R-Maple: A Concurrent Programming Language
Based on Predicate Logic.
Part I: Syntax and Computation.

Paul J. Voda

Department of Computer Science,
The University of British Columbia,
6356 Agricultural Road,
Vancouver, B.C. Canada V6T 1WS5.

TR £3-9

1. Introduction.

Programs in modern programming languages consist of two components: meaning and confrol.
Meaning of a program is given by a function or a predicate computed by the program. This func-
tion or predicate can be expressed as a term or formula of a formal logical theory. An interpreta-
tion of the theory assigns meaning to the terms and formulas. Thus the meaning of a program is
the meaning of the corresponding term or predicate.

Control component is that part of programs which does not affect the meaning. Control provides
instructions for the machine executing the program. Control directs the behaviour of the
machine. Computation of programs can be viewed as an attempt by the executing machine to
prove the program using certain axioms and rules of inference.

When a proof is found, i.e. the computation terminates, then the meaning component remains
unaflfected by the specific way (control) of the proof. On the other hand, when a proof is not
found then the meaning component asserts only a pariial correciness, of the program.

Some programming languages, especially the ones with explict parallelism, such as Algol-68 and
Ada [18,10] contain a strong control component. The control in sequential programming languages
as Algol-60 and Pascal [9,19] permits explicit sequencing of operations but no concurrent compu-
tation.

On the opposite end is Prolog [1,7] as a representative of logic programming. Conceptually at
least, the control component is entirely absent in Prolog. The decision of how to sequence com-
putations and what to do in parallel is left entirely to the Prolog interpreter acting as a virtual
executing machine.

The meaning component of languages with strong control is quite weak. Complicated meaning
functions of denotational semantice [15] are required to map the programs to formulas of a logi-
cal theory (lambda calculus). Although, it is easy to specify efficient computations in classical
programming languages, it is quite cumbersome to prove properties of programs.

A very weak control in Prolog is outweighed by the direct connection of Prolog programs to for-
mulas of predicate calculus. It requires a sophisticated interpreter of Prolog to assure a reasonably
efficient execution of programs, but the proof of properties of programs is made easy. The only
problem with the semantics of Prolog is that a programmer which writes programs by adding new
axioms cap easily render the whole system of axioms inconsistent. Now the close connection to
logic is lost: one can prove any property of a program.

R-Maple (Relational Maple) is a programming language which tries to strike a balance between
the meaning and control. Programs of R-Maple contain a control component and thus they can-
not directly be formulas of predicate logic. However, the meaning function connecting programs in

Thi» work was supported by the Natural Sciences and Engineering Research Council of Canada, grant A5008.

-92.

R-Maple to formulas of a logical theory is extremely simple and straight-forward.

The control component of R-Maple permits explicit specification of sequential and parallel compu-
tations. It allows the synchronization of parallel processes on the values of variables. Parallelism
in functional programming languages is restricted to concurrent evaluation of function applica-
tions. R-Maple is based on relations and results may be non-deterministic in the sense that two
parallel processes can come up with two different values satisfying a relation.

Programmers are not overly restricted in the way they write the programs in R-Maple. This
includes programs which either do not terminate at all or terminate dead-locked. The naming
function assigns a formula to all programs. Care is taken in the semantics to make sure that the
intended meaning of nonsense programs cannot be derived in the formal theory of R-Maple. Since
programs are not directly formulas, we can assure the consistency of the theory.

R-Maple is described in two parts. This part is concerned with syntax and computation rules. The

naming function is also presented, but only Part Il, devoted to semantics, investigates the condi-
* tions under which the intended meaning of R-Maple programs can be asserted. It also outlines a

theory of {ypes which simplifies the proofs that programs behave as they are intended to behave.

Although Part 1 does not deal with semantics, the reader does not need to be disappointed. The
naming function gives him the intuition behind programs. He can prove partial correctness of pro-
grams, assuming them to terminate properly.

Nevertheless, Part | entirely includes, what is usually called, the defining report of a program-
ming language. In addition to the defining report, we present a rationale behind the decisions to
include single comstructs of R-Maple. We also relate our constructs to similar constructs in
another programming languages. We feel that by interleaving the formal and informal parts the
readability of the report is increased.

How can we claim that we have a full defining report of a language without giving its semantics?
The answer is perhaps surprising to everybody, but the hard core denotational semanticists.
Defining reports traditionally define the semantics of programming languages by what is called the
operational semantics. The operational semantics describes behavior of the machine which exe-
cutes the programs. Part I fully defines the behaviour of R-Maple machine by presenting the com-
plete set of its instructions in the form of trensformalions.

Even if we accept that a computation rule should not change the meaning of a program, the set
of transformations operationally defining a programming language gives only a limited set of
equivalences among programs. The transformations do no give any interpretation to programs. D.
Scott [13] was the first one to point out that mere syntactic transformations are no basis for for-
mal semantics. An interpretation of programs into a formal theory which posseses a model gives
additional rules for proving properties of programs. Using only the identities given by transfor-
mations, we are not in position to prove even simple properties of programs.

For instance, given two functions:

fac(n) =it n = O then 1 else n X fac(n-1)

face(n,p) =¥ n = 0 then p else facc(n-1,nXp)
the property fac(n) = facc(n,1) can be proven only by induction. This property is a very impor-
tant one because it permits a faster computation of factorials.
The denotational semantics uses Scott’s models of lambda calculus as the basis for semantics. The
above identity is proven by Scott's induction. The semantics of R-Maple uses the first order
Peano arithmetic and subsequently the identity (or rather the one with predicates instead of
functions) is proven with the help of proof by ordinary induction on n of

fac(n)Xm = facc(n,m)

Part I contains all of what a practical programmer expects from the definition of a programming
language: The syntax is fully and formally specified. The execution of programs is precisely
defined. As a bonus, we define the intended meanings of programs.

o,

A description of a new programming language is usually welcomed with a slightly bored sigh:
"Yet another one of those languages! It introduces a couple of new fealures and we are asked to
wade through pages of boring syntax descriptions.” To counter such objections we would like to
sum up what we think is a novel approach in R-Maple:

1) R-Maple is based on relations rather than on functions. Thus it is not another classical pro-
gramming language. It has explicit control over sequential and parallel processing. Rela~
tions permit additional non-determinism. R-Maple has a straight-forward and obvious mean-
ing component. Actually, only such constructs have been included which map directly to
logic.

2) Great care is exercised to show that the computation of R-Maple programs leaves the
intended meaning intact. Whenever a relation permits more results, some of which are
rejected by additional tests later in the program, backtracking must be invoked. This means
that a different result is to be tried. Prolog has backtracking built into the interpreter. Con-
sequently, one has only a dim perception of what is going on and one can only hope that no
results are left untried. Computation rules of R-Maple make backtracking totally visible and
one has confidence that all alternatives will be tried before failure is admitted.

3) The semantics of R-Maple is defined on abstract programs which have a simple structure
but are not suitable for human readers. We also present a concrele syntax permitting a very
readable form of programs. Our concrete syntax even covers the composition of relations.
This escapes the constant need to invent new variable names for auxiliary results as in Pro-
log. Another very high level syntax sugaring of concrete syntax is that it permits both pro-
cedural and clausal form of definitions of predicates. Both the composition and definitions
by clauses effectively combine the best features of functional and logic programs.

4) The relation between the abstract and concrete syntax is quite novel. Programs in concrete
syntax are not translated into programs in abstract syntax. Concrete programs are mere
abbrevialions of abstract programs. As abbreviations, they do not have an independent
existence and one does not need to show that the meaning is preserved by the transition.
The abbreviations are specified in an exact way by schemas of abbreviations.

Let us outline the contents of Part 1. The connection between computations and proofs is investi-
gated in section (2). R-Maple is informally presented in section (3). Section (4) is concerned with
formal logical principles underlying the design of R-Maple. The abstract syntax and the naming
function is given in section (5). Some meta-theoretic properties of R-Maple programs are defined
in section (6). Definitions of predicates are presented in section (7). Sections (8) through (11) intro-
duce the concrete syntax of variables, predicates, expressions, programs, and definitions of predi-
cates. Section (12) is concerned with the Prolog-like form of predicate definitions. Section (13)
introduces the composition of relations. Section (14) presents the predefined predicates of R-
Maple. The rules of computation are given in sections (15) through (17). Finally, section (18) gives
various examples of computation and compares programs in R-Maple and Prolog.

The present author was greatly helped by long discussions he had with his colleagues Karl Abra-
bamson, Paul Gilmore, and Akira Kanda. Their contribution is gratefully acknowledged.

3. Computations as Proofs.

Let us have a closer look at the connection between computations and proofs. We have said that
a computing machine uses certain axioms and rules of inference during the computation of a pro-
gram. These do not necessarily include all axioms and rules of inference of a formal logical

theory.

For instance, the computation of programs written in functional programming languages such as
LISP or SASL [8,16] is based only on the A-rule of lambda calculus and on the Theorem of
Equivalence.

The rule 8 is actually an axiom

(Az.s)(a) = 8] z:=a]

-4-

where s z:=a| stands for the term obtained from s by the substitution of a for all free
occurrences of the variable z.

The Theorem of Equivalence permits us to replace identical terms or equivalent formulas in other
terms or formulas without changing the meaning of the latter terms or formulas. The computa-
tion of a lambda-program replaces in a computed program an application f(a), where f = \zs,
by the term s[z:=a| to obtain a new program identical to the original one.

Control of functional programming languages does not give the executing machine great freedom
in the way a proof is performed. Most programming languages insist on the normal order of com-
putations where the leftmost and innermost function applications are removed first.

The computation in Prolog is based mostly on the transitivity of implication: When a program
~(A & A& - BA K - -A,) (1)

is to be refuted, then in each computation step a properly instantiated axiom B — A, is applied
to obtain

~(A &A% - &B& - -4A,) (2)

As a result we have (1) — (2). This process is repeated until a false formula F is reached. We
have then (1) — F, i.e. = (1). The special form of axioms in Prolog (Horn clauses) and the use of
the transitivity of implications instead of the Equivalence Theorem contributes to the difficulties
with negations in Prolog. If the sequence of implications reduces to T then nothing can be said
about the original program (1).

An interpreter of Prolog has in theory, but not in practice, considerable freedom in choosing what
part of (1) is to be replaced by what axiom. The interpreter could almost be a theorem prover.
This freedom would necessarily slow down the execution of Prolog programs.

Finally, the "proofs” performed by machines executing programs in classical programming
languages as Algol and Pascal can be viewed as based on a set of rewriting rules. Part of a pro-
gram containing LHS of a rewriting rule is replaced by the RHS of the rule. The rewriting rules
are usually quite arbitrary, similar to algorithms of Markov. This arbitrariness makes the connec-
tion to the meaning, i.e. to logic, difficult.

Computations in Prolog are the ones most closely connected to proofs in logic. But even so, the
truly interesting proofs, the ones by induction, are not performed.

The computation of functional programming languages proves identity among terms. The compu-
tation in Prolog refutes formulas. Computation in R-Maple is performed on terms corresponding
to certain formulas of predicate calculus. In this respect R-Maple is closer to Prolog. But unlike
Prolog and like functional programming languages, the computation in R-Maple is based on the
Equivalence Theorem. Part of a computed program is replaced by a program with the same
meaning to yield a new program which has the meaning intact.

The Prolog machine has great freedom in applying the rules of computation. The R-Maple
machine can apply a transformation only on certain positions within the program being com-
puted. Whenever more transformations are applicable, the machine is free to choose any one.
Unlike functional programming languages, R-Maple contains about one hundred different transfor-
mation rules. After all, R-Maple is a concurrent language with backtracking. Even so the rules
are quite simple inasmuch as they are based on logical tautologies. The relatively large number of
rules is necessary to assure the efficiency of computations.

3. Informal Introduction to R-Maple.

R-Maple is a relational programming language without side eflects caused by state changes. Rela-
tional - as opposed to functional - means that the basic objects are relations. Functions have at
most one result for each value of arguments. Relations can have more "result” values satisflying
the same arguments. The possibility of multiple results brings into R-Maple non-determinism
which is not present in functional programming languages.

-5-

Although we speak of variables and, in a figurative sense, of assignments to variables, R-Maple is
an applicative language. Perhaps a better term is allribulive because relations are attributed,
rather than applied, to attributes, Once a variable obtains a value by a substitution the value is
never changed again.

R-Maple is so closely connected to predicate logic that it can be called a logic programming
language. Programs of R-Maple correspond to formulas of predicate calculus. Computation of a
program corresponds to a proof of a formula.

Formulas of predicate logic are constructed from terms which can contain individual variables.
Terms occur in atomic formulas. Atomic formulas are connected by logical connectives and
quantifiers. Programs of R-Maple are constructed from ezpressions which can contain program
variables. Expressions occur in invocations. Invocations are connected by connectives and
searches. The following table summarizes the correspondence:

R-Maple: Logic: R-Maple: Logic:
program formula expression term

prog. variable indiv. variable invocation atomic formula
gearch 3 quantifier connective connective

Every program of R-Maple names a formula of predicate logic. The meaning of the named for-
mula gives the fnlended meaning, or partial correctness, of the program. Two or more programs
with the same meaning can differ in the control component. The control component of a program
directs the proof of the program when it is computed by R-Maple machine.

The invocation P(z) invokes the program predicate P with the argument z. P may be a
predefined or defined (program) predicate. The invocation E¢(4,5) which can also be written as
4 eq 5 invokes the predefined predicate Eg. This invocation will be transformed by computation
into the program F naming falsehood. The invocation [4,5] eq [4,5] transforms to truth: T.
Braces ”| |” enclose pairs. Predicates which reduce to T or F are called tests, The program
4 eq 5 names the the atomic formula 4 = 5.

The invocation Add(3,5 | z) contains two input arguments 3, 5 and the oufpul variable z. Add is
a predefined generator and when computed it transforms into an assignment to its output vari-
able: z:=8. Add(3,5| z) npames the formula 9+ 5 = z; this is equivalent to z = & which is
named by the assignment z:=8.

Tests and generators are connected by connectives. A; B is a sequential and. First the program
A is computed. When it reduces to T' then the program B is computed and its result is the result
of the whole program. If A reduces to F then the whole program reduces to F. A || B is a parallel
and. Computations of both operands are performed in parallel. This time B can reduce to F thus
reducing the whole program to F. The other connectives are negation mot , and sequential and
parallel disjunction: or, orp . The computation of these connectives uses the corresponding
truth tables of propositional logic. Conjunctions and disjunctions group to the right; conjunctions
bind stronger than disjunctions.
The program

zeq8|/6it9or not 5eq6 (1)
names the formula z = 8 & 6<9 V = 5 = 6. Both sequential and parallel disjunctions name
the disjunction ” V ”. Conjunctions name ” & ”. The program (1), when evaluated, reduces to
z eq 8 or not 5 eq 6. The computation is then delayed on the identity test z eq 8 until a parallel
program substitutes a value for the variable z. If we replace the sequential disjunction in the
program (1) by a parallel orp then the program (1) reduces to T even though the value of z is
not yet known.

A frequent occuring combination A; B or not A; C can be shortened to the familiar form of
decision

if A then B else C
This if statement, obviously, names the formula A &£ BV - A & B. If statements are more

<

efficient to execute than the explicit forms since the test A is computed only once.
Generators and tests can be put into the scope of a search:
find z In Add(6,7 | z); z It 15 (2)

This search names the formula 3z(6+ 7 = z & z<15). Since the computation in R-Maple
always leaves the meaning invariant, we can expect the execution of (2) to yield T.

