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V6T JWS 

We study when a numeration of the set of morphisms from a numeration 

to the other is well-behaved. We call well-behaved numerations "acceptable 

numerations''. We characterize acceptable numerations by two axioms and 

show that acceptable numerations are recursively isomorphic to each other. 

We also show that for each acceptable numeration a fixed point theorem 

holds. Relation between Cartesian closedness and S-m-n property is dis

cussed in terms of acceptable numerations. As an example of acceptable 

numerations, we study directed indexings of effective domains. 
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1. Numerations 

The theory of numerations developed by Ersov [1,2]is a very useful 

general theory of computation which is based on very simple concepts. In 

this section, we briefly overview some basic concepts and results of this 

theory. 

Definition 1.1 

A numeration (of a set X) is a surjective map x:N+X where N is the 

set of all natural numbers. A morphism from a numeration a:N+A to the 

other s:N+B is a function h:A+B which can be realized by a recursive 

function, i.e. for which there is a recursive function rh:N+N satisfying: 

h·a = s·rh . 

For each numeration x:N+X we define an equivalence relation= 

n = m iff x(n) = x(m) . 
X 

X 
by: 

□ 

It can readily be seen that numerations and morphisms form a 

category. We denote this category by Num. Notice that for any numeration 

x :N+X, the identity map idx:X+X is a morphism from x to x, for 

idN:N+N realizes idx. 

Throughout, let~ be a Godel numbering of partial recursive functions. 

Definition 1.2 

A numeration a:N+A is precomplete if for every partial recursive 

function f, there is a recursive function g s.t. f(n)~ implies 

f(n) =a g(n), and we can compute a Godel number of g from that off. We 

say g makes f total modul o a. 

0 



-2-

Proposition 1.3 (Ersov) 

Let a:N+A be precomplete, then there is a total recursive function 

fix :N+N s. t. 
ct 

~n(fix (n))+ implies¢ (fix (n)) = fix (n). a n ct a. a. 
Proof Let tr make AX.¢n(¢x(x)) total modulo ct. Let r* be ~r(r). 

Assume ~n(r*)+then 

~ n ( r*) = ¢ n ( ¢ r ( r) ) = o. ~ r ( r) = r* . 

Since a is precomplete, we can computer and thus r* from a Godel number 

n of ¢n. 

C 

Proposition 1.4 (Ersov) 

The Godel numbering~ is precomplete. 

[J 

Let a,B:N+S be numerations. We says is reducibl e to a, in symbols 

a<S, iff there is a recursive function f satisfying a = B·f. Intuitively 

a<S iff we can compute a S-index of an element of S from an a-index of it. 

Proposition 1.5 (Ersov) 

Let a.,B:N+S be precomplete numerations satisfying a<S and S<ct, then 

there is a recursive isomorphism h:N+N s.t. a= e·h 

Definition 1.6 

Let a:N+A and s:N+B be numerations. We define a numberation ctXS:N+AxB 

by: 

axS(<n,m >) = (ct(n),B(m)) 

where<-,-> is the pairing function. 
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2. Acceptable Numerations of Function Spaces 

Let a:N+A and s:N+B be numerations. In this section we study a 

concept of 11 acceptable 11 numeration of the set Hom(a,B) of all morphisms 

from a to s. Essentially "acceptable" numerations are 11well-behaved" 

numerations. 

Definition 2.1 (acceptable numeration) 

Let a:N+A and S:N+B be numerations. A numeration T:N+Hom(a,S) is 

semi-effective iff there is a recursive function Eval :N2+N s. t. 
T 

T(m)(a(n)) = s(Eval (m,n)) 
T 

A semi-effective numeration -r:N+Hom(a,S) is acceptabl e iff there is a 

recursive function Enum :N+N s.t. if f is a morphism from a to s which 
T 

is realized by rf = <!> then f = -r(Enum (m)). m T 

Lemma 2.2 

Let T:N+Hom(a,B) be a semi-effective numeration, then there is a 

recursive function Real.:N+N s.t. <!>Real (m) realizes -r(m). 
T 

Proof By S-m-n theorem 

D 

D 

The next theorem states that acceptable numerations are maximum · 

numerations. 

Theorem 2.3 

Let T:N+Hom(a,S) be semi-effective and o:N+Hom(a,S) be acceptable 

then -r <o . 

Proof Since -r is semi-effective rT(m) = <!>Real (m)· Therefore 
T 

-r(m) = o(Enum0·RealT(m)), for o is acceptable. 

