
DEFINITE CLAUSE TRANSLATION GRAMMARS

by

Harvey Abramson

Technical Report 84-3

April 1984

Definite Clause Translation Grammars

Harvey Abrameon

Department or Computer Science
University of British Columbia

Vancouver, B.C. Canada

ABSTRACT

In this paper we introduce Definite Clause Translation Grammars, a new
class of logic grammars which generalizes Definite Clause Grammars and which
may be thought of as a logical implementation of Attribute Grammars. Definite
Clause Translation Grammars permit the specification of the syntax and seman
tics or a language: the syntax is specified as in Definite Clause Grammars; but the
semantics is specified by one or more semantic rules in the form of Horn clauses
attached to each node or the parse tree (automatically created during syntactic
analysis), and which control traversal(s) of the parse tree and computation of
attributes or each node. The semantic rules attached to a node constitute there
fore, a local data base for that node. The separation of syntactic and semantic
rules is intended to promote modularity, simplicity and clarity of definition, and
ease of modification as compared to Definite Clause Grammars, Metamorphosis
Grammars, and Restriction Grammars.

1. Introduction
A grammar is a finite way or specifying a language which may consist or an infinite number

or "sentences". A grammar is a logic grammar if its rules can be represented as clauses of first
order predicate logic, and particularly, as Horn clauses. Such logic grammars can conveniently be
implemented by the logic programming language Pro)og: grammar rules are translated into Prolog
rules which can then be executed for either recognition of sentences or the language specified, or
(with some care) for generating sentences of the language specified.

Metamorphosis grammars, the first class of logic grammars were introduced in !Col
merauer,1978] and were shown to be effective for recognition or sentences of a small subset of
natural language, and also in the writing of a compiler for a simple programming language.
Definite Clause Grammars, a special case or metamorphosis grammars, were introduced in
!Pereira&Warren,1980] and applied to "compiling", i.e., translating a subset or natural language
into first order logic. Metamorphosis grammars (M-grammars or MG's) and definite clause gram
mars (DCG's) have been used to describe several languages, namely ASPLE, Prolog, a substantial
subset of Algol-68 (all these in !Moss,1979] and !Moss,1981 1}; the first large scale use or DCG 's for
a natural language application appeared jn 1Dahl,1981J; more recently DOG's have been used to
define a functional programming language HASL in IAbramson,1983]. See also IMoss,82] for the
use of Prolog and logic grammars as tools for language definition. IWarren,1977] is or interest in
the application or logic programming to compiler writing: it explicates and extends ideas origi
nally in !Colmerauer,1978]. but does not use any grammar notation.

Both M-grammars and DCG's can be used for such complex tasks as the definition of the
syntax and semantics or languages by attaching arguments to the non-terminal function symbols.
This allows the specification or such context dependent properties as agreement between subject
and verb, agreement or the arity of clausal definitions or HASL functions, and the generation or
code, be it logical expressions as the meaning or a natural language sentence, or combinators

- 2 -

representing the implementation or a function.

As the tasks to which M-grammars and DCG's are applied become more complex and as the
size of grammars grows, it is easy for the rules specifying such tasks to become rather unreadable.
One argument may be taken up with generating a representation or the parse tree or a derivation,
others may be taken up for generating code, others for checking context dependencies, etc.
Furthermore, making changes to a grammar during a project may be made troublesome by having
to remember which arguments specify what, and by having syntax and semantics too closely
mixed. During the course or developing a compiler for a language, the syntactic component or a
grammar changes rarely, but the semantic component may be altered more often. Thus, to make
changes to the semantics, one bas to modify rules which incorporate, perhaps too closely, syntax
and semantics. Finally, the extra arguments resemble a coding trick for representing Horn clauses
local in scope to a grammatical rule. For example,

sen tence(Logic ,sen tence(Noun_phrase, Verb_phrase)) - >
noun_phrase(X,Pl,Logic,Noun_phrase),
verb _phrase(X,P l ,Verb_ph rase).

is a DCG rule which seems to hide the local clauses:

logic(Logic) :- logic(X,Pl,Logic) , logic(X,Pl).
/* sentence •/ /* noun_phrase */ /• verb_phrase •/

sentence(Noun_phrase,Verb_pbrase) :- Noun_phrase, Verb_phrase.

where logic(Logic}, logic(X,Pl,Logic), logic(X,Pl} are the logic components or the sentence,
noun_phrase, verbJhrase, respectively, and sentence(Noun_phrase, Verb_phrase), Noun_phrase,
Verb_phrase are their respective tree representations.