The execution of (2) will start by the execution of the predefined generator Add leading to
find z In z:=13; z It 15

Now the transformation of successful search
find z In z:=s; P(z) => P(s)

is applied to obtain "13 It 15” and from there T. The transformation of succesful search is based
on the logical tautology

Jdz(z =8 & P(z)) « P(s)
provided that the variable z does not occur free in s.
Tests (Even) and generators (Succ) are defined by predicate definitions:

Even(z)is find r In Rem(z,2| r); r eq©
Succ(z | nezt) Is Add(z,1 | nezt)

These definitions name the formulas

Vz(Even(z) «» 3r(Rem(2,2,r) & r =10)) (3)
Vz(Suce(z,nezt) «~ Add(z,1,nezt))

Note that the difference between tests and generators, so important on the level of control, com-
pletely disappears on the level of meaning. Incidentally, (3) is equivalent to

Yz(Even(z) « 3rRem(z,2,0))
The invocation Even(8) is computed as

Even(8) => find r In Rem(8,2 | r);req0=>find rinr:=0;req0=> 0eq0=> T
Generators can have multiple results.

G(| z) Is z:=3 or z:=5 or z:=8
Generators with multiple results cause backiracking when a generated value fails to satisfy a sub-
sequent condition:

findsIn G(|a);a gt 6 (4)
First the invocation of G is computed:

find a In (s:=3 or a:=5or a:=8); a gt 6

As a part of the execution of a:=3, and in the preparation for possible backtracking, the sequen-
tial and will be distributed over the sequential or. This transformation preserves the meaning
since it relies on the distributivity of logical connectives.

find ¢ In a:=3; a gt 6 or (a:=5 or a:=8); a gt 6 =>
(ind ¢ In a:=3; a gt 6) or (find a In (a:=5 or a:=8); a gt 6)

The last step relies on the logical tautology:
3z(A(z)V B(z)) « 3zA(z) V 32B(z2)
The computation continues in familiar way:

3gt6or(find a In (a:=5o0r a:=8);, a gt 6) =>
For (find a In (a:=50r a:=8);a gt 6) =>
find ¢ In (a:=50r a:=8); a gt 6

The first result was unsucessfully tried; the computation is just about to distribute the

. -

conjunction again in order to try out the second result a:==5, This fails and we shall have
findaina:=8 agt6=>T
Had we replaced the test a gt 6 by the test s eq 6 in the program (4) then all three alternatives
would fail thus failing the whole program.
Tests and generators can be recursive
Range(low high | z) Is
low le high; (z:=low or (find !l In Succ(low | Il); Range(ll,high | z)))
Range successively generates all values z in the interval low <z <high.
The intended meaning of the predicate Range can be proven by induction to be equivalent to:
Range(low high,o) «— ow<z & z<high

The nuisance of invention of names for auxiliary variables, like [in the above example, will be
overcome by a neat syntax sugaring permitting the composition of relations. The generator Range
can be written in a compact form:

Range(low,high | z) s low le high; (z:=low or Range(low+ 1,high | z))
Split search is the lact primitive construct of R-Maple:

find | hd Ul |:=list in P(hd,tl) (5)
Split searches permit us to break apart pairs and find the corresponding values for pairs of vari-

ables. For instance, if the list lst obtained the value |6,/s¢2] then the execution of (5) would lead
to the execution of P(6,/s!2).

The split search (5) names the following formula.
IhdIt(| hd, U] = list & P(hd,Ul))

4. Formal Principles of R-Maple.

R-Maple programs operate on natural numbers which can be also viewed as pairs composed of
natural numbers or another pairs. An R-Maple program can be viewed from three aspects:

1) As a sequence of symbols with a fairly rich syntactic structure which makes the program
readable and easy to understand.

2) As a sequence of symbols composed in a hierarchical way which is less readable by humans
but may be easily composed and decomposed by other program. Such a program is encoded
as data.

3) As an abstract object of certain properties. These properties can then be asserted in order to
ascribe meaning to the program.

Programs in the first form are in the theory of programming languages said to be in
concrete syntaz. Programs of the second form are in abstract syntaz. Programs in the third form
are said to be denoled by programs in the first two forms.

We shall define programs of the first two forms to be terms in a formal theory. Programs of the
third form will then be objects from the universe of an interpretation of the theory. Since pro-
grams are to operate on natural numbers and also be data for other programs, the abstract
objects will have to include natural numbers. Although it may come as a surprise, we do not need
more than natural numbers. We shall manage without additional data structures and even
without functions of the lambda calculus variety. The formal theory in which the programs of
the first two forms are terms will be the most common of all theories, first order Peano arith-
metic.

The notation and terminology of formal arithmetic used in this paper is based on two basic logical
texts: Kleene's Introduction to Meta-mathematics, and Schoenfield’s Mathematical Logic [6,14].
We shall, however, slightly modify the symbols for individual variables and for predicates. Instead
of traditional and rather dry symbols as z,y,z,... and F,G,H,... we shall use identifiers of

sl

programming languages. Identifiers will start with capital or small letters and consist of digits or
small letters. Capitalized identifiers will be used as symbols for predicates whereas small letter
identifiers will be individual variables. For reasons which will become clear shortly, individual
variables, constants, and predicate symbols of formal arithmetic will be underlined. Thus
Z, product, resull,... are individual variables ranging over natural numbers. We shall employ only
one-place predicate symbols like Append, Reverse, G,.... Numerals of arithmetic will be in italics:
1,2,8, -+ Numerals 1,2,8, - are introduced as abbreviations for 0',0'',0'"', : - - respec-
tively.

We shall work in a recursive extension of arithmetic where, the operation &}] satisfying
[} =
— [0
)= Gn

has been introduced. We can now introduce the constant nil and the operation of pairing by expli-
cit definitions:

nil=0

<a,b> = {'H 'g'+ I}-i- 8+ 1
Note that that the operation "< ,>" satisfies the uniqueness property expected from a pairing
operation. Also note that due to the factor + I in the definition, no pair is equal to nil. Both com-

ponents of a pair are lesser numbers than the number encoding the pair. Every number either
encodes a pair or is nil. We thus have:

<ab>=<g'b'>~a=g &=} (1)
<g,b> # nil (2)
g < <ab> (3)
b < <ab> (4)
g =nilV IpIc(a = <b,c>) (5)

Programs in the abstract syntax are defined as n-tuples of natural numbers. N-tuples can be
introduced as abbreviations.

<01,02, o iy 5,‘> = <al,<ﬂz, v ,¢">>
The sequence of symbols at the left abbreviates the sequence at the right. The symbol =
expresses the identity of terms taken as sequences of symbols. R-Maple programs are composed
of n-tuples consisting of an operator and n-1 operands. Each operator has a fixed arity:
<operalor,operand,,operand,, . . . , operand, ;>

Although the approach taken here is more formal, the reader will recognize a touch of LISP.
Abstract programs express the data they operate on as literals. Literals are terms of arithmetic
denoting natural numbers and consist of numerals and pairs. Numerals and literals are defined as
smallest classes satisfying formation rules. Formation rules for numerals are:

a) The symbol 0 is a numeral.

b) Ifsis a numeral so is o',

Formation rules for literals are:

a) Every numeral is a literal.

b) The symbol nil is a literal.

¢) If s and t are literals so is <s,t>.

Readers objecting to an apparent confusion between natural numbers and pairs should realize
that a sequence of bits in computer memory can be also interpreted by a program as an integer or
a floating-point number. Natural numbers can be viewed either as themselves or as pairs. The
intended use must be built into R-Maple programs. R-Maple is a completely typeless language,
just as assemblers are. LISP, which is considered a typeless language, has a form of typing called

o, I

weak or dynamic with checks for type violations performed during the execution.

Another possible objection, that of tricky encoding of pairs into natural numbers will, be dealt
with in 2 moment after a discussion of abstract programs which are encoded in an even "trickier”
form. Abstract R-Maple programs are subsets of literals and they consist of two components,
contro! and meaning. A control component is solely concerned with the efliciency of computation.
The question of convergence of computations is understood as a question of control. A non-
terminating program can be viewed as being computed in an absolutely inefficient way (having
the infinite complexity).

Abstract programs are terms of arithmetic and as such they directly denote natural numbers in
the standard interpretation of arithmetic. These numbers, however, do not express the meaning of
programs. The meaning component of an abstract program will be given by a naming function
denoted by "#” which is defined on the domain of abstract programs (a subset of literals). Its
range are terms and formulas of formal arithmetic. R-Maple ezpressions, which are data possibly
containing program variables, name terms possibly containing s$ndividual variables. Abstract pro-
grams of R-Maple name formulas of arithmetic. The standard interpretation of arithmetic assigns
denotations to the terms and formulas. Thus the intended meaning of a program a is the meaning
of the formula a*. The naming function is defined on formal objects (terms and formulas) and
thus it belongs to meta-theory rather than to the theory of arithmetic.

Readers familiar with meaning functions employed, in what is called, the denotational semantics
of programming languages will probably be surprised by the simplicity of the naming function
”%” The way meanings are assigned to R-Maple programs can be also called denotational seman-
tics.

Standard denotational semantics assigns meanings into models of lambda calculus as developed by
D. Scott [12]. The models of lambda calculus are, obviously, more complicated than models of
arithmetic. This additional complexity of lambda calculus models would not normally be an obs-
tacle to practical semantics of programming languages. The real obstacle is that there is no
workable formal theory of lambda calculus in which properties of programs can be easily derived.
We are alluding here to the complications associated with the practical use of Scott’s induction
rule as opposed to the simplicity of induction in formal arithmetic. Another obstacle is that the
meaning functions associated with lambda calculus tend to be quite complicated and generally
unworkable.

A program o names the formula a®. Thus & resembles the Godel number of the formula a®.
There is a slight difference, however. Not all formulas of arithmetic are in the range of the nam-
ing function. Formulas containing universal quantifiers are not named by R-Maple programs. On
the other hand, two or more programs having different control components can have the same
meaning (rivially when they synonymously name the same formula. We say trivially because there
are R-Maple programs which have identical meanings non-trivially. They name different formulas
which can be then proven equivalent,

Now we are ready to answer the objection to tricky Godelization. R-Maple computation, just as
computatations in the languages based on lambda calculus, is performed by transformations of
terms. The use of "Godel numbers” in the semantics of R-Maple is just for the interpretation of
R-Maple programs into the arithmetic. Even so, the interpretation is straight-forward and
natural, without any use of prime factorization as perhaps readers might have suspected. R-
Maple computation is never hampered by huge Godel numbers, whereas the semantics of R-Maple
provides theorems which - when one is proving properties of R-Maple programs - circumvent the
direct use of Gédel numbers.

One of the major advantages of abstract programs of R-Maple and LISP is that programs can be
manipulated and computed by other programs. A possible mistake of the designers of LISP was
that they did not go beyond abstract programs. Practical programs tend to be quite large and
the pragmatic aspect of readability of programs by humans (rather than by machines) cannot be
overlooked by any designer of programming languages.

-10-

The aspect of human engineering is taken into consideration in the concrete syntax of R-Maple
programs. Abstract syntax of R-Maple is quite simple and can be defined by simple formation
rules as used in mathematical logic. Concrete syntax of programming languages is more complex
and contains a variety of syntactic classes. It is traditionaly described by formal grammars, most
often by a BNF notation. The correspondence between a concrete and abstract syntax (if a
language has one at all) is then either defined by a translation scheme, or completely dismissed as
trivial. The latter is almost invariably the case in denotational descriptions of existing program-
ming languages.

We do not think that the correspondence is so trivial that it should be left unexplained. A reader
who thinks otherwise should inspect the correspondence given in sections (9) to (13) first. On the
other hand, the use of syntax translation schemes belongs to the theory of grammars and transla-
tions and cannot be directly related to mathematical logic which forms the basis of our discourse.
The solution adapted here is quite novel from the point of view of both programming languages
and mathematical logic.

We treat a program in a concrete form as a mere asbbreviation which stands for a term in abstract
form. No translation on the level of the theory is necessary since both forms are the same. Abbre-
viations are widely used in logic but this approach does not seem to be used in programming
languages. On the other hand, the concrete syntax is quite complicated and had we tried to han-
dle it in a standard logical way, by informal descriptions in English, we could have run into
many problems of ambiguity. The syntax of abbreviations will be described by BNF rules. The
abbreviations are then related via schemas of abbreviatione to the terms abbreviated.

The reader should always bear in mind that R-Maple programs presented in the concrele syntax
are not sequences of terminal symbols as specified by the BNF productions. Terminal sentences
only stand for R-Maple programs in the abstract syntax. The concrefe syntax of R-Maple pro-
grams does not have the kind of ontological independence as in other programming languages.
Thus the abbreviations provide a true "syntax sugaring” of the language.

The process of elimination of abbreviations in a concrete program in order to obtain the abstract
program will be called compilation of the program. A compilation can be performed mechanically
by another program called a compiler.

In order to prove correctness of compilers of ordinary programming languages one has to show
that the meanings of both source and target programs are the same. Compilation in R-Maple is
not concerned with the meaning at all. One only has to show that the abbreviations are removed
correctly. Programs in the concrete syntax have no autonomous meaning.

5. Abstract Syntax of R-Maple.
Operators of abstract syntax are introduced by the abbreviations:

varop = 0, guoleop = I, pairop = 2, predop = 9, lrueop = {,

Lalseop = 5, glirop = 6, gndsop = 7, gndpop = 8, orsop =9,

orpop = 10, motop = 11, ifop = 12, findop = 19, splitop = 14,

defop = 15 ezop = 16, whercop = 17, moveop = 18
Abstract R-Maple programs form a subset of literals, thus they are terms of arithmetic. The fact
that abstract programs are a subset of R-Maple data enables the reflexivity of programs: pro-

grams may operate on programs. For the definition of the class of programs we need to define
three auxiliary subsets of literals: program variables, program predicales, and ezpressions.

Formation rules for these classes are given with the help of meta-variables. Meta-variables are
syntaclic variables ranging over terms. The following syntactic variables will be used.

Num,Num; Num,, ' - - to range over numerals

Lit,Lit, Lit,, - -+ to range over literals

Var,Var,, Var,, - - - to range over program variables
Pred,Pred, Pred,, - -+ to range over program predicates

Expr Expr, Expr,, - -+ to range over expressions

-11-

Prog,Prog, Prog,, - - -+ to range over programs
Syntactic variables are used in the standard way of logic and they should not be confused with
non-terminals of context-free grammars. Syntactic variables of the same kind, but with different
subscripts, range over their domains independently. Two or more occurrences of the same syntac-
tic variable in a schema have to be replaced by the same sequence of symbols. We are stressing
this point because in the description of concrete syntax we shall use symbols as Pred, Expr, - -
as non-terminals in BNF productions for the concrete grammar.
Program variables, predicates, expressions, and programs are the least sets of terms satisfying
their respective formation rules.
Formation rule for program variables:
<yarop,Num?>> is a program variable.
Formation rule for program predicates:
<predop Num> is a program predicate.
Formation rules for expressions:
a) <guoteop Lit> and Var, are expressions.
b) If Expr, and Expr; are not both quoted then <pairop Expr, Expr,> is an expression.
An expression is guoled if it is of the form <gyoteop Lit>. An expression is consed if it is of
the form <pairop Expr; Expr,>.
Formation rules for programs:
a) <lrueop,nil>, < [falseop,nil>, <attrop Pred Expr>,
<ifop ,Prog, Prog, Progs>, <[findop ,Var Prog>, <gplitop, Var,,Var, Expr Prog>,
<orsop ,Prog, Prog,>, <orpop Prog,Prog,>, <andsop Prog, Prog,>,
<gndpop ,Prog, Prog,>, < notop Prog> are programs.
b) <ezop Prog>, <whereop Prog Var Expr>, <moveop Var, Var,Prog> are pro-
grams.
Operators of group b) are called processes or program-—counters. They mark positions in pro-
grams where transformations take place. Processes are created, delayed, and terminated by the
computing machine executing R-Maple programs under direction of the control component of pro-
grams. This involves the insertion, modification, and removal of program-counters. "Users™ writ-
ing programs in R-Maple are not allowed to use the formation rule b). Thus processes are created
only by the executing machine. .
Formation rules give a purely syntactic characterization of programs. There are some additional
syntactic constraints on properly formed programs which cannot be expressed by formation rules.
For instance, a properly formed program may not contain free (undeclared) program variables.
The additional constraints are explained in section (7).
Expressions of R-Maple may contain program variables which will be replaced during a computa-
tion by literals. At the same time R-Maple programs may operate on literals of any form. In order
to be able to tell whether

<pairep,<yarep,9>,<guoleop,.nil>>

is a consed expression still containing a program variable or whether it is just pure data contain-
ing the literal <yarop,9> we have to quote literals. But even with literals quoted we still cannot
tell whether <parop,6> is an expression still containing a program variable or it is a pair with
number 80. Thus we have to cons pairs.

