
A Fast Data Compression Method 

by 

Samuel T. Chanson & Jee Fung Pang 

Dept. of Computer Science, 
University of British Columbia, 

Vancouver, B. C., Canada V6T 1W5. 

TR 83-10 (August 1Q83) 

ABSTRACT 

This paper presents a new data compression scheme. The scheme uses both 
fixed and variable length codes and gives a compression ratio of about one-third 
for English text and program source files (without leading and trailing blank 
suppression). This is very respectable compared to existing schemes. The 
compression ratio for numbers ranges from 52% for numbers in scientific notation 
to 65 % for integers. The major advantage of the scheme is its simplicity. The 
scheme is at least six times faster than Huffman's code and takes about half the 
main memory space to execute. 

Acknowledg ment 
This work was supported in part by the Canadian Natural Sciences and 

Engineering Research Council under grant No. 3554. 





1. Introduction and Motivation 

Data compression techniques have often been used to counter the ever grow­
ing demand for mass storage by effectively increasing the storage capacity or 
computer systems. This is especially important for small systems where storage 
capacity is more restrictive. More recently, the need to move large amount of 
data over computer communication networks give added significance to the use­
fulness of compressing data. The cost of sending huge volumes of information via 
satellites, long distance telephone lines or cables can be reduced by first 
compressing the data to be sent and then expanding the compressed data to their 
original form at the receiving end. As compression requires encoding the data, it 
also provides a measure of data security. 

The Department of Medical Genetics at the University of British Columbia 
operates a VAX 11/750 running 4.lBSD UNIX. Large volumes of data, program 
source as well as electronic mail messages have to be regularly exchanged with 
other research centres. As well, to cope with the small disk capacity available, 
many files have to be frequently compressed and expanded. An efficient data 
compression algorithm which requires minimal CPU time and main memory 
space and which gives reasonable data reduction ratio is therefore very desirable. 

The files requiring compression can be classified into three categories: 

1. English text files, including electronic mail messages. 

2. Files containing mostly numbers (both integers and real numbers). 

3. Source codes (Fortran, Cobol, C, Pascal etc.). 

Except for source codes, most files do not contain many contiguous blanks. 
As well, trailing blanks on each line are easily and almost always removed after 
the files are created so that leading and trailing blank suppressions by themselves 
do not save much space for our applications. 

Many existing algorithms have been studied (1-8]. As well, 4.1 BSD UNIX 
provides a Huffman-like [3] compression routine. However, most methods require 
larger overhead than we would like. Our algorithm employs both the variable 
and fixed length codes. The most important advantage or the scheme is its sim­
plicity. Encoding and decoding are straightforward and require very little CPU 
time. As well, the amount of main memory space required is less than that for 
most existing schemes. 



• 2 -

2. The Compression Process 

Like most existing compression algorithms, our scheme requires two passes 
over the text to be compressed. However, because a large portion of the charac­
ters are assigned fixed length codes, the algorithm is less sensitive to code assign­
ment than most existing algorithms and can be reduced to a single pass with 
only slight performance degradation (see below). The first pass counts the fre­
quencies of all characters appearing in the text and sorts them in decreasing 
order. The v most frequently used characters (Group A) are assigned variable 
length codes. The next r characters (Group B) are assigned fixed length codes. 
The remaining characters (Group C) are again given variable length codes. The 
format of the variable length codes (Groups A and C) is n l's followed by a 0, 
where n=l,2,3 ... The fixed length codes (Group B) are (v+ 1) bits long and start 
with a 0. Since the codes in this group have the same length, code assignment 
within the group has no effect on the compression ratio. For English text files 
(and also for program source files) v is chosen to be 5. The fixed length codes are 
therefore 6 bits long and there can be up to 32 characters in Group B. 

The number of characters selected for each group is not arbitrary. From a 
collection or mostly electronic mail messages or English text consisting of over 
140,000 characters (including punctuation marks and spaces but with no distinc­
tion between upper and lower cases (more on this latter)), the cumulative 
occurrences of the top j most frequently used characters, expressed as a percen­
tage of the entire text is given in Table 2.1 below. 

Top 5 characters 36.7% Group A 

Next 32 characters 60.0% Group B 

Next 2 characters 0.8% 
Group C 

the rest 2.5% 

Table 2.1 Percentage of occurrence of 
characters in file. 



-3-

As can be seen, for v=5, about 96.7% of the characters can be expressed in 
6 bits or less. Characters in Group B represent a saving of 25% over the standard 
8-bit ASCII or EBCDIC codes. Those in Group A will give even more savings 
whereas with the exception of the two most frequently used characters, more 
than 8 bits will be required to encode the characters in Group C (about 2.5% of 
the text). 

Reducing the length of the fixed length codes will push more characters into 
Group C whereas increasing it beyond 6 bits do not result in much space saving 
(7-bit code gives only a 12.5% reduction and an 8-bit code offers on reduction at 
all). 