Recently, several classes or logic grammars have been introduced in order to correct some or
these problems, and to promote readability, modularity, simplicity, and ease or modification.
Restriction Grammars (RG's) were introduced in IHirschman&Puder,82J . These grammars consist
or context tree rules, restrictions on these rules, and an automatically constructed parse tree; the
restrictions are usually specified as restrictions on the Corm or the parse tree. Modifier Structure
Grammars {MSG's) were introduced in IDabl&McCord,83J. These grammars automatically create
parse trees too; however, they also attach to nodes or the parse tree simple semantic rules, usually
in the form or operators acting on subtrees to automatically build up an analysis structure by
specifying bow the meaning of a node is determined by the interaction or meanings of subtrees,
replacing the need for the restrictions or RG 's. Furthermore, MS G's also treat coordination
metagrammatically.

The Definite Clause Translation Grammars (or Translation Grammars) which we introduce
below have the flavour or each or these. A parse tree is automatically produced to record deriva
tions, but this parse tree does not have the very complicated representation used in Restriction
Grammars. It is like the parse tree used in MSG's in structure, and in having nodes labeled both
by non-terminals and semantic actions. These semantic actions, however, are specified by zero or
more Horn clauses which are interpreted during traversal(s) or the parse tree. These semantic
rules constitute a data base local to nodes or the parse tree, providing a high degret' or locality or
reference. We also provide a notation for parse trees and their traversal which is very simple and
which gets away from the complicated sequence or moves which must be used in RG's.

Our Definite Clause Translation Grammars are an extension and generalization or DCG's.
Arguments or non-terminals could still be used for semantic attributes as in DCG's, but attributes
or properties or nodes or the parse tree can be more clearly specified and computed according to
the rules attached to nodes by translation grammar productions. Our translation grammar rules
are compiled into Prolog rules with three hidden arguments, two as in DCG's for the lists or sym
bols being analyzed, and a third to represent the parse tree.

- 3 -

Our translation grammars are modelled on the attribute grammars or 1Knuth,68J which until
the advent or Prolog and logic programming have been, except under severe restrictions, difficult
to implement. (A typical comment about this is: "Implementation or a translation scheme with
both inherited and synthesized attributes is not easy." 1Aho&Ullman,73J page 778. Inherited attri
butes are properties or a node or a parse tree which are dependent on the context or the node;
synthesized attributes are those dependent on the subtree rooted at the node 1Knuth,68J. Given
the power or the logical variable, there is, however, little practical need to place too much
emphasis on the difference between inherited and synthesized attributes, and so we do not make
the distinction in the sequel. Theoretically, the classification or attributes as inherited or syn
thesized was used by Knuth to determine whether circular definitions or attributes existed in a
translation; however, the occurs check would equivalently detect such circularities without having
to make the classification explicit.)

In the next section we define Definite Clause Translation Grammars. A section or examples
and comparisions follows. A short section describes the compilation of translation grammar rules
to Prolog. A concluding section indicates some future work and applications. An Appendix con
tains the predicates for compiling translation grammar rules into Edinburgh C-Prolog !Pereira,82J,
based, in fact, on the C-Prolog DCG to Prolog compiler.

2. Tran■latlon Grammar■ , Tree Formation and Traver1al
A definite clause translation grammar rule may be or the form:

LeftPart ::= RightPart <:>Attributes::- Semantics.

The Le/lPart ::= RightPart portion of the translation rule specifies one step in a derivation of a
"sentence., almost exactly like a definite clause grammar rule: the LeftPart may consist or a non
terminal, or a non-terminal followed by a list of terminals; the RightPart may consist or termi
nals, non-terminals, and Prolog terms enclosed in braces { and }. In a translation grammar, how
ever, a parse tree is automatically formed to record the derivation or a sentence, so if NonTermi
nal is the non-terminal in the Le/tPart, there will be a node in the parse tree for each use or this
production, each such node labeled by NonTerminal and also by the semantic portion of the rule
to the right or the < :> symbol. In the RightPart furthermore, if nt is a non-terminal, it may
have attached to it by the • • operator a logical variable NT, say, which will be instantiated to
the subtree or the parse tree corresponding to the sub-derivation of nt.

The symbol < :> separates the syntactic and semantic portions of a translation rule.