The difference between consed and quoted expressions corresponds to the difference between
(cons a 3) and (guote (a . 3)) in LISP. The first expression is meant to be evaluated with the
value of the variable a to produce a pair whereas the latter expression evaluates directly to a

pair.

-12-

Expressions in LISP are evaluated to constant S-expressions before they can be used as arguments
to functions. Expressions in R-Maple are not evaluated; program variables occurring in them are
merely replaced. It is possible to "pass” still "unevaluated” expressions to a predicate. This
enables a predicate to be evaluated in parallel with programs computing values of program vari-
ables contained in expressions.

It is certainly possible to extend LISP with unevaluated expressions in order to permit lazy
evaluations, but the schemes the present author knows about [2,3] are not very pleasing from the
points of view of both syntax and semantics.

Prolog, as a representative of what is called logic programming, relies heavily on the use of
unevaluated expressions but it lacks the explicit control component which we deem necessary to
enable efficient computations.

We shall now specify the objects named by program variables. Let us order all individual vari-
ables of arithmetic alphabetically into a sequence:

abc,...,00,8b0c,...,8L ...,89ba, "
Let a stand for the i-th symbol (counting from 0) in the sequence. We set
<yparop,i>*=a

In order to establish the naming for program predicates let us alphabetically order the predicate
symbols of arithmetic:

ABC, ... ,43,4bAc, ..., AL ..., A9Bq, -
If the i-th symbol, counting from 0, in the sequence is denoted by a then we set
<predop,i>*=a
The meaning of the terms of arithmetic named by quoted and consed expressions is specified by
induction on the structure of expressions:

<guoteop LIt>* = Lit
<pairop Expr, Expr,>* = <Expr; Expr;>

As an example we have:

< pairop,< varop,8>,<guoteop ,nil>>* = < <yarop,8>°, <guoteop,nil>*>
= <d,nil>

The formulas named by programs are specified inductively on the structure of programs:

<lrueop ,nil>* =¥z z=2
<[falzeop nil>* = Iz z5¢z
<attrop Pred Expr>* = Pred*(Expr®)
<ifop Prog, Prog,Prog,>" = (Prog; & Prog;) V (- Prog; & Progs)
< [findop Var,Prog>* = IVar* Prog’
<gplitop ,Var, Var, Expr, Prog>"* =
IVarAVar;(<Var; Var;> = Expr® & Prog®)
< orsop ,Prog, Prog,>" = Prog; V Prog;
<orpop Prog, Prog,>" = Prog; V Prog;
< gndsop Prog, Prog,>* = Prog; & Prog;
<gndpop ,Prog, Prog,>"* = Prog; & Prog;
<notop Prog>* = - Prog’
<¢zop Prog>* = Prog’
<whereop Prog,Var Expr>* = Prog® & Var® = Expr*
< moveop,Var,, Var, Prog>* = IVar; Prog"’
The naming function for most of the operators has been already discussed in section (3); the phi-

losophy behind the processes will become obvious once their behavior during a computation will
be explained in tie sections (15) through (17).

o 15~

6. Some Syntactic Propertles of Programas.

Expressions and programs of R-Maple have similar syntactic properties as terms and formulas of
arithmetic. Program variables occurring in terms of R-Maple share syntactic properties with indi-
vidual variables of arithmetic.

An R-Maple term a conlsing the term b iff b is a subterm of a and the occurrence of b is not a
part of any subterm < guofeop,e> of a. A program variable occurs in a term a of R-Maple ifl a
contains the variable. Program variables occurring in programs can be either free or bound. An
occurrence of the program variable Var is free in the term a iff the corresponding occurrence of
the individual variable Var® is free in the term or formula a®. An occurrence of the program vari-
able Var in the program Prog is bound ifl the corresponding occurrence of the individual vari-
able Var® in the formula Prog® is bound. Note that program variables cannot be bound in
expressions.

Operators findop and gplilop are variable binding operators. Both variables in gplifop are bound.
The variable Var, is, obviously, bound in <moveop ,Var, Var; Prog>. There is no correspond-
ing variable in the formula of arithmetic for Var,. We stipulate that Var, is free, i.e. that
moveop binds only its first variable. Program variables bound by these operators are said to be
declared in the scope of operators.

We shall now define a meta-theoretic function designating terms of R-Maple obtained by substilu-
tion for program variables in another terms. The substitution for program variables is once again
closely correlated to the substitution for individual variables in arithmetic. We shall designate by
a{Var:=Expr} the term of R-Maple which is obtained by the substitution of the expression
Expr for all free occurrences of the program variable Var in the term a. The substitution in
expressions, i.e. terms and formulas, of arithmetic is designated by a[x:=s]. The substitution for
program variables will be defined in such a way that

a{Var:=Expr}* = a*| Var*:=Expr®| (1)

The substitution for individual variables, as defined in [6,14], is meaningless when a term contain-
ing a free variable comes into the range of a variable binding operator with the same variable. It
is only cumbersome in logic to make sure that this does not happen; in R-Maple we cannot prop-
erly define computations with such an understanding of substitution.
Various devices have been designed to assure that a substitution is always well defined. One
widely used device uses different symbols for bound and free individual variables. Thus a free
variable of a term can never enter a scope of a bound variable. The problem with this device is
that it does not directly permit the applications of the Equivalence Theorem in the scope of
quantifiers.

In order to demonstrate the problem let us assume that we have as a theorem

P(a) ~ 3zR(a,z) (2)
It is impossible to replace P(z) by the Equivalence Theorem in the formula

3z(P(z) & Q(z))

because it involves the substitution of bound variable z for free variable g in the formula (2).
Note that had this been allowed, a bound variable would have come into a scope of the same
bound variable.

We can, however, use the device of Curry developed for the substitution in lambda calculus [see
for instance 5|. We shall use it for both kinds of substitution. A precise meta-theoretic definition
of substitution requires an inductive definition on the structure of formulas and terms. Since the
definition is otherwise straight-forward, we present here only its crucial case. Substitution involv-
ing a variable binding operator, for instance "3” is defined as follows.

avA fv=w
@AvA)|w:=s] = { Iv(A[w:=s)) f-~v=w&visnotfreeins
Ix(A[v:i=x]|[w:=s]| otherwise

=14

where x is the first variable in the alphabetic sequence different from w not occurring in either s
or A. Bound variable v is in the third case first renamed by the variable x.

Substitution for program variables is defined similarly. As an example let us assume that Var
denotes the variable with the least index not occurring in either of Var,, Prog, Expr; and that
Var, is free in Expr. Then we shall have:

< [indop Var, Prog>{Var,=Expr} =
< [findop Var Prog{Var,;=Var}{Var,;=Expr}>

In the case of
<gplitop Var,, Var, Expr Prog> {Vary;=Expr, }
variables Var, and/or Var, must be renamed when free in Expr,.

There are no bound program variables in expressions. Thus the substitution for a program vari-
able simply replaces all occurrences of the variable by the expression being substituted. An
expression previously containing variables can be turned by a substitution into a constant expres-
sion. The formation rule b) for expressions (see section (5)) may become violated in the process.
The operation of substitution is defined in a such way that it replaces every occurrence of the
term

<pairop,< guoteop Lit,>, < guoteop Lit,> >
which is not an R-Maple expression by
<guoteop , <Lit; Lit,> >
For instance:
<atlrop , <predop,0>,<pairop,<pairop, <wvarop,I > < guoleop,6>>,< guoteop,nil>>

{<wvarop,l>:=<guoteop 8>} =
<attrop,<predop,0>,<guoteop , < < 8,6 > nil>

The meaning component of expressions is not affected by such substitutions and the property (1)
is upheld. In our example we have:

<atlrop,<predop,0,<guoteop, < <8,6> nil>>" = A(<<b,6>,pil>)[b:=8]

The reader interested in the exact meta-theoretic definition can infer it from its arithmetic, i.e.
formal theoretic, counterpart as discussed in Part II.

7. Definitions of Predicates.

Definitions of predicates give names to programs. Named programs turn into predicates. Program
predicates are one place (one argument). The eflect of many-place predicates is achieved via n-
tuples. There are two kinds of predicates tests and generators. Arguments of tests are inpu!
arguments. Arguments of of generators are either output only, or they are pairs of input and out-
put arguments.

Predicates are invoked by the operation of attribution: < gttrop , Pred Expr>. If Pred is a test
then the evaluation of the atrribution is expected to reduce (to transform) to either T or F. On
the other hand, if Pred is, say with both input and output variables, then the argument Expr
should have the form |Expr, Var| where Expr, is the input argument and Var is the output
variable. The computation of this invocation should result in an assignment of an expression to
the output variable Var. If there are more possible output values then backiracking will be
invoked to try as many output values as necessary. If no output value can be found then the
invocation should reduce to F. The computation, i.e. evaluation, of attributions will be discussed
in section (16).
Definitions of predicates have the abstract form:

<defop Pred,Var Prog> (1)

The distinction between tests an generators is on the level of Prog in the way it reduces to a
truth value or to an assignment. A generator Pred is said to be with inpuf when it is defined as

s1b

<defop Pred Var, <gplitop Var, Var, Var Prog> >
Var, is the input variable, Var; is the output variable. If the definition (1) of a generator is not
of this form then the generator is said to be with output only. The variable Var is then the out-
put variable.

The distinction between tests, generators, input, and output variables is significant only on the
level of control. The intended meaning of definitions is set by:

<defop Pred,Var Prog>® = VVar*(Pred*(Var®) « Prog®)
The intuition behind the intended meaning of definitions is that by writing down a predicate
definition one should be able to introduce by the way of recursive extensions of arithmetic a
predicate satisfying the intended meaning. This is, however, achievable only if the computation
of the predicate can be shown to terminate (see Part II).

An example of a program predicate for which the intended meaning cannot be asserted is the test
defined as

<defop,<predop,!>,<yarop,0>,notop,attrop,<predop,!>,varop,0>
The intended meaning

Ya(B(a) « = B(a))
can be derived only at the cost of inconsistency.

Definitions of predicates can be grouped together into a list of definitions. Let us use the syntac-
tic variables Def and Defs to range over predicate definitions and lists of predicate definitions
respectively. Lists of definitions are then the least set of terms satislying the following formation
rule.

nil and <Def,Defs> are lists of definitions.

The formula named by a list of definitions is the conjunction of formulas named by single
definitions:

nif =Vz z=z

<Def,Defs>* = Def* & Defs"
There are some additional constraints on terms used in definition of predicates. These cannot be
given by "context-free” formation rules. The constraints correspond to usual constraints of pro-
gramming languages: all identifiers must be declared; procedures should be invoked with the
correct number and kind (input - output) of arguments.

Such constraints are sometimes referred to as semantic constraints, although a more appropriate
term is being increasingly used: conlezt-egensilive syntaz. The constraints on the form, i.e. on the
syntax, of terms constituing R-Maple programs are defined in the meta-theory and in English.
Formal definition of these constraints is given in Part II.

The program Prog of (1) and (2) is called the body of the predicate Pred; the variable Var is
called the (formal) argument. With the exception of formal arguments all program variables
occurring in bodies of predicates must be declared (bound).

Predicate Pred is tnvoked in a program Prog if Prog contains a term <gaitrop Pred Expr>.
A predicate Pred is invoked in the list of predicate definitions Defls if it is invoked in a body of a
definition contained in the list. The predicate Pred is said to be predefined if Pred® is one of
the following:

EgNelLt,Le,Gt,Ge, Print,Return Add,Sub , Mul,Div,Rem
Predefined predicates (see (14)) do not have explicit definitions. Invocations of predefined predi-
cates are computed in a different way than invocations of defined predicates (see (16)).

Predefined predicates may not be defined in 2 list of predicate definitions Defs. Every other predi-
cate Pred invoked in Defs must be defined exactly once in Defs. There are otherwise no restric-
tions on simple or mutually recursive invocations of predicates in Defs.

e

R | Wt

>

L

-16-

Every invocation of the generator Pred which is without input must be of the form
<glirop ,Pred,Var>
Every invocation of the generator with input Pred must be of the form

<atirop Pred,pgirop Expr,Var>

8. Concrete Syntax of Numerals, Constants, Varlables, and Predicates.

Concrete syntax of R-Maple is described by BNF productions. Terminal sequences produced from
non-terminals are mot independent entities but rather abbreviations for terms of abstract R-
Maple. The correlation between an abbreviation and a term of abstract R-Maple is given in an
informal way for numerals, constants, program variables, and program predicates. The correla
tion for all other syntactic structures is given by schemas of abbreviations.

Abbreviations do not give any meaning to syntactic constructs. Obviously, if two different R-
Maple constructs ¢ and b abbreviate the same term (a = b) then, because of the reflexivity of
the identity relation, they denole the same object (a="0).

BNF productions have the usual form
8 u=a|b|c

Non-terminals will be capitalized and bold-faced. The symbols T and F are the only capitalized
bold face terminals. Two terminal symbols ”|” and "||” are composed of symbols for alternatives.
These four terminals will be surrounded by quotes in BNF productions. Everything else on the
RHS of productions are terminals.

Numerals and constants abbreviate some of the quoted expressions of abstract syntax. The BNF
rules for numerals are as follows.

Num := Digit | Num Digit
Digit == 0|1|2|3|4|5|6[7]|8]|9
Note that "concrete” numerals are in roman font. The abbreviations are given as
0 = <guoteop,0>
1 = <guoteop,I>

2 = <guoleop ,2>
3 = <Cguoleop,§>

Thus we have a natural correlation between numerals of concrete syntax and arithmetic, for
instance: 5* = 5.

We follow the standard practice of programming languages and use identifiers for three different
lexicographic groups: reserved words, constants, and program variables,

Ident := Letter | Ident Letter | Ident Diglt

Letter ::= a|b|c|d|e|f|g|h]i]
jlElt|min]olp|alr]
ejt|u|v|w|z]|y]:z

Reserved words are the following ones.
div, eq, else, ge, gt, find, if, in, le It, move, ne, not, or, orp, rem, then, where
In order to increase the readability of programs the reserved words will be printed in boldface.