□ 
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Theorem 2.4 

Let .:N+Hom(a,S) be acceptable, then. is precomplete. 

Proof Let f be a partial recursive function. Assume f(x)~. 

.(f(x))(a(y)) = a(r.(f(x))(y)) 

= 8 (4>Real (f(x)) (y)) · 
T 

Since 4> is precomplete, there is a recursive function g s.t. if 

f(x)~ then (j>Real (f(x)) = 4>g{x)· Thus we have: 
T 

.(f(x))(a(y)) = S(4>g(x)(y)) 

= .(Enum (g(x)))(a(y)). 
T 

Therefore .(f(x)) = .~Enum.•g(x)). Obviously we can compute a Godel 

number of Enum ·g from that off. 
T 

· □ 

The next theorem states that there is only one acceptable numera

tion of Hom(a,s). 

Theorem 2. 5 (Recursive Isomorphism Theorem) 

Let.,,' :N+Hom(a,8) be acceptable numerations, then there is a re-
-

cursive isomorphism h:N+N s.t .• = .'·h. 

Proof 

Notat ion 

By 2.3, 2.4 and 1.5 

D 

Since there is only one acceptable numeration of Hom(a,8), 

we denote it by (a+S) if any. 

It should be noticed that the acceptability of a numeration corres

ponds to a generalization of Myhill-Shepherdson theorem [ 5] in recursive 

function theory. Thus the main result of this section can be stated 

roughly as: 11 numerati ons satisfying the Myhi 11-Shepherdson property form 

the maximam recursive isomorphism class". 
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The following theorems will explain why we say acceptable numerations 

are 11 well-behaved 11 numerations. 

Theorem 2.6 

If T:N+Hom(a.,8) is an acceptable numeration then there is a total 

recursive function fix :N+N s.t. 
T 

~n(fix (n))i implies~ (fix (n)) - fix (n). 
T n T T T 

Proof Immediate from 2.4. 

Theorem 2.7 

Let T:N+Hom(a.,8), p:N+Hom(S,y) and o:N+Hom(a.,y) be acceptable, 

then there is a recursive function Comp( 0 ):NxN+N s.t. a.,µ,y 

o(Comp( 0 )(m,n)) = p(n)·T(m). a.,µ,y 

Theorem 2.8 

D 

D 

Let a.:N+A, s:N+B and y:N+C be numerations s.t. (a.xS+y):N+Hom(a.xS,y) 

and (a.+(S+y)):N+Hom(a,(S+y)) are acceptable. Then (axB+y)~(a.+(B➔y)) 

in Num . . 

Proof Define Curry:Hom(axB ,Y )+Hom(a, (B+y)) and 

Apply: Hom(a,(B+y))+Hom(axS,y) by: 

Curry(f)(a)(b) = f(a,b) 

Apply(g)(a,b) = g(a)(b) 

Then Apply((a+(S+y)(k))(a(m),s(n~) 

= ( a+ ( f3+y ) ) ( k) ( a ( m) , 8 ( n ) ) 

= ( B+y ) ( Ev a l ( a+ ( S+y ) ) ( k , m) ) ( f3 ( n ) ) 

= y ( Ev a 1 ( S+y ) ( Ev al ( a+ ( S+y ) ) ( k , m ) , n ) ) 

= y(~u(k)(<m,n>)) 
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where u is some recursive function due to S-m-n theorem. Therefore 

we have: 

App 1 y ( ( a+ ( S➔y ) ) ( k) ) 

= (axS➔y)(Enum(axS➔y)(u(k))). 

Thus ApplyEHom( (a+(f3➔y)), (axf3+y)). 

Also Curry((axS+y)(k))(a(m))(s(n)) 

= ( et XS+ 'Y )( k )( aX/3 ( < m, n> ) ) 

= y{Eval( 0 )(k,<m,n>)) 
· ctXµ+y 

= y{~v(k)(<m,n>)) 

where vis some recursive function due to S-m-n theorem. 

Thus we have: 

Curry ((axs➔y)(k))(a(m)) 

= A f3 ( n ) • y ( ~ v ( k ) ( < m , n> )) 

= A f3 ( n ) . Y ( ~ v'( k 'm) ( n ) ) 

= (s➔y)(Enum(f3+y)(v'(k,m)) 

= ( S+y) ( ~ v ,, ( k) ( m)) 

where v' and v" are recursive functions due to S-m-n theorem. 

