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In [Reiter 1983} I proposed that a formal theory of databases can be formulated 

within the first order predicate calculus, and I presented a variety or arguments in 

favour of doing so. One such argument is that when data models are defined as first 

order theories there is a logical definition of the answers to a query, and this definition is 

independent of the data model (relational, entity-relationship, what have you) under 

consideration. As a consequence, a query evaluation algorithm for a particular data 

model may be proved sound • it returns only correct answers • and complete - it returns 

all correct answers - with respect to the logical semantics of that data model. Another 

argument in [Reiter 1983} is that the semantics of data models can be specified precisely 

and unambiguously by rendering them as first order theories. By way of an example, I 

showed how the relational data model extended to include the null value "an existing 

but unknown individual" may be defined in first order logic, thereby specifying a logical 

semantics for this null. I then posed the question whether there is an extension of the 

relational algebra for which there is a sound and complete query evaluation algorithm for 

relational databases with null values. My purpose in this paper is to partially answer 

this question. 

Specifically, I shall propose a generalization of the relational algebra and a query 

evaluation algorithm based on its operators which is provably sound with respect to the 
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logical semantics of null values. Unfortunately, the algorithm is not complete in general. 

However, for two classes of queries, namely positive queries and universal conjunctive 

queries, the algorithm is complete. Not too surprisingly, it also turns out to be complete 

for relational databases without null values. 

2. Motivation 

In this section we briefly recapitulate the argument of [Reiter 1983] which leads to 

the formalization of relational databases with null values as suitable theories of first 

order logic. The ideas ~e best conveyed by means of an example, so consider the follow

ing supplier - part database: 

PART SUPPLIER 
A 
B 

SUPPLIES 

A Pl 
B P2 

SUBPART 

Here SUPPLIES and SUBPART are meant to be relation names and PART and 

SUPPLIER are the names of the domains of these relations. 

Our objective is to reformulate the interpretation of such tables made by conven

tional relational database theory in terms or first order logic. One reason for doing so 

will become evident later when we extend the relational model to include null values. In 

order to carry out this logical reconstruction or relational database theory it is necessary 

to examine carefully the implicit auumption, underlying the relational model. 

A"umption 1 • The Closed World Assumption (Reiter 1978) 

This assumption has it that th~ entries in a table are all and only the tuples satis

fying the relation. Thus SUPPLIES{A,p1) holds, but SUPPLIES(A,p2) is false because 

the tuple (A,p2) is absent from the SUPPLIES table. Thus a tuple satisfies a relation (or 
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domain) ifl' it is in the table for that relation (or domain). Let E(.,.) be the equality 

"relation" i.e. E(x,y) holds ifl' x equals y. Then we can formalize the closed world 

assumption for the example by the following logical equivalences: 

(x)[PART(x) = E(x,p1) V E(x,p2) V E(x,p~)J 

(x)ISUPPLIER(x) = E(x,A) V E(x,B)J 

(x)(y)!SUPPLIES(x,y) = E(x,A) A E(y,p1) V E(x,B) A E(y,p2)J 

(x)(y)!SUBPART(x,y) = E(x,p1) A E(Y,P2)l 

Auumption 2 - The Unique Name Assumption [Reiter 1980aj 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

This is the assumption that the individuals in the database, e.g. A, B, p1 etc., are 

pairwise distinct. For example it is the assumption that A and B are distinct, together 

with the closed world assumption, which sanctions the conclusion that SUPPLIES(B,p1) 

is false. We can formalize the unique name assumption for the example by the following 

formulae: 

(2.5) 

Having explicitly introduced the equality predicate E, we must also formalize its 

properties. This can be done in the usual way by introducing axioms defining the 

reflexivity, symmetry and transitivity properties of equality, together with the principle 

of substitution of a term for another equal to it. These axioms will be given later. 

To summarize, our claim is that what relational database theory means by the 

information in a set or relational tables can be formalized by a set of first order formulae 

consisting or 

1. Logical equivalences like (2.1) - (2.4) which realize the closed world assumption. 

2. Unique name axioms like those of (2.5). 



3. Axioms for equality. 

So far, we have not considered null values. The particular null of concern in this 

paper is that denoting an unknown individual about which certain properties are known, 

for example an unknown supplier who is known to supply part p1• Such null values have 

been problematic for database theory ever since they were first proposed. The principal 

difficulties appear to be semantic. Although many approaches exist in the literature e.g. 

[Biskup 1981, Codd 1979, Walker 1980, Vassiliou 1979, Zaniolo 1977] there is no general 

agreement as to which of these, if any, provides a correct formal semantics for nulls. In 

[Reiter 1983] I argue that these semantic difficulties stem from an inappropriate theoreti

cal foundation for database theory. This foundation holds that a database is some kind 

of model, in the logical sense of the word "model". Thus, from this model theoretic per

spective relational calculus expressions are seen to have values true or false with respect 

to a database. In the presence of null values a third truth value - "unknown" - becomes 

necessary. The problem then becomes one of defining coherent truth tables for the 

resulting multi-valued logics. Typically such attempts fail, for example by assigning 

"unknown" to certain tautologies. 

The perspective in [Reiter 1983] which this current paper pursues, is that databases 

are not models, but tlu:orie, (i.e. sets or logical formulae). It is this perspective which 

informed our earlier formalization of a relational database without nulls as a suitable set 

of first order formulae. As we shall now see, this point of view can provide an intui

tively correct semantics for null values, without appealing to multi-valued logics. 

To focus the discussion, consider again our supplier-part database and its 

corresponding formulae (2.1) - (2.5). Suppose we wish to represent the fact "Some sup

plier supplies part p3 but I don't known who it is. Moreover, this supplier may or may 
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not be one of the known suppliers A and B." This fact may be represented by the first 

order formula 

(Ex)SUPPLIER(x) A SUPPLIES(x,p3) (2.6) 

which asserts the existence of an individual x with the desired properties. Now we can 

choose to name this existing individual - call it w - and instead or (2.6), ascribe these pro

perties to w directly: 

SUPPLIER(w) A SUPPLIES(w,p3) (2.7) 

In database terminology, w is a null value. It is called a Skolem conatant by logicians. 

Skolem constants, or more generally Skolem functions, provide a technical device for the 

elimination of existential quantifiers in proof theory. (See, for example, [Chang and Lee 

1973]). 

The problem at hand is how to correctly integrate the facts (2.7) into our supplier 

and parts theory (2.1) - (2.5). Notice first that w is a new constant, perhaps denoting 

the same individual as some known constant, perhaps not. So the unique name axioms 

(2.5) remain untouched. However, the SUPPLIER and SUPPLIES tables now should 

contain new tuples (w) and (w,p3) respectively so that formulae (2.2) and (2.3) should be 

expanded to: 

(x)!SUPPLIER(x) ii= E(x,A) V E(x,B) V E(x,w)J 

(x)(y)ISUPPLIES(x,y) = E(x,A) A E(y,p1) V E(x,B) A E(y,p2) V E(x,w) A E(Y,Pa)J 

(2.8) 

(2.9) 

The resulting set of first order formulae (2.1), (2.8), (2.9), (2.4) and (2.5) intuitively pro

vides a correct representation or this new setting. Notice that in this resulting theory, 

the on/11 thing which di,tingui,he, the null value w from the "ordinary" con,tant, A, B 

etc. i, the ab,ence of unique name aziom, for w; there are no formulae -.E(w,A), -.E(w,B) 



etc. asserting that w is distinct from the other individuals of the database. This, of 

course, is as it should be since w's identity is unknown and hence cannot be assumed to 

be distinct from the other individuals. 

