeration 1: N-+X is a >.-definable numeration model iff (the correspond­

ing) (X, ·,8,7,p) is a >.-representable computationally complete RCA. 

[I 

§5. A NUMERATION MODEL CONSTRUCTION 

A set theoretical construction of models of >.,S-calculus is known (see Meyer 

[9] and Engeler [3]). We study a numeration version of this construction. 

Before we prove the main result we present another characterization of 

RCA's. 

Theorem 5.1. 

(X ,·,B,>.,p) is a RCA iff (X ,) is an applicative system such that · is a morphism 

from 7X 7 to 1 and there exist K,S EX satisfying: 

\JxEX.(x 0x = x1x) =t 8x 0 = 8x 1 

88 = 8 

(1) 

(2) 

(3) 

( 4) 

(5) 

Proof. Due to the constructiveness of the Curry's proof to establish equivalence 

between countable applicative system with K,S and combinatory complete appli­

cative systems. 
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[I 

Definition 5.2. {Enge/er) 

For any set X, define G(X) as follows: 

G(X) = UG,.(X) 
II 

where 

Go(X) = X 

Gn+1(X) = G11 (X)U{(a-+h) I 6 EG" (X), a: finite subset of G" (X)} 

where (o-+b) = (o,b). 

[I 

It can readily be seen that G(X) is the smallest set satisfying: 

Y = XU{(a-+6) I 6 EY, a: finite subset ot y }. (5.1) 

This construct yields a numeration 'h: N-+G (X) for a numeration x:N-+X. 

Definition 5.9. 

Let x:N-+X be a numeration. Define numerations ,..,,. : N-+G" (X) as follows: 

"fo= X 

"f11+1(2m) = x(m) 

"t11+1(2m +1) = br. (1e(m1))-+ "111 (m2)) 

where m = <m 1,m 2> and K is the standard enumeration of finite sets of natural 

numbers. Finally let "fx: N-+ G (X) be the numeration of G(X) obtained by dove-
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tailing {'Y" } . 

Definition 5.4, 

Let 1x: N-+G(X) be as above. We say a subset SCG(X) is computable iff 

{n I 1x(n)ES} is a recursively enumerable set. We write CP(G(X)) to denote the 

set of all computable subsets of G(X). 

[I 

Let { W,,. } be a Gci del numbering of recursively enumerable sets. Using this 

Godel numbering, we can introduce a numeration 1rx: N-+CP ( G (X)) as follows: 

Definition 5. 5. 

For M,NECP(G(X)), define M•N by: 

M*N = { b I 3 /3./3: finite subset of N, (/3-+b )EM}. 

[I 

Definition 5. 6. (Ersov) 

For any numeration x, we define an equivalence relation =x over natural 

numbers by i =x j iff x(i) = x(j). We say Xis positive if =xis semi-decidable. 

[I 

It can readily be seen that 'Yx is positive iff x is positive. 

Lemma 5. 7. 



* is a morphism from 1r xx ,r x to ,r x if x is positive. 

Proof. 
/lft 

11' x( m) X ,r x( n) = bx(i) I 3 i. 1x(,c(i )) C 'Yx( lV" ), bx(,c(i )-+'YxU )E-rx( Wm)} where 

,,,. 
A c B means A is a finite subset or B. Since 'Yx is positive 

1s r.e. Also we can compute a Godel number or it from m and n. 

[I 

Let p: N-+ T ( GP ( G (X ))) be a Godel numbering or terms over CP ( G (X )). 

Theorem 5.8. 

(CP(G(X)),*,B,,rx,P) is a RCA if Xis positive 

where e = {(a-+(,8-+b )) I a,,8: finite subsets of G (X), b Ea* ,8}. 

Proof. First notice that BE CP ( G (X )). Define K,S by: 

/lft 

I(= {(a-+(,8-+b))I a,,8 C G(X), bEa} 

/lfl 

S = {(a-+(,8-+('Y-+b))) I a,fJ,'Y C G (X), b E(a-y)(,8-y)} 

Since 'Yx is positive it can readily be seen that K,S are computable subsets or 

G(X). We have: 

,.,. /ift 

KMN = {s 13 fJ C N. 3 a C M. (a-+(,8-+a ))EK} 

/in 
= {a I 3 a C M.a Ea} 

=M. 
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Similarly we can show: 

SMNL = (ML )(NL ). 

() satisfying {3) "" (5) of 5.1 can easily be checked. Thus by 5.1 we have esta­

blished the theorem. 

Theorem 5. 9. 

Let x be .positive then (CP(G(X)),•,O,,rx,P) is computationally complete. 