Thus we have: 

Curry( (axS+y) (k)) = (a+(S➔y)) (Enum(a+(f3+y)) {v" {k))). 

Thus 

Curry E Hom((etX/3-+y),(a+(S➔y))). 

Obviously Curry·Apply = id 

Apply•Curry = id. 

Corollary 2.9 

Let K be a full subcategory of the category of numerations s.t. 

C 
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(1) For every object a:N+A, s:N+B inf, there is a unique, up to 

recursive isomorphism, acceptable numeration (a+S):N+Hom(a,S) in K. 

We call such category an acceptable subcategory of Num. 

(2) axs:N+AxB is in K 

(3) K has a final object 

Then K is Cartesian closed. 

The next theorem relates Cartesian closedness to a generalized 

S-m-n property. 

Theory 2 .10 

D 

Let a:N+A, s:N+B and y:N+C be numerations s.t. (axS+y):N+Hom(axS,y) 

and (a+(B+y)):N+Hom(a,(s➔y)) are acceptable. Then there is a recursive 

function S s.t. (axs➔y)(m)(a(n), s(k)) = (S+y)(S(m,n))(s(k)) 

Proof By 2.8, (axS+y)~(a+(B➔y)). Therefore we have: 

(ax S+y ) ( m ) ( a ( n ) , B ( k ) ) 

= (a+ (s➔y))(rCurry(m))(a(n))(s(k)) 

= (s➔y)(Eval(a+(s➔y)){rcurry(m),n)){s(k)). 

Thus a recursive function S s.t. 

S(m,n) = Eval{a+(S➔y))(rCurry(m),n) 

satisfies the theorem. 

3. Effective Domains and Directed Indexings 

O' 

As an example of acceptable subcategory of Num, we study the category 

of directed indexings of effective domains. Since the purpose of this 

section is neither to give an exposition on effective domains nor to present 

some new results on this theory, we make explicit reference only to that 

literature which are relevant to acceptable numerations. 



A domai n is a partially ordered set (X,<) such that 

(1) For every subset ZcX, if Z has an upper bound then the least upper 

bound (lub)UZ exists. 

(2) The set Bx of compact elements of Xis countable. 

(3) For every element XEX, Bx=· {b EBxlb<x} is directed and x =UBx. 

Let £:N+Bx be a numeration. (X,<) is an effectively given domain if there 

is a pair (b,l) of recursive predicates satisfying: 

b(x)+-+-e:(fp(x)) has an upper bound 

l ( X ' k )+-+-d k ) = u d f p ( X ) ) 

where fp is the standard enumeration of finite subsets of N. 

An element XEX is comput abl e w.r.t. e: if for some recursively enumerable 

set W, e:(W) is directed and x = LJdW). Comp(X,e) denotes the set of all 

computable elements of (X,e:) and is called an effective domain (generated 

Qi£). 

For every effectively given domain (X,£) there is a recursive function 

de::N+N such that for every jEN, £(Wd (j)) is directed and if e:(Wi) is 
e: 

directed then LJe:(Wi) = LJe:(~/d (i)). This function is due to the follow-
£ 

ing 11 directing 11 procedure 

- generate Wj as x0, x1, x2, ...•. , xn, .. 

- generate an r.e. set Wd (j) = {y0, Y1, Y2, .... } by: 
£ 

Yo = XO 

Yn+l = if {£(y0), ... , £(yn), £(xn)} has an upper bound in Bx 

then µ k. d k) = U {£ (y O), .. , e:(y n), e:( xn+ 1 )}_ 

else y -- n 

This function gives us a numeration o :N+Comp(X,£) defined by e: 
oe:(i) = UdWd (i)). This numeration is called a directed indexing 

£ 

of Comp(X,e:). 
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Given effectively given domains (X,£) and (X',£ 1
), let [X+X'] be the 

set of all functions called continuous functions f:X+X' which preserve 

the lub of directed subsets, (i.e. if OcX is directed then 

f(D) = {f(x)!xED} is directed and f(LJD) = LJf(D).) with the following 

partial ordering: for f,gE[X+X'J, 

f<g iff f(x)<g(x) for all XEX. 

It is well-known that [X+X'J is a domain where 

B[X+XJ = the set of all possible finite joins of the step functions 

[b,b'J:X+X' s.t. bEBx, b'EBx' and 

[b,b'](x):= if b<x then b' else l 
where l = u~. 