Attached to each node of a parse tree is a logical clause representing the "properties" of a
node in a translation. Attributes ::- Semantics, the portion of the translation rule to the right of
< :>, may be read declaratively as: the Attributes o(the node corresponding to this use of the
production are specified by the term or conjunction of terms in Semantics; or procedurally as: to
compute the Attributes of this node, compute the goal or conjunction or goals in Semantics. If the
specification or computation or an attribute of the non-terminal in the LeftPart of a translation
rule depends on an attribute attrib{Args) of a node corresponding to use of a nonterminal nt in
the RightPart or the syntactic portion or a production, and if NT specifies the subtree correspond
ing to the subderivation or nt, then the attribute of NT is declaratively specified by:

NT. ·attrib(Args)

and may be read procedurally as: traverse the subtree NT and compute its attribute attrib{Args).

Example.

sentence ::= noun_phrase· ·N, verb_phrase· ·v, { agree(N,V) }
<:>
logic(P) ::- N .. logic(X,Pl,P),

v· ·togic(X,Pl).

- 4 -

Here, a sentence is defined as a noun_phrase followed by a verb_phrase, with parse trees N and V,
respectively. A Prolog predicate agree checks numerical agreement between the noun_pl,rase and
the ve.rb_phrase. The attribute or this production is logic which specifies bow the sentence is
represented as a logical expression in terms or the logical expressions or its components. See
Translation Grammar 2, next section.

Sometimes a translation production may have a set or semantic rules associated with it in
order to specify (compute) different properties or a node. Such a production is written

LeftPart ::= RightPart <:> (Semantic, Semantics).

where Semantic is a Horn clause as specified above, and Semantics are other Horn clauses for
other attributes. In this case, each Attributes ::- Semantics rule specifies declaratively a property
or a given node, and procedurally the way to compute a property or the node. The set or seman
tic rules or a given production constitutes a local data base for each node or the parse tree
representing US(' or that production.

Example.

verb ::= jloves]
<:>
agree(singular),
logic(transitive,X, Y ,loves(X, Y)),
logic(intransitive,X,loves(X)).

This production specifies three attributes of the verb "loves": agree which is used to check agree
ment of noun phrases and verb phrases with respect to number; and two logic attributes which
specify a logical expression representing this verb used transitively, and intransitively (see Trans
lation Grammar 2 below). Here, the translation rules may be considered a local data base for the
syntactic rule

verb ::= [loves] .

3. Examples and comparlalona.

3.1. Example 1.

Translation Grammar 1 below is an adaptation to Prolog or one described in jKnuth,68J to illus
trate the convenience of having various attributes attached to nodes or a parse tree for specifying
semantics. The strings of the language are binary numerals, and the semantics specify the
decimal value corresponding to each binary numeral, integer and fraction. The specified seman
tics is intended to mirror the way we use this notation, that is, as a positional notation wherein
each bit represents a value of zero or some power of two. Thus, to each bit is assigned a value and
a scale which is written in C--Prolog as, £" Scale. The Scale or the leading bit or the integral part
or the numeral depends, however, on the number or bits in the integral part and this is specified
in terms of an attribute length. In the semantic rule for number the tree B representing the
integral bitstring is traversed to compute its length from which the scale factor is obtained and
used in a subsequent traversal or B to compute its value. The scale factor for computing the value
of the fraction does not require a length for its computation.

Note that when there is only a single attribute or attribute list attached to a production, as
in the productions for bit and number, we can use either lists or logical variables alone on the
lef~hand side or the symbol ::- or alone as unit clauses.

- 5 -

For compans1on, here is a logic DCG for essentially the same translation, given in
!Moss, 1981]. This logic grammar assumes "that the functions are not evaluated" and ignores both
"backtracking and left-recursion". Except that the DCG notation may perhaps be more familiar
to the reader, we feel that out translation grammar rules are cleaner and more perspicuous.
Translation grammar rules also have the advantage that if one wanted to change the semantics it
would be possible to do so without having to edit the syntax or the language.

N(v) -> L(v,1,0).
N(vl+v2) -> L(vl,11,0); "."; L(v2,l2,-l2).
N(v,l,s) -> B(v,s).
L(vl+v2,l+l,s) -> L(vl,11,s+l); B(v2,s).
B(O,s) -> "O".
B(2•s,s) -> "1".

Here, N corresponds to our number, L to hitetring, B to hit, and * to •. Variables in this notation
begin with a lower case letter, and ; denotes conjunction. It is left to the reader to modify this to
a working Prolog DCG.