Notice also that in this theory we can prove things like -.SUPPLIES(A,p2) and 

-.SUPPLIES(B,p1) but not -.SUPPLIES(A,p3) or -.SUPPLIES(B,p3). Intuitively, this is 

precisely what we want. For we known SUPPLIES(w,p3). Moreover, we don't know 

whether w is the same as, or different than A or B. So if we could prove, say 

-.SUPPLIES(A,p3), we could also prove -.E(w,A) contradicting our presumed ignorance 

about the identity of w. 

Suppose now that in addition we wish to represent the fact "Some supplier - possi

bly the same as A or B or w, possibly not - supplies p2
11 

(Ex)SUPPLIER(x) A SUPPLIES(x,p2) 

we must choose a name for this supplier, say r.,/ , which must be distinct from the name 

of the previous unknown supplier w. This, because we are not justified in assuming that 

w and w' are the same supplier. Moreover, the formulae (2.8) and (2.9) must be 

expanded to accommodate this new information: 

(x)ISUPPLIER(x) !!= E(x,A) V E(x,B) V E(x,w) V E(x,r.,/ )J 

(x)(y)ISUPPLIES(x,y) a E(x,A) A E(y,p1)V E(x,B) A E(y,p2) 

V E(x,w) A E(y ,Pa) V E(x,r.,/ ) A E(Y ,P2)1 

Thus, in general, each time a new null value is introduced into the theory this null 

must be denoted by a fresh name, ~istinct from all other names of the theory. There

fore, we are dealing with so-called indezed nulls. 
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Let us summarize our approach to null values. Informally, the nulls we are consid

ering represent unknown individuals which may, or may not, be the same as the other 

individuals (known or unknown) in the database; we simply don't know. New nulls are 

assigned names distinct from all other individual names in the database. A relational 

database with null values is formalized by a first order theory consisting of: 

1. Logical equivalences like those of (2.8) and (2.9), one for each relation and domain 

name. 

2. Unique name axioms like those of (2.5). Each pair of distinct known individuals a, b 

contributes -,E(a,b) to these axioms. A null value contributes no such axiom.1 

3. Axioms for equality. · 

9. Formal Preliminariea 

Io this section we formalize the intuitions of the previous section by defining first a 

suitable first order language, then an appropriate class of theories over this language, 

and finally a query language. 

9.1 Relational Language, 

A /irat order language is specified by a pair (ALPHA,WFFS) where ALPHA is an 

alphabet of symbols and WFFS is a set of syntactically well formed expressions called 

well formed formulae and which are constructed using the symbols of ALPHA. The 

rules for constructing the formulae of WFFS are the same for all first order languages; 

only the alphabet ALPHA may vary. ALPHA must contain symbols of the following 

kind, and only such symbols: 

1 Thi~ restriction will bt relued in the formal development which follows . Thus if & null value III is known to be 
di!ereut th;i..o uotber d&t&bue individual o, uull or not, theo -,E(w,o) will be ~rmitted by the form&lism. 
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Variablea: x, y, z, x1, Yi, Z1, ••• , 

There must be infinitely many of these. 

Conatanta: a, b, c, pl, p2, • • • , 

There may be O or more of these, possibly infinitely many. 

Predicatea: P, Q, R, SUPPLIES, SUPPLIER, PART, .. . 

There must be at least one of these, possibly infinitely many. With each is associ

ated an integer n > 0, its arit11, denoting the number or arguments it takes. 

Punctuation Signa: parentheses and comma. 

Logical Conatanta: ::> (implies), A (and), V {or), .., (not), s (iff). 

Notice that function symbols are not included in this alphabet. 

With such an alphabet ALPHA in hand, we can construct a set of syntactically well 

formed expressions, culminating in a definition of the set WFFS or well formed formulae, 

as follows: 

Terma 

A variable or a constant of ALPHA is a term. 

Atomic Formulae 

Ir P is an n-ary predicate of ALPHA and t 1, ••• , tD are terms, then P(t11 ••• , tD) is 

an atomic formula. P(t1, ••. , tJ is a ground atomic formulae iff t 1, ••. , ta are aH con

stants. 

Well Formed Formulae 
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WFFS is the smallest set such that 

(i) An atomic formula is a well formed formula (wff). 

(ii) If W1 and W2 are 1vffs, so also are (W1 A W2), (W1 V W2), (W 1 :, W2), 

(W1 = W2), -.W1• 

(iii) Ir x is a variable and W is a wff, then (x)(W) and (Ex)(W) are wffs. Here (x) is a 

univeraal quantifier and (Ex) an ezi,tential quantifier. 

For the purpose of formally defining a relational database with null values, we 

won't require arbitrary first order languages; a suitable proper subset o( these will do. 

Accordingly, define a first order language (ALPHA,WFFS) to be a relational language iff 

ALPHA has the following properties: 

1. There are only finitely many constants in ALPHA. 

2. There are but finitely many predicates in ALPHA. 

3. Among the predicates of ALPHA there is a distinguished binary predicate E which 

will (unction for us as equality. 

4. Among the predicates of ALPHA there is a distinguished non-empty subset of unary 

predicates. Such unary predicates are called ,imple type,. Not all unary predicates 

of ALPHA need be simple types. Such simple types will, in part, model the concept 

o( the domain of a relation as it arises in standard database theory. 

For a relational language (ALPHA,WFFS) it is convenient to define appropriate 

syntactically sugared abbreviation, for certain of the wffs of WFFS, as follows: 

If r is a simple type, then 

(x/r)(W) abbreviates (x)(r(x) ::> W) 

(Ex/r)(W) abbreviates (Ex)(,{x) AW) 

Here (x/r)(W) should be read as 11For all x which are r, Wis the case." and (Ex/r)(W) as 
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"There is an x, which is a r, such that W is the case." Thus these lgpe reatricted 

quantifier, are meant to restrict the possible x's to just those which belong to the class r. 

Notice that quantifiers may be restricted only by types, uot by arbitrary predicates. 

Ezample 9.1 

For our supplier-part example, the unary predicates PART, SUPPLIER are simple 

types. The r ollowing English statements translate naturally into type restricted 

quantified wffs: 

"Every supplier supplies at least one part." 

(x/SUPPLIER)(Ey /PART)SUPPLIES(x,y) 

which abbreviates the ordinary wff 

(x)[SUPPLIER(x) ::> (Ey)(PART(y) A SUPPLIES(x,y))] 

"Some supplier supplies all subparts of p3." 

(Ex/SUPPLIER)(y/PART)[SUBPART(y,p3) ::> SUPPLIES(x,y)] 

which abbreviates the ordinary wff 

(Ex)SUPPLIER(x) A (y)[PART(y) ::> (SUBPART(y,p3) ::> SUPPLIES(x,y))] 

I have in this example omitted a lot of parentheses on the assumption that it is 

dear what these formulae mean. I shall continue this practise whenever no ambiguity 

will result. 