Proof. Let / : "'x-"'x be a morphism realized by r1 = ¢>,. We have: 

/ (,rx(m)) = / hx(W111)) 

= "'x(r1 (W"' )) 

= 'Yx( w,, (111 )) 

= 'Yx(ll>h(1)(W111)) 

[I 

where h is a recursive function and t z is an enumeration operator with an index 

Z. Since x is positive, "fx is positive and so there is a recursive function g s.t. 

[I 

The language of >.,'-calculus 1s too weak to represent all elements of 

CP ( G (X )) by closed terms. 

§6. EXAMPLES OF NUMERATION MODELS 



(Example 1): Term Models. 

It is known that as an immediate consequence of Church-Rosser Theorem, 

we can construct a countable model of >-,8-calculus. The model construction can 

be sketched as follows: Let = be the smallest equivalence relation over T, con­

taining reduction rules of >-,8-calculus. Let TM == {It] I t ET} where [t] is the 

equivalence class of t with respect to =· A term f ET determines a function 

T: TM - TM such that 

l(lt I)= [(It )J. 

Let (TM-TM)={/l/ET}. Then 4>:TM-(TM-TM) and 111:(TM-TM)-TM 

given by: 

4>(1t I) = T 

'11(1) =[/I 

establish a retraction TMr>(TM-TM). This retraction allows us to form a mo(iel 

of >-,8-calculus. For details see Barendregt [1]. 

Now let 7: N - TM be the following numeration of TM: 

7(n) = !7(n )J. 

It can be shown that (TM-TM) - Hom ('Y,1). Now let "'ft: N-Hom ('Y,7) be the fol­

lowing numeration: 

1t(n) = l(nl. 

It can readily be seen that the following holds: 

(1) "'ft: N-Hom ('Y,7) is acceptable, thus "'ft = b-"'f). , 



(2) 7P,.('y-+7) is the category of numeration. 

Thus by 3.3 7P,.('y-+7) is a numeration model of >.~calculus. 

Notice that this 7 is not a >.-definable model, for if t is an open term then [t] 

can not be represented by a closed term. 

Also notice that this numeration model does not follow from the construc­

tion of §5. 

(Example 2}: Graph Models 

As observed in the previous section, for any positive numeration x: N -+X, 

(CP(G(X)),*,B,1rx,P) is a computationally complete RCA. 

(Example 9): RE model. 

RE model is a slight variant of numeration version of Engeler's graph 

models. This model due to Scott [10] is outstanding because it is >.-definable for 

a suitably expanded >.-terms. 

Let RE be the set of all recursively enumerable sets of natural numbers. Let 

7: N-+RE be a Gi:i del numbering of recursively enumerable sets. For each u ERE, 

let / un (u ): RE-+RE be the following continuous function: 

Jun (u )(z) = {m 13 n. ,c(n )Cx, (n ,m )Eu} 

where ,c is the standard enumeration of finite subsets of N. Due to u ,z being 

recursively enumerable, fun (u )(z )ERE. In fact fun (u) is an enumeration opera­

tor. Define a numeration 7f: N-+ fun (RE) by: 
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-yt(i) = Jun b(i)). 

It can readily be seen that 

I un (RE) == Hom ('Y,-y). 

Furthermore we can show that 1t is acceptable, thus -rt = h--r). Now let 

graph : / un (RE )-.RE be the following function: 

graph (I ) == {(n ,m) I m E/ (,c(n ))}. 

Notice that f El un (RE) implies graph (I )ERE. It can readily be seen that fun and 

graph are morphisms -r-h--r) and h--r)--r respectively. Furthermore 

graph·/ un = idRE. Thus -rP>h--r) in the category of numeration. Thus "I is NFD. 

Let us add the following constant symbols to the syntax of >.-terms: 

0,B ,P ,cond, 

and let us interpret them as follows: 

0 = {O} 

e(z)= {n+ll nEz} 

p(z)-={n ln+lEz} 

cond(.z)(y)(z)={n lnEz,OEz}U{m lmEu,3k.k+lEz}. 

As shown in [10], every element of RE and Hom ('Y,-r) can be denoted by closed >.­

terms of this expanded language. We can modify the interpretation morphism 

for this expansion. The results of §3 and §4 hold for this expanded >.,8-calculus. 

Notice that to within isomorphism through Godel numbering of finite sub­

sets of N and pairing, N satisfies the equation (5.1). Furthermore, CP (N) =RE. 
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Thus RE model is essentially the same as the graph model obtained from an ini­

tial numeration idN: N-+N. An intensive study or relations between RE model 

and graph models can be found in Longo (8). 
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