3.1.1. Translation Grammar 1.

bit::= "O" < :> IO,_J.

bit::= "1" <:> IV,ScaleJ ::-Vis 2 • Scale.

bitstring ::= bit' 'B, bitstring' 'Bl
<:>
(length(Length) ::- BI "length(Lengthl),

Length is Lengthl+l),
(value(Value,ScaleB) ::-

B' 'IVB,ScaleBI,
Sl is ScaleB-1,
Bl' ·value(Vl,Sl),
Value is VB+Vl).

bitstring ::= I] <: > length(O), value(O,_).

number ::= bitstring' 'B, fraction· ·F
<:>
V ::- B"length(Length),

S is Length-1,
B. ·value(VB,S),
F' 'VF,
Vis VB+VF.

fraction ::= ".", bitstring • 'B
<:>
V ::- S is - 1,

B' ·value(V,S).

fraction ::= IJ < :> 0.

number(Source) :
number(T,Source,IJ),
writestring(Source),

pretty(T),nl, /• prettyprint the tree•/
T .. N,
write(N),
nl.

3.1.Z. Sample Tram;latlon.

- 6 -

The following output is the result or satisfying the goal number(" 101.01").

101.01

number
bitstring

bit
111

bitstring
bit

101
bitstring

bit
111

bitstring

II
fraction

1.1
bitstring

bit
101

bitstring
bit

111
bitstring

II

5.250000

3.Z. Example z.
Translation Grammar 2 below is an adaptation of several examples from IPereira&Warren,1980]
and also offers some comparisions with the RG's or IHirschman&Puder,1982]. The grammar
accepts sentences or a small subset of English and translates them to expressions or first order
logic. Agreement between noun_phraee and verb_phraee is specified by an attribute agree attached
to some translation productions. The translation to logical expressions is specified by one or more
attributes logic attached to productions.

In IPereira&Warren,19801, separate DCG's were given to illustrate the checking or a
context-sensitive restraint and to illustrate the generation or a translation. We have combined
these into one translation grammar to make the following points.

Ill Combining the tasks or the two DCG's into one DCG would have tended to a clutter or
arguments attached to non-terminal function symbols. In grammars as small and unambi
tious as these, the clutter would be manageable; not so in grammars which attempted to
deal with a larger subset or English. Translation Grammars clearly separate the various
attributes attached to productions and promote readability.

- 7 -

[2] Translation Grammars are true extensions and generalizations of DCG's, so it would have
been possible, and in this case more efficient, to use an extra argument attached to non
terminals to check agreement. We have not done so not only to suggest how more complex
context-sensitive restraints would be specified as attributes, but also to offer a comparision
with RG's. The predicate agree which checks agreement in our example is defined simply in
terms of t.raversals of the parse trees N and V corresponding to noun_phrase and
verh_phrase respectively. RG's do not have a convenient notation for parse trees: so such a
restriction would be specified in terms of following a path in the parse tree from one consti
tuent to another. The following predicate, for example, specifies agreement between subject
and verb (IHirschman&Puder,19821, comments removed):

subj_verb_agree(Verb,Words) <
element(v ,Verb,V),
up(Verb,Predicate),
coelement(subject,Predicate,Subj),
element(n,Subj,N),
(attrb(singular,N,_) -> attrb(singular,V,_);
attrb(plural,N,_) -> attrb(plural,V,_);
true).

Here element (coelement) scans the children or a node (siblings of a node) for some particu
lar kind of node, and attrb checks for some property attached to a terminal or word. The
path that is traced is keyed to the grammar in [Hirschman&Puder,1982J which differs 60me
what from ours, but basically it is clear that the notation of Translation Grammars is sim
ple and transparent compared to that of RG's.

[3J Translation Grammars provide an easy way of specifying the total meaning of a word by
attaching clauses for each meaning or function of a word to a translation grammar produc
tion. For example, our rule for the verb "loves" is:

verb ::= [lovesJ
<:>
agree(singular),
logic(transitive ,X,Y ,loves(X, Y)),
logic(intransitive,X,loves(X)).

The first translation rule for verb_phrase requires a transitive verb. The predicate transitive
simply traverses the tree for a verb to check whether there is a clause specifying a transitive
logic attribute. There is a similar predicate intransititie used by the second form ol
verb_phrase. Consider, however, the RG form of a predicate to determine whether a verb is
transitive or intransitive:

verb_object(Predicate,Words) <-
% locate v in verb, save in V

down(Predicate,Verb),down(Verb,V),
% locate n in object and store it in 0

right(Verb, Object),down(Object, 0),
% if O is n (noun), then V must ·have attribute
% 'transitive'

(test(n,0,0) -> attrb(transitive,V,_);
% otherwise if O is nullobj, V must have
% attribute 'intransitive'.

test(nullobj,0,0) -> attrb(intransitive,V,_);
true).