More A bbrev,ation, 

If x = x1, ••• ,x11 is a sequence or distinct variables then W(x) abbreviates W(x1 , ••• ,x11) 

and (x)W(x) abbreviates (x1) ••• (x11)W(x1, ••• ,xJ. When E is the equality predicate and • = 

&1, ... ,5- and t = t1, ... ,t11 are equal length sequences or terms then E(1,t) abbreviates E(s1,t1 ) 

A ... A E(s111t 11). -.E(1,t) abbreviates -.E(s1,t1) V ... V -.E(s111t 11). 
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s.e Eztended Relational Theoriea 

Let (ALPHA,WFFS) be a relational language. A finite subset R of WFFS is an 

eztended relational theor11 ifJ R satisfies the following conditions: 

I. For each n-ary predicate P of ALPHA distinct from E (but including the simple 

types), R contains ezactl31 one formula of the form 

(x)P(x) = E(x,c<1>) V · · · V E(x,c<r)) 

where the c<1) are n-tuples or constants of ALPHA. The case r = 0 is permitted, in 

which case the corresponding formula is (x) -.P(x). This formula is called the ezten-

aion axiom or P in R. 

2. R contains the following equality axioms: 

(i) Reflexivity 

(x)E(x,x) 

(ii) Symmetry 

(x)(y)E(x,y) ::> E(y,x) 

(iii) Transitivity 

(x)(y)(z)E(x,y) A E(y,z):::, E(x,z) 

(iv) Substitution of equal terms 

For each n-ary predicate P of ALPHA distinct from E 

(x)()')P(x) A E(x,)') ::> P()'). 

These are called the Leibnitz azioma or R. 

3. R contains O or more unique name azioma of the form -.E(c,c1 ) for distinct constants 

c,c' of ALPHA. 

4. Nothing else is in R. 
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Notice that extended relational theories provide no formal distinction between null 

values, which denote "unknown" individuals, and "ordinary" constants, which denote 

11known" individuals. Insofar as an extended relational theory is concerned there is sim

ply available a collection of undistinguished constants certain pairs of which are unequal. 

Thus, the approach of this paper fails to capture fully the meaning of null values. For 

the purposes of representing null values, the only important feature of their "unknown" 

character is deemed to be the absence of some of their unique name axioms. In order to 

fully characterize their "unknown" property, it appears necessary to invoke a modal 

logic of belief [Levesque 1982). As Levesque shows, it then becomes possible to express, 

and answer, queries like "Who are the known suppliers of Pa!" and "Which unknown 

suppliers are Canadian!". Such representational power transcends the approach of this 

paper. 

Notice also that extended relational theories permit some quite subtle distinctions 

to be represented, for example: 

"Someone supplies Pa but I don't know who. Whoever it is, it is neither A nor B". 

(Ex/SUPPLIER)SUPPLIES(x,p3) A -.E(x,A) A -.E(x,B) 

which, after elimination of the existential quantifier, becomes 

SUPPLIER(w) A SUPPLIES(w,p3) A -.E(w,A) A -.E(w,B) 

"Someone supplies p2 and someone supplies Pa• I don't know who they are but I do 

know they are not the same suppliers." 

(Ex/SUPPLIER )(Ey /SUPPLIER )SUPPLIES(x,p2) A SUPPLIES(y ,Pa) A -.E(x,y) 

which becomes 

Theorem S.1 



13 

When R is an extended relational theory its Leibnitz axioms are dependent on (i.e. 

are provable from) the remaining axioms of R. 

Proof: A typical Leibnitz axiom bas the form 

(x)(y)P(x) A E(x,y)::, P(y) 

If P's extension axiom is (x) -,P(x) then the Leibnitz axiom is provable using P's exten-

sion axiom as sole premise. Otherwise, P's extension axiom is of the form 

(x)P(x) = E(x,c<1>) V ... V E(x,c<r)) 

so that the Leibnitz axiom is equivalent to 

(x)(;y)[E(x,c<1>) V ... V E(x,c<r))I A E(x,;y)::, E(;y,c<1)) V ... V E(y,c<r)) 

and this is provable using only the non Leibnitz equality axioms. 

[I 

In view of Theorem 3.1, the Leibnitz axioms of R are irrelevant. Henceforth, we 

shall assume that extended relational theories contain no such axioms i.e. they contain 

only extension axioms, axioms specifying the reflexivity, symmetry and transitivity of 

equality, and unique name axioms. 

Theorem 9.2 

Any extended relational theory is consistent. 

Proof: The proof is a simple consequence of [Reiter 1983, Theorem 4.2]. 

9.9 Querie, and Their An,wer, 

Following [Reiter 1083] we define a querg for a relational language (ALPHA,WFFS) 

to be any expression of the form <x/r[W(x)> where x/r denotes xi/r11 ... ,xJrn, each x1 is 
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a distinct variable of ALPHA, each rl is a simple type of ALPHA, and W(x) £ WFFS is a 

wff whose free variables are among x1, ••• ,x. and whose quantifiers are all typed 

quantifiers. The case n=O is permitted, in which case the query has the form < IW> 

where W has no free variables. 

Informally, a query <x/rlW(x)> is meant to denote the set of all n-tuples x = 

(xi, .. ,,xn) such that each x1 satisfies the simple type r1 and such that the database satisfies 

W(x). A formal definition will follow the next example. 

Ezample 9.e 

The following are ~me queries for our supplier-part database: 

I. Suppliers supplying more than one part. 

<x/SUPPLIER I (Ey/PART)(Ez/PART)..,E(y,z) A SUPPLIES(x,y) A SUPPLIES(x,z)> 

2. Suppliers supplying all subparts of Pa• 

<x/SUPPLIER I (y /P ART)SUBP ART(y ,Pa) ::, SUPPLIES(x,y )> 

3. Pairs of distinct suppliers supplying the same parts. 

<x/SUPPLIER, y/SUPPLIER j -,E(x,y) A (z/PART)SUPPLIES(x,z) = SUPPLIES(y,z)> 

Let DB C WFFS be any set of closed wffs. We view DB as defining a database, 

not necessarily relational. Elsewhere (Reiter 1980a) I have referred to any such DB as a 

Jirat order databaae. An n-tuple c -== (c1, ••. ,c.) of constants of ALPHA is an anawer to 

the query <x/r I W(x)> wit/a reapecl to DB iff the formulae rlc1), i = 1, ... ,n, and W(c) 

are all true in every model of DB. _By the Godel Completeness Theorem for first order 

logic, this is equivalent to 

i = 1, ... ,n and 
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2. DB~ W(c) 

where by S ~ w we mean that first order formula w is provable from the set o( first 

order formulae S as premises. The set of all such answers is denoted ll<x/r I W(x)>lloo• 

When the first order database DB is clear from the context, the subscript "DB" will be 

omitted. 

Notice the special case o( this definition when n=O i.e. when the query is < IW>. 

Then ( ) - the null tuple - is the sole answer to the query ifJ DB ~ W. Thus II< IW> II 

is {( )} when DB~ Wand { } otherwise. Posing such a query corresponds to asking the 

database whether W holds. A response o( {( )} denotes the answer "yes" while { } 

denotes "I don't know" - not "no". A response of {( )} to the query < 1-, W> provides 

the answer "no" to the original query < IW>. 