Constants are identifiers different from reserved words. Initially there is only one constant in R-
Maple:

Const ::= nil
The abbreviation is:

nil = <guoteop,nil>

-17 -

Additional constants can be defined by an eztension of concrete syntax. Extensions add new BNF
productions to the concrete language. Constants are introduced in groups. Each group is given a

name. For instance a group of constants ay,a;,8,, . .. ,8, named A can be introduced by a new
alternative for Const:

Const ::= A

A= a8 - |a,

A group of constants is always set to abbreviate numerals 0 through n, i.e. for all 0<i<n:

8, = <gyotfeop,i>
Groups of constants are similar to enumerated types of Pascal.
Let us introduce a group of constants Opcodes naming the primitive operators of R-Maple:
Const ::= Opcodes
Opcodes ::= varop | quoteop | pasrop | predop | trueop | falseop | attrop |
andsop | andpop | orsop | orpop | notop | ifop | findop |
eplitop | deftop | defgop | ezop | whereop | moveop
All constants introduced sofar name the correponding constants of arithmetic, for instance :
nil®* = nil, ifop® = ifop.
Identifiers which are neither reserved words nor constants can be used as program variables.
Var := Ident
The correlation of abbreviations for program variables is obtained in a similar way as their names.
Let us order all identifiers alphabetically into the sequence:
ab,e,...,ca,8b,ac,...,al1,...,89ba, "
Let a stand for the i-th identifier in the sequence (counting from 0). If & is neither a reserved
word nor a constant then we set
a = <yparop,i>
This correlation gives us the natural property that a program variable names the individual vari-

able with the same identifier. For instance: result® = result. On the other hand, not all abstract
variables have abbreviations in the concrete syntax.
BNF productions for program predicates are as follows.
Pred ::= Cletter | Cletter Digit | Cletter Ident
Cletter == A |B|C|D|E|F|G|I| /]
K|LIM|N|O|P|Q|R|S|
TIU|V|IW|X|Y|Z
If a is the i-th program predicate in the alphabetic sequence of predicates (Pred) and a is neither
T nor F then

a = <predop,i>
We have the natural correlation again: Add® = Add.

Program variables, predicates and numerals will be used more often than individual variables,
predicate symbols and numerals of arithmetic. This explains why the symbols of arithmetic are
underlined.

9. Concrete Syntax of Expressions.

We shall now give a complete list of BNF productions for expressions but will defer the discussion
of some constructs until other relevant constructs have been introduced.

Expr := Mexpr | Mexpr + Expr | Mexpr - Expr
Mexpr := Sexpr | Sexpr X Mexpr | Sexpr div Mexpr | Sexpr rem Mexpr
Sexpr := Var | Num | Const | | Expr , Exprs | |

Const (Exprs) | Descr | (Expr)

- 18 -

.Pred | . Pred (Exprs)

Descr ;=
= Expr | Expr , Exprs

Exprs :
Terms abbreviated by arithmetic operators "+ ,—,X, div , rem ” as well as by "nested” invoca-
tions of predicates produced by Descr are defined by confeztual abbreviatione. Contextual abbre-
viations eliminate nested invocations whenever they occur in the context of programs. The discus-

sion of contextual abbreviations must be thus deferred until the abbreviations for programs have
been introduced (10).

We shall now give the correlation between concrete and abstract expressions as long as the con-
crete expressions are produced only by the first alternatives of Expr and Mexpr and by the first
five alternatives of Sexpr. Parentheses ”()” are used just for grouping and disappear completely
in the abstract syntax.

The abbreviations for Var and Num and Cons have already been discussed.
The abbreviations for consed pairs and consed n-tuples are specified by schemas of abbrevia-
tions:

[<guoteop Lit,>, < guoteop Lit,> | = < guoteop,<Lit, Lit;>>
| Expry Expr;| = <pairop Expr, Expr,> if Expr; and Expr; are not both quoted
| Expr, Expr, Exprs| = |Expr, | ExpryExprs]|

Schemas of abbreviations escape the informal use of dots and English in logic when specifying
abbreviations. A schema of abbreviations usually stands for an infinite number of abbreviations.
It contains syntactic variables. Two or more occurences of the same syntactic variable in a
schema always stand for the same term assumed by the syntactic variable. We shall employ sym-
bols for non-terminals, possibly subscripted, as syntactic variables ranging over terminal produc-
tions obtained from the corresponding non-terminals,

For example let us find the term abbreviated by the quadruple [6,¢,9,ni!|. We set Expr, = 6,
Expr, = ¢, and Exprs = 9,nil in order to obtain [6,|c,9,nil]] by the application of the third
schema. Applying the third schema to the second component again we obtain

[6,¢,9,nil] = |6, c,[9,nil]]]

Now all terminal productions of Exprs have been eliminated and the quadruple has been reduced
to consed pairs. Using the abbreviations for nil and numerals while applying the first schema we
have:

[9,nil | = | < guoteop,9>,<guoteop,nil>| = <guoteop,<9,nil>>
Since ¢ = <wyarop,2> is not quoted, the second schema applies in:

|c,|9,nil]] = | <wvarep,2>,<guoteop,9,nil> | = <pairop,<varop,?>,guotleop 9, nil>
This is consed, and thus not quoted, and the second schema applies again:

[6,¢,9,nil | = <pairop,<guoteop,6>,pairop,<varop,2>,guoteop .9 nil>

Note how the abbreviations for consed pairs take into account the formation rule b) of abstract
expressions (section (5)) and at the same time permit natural notation for constants of R-Maple.
The meaning function maps expressions of R-Maple in a straight-forward way to the terms of
arithmetic:

[[6,2,nil],[a,6],8]" = <<6,2,nil>,<4,6>,b>
We also have the "natural” property of substitution:

| Expr,, Expr;|{Var:=Expr;} = | Expr,{Var:=Expr;} Expr,{Var:=Expr,}|
Since the abbreviations and substitutions automatically quote literals one can naturally write
literals in a fully consed notation:

[[pairop 6,8,),a | = <pairop,<guoteop,pairop,6,8>,varop,0>
One can do the same thing in LISP but not in a readable way since LISP does not have concrete

-19 -

syntax. Moreover, the consed notation in LISP means evaluation.
The abbreviations for the fifth alternative of Sexpr are
Const(Exprs) = | Const,Exprs|
Thus we have a neat notation for expressions similar to the terme of Prolog. For instance

attrop(predop(2),pairop (varop(6),7)) = | attrop | predop,2),| pairop | varop ,6],7]]

10. Concrete Syntax of Programs.

Programs consist of decisions (If), searches (find), disjunctions (or , orp), conjunctions (*;”,
" || 7), negations (mot), invocations , comparisons , assignments (:=) , successes (T), and
failures (F).
Prog ::= Dprog |
If Prog then Prog else Prog |
find Decls In Prog |
move Var beyond Var In Prog
Dprog ::= Cprog | Cprog or Dprog | Cprog orp Dprog

Cprog = Sprog | Sprog ; Cprog | Sprog ”||” Cprog |
Sprog where Var ;= Expr
Sprog = "T" | "F” | not Sprog | Sprog ! | Atomp | Var := Expr | (Prog)
Atomp := Invoc | Expr Relop Expr
Relop = eq | ne | It | le | gt | ge
Invoc ::= Pred (Exprs) | Pred(Expreopt ”|” Var)

Exprsopt ::= Exprs |

Decls ::= Decl | Decl ; Decls

Decl ::= Var | Svar := Expr | Pred(Exprsopt ”|” Svars)
Svar ::= Var || Svar, Svars |

Svars ::= Svar | Svar, Svars

Schemas of abbreviations will be given in the reverse order of BNF productions: simple constructs
first,
Predicates of R-Maple are single argument. Invocations with more arguments are reduced to invo-
cations with single arguments:
Pred(Expr) = <gttrop Pred Expr>
Pred(Expr,Exprs) = Pred(| Expr,Exprs|)
These schemas are used for invocations of tests.
Invocations of generators place the output variable in a distinguished syntactic position.
Pred(| Var) = Pred(Var)
This schema is for generators without input.
Generators with input are invoked with the help.of two schemas:
Pred(Expr | Var) = Pred(| Expr,Var])
Pred(Expr,Exprs | Var) = Pred(| Expr Exprs| | Var)
Assignments are reduced to invocations of predefined generator Return [see (14)):
Var:=Expr = Return(Expr | Var)
The term assignment is used only in a figurative sense. R-Maple is an "applicative” language
without any notion of states.
Comparisons are reduced to invocations of predefined comparison tests [see (14)):
Expr, eq Expr, = E¢Expr, Expr,)

Expr, ne Expr, = Ne(Expr, Expr,)
Expr, It Expr, = L{(Expr; Expry)

Expr, le Expr, = Le(Expr, Expr,)
Expr, gt Expr, = Gt!(Expr, Expr,)
Expr, ge Expr, = Ge¢(Expr,,Expr,)
The remaining simple programs have straight-forward abbreviations:

T = <lrueop,nil>

F = <[fglseop,nil>

not Simple = <pnolop ,Simple>

Simple! = <ezop,Simple>
Abbreviations for conjunctions:

Sprog; Cprog = <andsop Sprog,Cprog>

Sprog || Cprog = <andpop Sprog,Cprog>

Sprog where Var:=Expr = <whereop Sprog,Var,Expr>
Abbreviations for disjunctions:

Cprog or Dprog = <grsop,Cprog,Dprog>

Cprog orp Dprog = <grpop,Cprog,Dprog>
Abbreviations for decisions and moves are straight-forward:

if Prog, then Prog; else Prog, = <jfop Prog, Prog, Prog,>

move Var, beyond Var; In Prog = <moveop Var,, Var; Prog>
Searches permit us to specify output variables and optionally generators supplying values for the
variables. Variables and/or generators are specified in Decls and they are used in Prog. At the
same time it is possible to break down a complex n-tuple into components and assign them to
separate program variables.
Declarations with syntax and semantics somewhat similar to our searches are often used in func-
tional programming languages. However, there is an important difference: R-Maple works with
relations rather than functions and it may happen that values generated in Decls do not satisfy
Prog and new values must be produced by backtracking into the generators [see (17)]. There is no
backtracking in declarations of functional programming languages since functions produce unique
values.
We shall give the abbreviations for searches in a sequence which demonstrates how complex
searches can be reduced to simpler ones by the elimination of abbreviations. The order of removal
of abbreviations is actually immaterial since the schemas for searches can be applied in a unique
way only.
Multiple searches are reduced to simple searches by:

find Decl; Decls in Prog = find Decl in find Decls In Prog
The first alternative of Decl directly abbreviates a basic operator:

find Var In Prog = <[indop,Var,Prog>

This is the unbounded form of a search. The remaining two alternatives of Decl specify a
bounded search with an explicit generator producing, or declaring, the value searched for.

The second alternative of Deel is reduced to the the third form by:
find Svar:=Expr In Prog = find Return(Expr | Svar) In Prog

Bounded searches with simple variables are unbounded searches written in a shorter notation:
find Pred(Exprsopt | Var) in Prog = find Var In Pred(Exprsopt | Var); (Prog)

Searches permit to break the single value of the output variable produced by a generator into its
constituents when the value is an n-tuple. The constituents are then assigned to simple variables
from a list of structured variables.

Searches with lists of structured output variables are first reduced to searches with structured out-
put variables:

.921-

find Pred(Exprsopt | Svar,Svars) in Prog =
find Pred(Exprsopt | [Svar,Svars|) In Prog

There are four different forms of structured variables:
[[Svar,Svars,|,Svars;], |[VarSvarSvars|, |[Var|SvarSvars]| [Var,Var,]

The schemas of abbreviations given below will reduce forms occurring earlier in the list to simpler
forms later in the list.

Abbreviations for structured output variables with first components being again structured vari-
ables are removed first:

find Pred(Exprsopt | |[Svar,Svars, | Svars,|) in Prog =
find Pred(Exprsopt | | Var,Svars,|); |Svar,Svars,|:=Var In Prog

This schema of abbreviations introduces (or eliminates) a new bound program variable Var which
is not present in the abbreviated form.

Similar introduction of bound variables by abbreviations occurs in logic when, for instance, one
defines the predicate " <” by the abbreviation
st =3z s+ z=t

Intuitively, it does not matter which bound variable is introduced when the abbreviation is
removed as long as the new variable is not free in the terms s and t. Technically, however, one
has to present a definite construct which the abbreviation stands for. Let us therefore stipulate
that the syntactic variable Var stands for the program variable < yarop,i> with the least index
i which does not occur in any of the terms within the abbreviation schema.

From now on, whenever an abbreviation schema introduces a new bound variable we shall tacitly
assume that the introduced variable is the first one not occuring in the schema.

The second form of structured variables is reduced to the third one by:

find Pred(Exprsopt | [Var Svar,Svars|) in Prog =
find Pred(Exprsopt | | Var,[|Svar,Svars|]) in Prog

The structured variable as the second component of a structured variable (first component being
a simple variable) is removed by:

find Pred(Exprsopt | [Var,,[Svar Svars||) In Prog =
find Pred(Exprsopt | | Var,,Var]); [Svar,Svars|:=Var in Prog

The fourth form of structured output variables reduces differently when Pred is not Return:

find Pred(Exprsopt | [Var,, Var,]) In Prog =
find Pred(Exprsopt | Var); [Var,,Var,|:=Var In Prog
if = Pred = Return

It remains to tackle the case of Pred standing for Return.

R-Maple does not contain primitive projection functions. The only way to access components of
pairs is through split searches abbreviating directly a basic operator:

find Return(Expr | [Var,,Var;|) In Prog = <gplitop Var,, Var, Expr Prog>
Note that the typical search

find | Ad U |:=list In P(t,hd)
abbreviates by the above schemas directly to the primitive operation:

<gplitop ,hd,tl,list ,P(tl,hd)>
Examples of searches will be given in next section.

-922.

11. Concrete Syntax of Definitions of Predicates
The BNF production for concrete syntax of predicate definitions is as follows.

Def := Pred (Svars)is Prog |
Pred (Svarsopt ”|” Var) is Prog |
Clauses
Svarsopt ::= Svars |
This first alternative is used to define tests. Generators are defined by the second alternative.
Both forms of definitions are called procedural definitions. This is because they resemble the usual
definitions of procedures. The third alternative permits the definitions of predicates in a clausal
Jorm similar to Prolog. Clauses will be discussed in the next section.

Abbreviations for definitions of tests:
Pred(Var) Is Prog = <defop Pred,Var Prog>
Pred(|Svar,Svars|) Is Prog = Pred(Var) Is find [Svar,Svars|:=Var In Prog
Pred(Svar,Svars) Is Prog = Pred(|Svar,Svars|) Is Prog
Abbreviations for definitions of generators without input:
Pred(| Var) Is Prog = Pred(Var) Is Prog
Abbreviations for definitions of generators with input:

Pred(Svar | Var) Is Prog = Pred(Svar,Var) Is Prog
Pred(Svar,Svars | Var) is Prog = Pred(|Svar,Svars| | Var) is Prog

The generator Append(frs,scnd | res) with two inputs which appends the list acnd to the list frs
to form the output list res can be defined as:

Append(frs,scnd | res) ls
if frs eq nil then res:=scnd
else find | hd,tl |:=frs; Append(tl,scnd | ares) In res:=| hd,ares |

This form of Append is not a final one. Additional syntax sugaring eliminating the auxiliary
search for ares will be given in the next section.

As an illustration we remove from the above definition of Append all abbreviations except the
ones directly related to abstract operators.
Append(a) ls
find [b,res |:=4a In
find | frs,ecnd |:=b In
if fre eq nil then Return([ecnd,res |)
else find [Ad,!l]:=/re In find ares In
Append([[tl,8cnd |,ares |); Return([| hd,ares |,res])

Let us give an example of a generator with structured output. Consider the generator
Split(lst | lst2) which is the contraposition of Append. Split(lst | lst2) generates all possible pairs
of lists ls¢2 which can be transformed back to let by Append(lst2 | lat).

The definition of Split without syntax sugaring for multiple results is :
Split(Ist | lst2) is lst 2:=]| nil lst | or
(find | hd, Ul |:=lst; Split(tl | alet2); | fr,ec |:=alst2 In lst2:=|[hd,fr],8c])
The same definition using the full syntactic power of bounded searches is:
Split (lst | lst2) s lat 2:=|nil lst] or
(ind | hd, U |:=lst; Split(tl | fr,ec) In Ist2:=[[hd, fr),ec])
We shall show in Part II how to introduce predicate symbols Append and Split into formal arith-

metic in such a way that the intended meaning of the above definitions is satisfied. With the
predicates introduced one can prove by induction:

Append(< [re,scnd > ,res) + Split(res,<[rs,ecnd>)

«23a

Readers familiar with Prolog will note that there is no need for Splif in Prolog. Append works
both ways.