For files containing only numbers, the total number of distinct characters is 
small, usually between 11 and 15. In this case, performance will improve if the 
number of characters in Group A (i.e., v) is set to 3, so that the fixed length 
codes for Group B characters will consist of only 4 bits. Groups A and B cover 11 
characters (sufficient for all of the decimal digits) and no code will be longer than 
8 bits. It is obvious (see section 5) that the compression ratio will always be 
better than the 50% provided by BCD codes. 

Ir the total number of distinct characters exceeds 15 but is less than 25 or so 
(which is uncommon for most files) then v=4 is best. 

This scheme will work well even if the total number of different characters is 
small and when the frequencies of character occurrence is fairly even. It will not 
work well if the total number of different characters is very large which is not the 
case for the types of files under consideration. 

The encoding scheme is very simple and may follow the method described 
below. 

After sorting the frequencies of occurrence of the characters in decreasing 
order, an array consisting of 256 elements (for the 8-bit ASCII or EBCDIC codes) 
is constructed. The original 8-bit code of the character is used as an index into 
the array which contains the position of the character in the frequency list (i.e., 1 
for the most frequently used character, 2 for the next and so on). If this value is 
P for a particular character CH, then 



- 4 -

if P <= v then code(CH) = P l's followed by a 0 
if v <P<= v+ 2v then code(CH) = lower order v+ 1 bits 

of the binary number P-(v+ 1) 
if P > v+ 2v then code(CH) == (P - 2v) l's followed by O 

(A) 

(B) 
(C) 

Notice that unlike Huffman's scheme [3), no tree construction and traversal 
are needed. Upper and lower case letters can be taken into account by converting 
all letters into either upper or lower cases and using a case shift code (e.g., the 
first code in Group B, i.e., (v+ I) O's) to indicate a case shift for the following 
letters up to the next occurrence of the case shift code. (Upper case is assumed 
initially). This way, the total number of characters that needs to be dis­
tinguished is kept low and performance is only marginally worse than the case 
where letters are all of one case (see section 5). 

Notice that if the case shift character is assigned the code (v+ 1) O's, then 
(B) should be 

if v<P<=v+ 2v then code(CH) = lower order v+ 1 bits 
of the binary number P-v (Bl) 

A simple example of compressing the English line 'Tom goes to school.' will 
now be given to illustrate the algorithm. The frequency counts are given in 
Table 3.1 and the code assignments are shown in Table 3.2. The value of v is set 
to 3. 

Character 0 blank t s m g e C h 1 . 

Frequency 5 3 2 2 l 1 1 1 1 1 1 Count 

Table 3.1 Frequency Counts 



. / 

- 5 -

Group Character Code Assignment 

0 10 

A blank 110 

t 1110 

case shift 0000 

s 0001 

m 0010 

g 0011 
B 

e 0100 

C 0101 

h 0110 

l 0111 

C 11110 

Table 3.2 Code Assignment 

The compressed data is 1110 0000 10 0010 110 0011 10 0100 0001 110 1110 
10 110 0001 0101 0110 10 10 0111 11110. 

The compression ratio is 55%. If the letter cases are not distinguished, the 
compression ratio would have been 58% . 

3. Decoding Process 

Decoding is equally simple. The most important thing in a variable length 
scheme is to be able to detect the end or a character code. Two tables are passed 
to the decoding program together with the encoded text. Table A contains the 
original characters in Groups A and C. Table B contains the Group B characters. 
If the first bit or the code to be expanded is a 1, then the character code is ter­
minated by 0. The number or l's in the code is counted and is used to index into 
Table A to obtain the original character. If the first bit is 0, then the code is 6 
bits long. The 6-bit code is then interpreted as an integer and used to index into 



-6-

Table B to retrieve the original character. 

When the case shift code is encountered, it may be necessary to add (or sub­
tract) a constant to the original character code from the table to get the upper 
(or lower) case equivalent for letters. 

4. Extensions 

a) Suppressing leading and trailing blanks. 

AB mentioned before, our files typically do not contain many leading or trail­
ing blanks. However, this feature can be added easily and with little additional 
overhead (about 7%). The performance of this addition is given in the next sec­
tion. 

b) Case distinctions. 

For many files, no case distinction is necessary. This is for example the case 
with Fortran, PL/1, Cobol, Basic and some other source codes. It is obviously 
also unnecessary for files containing only numbers. In the case of English text, 
case distinction may be desirable. The use of a case shift code can handle this 
adequately as described in the last section. In this case, one character will be 
pushed from Group B into Group C. The degradation in both the overhead and 
compression ratio are not significant (see section 5). 

c) Standard tables. 

By creating standard tables for specific classes of files (e.g., 1 for English 
text, 1 for Fortran source etc.), it is possible to eliminate pass 1 in the compres­
sion process. In addition to reducing the CPU overhead, it also reduces i/o activi­
ties and the amount of main memory required. 