The purpose o( this paper is to provide a sound and, in certain special cases, com

plete query evaluation algorithm for relational databases with null values. By "sound" 

and "complete" we mean the following: 

A query evaluation algorithm is ,ound (or extended relational theories iff' (or any such 

theory R and query Q the algorithm returns a subset or IIQIIR• Such an algorithm is 

complete iff it returns a superset or IIQIIR• 

,I. Sound Query Evaluation for Relational Databaae, with Null Value, 

The objective or this section is to provide a sound but, in general, incomplete query 

evaluation algorithm for relational databases with null values. Thus in general the algo

rithm will return some but not all answers to a query. The algorithm proceeds by recur

sively decomposing complex queries into suitable set theoretic operations on simpler 

queries. In most cases, the decomposition is equal to the original query, but in two cases 
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the decomposition may be a strict subset or the original. It is these latter two cases 

which lead to the incompleteness or the method. 

The first two such decompositions hold ror arbitrary first order databases. 

Theorem ,1.1. 

Jr DB is a first order database, then 

Proof. Follows rrom the simple ract that ror any tuple c or constants 

Theorem ,1.e. 

If DB is a first order database, then 

Proor: Follows rrom the simple ract that for any tuple c or constants, if DB t- W1(c) or 

DB t- WJc) then DB t- W 1(c) V WJc). 

QED 

Alas, the reverse inclusion of Theorem 4.2 does not hold, even for extended rela

tional theories. For example, consider the theory with a single type r, two constants a 

and b, a single predicate P( · ), no unique name axioms, and extension axioms 

Then 

but 

(x)P(x) e E(x,a) 

(x)r(x) = E(x,a) V E(x,b) 

ll<x/r I P(x) V -.P(x)>II = {a,b} 
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ll<x/r I P(x)>II = {a} 

and 

ll<x/r I -.P(x)>II = { }. 
As we shall see, this failure of the reverse inclusion in Theorem 4.2 is one of two 

reasons preventing the completeness of the query evaluation algorithm of this paper. 

In the subsequent development we shall require some preliminary concepts and lem-

mas. 

If R is an extended relational theory, denote by E-AXIOMSR the formulae of R 

which involve only the equality predicate i.e. R's unique name axioms, together with the 

reflexive, symmetric and transitive axioms for equality. 

Lemma -1,9. 

If R is an extended relational theory and Wis a closed wfJ in which the only predi

cate that occurs is E, then R ~ W iff E-AXIOMSR ~ W. 

Proof. 

The necessity is trivial. To prove sufficiency we argue model-theoretically that for 

any model M of E-AXIOMSR Wis true in M, from which it follows that E-AXIOMSR~ W. 

To that end, assume R ~Wand that M is a model of E-AXIOMSR. Define a struc

ture M' as follows: 

1. M' has the same domain as M. 

2. M' interprets the equality predicate E exactly as does M. 

3. For each predicate P distinct from E, if P's extension axiom in R is (x)..,P(x), then P 

is false in M' for all tuples d or domain elements. If P's extension axiom in R is 
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(x)P(x) = E(x,c<1>) V · · · V E(x,c<r)) 

then P is true in M' on the tuple d or domain elements iff the right side of the 

equivalence is true in M for the tuple d. 

Clearly M' is a model of R. Since RI- W, Wis true in M' . Since W involves only 

the equality predicate E, and since M and M' interpret E in the same way, Wis true in 

M. 

QED 

Definition 

A first order formula is Horn iff all clauses or its clausal form are Horn. A clause is 

Horn iff it contains at most one positive literal2 (but any number of negative literals). A 

first order theory is Horn iff all its formulae are. 

Notice that E-AXIOMSR is a Horn theory whenever R as an extended relational 

theory, a fact we shall make use of shortly. 

Lemma ,1.,1 . 

Suppose that H is a Horn first order theory, and that K1 is a conjunction or one or 

more ground atomic formulae for i==l, ... ,n. Then Ht- K 1 V · · · V KD iff Ht- K1 for 

some 1. 

Proof. 

If H is an inconsistent theory the result is immediate. Hence, assume H consistent. 

In this case the necessity is obvio~. To prove the sufficiency assume, with no loss of 

generality, that H is in clausal form. Then since HJ- K1 V · · · V KD, HU {K1, ... , RD} 

2 A literal is an atomic formula or the negation of an atomic formula 
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is unsatisfiable where K1 is that clause obtained by negating the conjunct Ki- Notice that 

each literal of K1 is negative 80 that K1 is Horn. Since H is Horn, so is H U {K1, ... , Kn}. 

By a theorem of [Henschen and Wos 1974] any unsatisfiable se.t of Horn clauses has a 

positive unit refutation i.e. a refutation by binary resolution in which one parent of each 

resolution operation is a positive unit clause. Since H U {K1, •.• , Kn} is such a set of 

Horn clauses, it has a positive unit refutation. Since H is consistent then K1 enters into 

this refutation for some i. Moreover, from the positive unit property, no other negative 

clause can enter into this refutation 80 that H U {K1} is unsatisfiable i.e. Hf-- K1• 

QED 

Notation 

Let R be an extended relational theory. Ir P is a predicate distinct from E whose 

extension axiom in R has the form 

(x)P(x) = E(x,c<1>) V · · · V E(x,c<r>) 

then IPIR denotes (c<1>, ... ,c<r)}. Ir P's extension axiom in R is (x) -.P(x), then IPIR is { }. 

JPIR simply corresponds to the table or the relation P in the usual representation of a 

relational database. When the theory R is clear from context we simply write IPI. We 

extend this notion to the equality predicate E by defining 

IE I == {(c,c) I c is a constant or ALPHA} 

Lemma .,1.5 

Suppose R is an extended relational theory and P is a predicate, possibly a simple 

type, possibly E. Then Rf-- P(c) for some tuple of constants c, iff c t IPI, 

Proof. 



Trivial. 
=t 
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Ca,e 1 P is the equality predicate E. 

Suppose Rf-- E(c,c1 
) for constants c,c' By Lemma 4.3, E-AXIOMSRf-- E(c,c1 ), so 

that E-AXIOMSR U {-.E(c,c1 
)} is unsatisfiable. Notice that this is a set of Horn formulae. 

Now, by a theorem of [Henschen and Wos 1974], any such unsatisfiable set of Horn for

mulae has a positive unit refutation i.e. a refutation by binary resolution in which one 

parent of each resolution operation is a positive unit clause. Since E-AXlOMSR is con

sistent (Theorem 3.2), -.E(c,c' ) must enter into this refutation. But the only positive 

unit clause of E-AXIOMSR is E(x,x) so this must be the parent of -.E(c,c1 ) in the refuta

tion, whence c and c' must be identical constants. Thus (c,c' ) i IE I . 

Ca,e e P is distinct from the equality predicate. 

Suppose Rt-- P(c). We first prove IPI r { }. For if IPI were empty then P's exten

sion axiom in R would be (x)-.P(x). Since R f-- P(c), R must be inconsistent, contradict

ing Theorem 3.2. 

Hence, P's extension axiom in R is of the form 

(x)P(x) e E(x,c<1>) V · · · V E(x,c<r>). 