Is there a reason to distinguish between input and output variables at all? As the meaning func-
tion confirms, there is no such need from the point of view of meaning. Arguments of logic pro-
grammers that there is no need to distinguish the kinds of variables also from the point of view of
control are usually illustrated by such predicates as Append.

Append works both ways because it is defined in a simple way over the structure of lists. Such
predicates can be computed both ways with reasonable efficiency. Predicates which rely on arith-
metic, rather than structural, properties are usually one way predicates. Two such predicate
Intree and Gentree relying on a mixture of structural and arithmetic properties will be shown in
a Prolog-like notation in section (12). Intree(n,t) tests whether n is in the binary search tree ¢,
Gentree(t | n) is the contraposition successively generating into n all elements of ¢. It will be
shown that even in Prolog the programmers would write two different programs although from a
logical point of view one, working both ways, suffices.

Another example is the following Prolog predicate.

Fac(0,1)

Fac(n',r) « Fac(n,ouz), r = n' Xauz
The only sensible way to use Fac is with the first argument as input and the second one as out-
put. An attempt to use it the other way, as for instance Fac(z,120), leads - on most interpreters
of Prolog - to non-terminating computations. An ultra-sophisticated Prolog interpreter would be
probably capable of computing the factorial the other way, though at a significant cost of
effliciency. But unfortunately, it is in the nature of arithmetic functions that they can be com-
puted faster in the natural way, and subsequently there is no hope for ever designing an inter-
preter working with reasonable efliciency both ways. The existence of truly one-way functions, as
the ones used in the public key cryptography [11], should make this point obvious.
The fact that two semantically similar predicates such as Append and Split have two quite
different R-Maple programs underscores the fact that a practical programming language cannot
afford to ignore the control component. After all, some Prolog compilers expect the input-
output indication for the user-defined predicates.

12. Clausal Form of Predicate Definltions.

Procedural definitions of R-Maple predicates in the concrete syntax do not deviate too much from
the standard style of definitions in other programming languages. There is a growing community
of programmers who prefer the elegant definitions of predicates in Prolog. Clauses of Prolog keep
the definitions simple and when read as implications they express directly the properties of predi-
cates.

The predicate Append is defined in Prolog as
Append(nil,a,a)
Append(| hd,tl),a,[hd,auz) «~ Append(tl,a,auz)

We shall now give BNF productions and abbreviations for Clauses permitting a clausal form of
definitions. Clausal definitions introduce the elegance of Prolog syntax without its semantic
shortcomings. By shortcomings we mean the cuts.

Clauses ::= Clause | Clause Clauses

Clause := Invoc .| Invoc «— Atompsopt . | Invoe +— Atompsopt ”|” Progopt .
Atomps ::= Atomp | Atomps ; Atomp

Atompsopt ::= Atomps |

Progopt ::= Prog |

A clause of the form Invoc +— Atomps | Prog. has as its meaning the formula
Atomps® & Prog® — Invoe®
If one of the terms in the antecedent is empty then the the formula must be adjusted in the

-24-

obvious way. The meaning of Clauses is the conjunction of meanings of single clauses. We shall
use the term meaning informally, instead of the function ”#*”, because the clauses taken
separately do not correspond to conctructs of R-Maple.

Schemas of abbreviations for Clauses permit us to transform any procedural definition to the
clausal form. The transformation is achieved by a sequence of steps which remove from the
definition sequential disjunctions, decisions, split searches, identities, and assignments.

For each schema of the form A = B we have as tautology B' — A’ where A’ B’ are meanings
of A,B respectively. The first abbreviation has as B a definition of a predicate (Def). It follows by
the transitivity of implication that for every clause C derivable by a sequence of abbreviations
from the predicate definition B we have B®* — C’. Thus under the assumption that B* can be
asserted, the meaning C' of every constituent clause can be asserted as the property of the
defined predicate.

First abbreviationg weakens an equivalence to an implication.

Pred(Svars) — | Prog = Pred(Svars) Is Prog.

Pred(Svarsopt | Var) +— | Prog = Pred(Svarsopt | Var) Is Prog
The meaning is obviously upheld by the tautology:

Yz(E(z) = A) = (A = B(z))

A "clause” of the above form has a little resemblance to the clauses of Prolog, but at least we
made good on our promise that every definition of a predicate can be transformed into a "clausal”
form. The antecedent of the clause has now assumed a form of an invocation. Following sche-
mas of abbreviations will gradually move the marker ”|” to the right in the body Prog.

An or-eliminalion removes a sequential or from a body by creating two clauses:
Invoc — Atompsopt | Cprog.
Invoc — Atompsopt | Dprog. = Invoc — Atompsopt | Cprog or Dprog.
Or eliminations rely on the tautology
(AVB—-C)=-(A—=-C)&(B— Q) (1)

Let us denote by Prog’ the opposite of the program Prog. The opposite of Prog is generally
not (Prog) unless Prog is an invocation of a comparison (or its abbreviation). In the latter case,
the pairs of invocations of Eg,Ne and L{,Ge and Gt,Le are opposite to each other. For instance

(z1t6) =zgeb

An if-eliminalion removes a decision from the antecedent of a clause. If-eliminations are based
on the intended meaning of if and on (1).

Invoc + Atompsopt | (Prog); (Prog,).
Invoc «— Atompsopt | (Prog’); (Prog,). =
Invoec — Atompsopt | If Prog then Prog, else Prog,.

A find-eliminalion removes a search from the antecedent of a clause.

Invoc ~ Atompsopt | Prog. = Invoc +— Atompsopt | find Var In Prog.
if Var not free in Invoc and Atompsopt

Find eliminations are based on the tautology
(3zA — B) — (A — B)provided x is not free in B
Identity and assignment eliminations remove identities or assignments from antecedents of
clauses.
Invoc{Var:=Expr} + Atompsopt{Var:=Expr} | Cprog. =
Invoc ~ Atompsopt | Atomp; Cprog.
if Atomp = Eq(Var Expr)V Atomp = Var eq Expr V
Atomp = Return(Expr | Var) V Atomp = Var:=Expr &
Var not free in Invoec and Atompsopt

-25.

These eliminations are based on the tautology

(z=18— A)— A]z:=8] (2)
provided z is not free in 8 or A.
And-eliminalions move an invocation from one side of the bar to the other; they are justified
trivially.

Invoc — Atomp | Cprog. = Invoec — | Atomp; Cprog.

Invoec «— Atomps; Atomp | Cprog. = Invoc + Atomps | Atomp; Cprog.

provided an identity or assignment elimination is not applicable

A split-elimination removes a split search from the antecedent of a clause.

Invoe{Var:={Var Var,|} «~ Atompsopt{Var:=|Var, Var;|} | Prog. =
Invoc «— Atompsopt | find [Var, Var,|:=Var in Prog.
if Var,,Var, not free in Invoc and Atompsopt

Split eliminations are a combination of find and identity eliminations. If a split search is used in
a context similar to the following one

If z eq nil then Prog else find [y,z |:=z In Prog,
then the following abbreviations will be applicable in the second clause immediately after the
split-elimination.

Invoc +~ | Prog. = Invoc «— [Var,, Var,| ne nil | Prog.

Invoc — Atomps | Prog. = Invoc +— Atomps; | Var, Var,| ne nil | Prog.

The transformations are based on the property (4.2) of pairs.
When the bar in a clause reaches the right end it can be removed by:
Invoc +— Atomeopt. = Invoc «~ Atomsopt | .

The above transformations do not correlate all terminal productions of Clauses to the abstract
syntax. As an context sensitive semantic constraint we stipulate that only Clauses abbreviating a
predicate definition are considered legal.

The removal of abbreviations for clauses can be seen as a form of compile~lime unifications.
Unifications are used by the interpreters of Prolog in the run-time. Unifications are quite time
consuming, thus the compilers of Prolog perform essentially the same transformations as ours to
convert into procedural definitions.

The unification in Prolog is a little bit smarter than ours. For instance the variables can be sys-
tematically renamed. We did not include renaming because it would needlessly complicate the
abbreviations and the gain would be only marginal.

On the other hand, our clauses permit a mixed clausal and procedural form of definitions with
the bar not fully removed. The mixed mode allows universal quantifiers in antecedents of clauses
(via not find - - -). This is, obviously, impossible in Prolog.

It should be noted that our clauses are stricter than the clauses of Prolog. A sequential order is
prescribed by the use of sequential operators in the clauses. The de facto sequential control of
Prolog interpreters exhibits identical behavior.

Let us convert the generator Append into clausal form. After the introduction of ” «— ” and after
if-elimination we have two clauses:

Append(frs,scnd | res) «— | fre eq nil; res:=scnd. = (3)
Append(nil,send | res) «— | res:=send. = . (4)
Append(nil,scnd | scnd) +— | .= Append(nil scnd | scnd).

Append(frs,scnd | res) « | frs me nil;

(And [Ad Ul |:=[rs; Append(tl,scnd | ares In res:=|hd,aresc]). = (5)
Append([hd Ul], ecnd | res) « | Append(tl,scnd | ares); res:=|hd,ares|. = (6)

Append(| hd Ul |,scnd | res) « Append(tl,scnd | ares) | res:=| hd,ares]. = (7)

-2 -

Append(| hd tl |,scnd | hd ,ares) «— Append(ti,scnd | ares).

The transitions from (3), (4), and (7) are by the elimination of identities and assignments. The
step from (5) eliminates the split search and the superfluous invocation of [d,!/] ne nil. And-
elimination is applied in the step from (6).

This form of Append, which is not yet a final one, is exactly as in Prolog:

Append(nil,scnd | scnd).
Append(| hd,tl|,acnd | hd,ares) «— Append(t,scnd | ares).

Actually almost all clausal definitions look as in Prolog. The significant difference is that we do
not compute with the help of clauses and can afford to use negations in antecedents. Negations
appear in antecedents after if-eliminations. Prolog has to use cuts to escape double evaluation of
tests.

The clausal form of Split is:

Split(lst | nil,lst).
Split(hd, 4l | | hd,fr),8c) « Split(t! | fr,sc).

Let as give the clausal definitions of Iniree and Gentree:

Intree(n,m,l,r) «— n It m; Intree(n,!).

Intree(n,n,l,r).

Intree(n,m,l,r) «— n gt m; Iniree(n,r).

Gentree(m,l,r | n) « Gentree(l | n).

Gentree(n,l,r | n).

Gentree(m,l,r | n) «— Gentree(r | n).
In Prolog one could use Geniree also as a test. But such a use would defeat the very purpose of
binary search trees where the comparison against the top node saves the search of one side of the

tree. We can see that the knowledge that we are going to use Gentree only as a test allows an
efflicient employment of control.

13. Descriptions.

There is one frequently mentioned advantage of functional programming languages over program-
ming languages based on relations. It is the possibility of composing function applications into
complex terms. In relational programming languages new auxiliary variables have to introduced
to name intermediate results.

Whereas in a functional language one would write
Print(Append (Append(| 1,nil |,| 2,nil]),[3,nil |))
we have to write
find Append([1,nil |,[2,nil] | a); Append(a,[3,nil] | b)In Print(b)
Note that the advantage of functional programming languages does not lie in greater computa-
tional power. The advantage is purely syntactical: a compact and more readable notation.

The same problem of readability occurs in logic where it is solved either by conservative exten-
sions of theories by introduction of new functions or, alternatively, by the use of descriptions as
proposed by B. Russell. Whenever we are able to show that the predicate P(a,b) satisfies the
existence and uniqueness properties:

3bP(s,b)
Plab)& Plac)=b=0c¢

we are justified to introduce (by a conservative extension) a mew function p(a) by the defining
axiom

pla)=b « P(a,}b)
As it is suggested by the term conservative this new axiom does not lend any more power to

-97-

the theory being extended. Whatever can be proven with the axiom can be proven without it
after systematic elimination of terms p(s).

Descriptions are of the form ¢bP(g,b) which is read as "the unique b such that P(a,b) if there is
such”. Descriptions are treated as confezfual abbreviations. Every occurrence of a description in
a context of formulas can be eliminated. For instance

R(.bP(s,b)) = 3b(Ve(B(a,e) » c=15) & R(8))

Our generator Append generates a unique value for all input arguments. Thus we could either
introduce a function append or resort to descriptions. But functional relations, i.e. relations satis-
fying the existence and uniqueness properties, are only special - if quite common - cases among
relations. R-Maple is based on generators which can produce more than one value. It does not
seem to be advantagenvs to introduce functions to take care only of the special case. Indeter-
minate descriptions of Hilbert [4] are more suitable. The notation ¢bP(a,b) can be read as "any b
such that P(g,b) if there is such”. Now only the existence property has to be satisfied.

There are systems of predicate logic which have Hilbert's enotation as primitive. We are, how-
ever, not prepared to use such expressive logical systems as the basis for R-Maple. We shall view
indeterminate descriptions as contextual abbreviations:

R(ebP(a,b)) = 3b(P(s,b) & R(8))
Due to distinguished syntactic positions of output variables in invocations of R-Maple generators
we can escape the use of explicit variables bound by the operator €. Descriptions of the form
.P(z) are used as eaP(z | a). Indeterminate descriptions in a context of programs can be then
eliminated, as for instance:

zeq[6,.P(z)] =find P(z | a)In z eq [6,a]
Indeterminate descriptions are obtained by applications of the BNF production Descr.

We say that an occurrence of a program variable is in oulpul position if the occurence is the out-
put variable of a generator invocation. When an occurrence of the program variable Var is in
Expr, and Expr; contains a description then any expression containing | Expr, Expr,] is said to
contain a description in front of the occurrence of Var.

Let us assume that the program Sexpr is a predicate invocation. Furthermore, assume that
Sexpr contains ezactly one occurrence of the variable Var which is, however, not in the output
position and that no description is in front of it. Also assume that Exprs does not contain any
descriptions. Then we set:

Sexpr{Var:= .Pred} = find Pred(| Var) In Sexpr
Sexpr{Var:= .Pred(Exprs)} = find Pred(Exprs | Var) In Sexpr

As an additional constraint we stipulate that, apart of its distinguished position in Sexpr, the
program variable Var does not occur in any other term within the schema and that it is the first
in the sequence of variables not occurring in the schema. This requirement assures that when a
description is eliminated a new variable with the smallest possible index is introduced.

When descriptions, both in predicate calculus and R-Maple, are treated as contextual abbrevia-
tions then the scope to which a description applies, i.e. the scope of the introduced existential
quantifier, and the order of elimination of descriptions is significant. Because of the notion of con-
trol in R-Maple, the ordering of descriptions is crucial. The scope of descriptions in R-Maple is
Jimited to invocations. The order of elimination is given by the above comnstraints: the leftmost
and innermos! description is removed first. For instance:

P(z) eq [6,.Q(.P(z).y)] =
find P(z | a)in a eq [6,.Q(.P(2).y)]| =
find P(z |a); P(z | b)In a eq [6,.Q(b,y)] =
find P(z [a); P(z | b); Q(b,y | c)in a eq[6,¢c]
Note that what can be at first sight considered a "common subexpression”: .P(z) must be
transformed into two separate searches because P can be a generator producing multiple results

-28.

and two separate backtrackings may be initiated before the identity test is satisfied. Common
subexpressions in Algol-60 cannot be optimized by compilers because of possible side effects dur-
ing the evaluation of two identical function calls. Side effects within expressions in modern pro-
gramming languages are considered harmuful. We have retained the syntactic mark ".” of
descriptions to underscore the fact that descriptions are indeterminate and generally do not stand
for the same value.