Again, Translation Grammar notation is clearer and simpler than RG notation.

- 8 -

l4J Restriction grammars have a representation for the parse tree which has the flavour or a
record structure with pointers. ln order that all parts of the tree be accessible from any
node, there are double links between paren t and child nodes, thus violating the occurs
check. The representation for parse trees used by Translation Grammars does not violate
the occurs check (see next section). It is possible in Translation Grammars to make all infor
mation, i.e., the entire tree, available to any node which requires it: the parent tree is sim
ply passed as an argument to an attribute traversal. For example, if in the syntactic part or
a translation production there is the following:

then in the semantics for the production, NT itself could be an argument of a traversal of
NT to compute some attribute attrib of NT:

NT' 'attrib(NT, ...)

l5J The semantic component of Translation Grammars seems to be more general than that or
MSG's. There, it usually consists of some simple globally defined operator (unary or binary)
acting on subtrees of a node. Presumably, ou1r notion of attributes as local data bases could
be incorporated in MSG's. On the other hand, we treat neither coordination nor left extra
p06ition in Translation Grammars at the moment. However, two more hidden arguments
could be used as in [Pereira,1981j so that we could handle left extraposition, and we could
presumably use the interpretive parser of MSG's to handle coordination. (See also the next
section on implementation for further comments with regard to MSG's).

3.Z.1. Translation Grammar z.

sentence::= noun_phrase"N, verb_phrase"V, { agree(N,V)}
<:>
logic(P) ::- N ' 'logic(X,Pl,P),

v· 'logic(X,Pl).

noun_phrase ::= determiner· ·o, noun "N, rel_clause"R
<:>
(agree(Num) ::- N ' ·agree(Num),

o· · agree(Num),
R "agree(Num)),

(logic(X,Pl,P) ::- D' 'logic(X,P2,Pl,P),
N' 'logic(X,P3),
R' 'logic(X,P3,P2)).

noun_phrase ::= name"N
<:>
agree(singular),
(logic(X,P ,P) ::- N' 'logic(X)).

verb_phrase ::= verb ' ·v, { transitive(V) }, noun_phrase· 'N
<:>
(agree(Num) ::- v· ·agree(Num), N' · agree(Numl)),
(logic(X,P) ::- v· 'logic(transitrve,X,Y,Pl),

N' 'logic(Y,Pl,P)).

verb_phrase ::= verb " V, { intransitive(V)}
<:>

(agree(Num) ::- v· ·agr e(Num)),
(logic(X,P) ::- v· ·togic(intransitive,X,P)).

rel_clause ::= [that], verb_phrase· ·v
<:>
(agree(Num) ::- v· ·agree(Num)),
(logic(X,Pl,&(Pl,P2)) ::- v· 'logic(X,P2)).

rel_clause ::= [I
<:>
agree(Num),
Jogic(X,P ,P).

determiner::= !everyJ
<:>
agree(singular),
logic(X,P 1,P2,all(X,= >(Pl ,P2))).

determiner ::= laJ
<:>
agree(singular),
logic(X ,Pl ,P2,exists(X,&(P l ,P 2))).

noun ::= lmanJ
<:>
agree(singular),
logic(X,man(X)).

noun ::= [womanJ
<:>
agree(singular),
logic(X, woman(X)).

name ::= [johnJ
<:>
logic(john).

name ::= lmaryJ
<:>
logic(mary).

verb ::= llovesJ
<:>
agree(singular),
logic(transitive,X,Y ,loves(X,Y)),
logic(intransitive,X,loves(X)).

verb ::= !lives]
<:>
agree(singular),
logic(intransitive,X,lives(X)).

agree(N,V) :-
N' ·agree(Num),

V' ' agree(Num).

transitive(V) :-
V' 'logic(transitive,_,_,_).

intransitive(V) :-
V' • logic(intransitive,_,_).

sentence(Source) :
sentence(T,Source,11),
pretty(T),
T. ·1ogic(Proposition),
write(Proposition),nl.

3.t.t. Sample Tran11latlon.