We must prove that c is identical to c<•> for some i. Since Rf-- P(c), then Rf--

By Lemma 3.5 

E-AXIOMSR f-- E(c,c<l)) V ... V E(c,c<r>) 

Since E-AXIOMSR is a consistent llorn theory, then by Lemma 4.4 E-AXIOMSR f--

E(c,cO>) ror some i. Thus, if c - (c1, ... ,c8 ) and c<•> - (ci' , ... ,c8
1 

), then E-AXIOMSR f--
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are identical constants whence c and c(I) are identical. 

QED 

The next two theorems provide for the elimination of quantifiers occurring m 

queries, in favour of the relational algebra operations of projection and division. 

Definition 

Let S be a set of ( n + 1 }-tuples of constants, and R an extended relational theory. 

Suppose r is a simple type. Then the divi,ion o/ S 611 r (with re,pect to R) is defined 

only when lri =/: { } and is 

~~ = {a I ab t S for all b t IT I } 
where, when a is then-tuple (a1, ... ,au), ab denotes the (n+l}-tuple (ai, ... ,au,b). 

For example, if 

S={(c,d,a), (c,d,b), (c,d,c), (e,e,a), (e,e,b), (e,e,c), (d,e,a), (d,e,b), (c,e,a)} 

and lri = { a,b,c} then ~~ = {(c,d),(e,e)}. 

The division operator defined above is a special case of that of [Reiter 1980a). 

Notation 

Ir ,. == T1, ... ,Tu is a sequence of simple types, then I ,. I denotes I T1 I X ... X I Tu I . If 

n=O then I r I is {( )}. 

The next theorem allows us to strip off leading typed universal quantifiers in 

queries. 

Theorem 4.6. 

Ir R is an extended relational theory and W(x,y) is a (possibly quantified) formula 

with free variables among x-= x1, •.. ,xu and y, then 



(a) If 181 = { } 

ll<x/r I (y/8)W(x,y)>II = Ir I 

(b) U 181 if { } 

II 

ll<x/r I (y/8)W(x,y)>II = ~,ll<x/r, y/8 I W(x,y)>II 

Proof: 

(4.1) 

(a) Jr 181 = { } then 8's extension axiom in R is (x)-.8(x). Suppose c E Ir!, Then Rf-

r1(cJ i==l, ... ,o. Moreover, Rf-- (y)8(y) ::> W(c,y) by l's extension axiom. Hence 

c(ll<x/rl(y/O)W(x,y)>II, On the other hand, if c(ll<x/rl(y/O)W(x,y)>II then 

Rf-- r1(c1) i=l, ... ,o. By Lemma 4.5 c1 ( I r1 I so that c £ Ir I . 

(b) Begin by observing that if l's extension axiom in R has the form 

(x)O(x) = E(x,a1) V ... V E(x,&r) 

then for a tuple c of constants 

Rf-- (y)O(y) :::, W(c,y) ill 

Rt-- (Y)IE(y,a1) V ... V E(y,ar):::, W(c,y)J ill 

Rt- (y)E(y,a1) ::> W(c,y) i-=l, ... ,r ill 

R t- W(c,aJ i=l, ... ,r ill 

R t- W(c,a) for all a £ I 8 I . 

1. Now suppose c is an element of the left hand side or (4.1). Then 

Rt- (y)O(y) :::, W(c,y) 

This latter implies, by the preamble or this proof, that Rt- W(c,a) for all a£ I 8 I . 

We must prove c is an element of the right hand side, i.e. that for all a E I 8 I 

ea£ ll<x/r, y/8 I W(x,y)>II i.e. we must prove 

Rt- r1(c1) i==l, ... ,o which is known, and for all a£ I 8 I 
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R J- O(a) and R J- W(c,a), both or which are known. 

2. Suppose c is an element or the right hand side or (4.1). Then for all a E I BI, 

ca E ll<x/r, y/0 I W(x,y)>II 1.e. 

R J- W(c,a) so that by the preamble or this proof, 

R J- (y)8(y) :> W(c,y) 1.e. 

c is an element of the left hand side. 

QED 

Our next task is to strip off leading typed existential quantifiers in queries. 

Definition 

Let S be a set or (n+l)-tuples or constants. Then the projection of S is 

ns = {a I ab Es ror some constant b} 

For example, if 

S == {(a,b,c),(a,b,d),(a,a,c)} 

then 

ns = {(a,b),(a,a)} 

This projection operator is a special case of that or (Reiter 1980a]. 

Theorem ,I. 7. 

Ir R is an extended relational theory and W(x,y) is a (possibly quantified) formula 

with free variables among x -= x1, .•. ,xD and y, then 

Illl<x/r, y /0 I W(x,y)>II C ll<x/r I (Ey/O}W(x,y)>II 

Proof: 
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Suppose c is a tuple of constants in the left hand side. Then for some constant a, 

cat ll<x/r, y/9 I W(x,y)>II- Thus 

R j-- 9( a) and 

R j-- W(c,a) 

Hence R j-- 9(a) A W(c,a) so that R j-- (Ey /9)W(c,y). Hence c is an element or the right 

band side. 

QED 

Unfortunately, the reverse inclusion of Theorem 4.7 fails, as the following example 

shows: 

Ezample 4,1. 

Let R be the extended relational theory having two simple types r and I and a 

binary predicate P, where 

IT I = {er} I 8 I -== {a,b,c} IP I .. {(a,a),(cr,b)} 

Moreover, R has a single unique name axiom -.E(a,b). Consider the query 

Q c: <x/r I (Ey /9)P(x,y) A -.E(y,c)> 

Then IIQII - { o} since 

R j-- (Ey)9(y) A P(a,y) A -.E(y,c). 

This is so since 

R j-- 9(a) A P(a,a) A -.E(a,c) V B(b) A P(a,b) A -.E{b,c) 

even though neither of B(a) A P(a,a) A -.E(a,c) and B(b) A P(a,b) A -.E(b,c) 1s provable 

separately. 

On the other hand 
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ll<x/r,y/8 I P(x,y) A -.E(y,c)>II-= { } 

The failure of the reverse inclusions of Theorems 4.2 and 4.7 will be seen to be the 

two sources of the incompleteness of the query evaluation technique of this paper. 

Definition: 

Suppose for n > 1 that S is a set of n-tuples of constants. Let i1, ... ,ik be distinct 

integers in the range (1,nJ. Then the projection of S onto components iz, ... ,ik is 

TT11, ... Ji.S = ((a1,a:z, ... ,ak) I for some tuple (bi,b2, ••• ,bn) ES, aJ = b1j for j=l, ... ,k} 

n, the previous projection operator, abbreviates n1,2 .... ,11--i· 

Theorem ,1.8. 

Suppose R is an extended relational theory, and the variab)e y does not occur free 

in the formu)a W(x). Then 

(a) ll<y/8,x/rl W(x)>II = I Bl X ll<x/rl W(x)>II 

(b) If for n > 1 x/r = xifrz, ... ,xJrn and for k. > 0 •/'P = z1/rp1, ... ,zJrpk then 

ll<x/r, y/0, a/rp I W(x,1)>11 = Il2, .• ,11+1,1,a+2, .• ,a+k( IO I X ll<x/r, •/'PI W(x,■)>11). 