In our scheme, more than half of the characters to be compressed belongs to 
Group B (see Table 2.1) where fixed length code assignment produces no effect on 
the compression ratio. It follows that this scheme will suffer less in the use of 
standard tables than those employing only variable length encoding (such as 
Hahn's and Huffman's schemes). The decrease in compression ratio was found to 
be only about 5% for Fortran codes (see section 5). · 



- 7 -

6. Performance 

Huffman's code (3) is perhaps the most well-known data compression scheme. 
It is also optimal for encoding individual characters (rather than groups of char­
acters). However, to obtain the minimal redundancy codes, much work is needed 
to build and to traverse trees. One of the fastest data compression schemes which 
gives reasonable compression ratio is the one by Hahn (2). Both take two passes 
over the original data to be compressed. We shall compare our method to both 
these algorithms. Hahn's algorithm was implemented in Con the Vax 11/750. A 
one-pass Huffman compression program (using standard tables) already exists on 
the system. 

In the case or English text compression, a large file of system manuals con­
sisting of over 140,000 characters was used as the input data. The results are 
shown in Table 5.1 below. 

CPU Memory # Disk Reduction 
Time Requirement i/0 1 s Ratio 
(sec) (bytes) 

Huffman's 
Code 141 . l 22K 248 44.54% 

(l pass) 

Hahn's 
Scheme 45.5 12K 397 33.52% 
(2 passes) 

Our 
Scheme 31. l 11 K 390 31 . 14% 
(2 passes) 

Our 
Scheme 
(2 passes, 
leading 33.4 11 K 410 33.80% 
blank 
suppression) 

Table 5.1 Performance Comparisons for English text files 



- 8 -

Thus the new algorithm is more than four times faster than Huffman's code 
and uses half the main memory space in the compression of English text. It is, 
however, also about a third worse in compression ratio. Its performance is about 
the same as that of Hahn's scheme but is approximately 25% faster. The over­
head for case distinction in our scheme is negligible and suppressing leading 
blanks adds about 7% to the CPU time. 

Standard tables have been prepared for Fortran source files to eliminate the 
first pass in the compression process. Over 60,000 characters of Fortran codes 
were compressed. The results are shown in Table 5.2. 

CPU Memory # Disk Compression 
Time Requirement i/o's Ratio 
(sec) (bvtes) 

Huffman's 
Code 76.4 19K 100 39.2% 
(1 pass) 

Our 
Scheme 11. 7 11 K 94 32 . 1 % 
(1 pass) 

Our 
Scheme 14. 2 12K 150 33.9% 
(2 passes) 

Table 5.2 Performance Comparison using standard 
tables for Fortran Source 

It is observed that using standard tables to eliminate the first pass decreases 
the compression ratio by only 5%. However, both the memory requirement and 
disk activities are reduced. The CPU time is decreased by about 17% and it is 
now more than six times faster than the Huffman code. 

Finally, we tested Pascal source as well as number files on our compression 
scheme (2 passes, no leading and trailing blanks suppression). The compression 
ratios for various file types are listed in Table 5.3. 



.g. 

File type Compression Ratio 

Integers 64.5% 

Signed real 
numbers in 52.3% scientific 
notation 

Pascal 31 . 3% Source 

English 31 .1 % text 

Fortran 33.9% Source 

Table 5.3 Compression ratio of our scheme for different 
file types 

8. Conclusions 

We have presented a new data compression scheme. The scheme gives a 
compression ratio of about one-third for English text and program source files 
(without leading and trailing blank suppression). This is very respectable com­
pared to existing schemes. The compression ratio for numbers ranges from 52% 
for numbers in scientific notation to 65% for integers. The major advantage of 
the scheme is its simplicity. The scheme is at least six times faster than 
Huffman's code and takes about half the main memory space to execute. We 
believe it is the fastest scheme for the range of compression ratio it provides. The 
scheme can easily be implemented in hardware. 



- 10 -

References 

Ill Cortesi, D., "An effective text-compression algorithm", Byte, vol.7, no.I, 
Jan. 1982, pp.ag7.4oa. 

12I Hahn, B.," A new technique for compression and storage of data", 
Comm.ACM, vol.17, no.8, Aug. 1Q74, pp.434-436. 

l3I Huffman, D.A., "A method for the construction of minimum redundancy 
codes", Proc. ffiE, vol.40, no.Q, Sept. 1952, pp.1008-1101. 

l41 Pechura, M., "File archival techniques using data compression", 
Comm.ACM, vol.25, no.Q, Sept. 1982, pp.605-600. 

1£>I Rubin, F ., "Experiments in test file compression", Comm.ACM, vol.IQ, 
no.11, Nov. 1g75, pp.617-623. 

16I Ruth, S.S. and Kreutzer, P.J., "Data compression for large business files", 
Datamation, vol.18, no.Q, Sept. 1Q72, pp.62-66. 

l71 Tropper, R., "Binary-coded text, a text-compression method", Byte, vol.7, 
no.4, April 1Q82, pp.3g8-413. 

ISi Wells, M., "File compression using variable length encodings", The Com­
puter Journal, vol.IS, no.4, 1Q72, pp.308-313. 