- IO -

The following output is the result or analyzing and transforming the sentence "Every man
that loves loves a woman that loves a man that loves."

sentence
noun_phrase

determiner
every

noun
man

rel_clause
that
verb_phrase

verb
loves

verb_phrase
verb

loves
noun_phrase

determiner
a

noun
woman

rel_clause
that
verb_phrase

verb
loves

noun_phrase
determiner

a
noun

man
rel_clause

that
verb_phrase

verb
loves

all(_30,= >(&(man(_30),loves(_30)) ,
exists(_1J7,&(&(woman(_ll7)

exists(_ 198,&(&(man (_198),loves(_l 98)),
lov e6{_1l 7 ,_198)))),loves(_30,_1 17)))))

- 11 -

The variables that are used as existential and universal quantifiers are artifacts of the C-Prolog
system.

4. Compllatlon of Translation Grammars to Prolog.
The compilation of Translation Grammar rules to Prolog is straightforward and is based on

the C-Prolog translation or DCG's to Prolog. (This section must be read in conjunction with the
Appendix.) The latter is modified so that a third argument is added to ea.ch non-terminal function
symbol. This argument is instantiated during parsing to a node of the parse tree.

A non-terminal node of the parse tree has the Corm:

node(NT ,Nodes,Semantics)

where NT is the non-terminal term labeling the node, Nodes is a list of the nodes corresponding
to the right-hand side of the syntactic portion of a translation production with NT on the left
hand side, and Semantics is the set or semantic clauses specifying the attributes in the semantic
portion of a translation rule.

Example.
Corresponding to use of the following production in a parse

sentence ::= noun_phrase " N,
verb_phrase ' 'V,
{ agree(N,V) }

<:>
logic(P) ::- N' 'logic(X,Pl,P), v· 'logic(X,Pl).

we would have the following node in the parse tree:

node(sentence,IN,VJ,(logic(P)::-N' 'logic(X,Pl,P),V' 'logic(X,Pl)))

A terminal node of the parse tree will be a list or terms corresponding to the list of termi
. nal symbols.

Example.
Corresponding to use of the following production in a parse

verb ::= !loves]
<:>
agree(singular),logic(traositive,X,Y,loves(X,Y)),
loves(intransitive,X,loves(X)).

we would have the following node in the parse tree:

node(verb,[[lovesl!,(agree(singular),logic(transitive,X,Y,loves(X,Y)),
logic(in transitive,X,loves(X))))

The modifications to the C-Prolog DCG compiler are simple. In translating the right hand
side of the syntactic portion or a rule, a pair or lists St and StR of logical variables is maintained.
Corresponding to each non-terminal, a logical variable is added to the list St to yield a new list

- 12 - .

StR. Ir a logical variable NT is associated with a non-terminal nt in a production, then it is NT
which is added to the front or the list St; otherwise, an arbitrary logical variable is added on -
since the programmer is not interested in traversing this subtree.

In translating the left hand side or a translation production, the third argument to represent
a node or th parse tree is formed by copying the left hand side or the syntactic portion or a
translation rule " into NT and Semantics, respectively, and the list or right band side nodes is
reversed .,into" Nodes, in the structured term:

node(NT ,Nodes,Semantics)

The representation which we use is essentially that used by MSG's. Although
IDabl&McCord,1983J indicate that two extra arguments could be used for the tree representation
in compiling MSG productions into Prolog, we need only one argument for the tree representa
tion.

6. Conc)ualon1 and further work.

The main contribution or Translation Grammars is the provision of a convenient, clear, and
powerful notation for labeling and traversing derivation trees. This notation is n_ot tied to any
particular parsing method, and so, can and should be abstracted from the DCG-type parser used
here and applied to other more powerful parsers (e.g., extraposition g.rammats, MSG's) as a
semantic specification notation.

Translation Grammars separate the specification of the syntax and semantics or languages.
The computation of the semantic attributes attached to nodes or a derivation tree is generally
carried out after syntactic analysis has been completed. It is possible, however, to compute
semantic attributes by "tree walking on the fly., (thoroughly mixing metaphors): in the first rule
or Translation Grammar 2, for example, the predicate agree(N, V) traverses the subtrees for
noun_phrase and uerb_phrase in order to enforce the constraint (or restraint, or restriction) or
agreement between subject and verb. In this fashion, Translation Grammars can be used like
Restriction Grammars, but without the difficulties (pointed out in section 3.2) associated with
RG 's, to reject (sub)trees which do not satisfy semantic restraints. In Translation Grammars,
furthermore, nontermjnal symbols may have arguments attached as in MG's and DCG's, but we
tend not to favour this style or semantic specification and have not shown any examples using it.
There may be situations, however, when judicious use or this technique may be useful.