Computation of nested descriptions corresponds to what is called a normal order of evaluation:
evaluate all arguments from left to right before applying a procedure.

Readers familiar with more relaxed constraints on evaluation of nested expressions in program-
ming languages as Algol-68 or Ada should note that a different order of evaluation can be always
achieved by the explicit use of control without descriptions. We have decided to base R-Maple
strictly on predicate logic and thus we are forced to define descriptions in a unique way. Also
note that descriptions of R-Maple are entirely within the realm of concrete syntax and have no
independent semantic properties.

Descriptions allow a compact form of Append in a procedural form:

Append(frs,scnd | res) s
if frs eq nil then res:=sgcnd
else find [hd,tl |:=fre In res:=[hd,.Append(tl,scnd)]
Append in a clausal form is as follows.
Append(nil gend | send).
Append([hd,tl],scnd | hd,. Append(tl,scnd)).
The generator Perm permuting a list can be defined in a procedural way as follows.
Perm(a | b)1s
If o eq nil then b:=nil else find Pickup(a | e,c) In b:=|e¢,.Perm(c)]
Pickup (hd,tl |) 1s a:=]| hd,tl] or find Pickup(tl | one,b) In a:=|one hd,b |
Both generators have this simple clausal forms:
Perm(nil | nil).
Perm(a | ¢,.Perm(c)) «— Pickup(a | e,c).
Pickup (hd,tl | hd).
Pickup (hd i | one, hd,b) «— Pickup (¢l | one b).
We are now in position to give schemas of abbreviations for arithmetic operators occurring in
expressions:
Mexpr+ Expr = .Add(Mexpr,Expr)
Mexpr-Expr = .Sub(Mexpr,Expr)
Sexpr X Mexpr = .Mul(Sexpr,Mexpr)
Sexpr div Mexpr = .Div(Sexpr Mexpr)
Sexpr rem Mexpr = .Rem(Sexpr,Mexpr)

Generator Fact can be defined as

Fact(0 | 1).
Fact(n | n X.Fact(n-1)) +~ n ne 0.

The reader is urged to compare this version with the one in Prolog.

14. Predefined Predicates.

R-Maple contains thirteen predefined predicates which can be invoked without explicit
definitions. There are seven predefined tests

Eg Ne,Lt Gt ,Le,Ge ,Print
and six predefined generators with inputs:
Return,Add,Sub Mul Div,Rem

-99.

Print is used to print out the values of results, the remaning tests are binary relations of com-
parisons. Return generates the value of its argument, the remaining generators are arithmetic
generators with two inputs.

The meaning function correlates predefined predicates to the predicates of formal arithmetic with
the same identifiers. We shall now give explicit definitions of the predicates in formal arithmetic.
Then the intended meaning of predefined program predicates will be given by the meaning of the
formal arithmetic predicates.

Edz) + Jadb(z = <a,b> & a = })

Nefz) + Jadb(z = <a,b> & a 5# })

Li(z) « Fg3b(z = <a,b> & a<})

Git(z) ++ 3a3b(z = <a,b> & b<a)

Le(z) + Ja3b(z = <a,b> &~ b <g)

Ge(z) « Jadb(z = <8.b> & -~ a<b)

Print(z) «+ z = z

Return(z) + Edz)

Add(z) + 3a3bIc(z = <<a,b>,c> & a+b = ¢)
Sub(z) «» Fadbe(z = <<a,b>,c> & c+b = a)
Mul(z) +~ Ja3bIc(z = <<g,b>,c> & aXh = ¢)
Div(z) « Ja3pIc(z = <<a,b>,c> &~ a<bXc & a<bX(c+1))

Rem(z) « 3a3pAck(z = <<a,b>,c> & Div(<<ag,b>k>) & s = bXk+¢)

Note that the predicate Print is satisfied by any value of its argument. This suggests that if the
program predicate Print serves any purpose at all , its usefulness must lie in the control [see (16)).

[

Although the form of the definitions is not the most suitable for direct computation, all predicates
are primitive recursive. There is no need for the primitive recursive form of definitions because we
do not intend to compute the predicates that way. We shall rather delegate the actual computa-
tion to the machine implementing R-Maple. However, the definitions of predicates are sufficient to
prove the expected properties. And this is as it should be. The arithmetic counterparts of
predefined predicates are stripped of any indication of the way how to compute them, they are
intended merely for the meaning.

Note that the predicates can be satisfied only if supplied with the proper number of arguments:
Ednil) and Mul(<nil,6>) are false. The relations of integer division (Div) and of remainder
(Rem) cannot be satisfied il the second argument is 0. The first argument of subtraction (Sub)
may not be less than the second one.

We shall adopt the same abbreviations for the predicates in the formal arithmetic as for invoca-
tions of program predicates. Thus Add(8,5 | z) stands for Add(<<9,5>,2>).

As a straight-forward consequence of definitions we have:
Lt(a)b) ~ a<i

similar equivalences are true of the other comparisons. This permits the expected correlation of
comparison tests in R-Maple to the intended meaning:

(Expr, It Expr,)* <+ Expr; <Expr;
Similarly for other comparisons.
We also have

(Var:=Expr)® «~ Var® = Expr*

15. Computation of Programs.

A computation of an R-Maple program a which does not contain processes (program counters) is
performed in the environment of predicate definitions d. Definitions of predicates are used for the
execution of invocations of defined predicates. A computation proceeds by steps which succes-
sively modify the original program a. The computation starts with the creation of a forward

-30-

process al. A computlalion sequence is a possibly infinite sequence of programs

Bo,B),8p, . .. ,8y, """ (ll
The first element in the sequence is a!, i.e. 8; = a!. Each successive element a,;, is obtained

from the preceding element a, by an application of a transformation. A transformation schema
is of the form

b=> ¢

where b and ¢ are terms possibly containing syntactic variables. A transformation is an instance
of a transformation schema obtained by the substitution for all syntactic variables. A transforma-
tion b => ¢ can be applied to the program a, if the program contains b. The term a,,, is
obtained by the replacement of the subterm b by the term e in a,.

A computation is called sequential if at most one transformation is applicable at any given time.
If two or more transformations are applicable at the same time then the next element in a compu-
tation sequence can be obtained by the application of any of the applicable transformation. One
of them is randomly chosen, thus achieving the eflect of parallel computation and its associated
non-determinism.

A computation sequence is called ferminaling if the sequence is finite. A computation sequence
is proper if it terminates with the last term of the form T!. An infinite computation sequence
(1) is fair if for every i>0 there exist programs b, b, o, .. .,b, such that the computation
gequence

89,8, ... J.trb!+lsbl+2: s e an

is proper. The idea behind fair sequences is that although they do not terminate, they can be
always stopped by fair scheduling of processes. Fair scheduling does mot delay a process
indefinitely. An improper computation sequence which terminates with the term a, different
from T! leads to a deadlock. Obviously, there is no transformation applicable to the last term a,,.
A computation of the program a in the environment of d is proper if each possible computation
sequence is either proper or fair.

These definitions are meta-theoretic. The reader may have noticed certain analogy with the sys-
tem of formal equations for recursive functions of Kleene [6]. By the proces of arithmetization,
similar to the arithmetization of systems of formal equations, we shall introduce arithmetic predi-
cates corresponding to the meta-theoretic ones. These predicates are introduced in Part Il as they
are needed for the definition of semantics of R-Maple.

Transformations are chosen in such a way that for each transformation b => ¢ other than invo-
cation of a defined predicate we have as logical tautology b® ++ ¢®. For the transformation of
invocation of a defined predicate b => ¢ applied in the environment of definitions d we have as
logical tautology d* — (b*® ++ ¢*). As a consequence of the Equivalence theorem we have for the
computation sequence (1):

d*— (l: 74 ‘:'-i-:]
as logical tautology. If the sequence (1) is proper with the final term a, then, because of transi-
tivity of equivalence, we have

d* - (a* ~ (TV))
In the view of

(8* < (TV)") < (a* « Vz z2=2) «+ &’
we obtain the fundamental property of proper computations:

d*—a’ (2)
Terms on LHS of transformations always contain program counters. Thus transformations are
applicable only in the positions of a program where the "control” is currently present. The process

"1" moves forward in a program; sequencing sequential operators and forking on parallel opera-
tors. The process where is used to relurn results obtained by invocations of predefined

-31-

generators in a "backward” movement inside the scope of a search (in the scope of the "existen-
tial” quantifier find). The process move allows the "return” of data still containing variables
whose values are currently being searched for in "lazy” evaluation situations.

The computation, controlled by program counters, remains on the level of program operators.
Expressions are passive in this respect. They are not "evaluated” even though they may contain
variables. Program variables are removed from expressions by substitutions. It is assumed here
that the operation of substitution for a program variable can be performed in one step.

Schemas of transformations required for execution of R-Maple programs are presented in the next
two sections. The reader should not be disappointed by the relatively large number of transforma-
tions. Although there are many rules of transformations, they do not aflect either the meaning of
programs or the simplicity of the language. Whole groups of transformations have the same mean-
ing; transformations within the same group differ only slightly in the control component.

It is quite easy to define a machine with only a few instructions, after all Turing Machines are of
this kind. The large number of transformations in R-Maple is required for the efficiency of com-
putation, just as real life computers tend to have many essentially similar, instructions in order to
increase the speed of computations.

16. Transformations of Invocations.

When a forward process reaches an invocation: Pred(Expr)! then there are two possible courses
of action depending on whether Pred is a predefined predicate or not. Let us deal with invoca-
tions of predefined predicates first.

Transformations for invocations of predefined predicates rely on the primitive-recursiveness of the
named formal predicates. Transformations depend on a decision whether the named predicates of
formal arithmetic are satisfied for certain arguments. If the predicate named by a predefined gen-
erator can be satisfied then there is a unique value of the output variable. For all predefined gen-
erators there is a primitive recursive function computing the output value from the input argu-
ments. Thus we can safely delegate the decision of satisfiability and the computation of the gen-
erated value to the machine computing R-Maple in the knowledge that the machine can always
proceed unassisted.
The computing machine executing identity tests Eq, Ne and split searches (see the next section)
may be supplied with a quoted expression < guofeop Lit> which must be split into two literals
Lit; and Lit, such that

<L1t1,th2> = th
The pairing operation and both of its inverse operations are primitive recursive. The values com-
puted are unique but the terms denoting the values are not. For instance, if Lit = <8,5> then
obviously Lit; = 8 but also Lit; = <1,ml>.
It R-Maple programs rely on the complete typelessness of the language and mix numerals and
pairs in 2 manner which would be considered a type error in other programming languages then
the computing machine will have to do some computation of Godel numbers as well. We are not
saying that this is a good programming practice, but the invocation of Add(4,<1,nil> | v)
should come back with the value v:=7. Similarly the execution of the split search

find | hd, !l |:=3 In Prog
should find values for hd and ¢, say hd:=1 and tl:=nil.

We leave it to the computing machine to come up with suitable literals when splits are required,
and to convert between numeral and pair forms of literals. The form of literals can influence the
efficiency of computations but never the meaning.

The four predefined ordering tests Lt,Le,Gt,Ge are computed as follows.
Ordering Transformation (Pred = Lt,Le,Gt,Ge):

T! if Pred®(Lit)
Pred(<guoteop Lit>)! => F! otherwise

-32-

In order to justify this transformation we have to show that it leaves the meaning component
invariant. Under the assumption Pred®(Lit) we have

Pred(<guoteop Lit>)!* = Pred*(Lit) ~ Yz z=z = (T!)"
On the other hand, if - Pred*(Lit) then
Pred(<guoteop Lit>)" = Pred®(Lit) « 3z 25z = (F!)*

The control will delay the process invoking an ordering predicate until the argument is a quoted
expression. Then the computing machine will make the decision by computing the named primi-
tive recursive formal predicate.

Note that the process invoking an ordering predicate with a consed expression, i.e. an expression
still containing program variables, is delayed - because there is simply no applicable transforma-
tion - until a parallel process substitutes literals for all free variables. The last substitution will
automatically transform the consed expression to a quoted one [see section (6)].

Predicates of identity Egq and Ne do not require both arguments to be fully reduced. This some-
times permits an earlier decision on still consed expressions:

Identity Tronsformalions: Expr, Expr, are not variables
E¢Expr,Expr;)! | E{Exprs,Exprg)!
E¢Expr, Expr,) => | T!
F!
if Expr;=<Expr;,Exprs> & Expr{=<Expr; Exprs>
Expr] = nil & Expr{ = nil
otherwise
Ne(Expr,, Expr;)! orp Ne(Expry,Expr,)!
Ne(Expr, Expr,)! => | F!
T!
if Expr{=<Expr;,Expr;> & Expr{=<Expr;,Exprs>
Expr; = nil & Expr; = nil
otherwise

The justification of identity transformations is shown in a similar way as the justification of ord-
ering transformations with the utilization of properties (4.1) and (4.2) of pairs.

When both sides of an identity test are pairs (consed or quoted) then control forks into two
separate tests tests of the respective left-hand and right-hand sides. Note that there are no
transformations for some equality tests as for instance z eq nil !. The execution cannot proceed
and the process is delayed until a value of the program variable z is substituted by a transforma-
tion in a concurrent process.

Print Transformation:
Print(<guoteop Lit>)! => T!

The transformation is trivially justified by the property of Print.

The sole purpose of the predefined test Print lies in its control component. The forward process
invoking Print is delayed until its argument becomes a quoted expression. Then the literal is
printed out and the invocation reduces to T!.

Predefined generator Refurn has the following transformation:

Return Transformation:
Return(Expr | Var)l => T! where Var:=Expr

It is easy to see that the transformation preserves the invariance of meaning:
Return(Expr | Var)® « Expr® = Var® <

-33-

¥z z=2 & Expr® = Var’ = (T! where Var:=Expr)*

The significance of Relurn transformation lies in its control component. A where process
which will proceed in parallel with the process T! is created. T! is delayed for the time being.
The return process will try to bring the value of the variable Var back to the closest enclosing
operator find on the same variable. Transformations governing the behaviour of where are
given in the next section.

Arithmetic Transformations (Pred = Add,Sub,Mul,Div,Rem):
Pred(<guoteop Lit> | Var)! =>
T! where Var:=<guolcop Lit,> if Pred*(Lit,Lit,)

F! if -~ dgPred®(Lit,a)
The justification of transformations is similar to the justifications for Refurn and ordering tests.

All five arithmetic generators require their input arguments quoted before the execution can
proceed. When arithmetic predicates can be satisfied a return process where with the unique
value satisfying the predicate is created.

Invocations of defined predicates are computed by the schema of atribufion transformation. Let
us assume that Defs stands for a list of definitions containing the definition of Pred:

Pred(Var) Is Prog
Attribution transformations are the only ones which require predicate definitions:

Attribution Transformation (Pred is defined in Defs):
Pred(Expr)! => Prog{Var:=Expr}!
Let us show that the attribution preserves the meaning of programs relative to Defs. First of all
we have as tautology

Defs* — VYVar*(Pred®(Var®) « Prog®) (1)
As an instance of the substitution tautology of predicate logic we have

¥YVar’(Pred’(Var®) « Prog®) — (Pred*(Expr®) «+ Prog*| Var®:=Expr*]) (2)
Because of the property (6.1) of substitution we have:

Prog{Var:=Expr}!* « Prog’| Var*:=Expr®| (3)

As a consequence of (1), (2) and (3) we have:
Defs’ — (Pred*(Expr®) «~ Prog{Var:=Expr}!*)
which justifies the transformation of attribution.

The control side of attributions is straight-forward. The process invoking an attribution finds the
definition of the defined predicate in the list of definitions, replaces the invocation with a suitably
instantiated body of the predicate, and continues its forward movement.

17. Unconditional Schemas of Transformations.

All transformations presented in this section preserve the intended meaning uncoditionally, i.e.
they do not rely on lists of definitions.