Proof: 

Case (b) follows trivially from case (a) by observing that 

ll<x/r, y/0, ■/rp I W(x,■)>11 = Il2, ... ,a+t,l,n+2,--.a+kll<y/8, x/r, ■/'PI W(x,z)>II 

Accordingly, we now prove case (a). If x/r = xifr1, ... ,xJrn then an (n+l}-tuple of con-

stants ac E ll<y/0,x/r I W(x)>II iff 

R f-- O(a) and 

R f-- r1(cJ i=l, ... ,n and 

Rf-- W(c) 

By Lemma 4.5, R f-- O(a) iff a E IO I . Hence 



act ll<y/8,x/r I W(x)>II iff 

ac f I BI X ll<x/rl W(x)>II 

QED 

H 

Suppose given a query <x/r I W(x)>. Then we can apply to W(x) the usual vali

dity preserving transformations which replace subformulae or the Corm o=/3 by 

o :::, /3 A /3:::, o, and subformulae or the form a :::, fJ by -.o V {J, and which distribute 

negation inward until the scope of each negation sign is an atomic formula. Hence, with 

no loss of generality, we can consider only queries of the form <x/r I W(x)> where W(x) 

contains only the connectives A, V and -., and where, moreover, the scope of each nega-

-
tion sign is an atomic formula. 

By a primitive query is meant a query or the form <x/r I P(r)> or <x/r I -.P(r )> 

where P(r) is an atomic formula and all of the variables of x occur in r. 

Using Theorems 4.1, 4.2, 4.6, 4.7 and 4.8 we can now decompose arbitrary queries 

into appropriate algebraic operations on primitive queries. 

Ezample ,l.t. 

Suppose 

Q = <x/r I (y /O)IP(x,y ,a,y) V (Ez/~)E(y ,z) A -.R(b,z,x)J> 

Then, provided I O I 'F { } 

IIQII = ~,ll<x/r,y /0 I P(x,y,a,y) V (Ez/~)E(y,z) A -.R(b,z,x)>II 

~ ~,{ll<x/r,y/0 I P(x,y,a,y)>II U ll<x/r,y/6 I (Ez/~)E(y,z) A -.R(b,z,x)>II} 

~ ~,{ll<x/r,y/0 I P(x,y,a,y)>II U Illl<x/r,y/8,z/~ I E(y,z) A -.R(b,z,x)>II} 

== ~,{ll<x/r,y/8 I P(x,y,a,y)>II U Il!ll<x/r,y/6,z/~ I E(y,z)>II 

n ll<x/r,y/8,z/~ j -.R(b,z,x)>III} 
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= ~,{ll<x/r,y/8 I P(x,y,a,y)>II U n1 I rl X ll<y/8,z/,p I E(y,z)>II 

n n2,1,s( ID I X ll<x/r,z/,p 1-.R(b,z,x)>ll)I} 

Our remaining task, therefore, is to determine algebraic operators for evaluating 

primitive queries. We focus first on primitive queries of the form <x/r I P(r)>. 

Definition,. 

If r is an n-tuple of variables and/or constants, and S is a set or n-tuples of con

stants, then 

E,(S) = {t E S I For i=l, ... ,n, if r1 is a constant, then t1 == r11 and if r1 is a variable, say x, 

and if r11, ... ,ri. are all of the components of r such that 

E, is realizable by the standard selection operator t1 of the relational algebra. For exam

ple 

If r is as above, and if x = Xi,, .. ,xm where each x1 is a variable occurring in r, and if 

c = c1, ... ,cm where each c1 is a constant, then rel• is that n-tuple obtained from r by sub

stituting c1 for each occurrence or x1 in r for i=l, ... ,m. For example 

(x,y ,a,x,z,y )(b,c,d) I <,.x.•) = (c ,b,a,c,d,b). 

Theorem ,1.9 

Suppose that R is an extended relational theory and <x/r I P(r)> is a primitive 

query where x == x1, ... ,xD and where~= r1, ... ,rm is a tuple of constants and/or variables. 

Suppose further for j=l, ... ,n that r1. is the first occurrence of xJ in r. Then 
I 
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Proof: 

e E IIQII iffRl--r1(c1) i==l, ... ,n and Rl--P(rc1x) 

iff, by Lemma 4.5, et: I rl and rclx E IP I 

But re Ix f Ip I ifJ rclx EE,( Ip I) iff Cf n,1,--,i.,E,( Ip I). 

QED 

Ezample ,1.9. 

ll<x/T,y/0 I P(a,y,y,x)>II = I Tl X IO I n Il4,2Eu,7.x( IP I) 

== I , I x I o I n n•.2'7•- A~, I P I ). 

Definition 

Let R be an extended relational theory. An n-tuple a of constants diaagreea with 

an n-tuple b of constants (with reapect to R) iff Rt-- -.E(a,b). 

Theorem ,1.10 

Suppose R is an extended relational theory and <x/r 1-.P(r)> is a primitive query. 

Then e E ll<x/r I -.P(r)>II iff et: Ir I and rclx disagrees with every tuple of IP I -

Proof: 

.... 
Suppose et: ll<x/r I -.P(r)> II- Then Rt-- r1(c1) 80 by Lemma 4.5 e t: I,. I . Moreover Rt-

-.P(rc1,.). But, for any t f IP I , R l-,P(t) so that R l- -.E(rc1,.,t) i.e. "clx disagrees with t. 

4= 

Suppose e t Ir I . Then Rt-- r1(c1). Moreover, if IP I -= { } 80 that P's completion 
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axiom is (y)-.P(y) then R l- -.P(rc11J and the result follows. Otherwise IP I == {t(l), ... ,t<r)} 

for r~ 1 so that P's completion axiom is (y)P(y) = E(y,t<1l) V ... V E(y,t<r)) and since rclx 

disagrees with each t(I), R l- -.E(rcjx,t(ll) whence R l- -.P(rcjx) and the result follows. 

QED 

Definition 

Theorem 4.10 suggests the definition o( a new algebraic operator, as follows: 

Suppose 

1. S is a set or m-tuples or constants. 

2. x is a tuple or m distinct variables. 

3. r is a tuple of n>m constants and/or variables where the variables of r are identical 

to those of x. 

4. T is a set of n-tuples of constants. 

Define 

D,.,r(S,T) = {c £SI rclx disagrees with every tuple or T} 

Then we have the following simple corollary of Theorem 4.10: 

Co,0Uar11 ,l.11 

Suppose R is an extended relational theory, and <x/r I -.P(r)> is a primitive query. 

Then II <x/,- I -.P(r )> II == Dx,r( I r I , I P I ). 

It remains only to specify how to compute Dll,r(S,T), i.e. how to determine whether 

or not two equal length tuples o( constants a and b disagree. This is the question 

whether or not R l- -.E(a,b) for R an extended relational theory. By Lemma 4.3, this is 
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equivalent to determining whether or not E-AXIOMSR f- -.E(a,b), i.e. whether or not 

E-AXIOMSR U {E(a,b)} is unsatisfiable. 

Now E(a,b) abbreviates E(a1,bi) A .. .A E(a11,b11). Moreover, E-AXIOMSR contains only 

the reflexive, symmetric and transitive axioms for equality, which define E as an 

equivalence relation, together with formulae of the form -.E(c,c' ) for constants c,c' . 