One aspect or Translation Grammar notation has not been fully exploited. Our Translation
Grammar 2 above differs sHgbtly from the DCG's or [Pereira&Warren,1980J in that we do not
have a separate production for tbe transitive verb "loves" and another for the intransitive verb
"loves"; rather, we have a single production for the verb "loves" and its different meanings are
attached as distinct semantic clauses. The word "loves" could also be used as a plural noun as in
"Don Juan's loves". Rather than introduce a production for noun which would give this meaning
for the word, we can have a single non-terminal for words whose meaning is looked up in a dic
tionary:

word ::= Word, { lookup(Word,Dictionary,Meaning) }
<:>
Meaning.

The Dictionary would either be globally defined, or perhaps passed as an argument to the parser,
and would localize the meanings of a word unde1'. a single heading, much as physical dictionaries
do. Categories such as verb could be defined for example as:

verb::= word"W, { is_verb(W)}
<:>
logic(P) ::- W"logic(P).

- 13 - '

with is_verb obviously defined.

In another application we are replacing the DCG parsing and translation or HASL by a
Translation Grammar. A functional language such as HASL can be implemented in several ways,
not only by [Turner,1979J's technique which we have used, but also by an SECD machine, or
perhaps even by a direct evaluation or a parse tree. A Translation Grammar would provide a syn
tactic specification or HASL which would remain stable, and the possibility or easily replacing the
semantics to test and compare each or these implementation methods.

We have provided in the definition or our traversal predicate an interpreter for executing a
local data base of Horn clauses. It would be desireable to see if C-Prolog's built-in indexed data
bases could be exploited to more efficiently execute the local clauses. Translation Grammars may
also provide a means of specifying how local data bases interact.

e. Acknowledgement■•

I would like to thank Veronica Dahl for reading an earlier version of this paper and for her
useful suggestions. This work was supported by the National Science and Engineering Research
Council or Canada. I must also thank the UBC Laboratory for Computational Vision for time on
its VAX running Berkeley Unix: modern and adequate computing facilities are not currently made
available to the computer science department by UBC.

7. Ref'erencea.

!Abramson, 1983]

Abramson, H., A Prological Definition of HASL a Purely Functional Language with Unification
Based Conditional Binding Expressions, Proceedings Logic Programming Workshop '83, 26 June -
1 July 1983, Praia da Falesia, Algarve, Portugal; also to appear in New Generation Computing.

IAho&Ullman,1973]

Aho, A.V. & Ullman, J.D., The Theory of Parsing, Translation, and Compiling, 2 volumes,
Prentice-Hall, 1973.

I Colmerauer, 1978]

Colmerauer, A., Metamorphosis Grammars, in Natural Language Communication with Comput
ers, Lecture Notes in Computer Science 63, Springer, 1978.

[Dahl,1981]

Dahl, V. Translating Spanish into logic through logic, American Journal ol Computational
Linguistics, vol. 13, pp. 149-164, 1981.

[Dahl&McCord ,83]

Dahl, V. & McCord, M. Treating Co-ordination in Logic Grammars, to appear in American Jour
nal or Computational Linguistics.

[Hirschman&Puder, 1982]

Hirschman, L. & Puder, K., Restriction Grammars in Prolog. Proceedings of the First Interna
tional Logic Programming Conference, Marseille, 1982, pp. 85-90.

[Knuth,1968]

Knuth, D.E., Semantics of Contezt-Free Languages, Mathematical Systems Theory, vol. 2, no. 2,
1968, pp. 127-145.

(Moss,1979J

Moss, C.D.S., A Formal Description of ASPLE Using Predicate Logic, DOC 80/18, Imperial Col
lege, London.

(Moss, 1981]

Moss, C.D.S., The Formal Description of Programming Languages using Predicate Logic, Ph.D.
Thesis, Imperial College, 1981.

- 14 -

!Moss, 1082J

Moss, C.D.S., How to Defin e a Language Using Prolog, Conrerence Record of the 1982 ACM Sym
posium on Lisp and Functional Programming, Tittsburgh, Pennsylvania, pp. 67-73, 1982.

!Pereira, 1981J

Pereira, F.C.N., Eztraposition Grammars, American Journal of Computational Linguistics, vol. 7
no. 4, 1981, pp. 243-255.

!Pereira, 1982I

Pereira, F.C.N. (editor), C-Prolog User's Manual, University of Edinburgh, Department of Archi
tecture, 1982.