We shall present the transformations in groups of related transformations. Whenever LHS and
RHS of a transformation are mapped by "+” into different formulas we shall present the logical
tautology assuring the invariance of computation under the meaning.

Negation Scheduling:

(not Prog)! => not (Prog!)
Conjunction Scheduling:

(Prog;; Prog,)! => Prog,!; Prog,

(Prog, || Prog,)! => Prog,'; Prog,!
Disjunction Scheduling:

(Prog, or Prog,)! => Prog,! or Prog,

-

(Prog; orp Prog,) => Prog,! orp Prog,!
Truth Table Transformations:

not (T!) => F!

not (F!) => T!

T!; Prog => Prog!

T! || Prog => Prog

F!; Prog => F!

F! || Prog => F!

Prog || T! => Prog

Prog || F! => F!

F! or Prog => Prog!

F! orp Prog => Prog

T! or Prog => T!

T! orp Prog => T!

Prog orp F! => Prog

Prog orp T! => T!

find Var in T! => T!

find Var In F! => F!

Both sides of scheduling transformations map into identical formulas. The justification for the
truth table group lies in simple tautologies as Yz z=z V Prog® « Yz z=2z.

Note how two processes are created for parallel ands and ors. The execution of sequential ands
and ore passes to the first argument and only if the truth value cannot be determined from the
value of this argument the control moves on to the second one.

Decisions can be expressed with the help of sequential or parallel ands, ors, and nois but the
efficiency of computations is improved by having ifop as a basic operator.

Scheduling of Decieions:

(if Prog, then Prog; else Prog,)! => If Prog,! then Prog, else Prog;,
Transformations of Decisions:

if T! then Prog, else Prog, => Prog,!

if F! then Prog; else Prog; => Prog,!

Justification of the scheduling transformation is trivial, the other two rely on simple truth table
tautologies.

Evaluation of a decision is sequential. The test is evaluated first; when it reduces to T! or F!
then the parts then or else are evaluated respectively. If the test does mot reduce to a truth
value, the evaluation will either not terminate or terminates deadlocked.

Split Transformation: Var, Var, not free in Expr; Expr nof variable
(find [Var, Var,|:=Expr In Prog)| =>
Prog{Var,;=Expr,}{Var,;=Expr,}! if Expr* = <Expr{ Expr;>

F! otherwise

The justification is based on the properties (4.1, 4.2) of pairs, (6.1) of substitution and on the tau-
tology

3z(z =8 & A) « A[z:=s8] provided X is not free in 8 (1)
The execution of a split operation is delayed until its expression is not a program variable. A
quoted expression can be split into constituents if its value is not equal to nil. A consed expres-

sion can be immediately split into two constituents. Constituents of the expression to be split are
then substituted in Prog for the two variables Var, and Var,,

Search Scheduling:
(8nd Var In Prog)! => find Var in Prog!

The justification for the scheduling of searches is trivial.

-35.

An operation of search introduces a scope in which a value or values of the variable declared will
be searched for. When the control reaches an invocation of a predefined generator then a return
process, marked by the program counter where , is initiated. The return process will move the
value of the generated variable backwards and upwards in the program until the value reaches its
declaration.

The last groups of transformations control the backward movement of the value.

Backward Conjuction Group:
Prog, where Var:=Expr; Prog, => (Prog,; Prog;) where Var:=Expr
Prog, where Var:=Expr || Prog, => (Prog, || Prog,) where Var:=Expr
Prog, || Prog, where Var:=Expr => (Prog, || Prog,) where Var:=Expr

The transformations for the backward movement of a value through conjunctions rely on commu-
tativity and associativity of conjunctions.

Backward Disjunction Group:
(Prog; where Var:=Expr or Prog,) or Prog; =>
Prog, where Var:=Expr or (Prog, or Prog,)
(Prog, where Var:=Expr or Prog,) orp Prog, =>
Prog, where Var:=Expr orp (Prog,! orp Prog;)
(Prog, where Var:=Expr orp Prog,) or Prog, =>
Prog, where Var:=Expr orp (Prog, or Prog,)
(Prog, where Var:=Expr orp Prog,) orp Prog, =
Prog, where Var:=Expr orp (Prog, orp Prog,)
(Prog, orp Prog, where Var:=Expr) or Prog; =>
Prog, where Var:=Expr orp (Prog, or Prog,)
(Prog, orp Prog, where Var:=Expr) orp Prog, =
Prog, where Var:=Expr orp (Prog, orp Prog,)
Prog, orp (Prog, where Var:=Expr or Prog,) =>
(Prog, or Prog,) orp Prog, where Var:=Expr
Prog, orp (Prog, where Var:=Expr orp Prog,) =>
(Prog, orp Prog,) orp Prog, where Var:=Expr
Prog, orp (Prog, orp Prog,; where Var:=Expr) =>
(Prog, orp Prog,) orp Prog, where Var:=Expr

The transformations for the backward movement of a value through disjunctions rely on commu-
tativity and associativity of disjunctions.

Backtracking Group:

(Prog, where Var:=Expr or Prog,); Prog, =>

(Prog,; Prog;) where Var:=Expr or Prog,; Prog,
(Prog; where Var:=Expr or Prog,) || Progs =>

(Prog, || Prog;) where Var:=Expr orp Prog,! || Prog,
(Prog, where Var:=Expr orp Prog,); Prog, =>

(Prog,; Prog,) where Var:=Expr orp Prog,; Prog,
(Prog, where Var:=Expr orp Prog,) || Prog; =>

(Prog, || Progs) where Var:=Expr orp Prog, || Prog,
(Prog, orp Prog, where Var:=Expr), Prog, =>

Prog,; Prog; orp (Prog;; Prog,;) where Var:=Expr
(Prog, orp Prog, where Var:=Expr) || Prog; =>

Prog, || Prog; orp (Prog; || Prog,) where Var:=Expr
Prog, || (Prog; where Var:=Expr or Prog,) =>

(Prog, || Prog,) where Var:=Expr orp Prog,; Prog,
Prog, || (Prog, where Var:=Expr orp Prog,) =>

(Prog, || Prog,) where Var:=Expr orp Prog, || Prog,
Prog, || (Prog, orp Prog; where Var:=Expr) =>

Prog, || Prog, orp (Prog, || Prog,) where Var:=Expr

-36-

Backtracking transformations are based on the distributivity of conjunction over disjunction.

The control prepares for possible bactracking by routing the value being moved backward into
one argument of a disjunction while the other argument is set to produce a value should the first
argument fail.

Search Split Group:
find Var, In Prog, where Var,;=Expr or Prog, =>
(fnd Var, In Prog, where Var,;=Expr) or (ind Var, in Prog,)
find Var, In Prog; where Var,;=Expr orp Prog, =>
(ind Var, In Prog, where Var,;=Expr) orp (find Var, In Prog,)
find Var, in Prog, orp Prog, where Var,;=Expr =>
(And Var, In Prog,) orp (find Var, In Prog, where Var,;=Expr)

Find split transformations are based on the tautology
Jy(AV B) «» JyA V 3B

When one result is backed up to a find operator with a possible alternative result then two
searches are created. The one with the value being backed up can be immediately terminated
because of the next transformation:

Successful Search: Var ig not free in Expr
find Var in Prog where Var:=Expr => Prog{Var:=Expr}

Tautology (1) justifies this transformation. When a result is backed-up up to a find operator on
the same variable then it is substituted for the variable in the scope of the operation. If the vari-
able Var occurs free in Expr then the transformation is not applicable and the process where
remains deadlocked.

Move Scheduling Group: = Var, = Var,
find Var, in Prog where Var,;:=Expr =>
move Var, beyond Var, in Prog where Var,;=Expr

This transformation is justified trivially. If the result is on a different variable than the variable
of a find then the operator ind must be pushed back beyond the closest enclosing find on the
variable of the result.

This happens when the expression s in v:=s contains variables, i.e. a partial result is being
returned, and the backward movement reaches a find one of the variables possibly free in s.
The variables in the term s cannot be moved out of its scope. Such enlargement of scopes hap-
pens in lazy evaluations.

The process move pushes find operators backwards until a find with the variable move looks
for is reached. Last two groups of transformations control move processes.

Scope Enlargement Group:
(move Var, beyond Var; In Prog,); Prog, =>
move Var beyond Var, In Prog; Prog,
(move Var, beyond Var; In Prog,) || Prog, =>
move Var beyond Var, in Prog || Prog;
(move Var, beyond Var; in Prog,) or Prog, =>
move Var beyond Var, In Prog or Prog,
(move Var, beyond Var; in Prog,) orp Prog, =>
move Var beyond Var, in Prog orp Prog;
Prog; || move Var, beyond Var; In Prog, =>
move Var beyond Var, In Prog,; Prog
Prog, orp move Var, beyond Var, in Prog, =>
move Var beyond Var, in Prog, orp Prog

If Var, is not free in Prog, then Var = Var, and Prog = Prog,. On the other hand, if the
variable Var, is free in Prog; then Var is the least variable not occuring in either of Prog,,

-37-

Prog;, and Prog = Prog,{Var,;:=Var}. The justification for the transformations of scope
enlargement lies in the tautologies

IvA & B « 3v(A & B)
ivAV B «~ 3v(A V B)

where B does not contain the variable v free. The tautologies are always applicable after a possi-
ble renaming of bound variable v so it does not occur free in B.

Search Ezchange Group: = Var; = Var,
find Var, in move Var; beyond Var, in Prog => find Var,; Var, in Prog
find Var, In move Var; beyond Var; in Prog =>
move Var; beyond Var, in move Var, beyond Var; in Prog

First transformation relies on the tautology
dviwA « dwdvA

while the justification for the second transformation is trivial.

When 2 move process reaches an operator find declaring the variable of the return, the opera-
tors are swapped so a following process where can remove the swapped operator find . At the
same time the move process is terminated by changing it back into a find . The second transfor-
mation creates a new move process by changing an outside operator find into a move so both
move processes can proceed outwards until the first transformation is applicable.

18. Examples of Computation.

In the examples given below we shall use the symbol ” => ” for deterministic computation in the
transitive sense: 8 => b means that there is a unique computation sequence of transformations
initially applied to 4 and terminating in . The symbol ” => ” is used for non-deterministic
computations: ¢ ~~> b means that there are more computation sequences starting with ¢ and at
least one of them reaches b.

As the first example let us concatenate two lists and print-out the result:
Print(.Append(| 1,nil],| 2,nil |)

Obviously, the computation has to proceed in an environment of definitions including the
definition of Append. The computation sequence given below is not complete. Some obvious steps
are not shown. We have to stress that this sequence is only one of the possible computation
sequences, because there is a parallelism involved in the return of values generated by Append:

Print(.Append([1,nil |,[2,nil]) ! =

(ind Append([1,nil],[2,nil] | a) in Print(a)) =

(find a In Append([1,nil |,|2,nil] | a); Print(a)) =>

find a In Append([1,nil],[2,nil] | a); Print(a) (1)

The only process in (1) is the forward process on the invocation of Append. In order to make this
example more managable let us show just the computation of Append until it starts to affect the
rest of the program. The reader has to bear in mind that the computation occurs inside of the
whole program.

Append([1,nil | [2,nil] | a)! =>
If [1,nil | eq nil ! then a:=|2,nil |
else find | hd Ul |:=[1,nil | In a:=|hd,.Append(tl,|2,nil])] =>

(find [hd,t|:=[1,nil] In a:=|hd,.Append(tl,|2,nil])])! =>

z:=[1,.Append(nil,[2,nil])] ! =>

find b In Append(nil [2,nil] | B); a:=[1,0] =>

find b In b:=[2,nil]}; a:=[1,0] => (2)

find b In T! where b:=|2,nil]; a:=[1,b] (3)
The execution of the assignment b:=|2,nil| (2) creates a second process. Since there are no
applicable transformations the forward process is delayed on T! in (3). The next transformation

is the backward conjunction of where :

find b In T! where b:=|[2,nil|; a:=[1,b] =>
find b In (T!; a:=[1,0|) where b:=[2,nil|

For the first time a non-deterministic choice has to be made. Two transformations are applicable:
the reduction of conjunctions and the transformation of successful search.

find b In (T!; a:=[1,0 |) where b:=[2,nil | =>
find b In a:=[1,b] ! where b:=|2,nil| ~>

find b in T! where a:=[1,b | where b:=[2,nil]| =>
T! where a:=[1,2,nil |

At this moment we have to show the computation in the context of the whole program because
Append starts to affect it:

find s In Append([1,nil],[2,nil] | a)}; Print(a) =~>
find s In T! where a:=[1,2,nil |; Print(a) =>
find ¢ In Print(a)! where a:=[1,2,nil | =>
Print([1,2,nil |)! => T!

The generator Append is a function and its computation proceeds without backtracking.

Split is a multi-valued generator. It will be used in the second example to demonstrate the back-
tracking. The following program tests whether the list [1,2,nil | contains the list [1,n:!] as its ini-
tial sublist.

(find Split([1,2,nil] | f,8)In [eq[L,nil]) =>
find a In Sphit([1,2,nil] | a)!; (And [f,2]:=0 In [eq [1,nil]) =>
find ¢ In (a:=|nil,|1,2,nil|]! or Prog,); Prog

We have set

Prog, = find | hd ! |:=[1,2,nil |; Split(tl | fr,ec) In a:=[[hd, fr],8c])
Prog = (And [/,s ;=0 In [eq[1,nil])

The computation continues as follows.

find 4 In (a:=[nil,1,2,nil|' or Prog,); Prog =>

find ¢ In (T! where a:=|nil,1,2,nil | or Prog,); Prog => (4)
find ¢ In (T!; Prog) where a:=|nil,1,2,nil | or Prog,; Prog ~>

find a In Prog! where a:=[m'l,l,2,m'l| or Prog,; Prog =>

find o In Prog! where a:=|nil,1,2,nil| or (find Prog,; Prog) => (5)
Prog!{a:=|nil,1,2,nil |} or (nd a in Prog,; Prog)

The more interesting transformations are backtracking on (4), split of a search, and successful
search on (5).

The overall backtracking situation should be obvious now: The computation is just about to try
out whether the first pair of split lists satisfies Prog. If this were the case then there would be no
need to execute the program

find g In Prog,; Prog

which is held in the reserve. As it happens, the first alternative fails and the computation will fall
back on the second alternative:

Prog!{a:=[nil,1,2,nil]|} or (ind ¢ In Prog,; Prog) =>

nil eq[1,nil] ! or (ind a In Prog,; Prog) =>

F! or (find ¢ In Prog,; Prog =>)

find a In Prog,!; Prog =>

find o in (find Split([2,ni!] | fr,ec) In a:=[[1,fr],ec])!; Prog =>

find a In (find b In Split([2,nil] | b)!; (Bnd [/r,sc |:=b In a:=|[1,fr],ec])); Prog ~>
find ¢ In (a:=[[1,nil],[2,nil]] ! or Prog,); Prog ~>

[1,nil] eq [1,nil] ! or (find a In Prog,; Prog) => T!