Hence there is a simple decision procedure for the unsatisfiability of 

E-AXIOMSR U {E(a,b)} as follows: 

1. Determine the equivalence classes under E of {a1, ... ,a11,b1, ... ,b11}. 

2. E-AXIOMSR U {E(a,b)} is unsatisfiable (and hence a disagrees with b) iff some 

equivalence class coniains a pair of constants c,c' such that -.E(c,c' ) is one of the 

unique name axioms of R. 

Ezample ,1.,1. 

Suppose IPI and lrf are given by the following tables: 

IPI l!I 
w b w' a 
b a b b 
b a a w 

w' 

and there is a single unique name axiom -.E(a,b). Then 

II <x/r,y /r I -.P(x,y ,a)>II -= D(x.,),(x.,,a~ I r I X I r I , IP I ) 

-= {(a,a),(a,w),(a,w' ),(w' ,w' )} 

5. Complete Queru Evaluation: Some Special Cue, 



This section treats three special cases for which the query evaluation technique of 

this paper is not only sound but complete: universally quantified conjunctive queries, 

positive queries, and databases without nulls. 

Notice that there are but two sources of incompleteness of the evaluation algorithm 

or Section 4. There are Theorems 4.2 and 4.7 which treat disjunction and existential 

quantification respectively. Hence, in order to prove completeness or the methods or Sec

tion 4 in certain special cases, it is sufficient to prove either that Theorems 4.2 and 4.7 

are irrelevant to the special case, or that the set inclusion of these theorems may be 

reversed. 

5.1. Univeraally Quantified Conjunctive Querie,. 

These are queries of the form 

<x/T I (yif01) ... (ymfOrJL1 A · · · AL,> 

where each L1 is an atomic formula, or the negation of an atomic formula. The case 

m=O is permitted, in which case there are no typed universal quantifiers. It is easy to 

see that the methods of Section 4 are complete for these queries srnce such queries 

involve neither disjunction nor existential quantification. 

s.e. Po,itive Querie,. 

Define the class or po,itive wffs as r ollows: 

1. An atomic wff is positive. 

2. Ir K is a positive wff and Ta simple type then (x/r)K and (Ex/r)K are positive. 

3. If K1 and K2 are positive wffs, then so also are K1 V K2 and K1 A K2• 

4. A wfl' is positive only by virtue of 1, 2 and 3. 
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A query <s/r I K> is po,iCive iff K is positive. 

Our objective is to show that the set inclusions of Theorems 4.2 and 4.7 may be 

reversed in the case of positive queries, from which completeness follows. To that end 

we shall require 

Lemma 5.1. 

Suppose that R is an extended relational theory and that W is a wff with a single 

free variable x. Then 

(a) Rf-- (Ex/8)W(x) e V W(a) 
at I I I 

When I 8 I = { } the right side or this equivalence is the identically false proposition. 

(b) R f-- (x/lJ)W(x) e A W(a) 
at I I I 

When I BI =-= { } the right side or this equivalence is the identically true proposition. 

Proof: 

(a) Recall that (Ex/8)W(x) abbreviates (Ex)O(x) A W(x). The result is trivial if I 8 I -= { }. 

Otherwise, suppose l's extension axiom in R is (x)IJ(x) e E(x,a1) V · · · V E(x,a.). 

Then 

so that 

R f-- (Ex/8)W(x) e (Ex)IE(x,a1) V • · · V E(x,a.)J A W(x) 

Rf-- (Ex/8)W(x) & V (Ex)E(x,a) A W(x) . .,,,, 
By standard properties of equality, 

R f-- (Ex)E(x,a) A W(x) s W(a) 

from which the result follows. 

(b) This follows from (a) by noting first that (x/O)W(x) is logically equivalent to 

-.(Ex/8)-.W(x). Hence, by (a) Rf-- (x/8)W(x) e .., V -.W(a) so by de Morgan's law .,,,, 



R t-- (x/B)W(x) = A W(a). 
al I I I 

QED 

Lemma 5.e. 

13 

Suppose R is an extended relational theory, and K1 and K2 are closed positive wfls 

all of whose quantifiers are typed quantifiers. Suppose further that Rt-- K1 V K2• Then 

Proof: 

Using Lemma 5.1 we can eliminate all typed quantifiers in K1 and K2 in favour of 

disjunctions and conjunctions, to yield quantifier free wffs K1' and K2' respectively. 

Hence R t-- Ki' V K2' , and both K1' and Ki are positive since K1 and K2 were. Now 

for each predicate P use P's extension axiom in R to replace every occurrence of P in 

K1' and K2' by equalities, to yield E1 and ~ respectively. Thus Rt-- E1 V ~ where 

both E1 and E:z are positive quantifier free formulae in the equality predicate E. By 

Lemma 4.3, E--AXIOMSR t-- E1 V ~- Without loss of ·generality, assume E1 and E2 are 

both in disjunctive normal form. Since E1 is positive then so also is each conjunct C1 in 

E1 's disjunctive normal form C1 V · · · V Cm- Similarly for each conjunct D1 in &.i's dis

junctive normal form D1 V · · · V D8 • Thus 

E--A.XIOMSR t-- C1 V · · · V Cm V D1 V · · · V D8 . 

Hence by Lemma 4.4, E--AXIOMSR t-- C1 say, for some i. Hence E--AXIOMSR t-- E1 so that 

Rt-- E1• Since E1 was obtained from K1 by a series of logical equivalences, Rf- K1• 

QED 

Corollarv 5.9. 
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U R is an extended relational theory and Q c:: <x/r I W1(x) V W:z(x)> is a positive 

query then 

IIQII ~ ll<x/r I w.(x)>II u ll<x/r I W:z(x)>II 

This establishes the reverse inclusion of Theorem 4.2 in the case or positive queries. 

It remains to prove the reverse inclusion or Theorem 4.7, as follows: 

Theorem 5.4. 

UR is an extended relational theory and W(x,y) is a positive formula with free vari

ables among x = x1, •.. ,x. and y then 

ll<x/r I (Ey/8)W(x,y)>II ~ Illl<x/r,y/9 I W(x,y)>II 

Proof: 

Suppose c is an element of the left hand side. Then c E I r I and R f- (Ey /8)W(c,y ). 

We must prove c,a t ll<x/r,y/0 I W(x,y)>II for some a E I BI i.e. that Rf- W(c,a) for 

some at I 81. Now since Rf- (Ey/S)W(c,y) then by Lemma 5.l(a), Rf- V W(c,a). at!,, 

Hence by Lemma 5.2, Rf- W(c,a) for some a E I BI. 

Results analogous to ours on the soundness and completeness of algebraic tech

niques for positive queries are described in (Imilienski 1983] although for him such 

queries may not involve universal quantifiers or disjunctions. Imiliensk.i has indepen

dently adopted a logical framework for addressing the problem of query evaluation over 

databases with null values. While his notion or a null value agrees with ours - they arise 

from existential statements - he proposes a different class of first order theories than ours 

as a formalization of relational databases with null values. Specifically, he provides no 

representation of the closed world assumption. Accordingly, it is difficult to compare his 

results with ours. 



as 

5.9. Relational Databa,e, Without Null Value, 

A minimal requirement on the query evaluation method or Section 4 is that it be 

complete in the absence or null values. This section establishes such a result. 