1Pereira.&Warren,1980J

Pereira, F.C.N. & Warren, D.H.D, Definite Claul!e Grammars for Language Analysis, Artificial
Intelligence, vol. 13, pp. 231-278, 1980.

ITurner,1979]

Turner, D.A., A new implementation technique for applicative languages, Software - Practice and
Experience, vol. 9, pp. 31-49.

IW arren, 1977J

Warren, David H.D., Logic programming and compiler writing, DAI Research Report 44, Univer
sity or Edinburgh, 1977.

Appendix: Compilation to Prolog.

/• compilation of definite clause translation grammar rules•/

:- op(650,yfx, • •).
:- op(1150,xfx,::=).
:- op(1175,xfx,<:>).
:- op(1150,xfx,::-).

translate_rule((LP ::=[l<:>Sem),H) :- !,
t_lp(LP ,IJ,S,S,Sem,H).

translate_rule((LP ::=IJ),H) :- !, t_lp(LP ,!I ,S,S,Args,H).

translate_rule((LP ::=RP<: >Sem),(H:-B)):-
t_rp(RP ,IJ ,StL,S,SR,B1),
reverse(StL,RStL),
t_lp(LP ,RStL,S,SR,Sem,H),
tidy(B1,B).

transl ate_rule((LP:: =RP), (H:-B)) :
t _rp(RP ,11,StL,S,SR,Bl),
reverse(StL,RStL),
t_lp(LP ,RStL,S,SR,Args,H),
tidy(Bl,B).

t_lp((LP,List),StL,S,SR,Sem,H) :
append(List,SR,List2),
add_extra_args(lnode(LP ,StL,Sem),S,List21,LP ,H).

t_lp(LP,StL,S,SR,Sem,H) :-
add_extra_args([node(LP ,StL,Sem),S,SRJ,LP ,H).

t_rp(!,St,St,S,S,!) :- !.

t_rp([l,St,lll!Stj,S,Sl,S=Sl) :- !.

1.
t

- 15 -

t_rp([XJ,St,!INXJISt],S,SR,c(S,X,SR)) :-
integer(X), X < 256, !, name(NX,[XI).

t_rp([XJ,St,IX!St],S,SR,c(S,X,SR)) :- !.

t_rp([XIRl,St,l[NXINRJIStJ S,SR,(c(S,X,SRI),RB)) :
integer(X), X < 256, !, name(NX,IX]),
t_rp(R,St,INR!Stj,SRl,SR,RB).

t_rp(IXIRl,St,IIXIR] IStJ ,S,SR,(c(S,X,SRl),RB)) :- ! ,
t_rp(R ,St,!R[Stj,SR l,SR,RB).

t_rp({T},St,St,S,S,T) :- !.

t_rp((T,R),St,StR,S,SR,(Tt,Rt)) :- !,
t_rp(T,St,Stl,S ,SRI,Tt),
t_rp(R,Stl,StR,SR l ,SR,Rt).

t_rp(T. ·N,St,!N[Stj,S,SR,Tt) :- add_extra_args(!N,S,SRJ,T,Tt).

t_rp(T ,St, !Stl[Stj,S ,SR, Tt) :- add_extra_args(!Stl,S,SRJ, T,Tt).

add_extra_args(L, T, T 1) :-
T= .. Tl,
append(Tl,L,Tll),
Tl= .. Tll.

append(l),L,L) :- !.
append([X[RJ,L,!X[RIJ) :- append(R,L,Rl).

reverse(X,RX) :- rev l(X,11,RX).

revl(l] ,R,R) :- !.
revl(IXIYJ,Z,R) :- revl(Y,IXIZ],R).

tidy(((Pl,P2),P3),Q) :-
tidy((Pl,(P2,P3)),Q).

tidy((Pl,P2),(Ql,Q2)) :- !,
tidy{PI,Ql),
tidy(P2,Q2).

tidy(A,A) :- !.

c(IXISJ ,X,S).

node(NT,Nodes,((Args::-Traverse),Rules)) · · Args :-
!, Traverse.

node(NT,Nodes,(Args,Rules)r · Args :- !.

node(NT,Nodes,(_,Rules)r · Args :-
node(NT,Nodes,Rulesf · Args.

node(NT,Nodes,(Args::-Traverse)f · Args :- Traverse.

node(NT ,Nodes,Args) · · Args.

:- asserta((expand_term(T,E) :- translate_rule(T,E) , !)}.