«39

where

Prog, = (ind b In

(Bind | hd,tl):=|2,nil |; Split(tl | fr,ec) In b:=|[hd,fr]ec]);
(find | fr,ec]:=b In a:=[[1,/r],8¢c]))

When the last alternative of a generator with finite number of alernatives is exhausted, the gen-
erator fails. For example:

(And Split(nil | f,e)In [eq 3)! =

find a In Split(nil | a); (And [f,8]:=a In [eq 3) =>

find o In (a:=[nil,nil| ! or (find | hd,t |:=nil in Prog));

(8nd [f,8]:=c In [eq 3) >

nil eq 3! or (find a In (find [Ad !l |:=nil In Prog); (ind [/,s|:=a In [eq 3)) =>

find s In (find | Ad,!!|:=nil in Prog)!; (Aind [f,2]:=¢ In [eq 3) =>

find o In F!; (nd [f,2]:=a In f eq 3) => find a In F! => F!
where

Prog = find Split(tl | fr,sc)in a:=|[hd,fr},sc]
Split is a finite generator. It can be backtracked into only finite number of times. An infinite
generator can be backtracked into as many times as necessary. The simplest infinite generator is

Nums(i | n)Is n:=i or Nume(i+1| n)
Provided that Nymsg can be introduced with the intended meaning then one can prove by induc-
tion

Nums(in) < i<n
Note that there would be no need to define Nums were it used just because of its meaning com-
ponent; " le n” would suffice. Nums is needed because of its control component. The invocation
Nume(Num | n), when backtracked into sufficiently many times, generates into n the natural
numbers

Num®’Num®+ / Num®+ 2, - - -
Nums is used in another infinite generator Primes which generates all primes:
Primes(| n) is ind Nume(2 | §) In Jeprime(i); n:=i
with the primality test Jeprime introduced as follows:
Candiv(i,n | o) Is i X i It n; (0:=1i or Candiv(i+ 1,n | 0))
Ieprime(n) Is not (fnd Candiv(2,n | i) In n rem 1 oq 0)
Primes is a filter geperating only those values of Nums which are primes. Although Primes and
Isprime differ vastly in control, their intended meanings are easily proven equivalent:

Primes(n) « leprime(n)

The intended meanings of Candiv and Isprime are:
Candiv(in | 2)«~ eXe<n & i<eo (6)
Isprime(n) + Vi(Canprime(2,n,8) = =~ Rem(n,i,0)) (7)

The equivalence (6) is obtained by induction from the intended meaning of Candiv.
The predicate Isprime is a good example of the importance of control. From the point of view of
pure meaning the primality test could have been defined in arithmetic as

leprime(n) < Vi (Bem(n i 0) -i=0Vi=1Vi=np) (8)
The auxiliary generator Candiv is required to turn the unbounded umiversal quantifier to a

bounded one so lsprime can be computed. Efficiency is improved by testing the candidate divisors
of n only up to the root of n. The proof that (7) and (8) are equivalent is straight-forward.

When executing programs with infinite generators one has to have at least a certain degree of
confidence that the termination condition will be eventually satisfied.

- 40-

It is an open problem of number theory whether there is an infinite number of prime twins as for
instance /7 and /9. One would probably have some difficulties with the proof that the test for
the second twin Isprime(n+ 2) in the following program will become eventually satisfied for a
large prime.

find Primes(| n) in n gt 100000000; Jeprime(n+ 2); Print(n)

The bounded search in the above program is inherently sequential: first a prime will be found
then it will be tested for the terminating conditions. Primality tests for both candidate twins can
be speeded up by a parallel computation:

(find n In Primes(| n) || n gt 100000000; leprime(n); Print(n))! =>
find n In Primez(| n)! || Prog ~>

find n In (T! where n:=Num or Prog,) || Prog ~=>

find n In (T! || Prog) where n:=Num orp Prog,! || Prog =~>
Prog{n:=Num} orp (find n In Prog,! || Prog)

where Num stands for a prime and

Prog = n gt 100000000!; Jsprime(n+ 2); Print(n)
Prog, = (find Nums(Num+ 1 | i) In Jsprime(i); n:=1)

The search find n In Prog;; Prog would be in sequential execution held back in reserve to fall
back into when Prog fails. Parallel "backtracking”, if the term is appropriate at all, invokes the
search immediately.

Note that nothing can be gained by having the terminating conditions in Prog connected by
parallel ands. Neither of the tests can advance very much unless n has been replaced by a quoted
literal.

The examples of both finite and infinite generators hopefully demonstrated the elegance of our
concept of backtracking. The backtracking in R-Maple is made explicit and straight-forward.
Furthermore, one can immediately see that no alternative is lost. This is due to the invariance of
the meaning component. Contrast this with the obscurity of backtracking hidden in interpreters
of programming languages as Prolog.

Let us present three examples where Prolog suffers because of its intentional negligence of control:

P(z) « Q(2)\.R(z)

P(z) « S(z)

+ P(a)
This is a very common case where programmers rely on implicit control built into Prolog inter-
preters, Let us assume that during the refutation of P(a) the test Q(a) is satisfied but R(a)
fails. The next clause for P(z) should be now tried. But the programmer does not want to try
the second clause once Q(a) has been satisfied. He has really meant the second clause to be

P(z) «~ ~ Q(z),5(2)
but because of the difficulties with negation in Prolog clauses, and for obvious reasons of
efliciency, he places a cul in the first clause barring the backtracking into the second clause once

past Q(z). Cuts cannot be explained in logic within the context of a clause and without an ord-
ering of clauses.

R-Maple acknowledges this very common situation and permits to write
P(z)is Iif Q(z) then R(z) else S(z)
This has the meaning as if the second Prolog clause for P(z) has started with ~ Q(z) but without
the inefficiency of double evaluation of Q(z).
The second example:
+~ G(a,y)!,P(y)

The programmer knows that the relation G(a,y) is a function producing a unique y. He does not
want to backtrack into G should P(y) fail.

wdl

We simply write P(.G(a)) or if we want to be explicit
find G(s | y) In P(y)

and know that no backtracking into G can occur if G is a functional generator where no assign-
ment to y is moved back over a disjunction.

The third example demonstrates how the execution of Horn clauses suffers because the quantifiers
have been moved into prenex forms by Skolemization.

P(a)

P(z) ~ A(z)

Q(z) ~ R(z,)

+~ P(2),Q(2),5(2)
Standard Prolog interpreters unify the last clause with the first one to produce

+~ Q(a),5(s)
Now all natural numbers y in the third clause will be tried until, say, R (4,100) succeeds; but alas
S(a) fails. The interpreter knowing rothing about the scopes of searches will backtrack into
R (a,101) and possibly go into an infinite search, although only the backtrack to the second clause
for P(z) can find another z satisfying S(z).

R-Maple programs retain the full indication of scopes and the computation will go as expected:

P(|z)is z:=a or A(| z)
Q(z)1s ind Nums(0 | y) In R(z,y)

(find P(| z) In Q(z); S(z))! = Q(a)!; S(a) or Prog ~>

(R(8,100)! or (ind Nums(100+1 | y) In R(z,y))); S(a) or Prog ~>

T!; S(a) or Prog => S(a)! or Prog => F! or Prog <> Prog!
where

Prog = (find z In A(| z); Q(z); S(z))

The reader is urged to program the predicate Jsprime as another example of difficulties with con-

trol in Prolog.

Prolog has been designed as a language with programs concerned mainly with the meaning com-

ponent. No matter how sophisticated the theorem prover in the interpreter of Prolog is, the overal

efliciency can be assured only by explicit control. .

This can be seen from the above examples as well as from any large Prolog program which must

be heavily infested with cuts in order to assure tolerable efficiency.

We have built the control component directly into our programming language. As a consequence,

a programmer can explicitly visualize and direct the ordering of execution. When this control

component is suppressed by a programming language then, almost invariably, two things will hap-

pen.

1) Programmers will quickly master the scheduling strategy of the local interpreter and adjust
their supposedly purely logical programs accordingly. When such a program is transferred
to an environment with a "dumb” interpreter, the program will perform less efficiently if at
all.

2) The implementors of interpreters with automatic control component will invariably make
some control mechanisms explicitly available. Now, what is worse: A programming language
with explicit standard control or a language proudly claiming that the meaning is of over-
riding importance only to be brought down to the earth by programs heavily infested with
non-standard control?

The first point seems to be also relevant to the growing tendency to suppress the control in

modern programming languages. The freedom so generously profferred to the implementors of

compilers for such languages can be the undoing of many a good program. Here again, our

- 42 -

approach seem to be a sound one: we provide for high level constructs such as descriptions and
bounded searches which do not require that the programmers explicitly specify the control, but at
the same time we make the control well defined. Actually we are forced to do so by the require-
ments of logic.

Some functional programming language permit infinite data structures, such as lists and trees, to
be used in connection with lazy evaluation. For instance, one can define an infinite list of all
primes and use it in subsequent computations only partially.

There is nothing special about logical predicates satisfied by infinitely many individuals. It is cer-
tainly less appealing to introduce infinite individuals into the universe of discourse to play the
role of infinite predicates and then to use the infinite objects only finitely.

The entire concept of computation rests on the concept of finiteness. To start with a very power-
ful theory with models requiring infinite elements which are used finitely seems to us a slight over-
kill. Mathematical induction rests on the downward finiteness of the sequence of natural numbers.
What complicated forms of induction are required to prove properties of infinite objects which are
never used in their entirety?

As the last example we shall demonstrate the use of expressions still containing variables. The
generator Insert inserts a natural number into an ordered list:

Insert(n,lst | nist) Is
If ist eq nil then nlst:=|n,nil]
else ind | hd, !l | In lst
If n It hd then nist:=|n lst |
else If n eq Ad then nist:=lst
else find auz In nist:=|hd,auz |; Insert(n,tl | ouz)

Note that the assignment to the result in the last line is executed before the recursive invocation
of Insert. One would normally expect the last line to be

else nlst:=|hd,.Insert(n il)]
Ingert, as given above, permits an insertion of two or more elements in parallel:

(find b In (find o In Insert(5,[3,lst] | a) || Insert(4,a | B)); Print(b))! =>
find b In (find 4 In

(find auz In a:=]|3,auz | !; Insert(5,lst | auz)) || Insert(4,a | b)!); Print(b) =~> (9)
find b In (find ¢ In

(ind auz In Insert(5,lst | auz)! where a:=|3,auz|) || Insert(4,a | §)!); Print(b) ~=>
find 6 In (find ¢ In

(move auz beyond o In Insert(5,ls! | auz) where a:=|3,auz])||

Insert(4,a | b)!); Print(b) ~>

find b in (find o In

move auz beyond a In (Insert(5,lst | auz)! || Insert(4,a | b)!) where a:=[3,0uz]);

Print(b) ~>
find b In
(ind ouz; a In (Insert(5,lst | auz)! || Insert(4,a | b)!) where a:=[3,auz]);
Print(b) ~>
find b In (find suz In Insert(5,lst | auz)! || Insert(4,|3,auz || b)!); Print(d) (10)

The first invocation of /nsert has constructed the partial result [3,auz | in (9) which is passed to
the second invocation of Insert in (10). The second Insert will be in practice delayed on the first
decision inside its body while it waits for the partial result. After the partial result is substitued,
all decisions in the second invocations can be performed before the process might be delayed again
in the recursive invocation to itself.

-43-

19. Concluslons of Part L.

We have decided not to include integers to R-Maple. Natural numbers as the starting point,
make the intended meanings of predicate definitions simpler. R-Maple programs should be
defined over the whole universe. This is because of the universal quantifier in the intended mean-
ing of predicate definitions. The domain of pairs plus nil coincides with the domain of natural
numbers. Thus a program operating on lists is also defined for all natural numbers and vice versa.
Had we started with integers, then the negative numbers would not correspond to pairs and the
universal quantifier would not express the intended meaning of programs as, for instance, Append
which is designed to operate only on lists.

This is not a serious difficulty, however. In the Part II we shall show how to restrict the universal
quantifiers to apply only to elements of certain types. With R-Maple extended by types the
underlying formal theory can be the theory Z of integers, or even better the theory R of rational
numbers.

Other basic types as characters and strings can be formally introduced by embedding into natural
numbers.

For reasons of keeping this report simple, we have adapted the position that, during the computa-
tion of invocations and split searches, the R-Maple machine performs the substitution in one step.
This position is slightly unrealistic with the present day hardware. Such an understanding of sub-
stitution involves a significant amount of copying and also costs time. In practice the substitution
will not be done but rather an environment will be maintained during the computation. The
environment will carry the bindings of variables to the terms to which they have to be substi-
tuted. Alternatively, the substitution can be performed via combinators [5,16].

Both schemes are acceptable as long as that they support the effect of a virfual one-step substitu-
tion.

For the reasons of simplicity we have decided against the inclusion of higher-order predicates.
Higher order predicates accept other predicates as arguments. A predicate argument can be then
allributed inside the body of a higher-order predicate. The definitions of predicates are terms
which can be treated as data. Thus there is almost no problem, at least from the computational
point of view, with the introduction of higher-order predicates. However, the list of predicate
definitions would dynamically change during the execution of programs.

Predicates can yield another predicates as the values of output variables even now. This is possi-
ble because definitions of predicates are just literals. Some syntax sugaring is required before the
generated predicates can be written in an elegant way.

Predicates of higher-order would necessitate more profound changes in the semantics. These
changes will be outlined in the Part II. For the time being we lack the required formal apparatus.

Another "feature”, not treated in this report, is some sort of data base providing for the environ-
ment in which one can store, retrieve, and execute both the general data, as well as the predicates
which are data of a special sort.

Such a data-base is currently the subject of research although the present author has some ideas
of how to structure the environment. The ideas come from his language Maple [17] which is the
predecessor to R-Maple.

A final word on the expected performance of an R-Maple machine: Although R-Maple is more
powerful than Prolog because of its explicit control, and it is also stronger than LISP because of
its non-determinism, it does not require a sophisticated interpreter. The reason for this is that the
backtracking is expressed in the computation rules rather than built into the interpreter. Further-
more, there is no need for a unification scheme which is so costly in Prolog. We do not see a rea-
son why a good implementation should not be comparable to the implementations of LISP.

(2]
(3l

[4]
(5l

[6]
17l
(8]
[9]
[10]
[11]
[12]
[13]
[14]
(18]
[16]
[17]
(18]

[19]

Clark K. L., McCabe F. G., Gregory S., IC-Prolog Reference Manual; Research Report
Imperial College, London 1981.

Friedman D. P., Wise D. S., CONS should Not Evaluate its Arguments; in Automata,
Languages and Programming (Michelson, Milner eds.), Edinburgh University Press 1976.

Henderson P., Functional Programming Application and Implementation; Prentice-Hall,
Englewood Clifis 1980.

Hilbert D., Bernays P., Grundlagen der Mathematik I, II; Springer-Verlag, Berlin 1968,

Hindley J.R., Lercher B., Seldin J. P., Introduction into Combinatory Logic, Cambridge
University Press, 1972.

Kleene S., Introduction to Metamathematics; North-Holland, Amsterdam 1971.
Kowalski R., Logic for Problem Solving; North Holland, Amsterdam 1979.
Mauer W. D., A Programmer's Introduction to Lisp; American Elsevier, Amsterdam 1973,

Naur P. (Ed.), Revised Report on the Algorithmic Language Algol 60; Regnencentralen,
Copenhagen, 1962.

The Programming Language Ada, Reference Manual, Lect. Notes in Comp. Science,
Springer-Verlag 1981.

Rivest R., Shamir A., Adleman L., A Method for Obtaining Digital Signatures and Public
Key Cryptosystems; CACM February 1978.

Scott D., Data Types as Lattices. Siam J. Comp. 1976.
Scott D., Logic and Programming Languages, CACM 1977.
Shoenfield J. R., Mathematical Logic, Addison-Wesley, Reading 1967.

Stoy J., The Scott-Strachey Approach to the Mathematical Semantics of Programming
Languages, Project MAC, MIT, 1974.

Turner D. A., A New Implementation Technique for Applicative Languages, Software Prac-
tice and Experience 1979.

Voda P. J., Maple: A Programming Language and Operating System; Proc. of ACM Symp.
on POPL, Albuquerque, 1982.

van Wijngaarden A. (Ed.), Revised Report on the Algorithmic Language Algol 68; Sigplan
Notices, May 1977.

Wirth N., The Programming Language Pascal; Acta Informatica 1971.