Let WI call an extended relational theory R a relational theor11 ifJ for each pair of 

distinct constants c,c' , -.E(c,c' ) f R or -.E(c' ,c) E R. Thus, for relational theories dis

tinct constants are known to denote distinct individuals. This is a standard assumption 

underlying conventional relational database theory in the absence of null values. Thus 

relational theories rormalize the in(ormation content of conventional null-free relational 

databases. The completeness of the algebraic operators of Section 4 for relational 

theories will thus be our version of the completeness of the relational algebra in standard 

relational database theory. We prove this completeness result by proving the reverse 

inclusions of Theorems 4.2 and 4.7. 

Lemma 5.5. 

Suppose R is a relational theory, and K1 and K2 are closed wffs all of whose 

quantifiers are typed quantifiers. Suppose further that R l- K1 V K2• Then R f- K1 or 

Rf- K2-

Proof: 

The proof is very like that of Lemma 5.2. As in that proof, use Lemma 5.1 to elim

inate all typed quantifiers of K1 and K2, yielding quantifier free wffs K1' and K:i' , for 

which R t- K1' V K:i' . Then use the completion axioms or R to transrorm K1
1 and K:i' 

to yield E1 and E2 respectively, both or which are quantifier free wff.s in the predicate E, 

and for which R l- E1 V E2. By Lemma 4.3, E-AXIOMSR l- E1 V E:z. 
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With no loss of generality assume E1 is in disjunctive normal form C1 V · · · V Cm 

and &.i is in disjunctive normal form D1 V · · · VD.. Thus E-AXIOMSR f-

C1 V · · · V Cm V D1 V V D.. With ao loss of generality, assume that 

{C1, .. ,,Cm, Di, ... ,D.} 1s a minimal set or c:onjuqcts such that E-AXJOMSR f-

V o.. Ir m=O it follows that E-AXJOMSR f-- ~ and hence 

Rf-- K2 and we are done. Hence assume m~l. Consider the conjunct C1• Suppose one 

of its literals has the form -.E(c,c) for some constant c, or the form E(c,c1 ) for distinct 

constants c,c' . Then since R is a relational theory, E-AXIOMSR f-- -.Ci, from which it 

follows that E-AXIOMSR f-- C2 V · · · V C111 V D1 V · · · VD. contradicting the minimal

ity of {Ci, ... ,Cm, D1, ... ,D.}. Thus, no literal of C1 has the form -.E(c,c) or E(c,c1 ). This 

means that every literal of C1 has the form E(c,c) or -.E(c,c1 ). But then E-AXIOMSR f--

C1 from which it follows that Rf-- K1• 

QED 

Corollar11 5.6. 

Ir R is a relational theory, then 

ll<x/rl W1(x) V WJx)>II ~ ll<x/rl W1(x)>II U ll<x/rl W~x)>II 

This establishes the reverse inclusion of Theorem 4.2 in the ca.,e of relational 

theories. The reverse inclusion of Theorem 4.7 is the following: 

Theorem 5. 7. 

If R is a relational theory and W(x,y) is a formula with free variables among 

x = x1, ... ,x. and y then 

ll<x/rl (Ey/O)W(x,y)>II ~ fill<x/r, y/8 I W(x,y)>II 

Proof: 
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As in the proof of Theorem 5.4, using Lemmas 5.l(a) and 5.5. 

Notice that for relational theories the D operator for evaluating negative primitive 

queries assumes a simpler form: 

o.,r(S,T) == {e Es I 'cl• i T} 

This is so because r or relational theories two tuples of constants a1, .. ,,aii and bi, ... ,bn 

disagree ifl' a1 and b1 are distinct constants for some i. We omit the simple proof. 

6. Diacuuion and Concluaion, 

I believe that the main point of this paper is not so much its soundness and com

pleteness results, but rather the met/aodolo1111 by which these results were obtained. We 

began with an abstract logical 1pecification, provided by the notion of an extended rela

tional theory, of the semantics of null values for the relational data model. In addition 

we provided a logical specification of what it means to be an answer to a query. All of 

this was entirely non procedural. The specification was concerned exclusively with 

meanmg. What does a null value mean! What does it mean to be an answer! With 

such a specification in hand, we could then. focus on the problem of realizing the 

specification which in this case was the problem of computing answers. This implemen

tation concern lead to the definitions of various algebraic operators, and ultimately to an 

algorithm for query evaluation based on these operators. Finally this realization was 

proved sound and sometimes complete with respect to the original logical specification. 

The most important feature of this approach was having a logical specification to begin 

with; the rest was more or less routine. The importance for conceptual modelling of 

such logical specifications is discussed at some length in (Reiter 1983, Section 6]. 
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Now as a methodology for the theory or databases this approach is very general 

and may be invoked in a wide variety or settings: 

1. Databtue lnteg,itv 

We can view any closed first order formula a., an integrity constraint, Given the 

specification or a database a., a set DB of first order formulae, we can specify what we 

mean by the database satisfying its integrity constraints {Ii, ... ,ID} a., follows: 

DB ,atiafie, {11, ... ,ID} ifl' 11 A · · · A la is true in all models or DB which, by the Godel 

Completeness Theorem is equivalent to DB~ 11 A · · · A 1. [Reiter 1980b, 1983). 

Using this specification ~ne can propose, and prove the correctness of, algorithms for 

detecting violations or database integrity and for maintaining integrity. 

In this connection notice that the results or this paper have a direct application to 

the detection of integrity violations in relational databases with null values. Suppose R 

is an extended relational theory and I an integrity constraint. Then R ~ I ifl' 

II< I 1>11-= {( )}. (See Section 3.3). Thus the algebraic methods of this paper may be 

used as follows: 

If II< I I> II = {( )} then the database satisfies I. 

If II< I I>II = { } then the database may or may not satisfy I, this because or the incom

pleteness or the algebraic methods of this paper. However, if I is a universally quantified 

conjunct, or is positive, then the algebra is complete and the database satisfies I ifl' 

II< I 1>11 _, {( )}. 

e. Quer11 Optimization 

This paper did not consider methods for query optimization i.e. ways of transform

ing queries prior to their evaluation in order to improve the efficiency of the evaluation 
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process. Clearly many such transformations are possible, and desirable. For example, 

when c is a constant one should replace formulae of the form (Ex/r)W(x) A E(x,c) by W(c) 

when ct: Ir I• 

When the database has been logically specified, one can then prove the correctness 

of such optimizing transformations on queries. Specifically, a transformation mapping a 

query Q to a query Q' is correct ifl IIQII =- IIQ' II, Such correctness proofs can be par

ticularly important when subtle query transformations are invoked, for example transfor

mations exploiting integrity constraints as in [King 1981). 

9. Other Data Model, 

This paper is concerned with the relational data model. But there are many other 

data and conceptual models of interest to the database community. The same metho

dology of this paper may be applied to these other models with the same attendant 

advantages. Thus the same kinds of results on query evaluation and optimization, and 

on integrity constraints can be obtained provided these data models are given logical 

specifications. Moreover, a valuable side effect of such logical formalizations is that the 

semantics of the corresponding data model is precisely and unambiguously given by the 

logic (Reiter 1980a, 1983). 
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