Let [£+£'] :N+B[X+X'] be the following numeration: 

[E:+E: '] (n) := if cr(n) has a lub then IJcr(n) else 1 
cr(n) = {[di),£'(j)J!(i,j)EPr(n)} 

Pr:standard enumeration of finite subsets of NxN. 

It is known that if (X,£) and (X',£') are effectively given domains 

then ([X+X'],[E:-+E: .']) is also an effectively given domain. 

f:X-+X 1 is computable wrt (£,E: 1
) iff fEComp([X+X'],[E:-+E:']). 

Proposition 3.1 (Kanda [3]) 

A continuous function f from an effectively given domain (X,E:) to 

another (X 1 ,E: 1
) is computable w.r.t. (£,£') iff f1Comp(X,£) _is a morphism 

from 8 :N+Comp(X,£) too ,:N+Comp(X',£ 1
). This equivalence E: £ 

is effective, i.e. from a directed index off, we can compute a Godel 

number of a recursive function which realizes fjComp(X,£) and vice versa. 

0 

Proposition 3.2 (Weihrauch-Schafer [8], Streicher [6]). 

Let (X,£) and (X' ,£') be effectively given domains and f:X+X' be a 
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function. If frcomp(X,E:) is a morphism from 8 to o , then f is e: e: 
continuous. 

0 

Let us introduce a numeration (8 +o ,):N+Hom(o ,o ,) by e: e: e: e: 
(o +o ,)(i) = o( ')(i)1Comp(X,e:). This is a numeration of Hom(o ,8 ,) e: e: ~e: . e: e: 
because we have 3.1 and 3.2. We can consider this numeration (o +o ,) as 

e: e: 

the directed indexing o ( , ) of Comp( [X+X'], [e:+e: ']) because for each 
e.:+e.: 

element of Hom(o ,o ,) there is a unique computable extension. In other e: e: 
words, to within the identification Hom(o ,o ,) = Comp([X+X'], [e:+e:']), e: e: 

Now as an immediate consequence of 3.1, i,.1e have: 

Theorem 3.3 

(8 +8 ,):N+Hom(o ,o , ) is acceptable. Thus the category of directed e:e: ££ 

indexings of effective domains is an acceptable subcategory of Num. 

D 

Let (Y,e:) and (Y' ,e:') be effectively given domains. Then YxY' is a 

domain with BvxY' = ByxBy,. Let e:xe:' :N+BYxY be the following numeration: 

e:xe:'(<n,m>) = (e:(n), e:'(m)). Then (YxY', e:xe:') is an effectively given 

domain. It is obvious that we have 8 x8 , = o e: e: e: Xe: I • 

A singleton is obviously an effective domain. Therefore in summary, 

we have: 

Theorem 3.4 

The category of directed indexings of effective domains is Cartesian 

closed. 

Proof By 2.9, 3.3 and above. □ 

Due to the theorem 2.10, S-m-n theorem holds for directed indexings. 
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4. Concluding Remarks 

In Kanda [4] and Weihrauch [7], it was shown that 11acceptable 

indexings" of an effective domain are all recursively isomorphic. This 

result is a special case of our general result 2.5. 

Acknowledgement 

The author thanks T. Streicher for encouraging and stimulating 

correspond~nce. This research was supported by Canada Natural Science 

and Engineering Council grant #A2457. 



-12-

References 

[1] Ersov, Ju.L. Theorie der Numerierungen I. Zeitschrife fur Math. 
Logik, Bd. 19, Heft. 4, 1973. 

[2] Ersov, Ju.L. Theorie der Numerierungen II. Zeitschrife fur Math. 
Logik, Bd. 21, Heft. 6, 1975. 

[3] Kanda, A. Ph.D. Thesis, Warwick University, 1980. 

[4] Kanda, A. Godel Numbering of Domain Theoretic Computable Functions, 
Dept. of Computer Studies, Leeds Univ., Report No. 138, 1980. 

[5] Myhill-Shepherdson, Effective Operations on Partial Recursive 
Functions, Zeitshrife fur Math. Logik, Bd. 1, 1955. 

[6] Streicher, T. Diplomarbeit, Johannes Kepler Universitat Linz, 1982. 

[7] Weihrauch, K. Rekursionstheories und Komplexitatstheorie auf 
Effectiven Cpo-s, Informatik Berichte Nr. 9, Fernuniversitat Hagen, 
1981. 

[8] ~Jeihrauch-Schafer, Admissible Representations of Effective CPO's, 
Proc. of MFCS '81, Lecture Notes in Computer Science, No. 118, 1981. 


