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Programs in modern programming languages consist or two components: meaning and control. 
Meaning or a program is given by a function or a predicate computed by the program. This func
tion or predicate can be expressed as a term or formula or a formal logical theory. An interpreta
tion or the theory assigns meaning to the terms and formulas. Thus the meaning of a program is 
the meaning or the corresponding term or predicate. 

Control component is that part of programs which does not affect the meaning. Control provides 
instructions for the machine executing the program. Control directs the behaviour or the 
machine. Computation of programs can be viewed as an attempt by the executing machine to 
prove the program using certain axioms and rules or inference. 

When a proof is round, i.e. the computation terminates, then the meaning component remains 
unaffected by the specific way (control) of the proof. On the other hand, when a proof is not 
found then the meaning component asserts only a partial correctness, or the program. 

Some programming languages, especially the ones with explict parallelism, such as Algol-68 and 
Ada l18,lOJ contain a strong control component. The control in sequential programming languages 
as Algol-60 and Pascal [9,19j permits explicit sequencing or operations but no concurrent compu
tation. 

On the opposite end is Prolog ll,7j as a representative or logic programming. Conceptually at 
least, the control component is entirely absent in Prolog. The decision of how to sequence com
putations and what to do in parallel is left entirely to the Prolog interpreter acting as a virtual 
executing machine. 

The meaning component or languages with strong control is quite weak. Complicated meaning 
/unctions or denotational semanticB 115I are required to map the programs to formulas or a logi
cal theory (lambda calculus). Although, it is easy to specify efficient computations in classical 
programming languages, it is quite cumbersome to prove properties or programs. 

A very weak control in ProJog is outweighed by the direct connection or Prolog programs to for
mulas or predicate calculus. It requires a sophisticated interpreter or Prolog to assure a reasonably 
elicient execution or programs, but the proof or properties or programs is made easy. The only 
problem with the semantics or Prolog is that a programmer which writes programs by adding new 
axioms can easily render the whole system or axioms inconsistent. Now the close connection to 
logic is lost: one can prove on11 property of a program. 

R-Maple ( Relational Maple ) is a programming language which tries to strike a balance between 
the meaning and control. Programs or R-Maple contain a control component and thus they can
not directly be formulas of predicate logic. However, the meaning function connecting programs in 
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R-Maple to formulas or a logical theory is extremely simple and straight-forward. 

The control component or R-Maple permits explicit specification or sequential and parallel compu
tations. It allows the synchronization or parallel processes on the values or variables. Parallelism 
in functional programming languages is restricted to concurrent evaluation or function applica
tions. R-Maple is based on relations and results may be non-deterministic in the sense that two 
parallel processes can come up with two different values satisfying a relation. 

Programmers are not overly restricted in the way they write the programs in R-Maple. This 
includes programs which either do not terminate at all or terminate dead-locked. The naming 
function assigns a formula to all programs. Care is taken in the 11emantics to make sure that the 
intended meaning or nonsense programs cannot be derived in the formal theory or R-Maple. Since 
programs are not directly formulas, we can assure the consistency or the theory. 

R-Maple is described in two parts. This part is concerned with syntax and computation rules. The 
naming function is also presented, but only Part II, devoted to semantics, investigates the condi-

. tions under which the intended meaning ol R-Maple programs can be asserted . It also outlines a 
theory or types which simplifies the proofs that programs behave as they are intended to behave. 

Although Part I does not deal with semantics, the reader does not need to be disappointed. The 
naming function gives him the intuition behind programs. He can prove partial correctness or pro
grams, assuming them to terminate properly. 

Nevertheless, Part I entirely includes, what is usually called, the de/ ining report or a program
ming language . In addition to the defining report, we present a rationale behind the decisions to 
include single constructs of R-Maple. We also relate our constructs to similar constructs in 
another programming languages. We feel that by interleaving the formal and informal parts the 
readability or the report is increased. 

How can we claim that we have a full defining report or a language without giving its semantics? 
The answer is perhaps surprising to everybody, but the hard core denotational semanticists. 
Defining reports traditionally define the semantics or programming languages by what is called the 
operational semantics. The operational semantics describes behavior of the machine which exe
cutes the programs. Part I fully defines the behaviour or R-Maple machine by presenting the com
plete set or its instructions in the form or trans/ ormations. 

Even if we accept that a computation rule should not change the meaning or a program, the set 
of transformations operationally defining a programming language gives only a limited set or 
equivalences among programs. The transformations do no give any interpretation to programs. D. 
Scott II3J was the first one to point out that mere syntactic transrormations are no basis for for
mal semantics. An interpretation or programs into a formal theory which posseses a model gives 
additional rules for proving properties of programs. Using only the identities given by transfor
mations, we are not in position to prove even simple properties or programs. 

For instance, given two runctions: 

fac(n) = lf n = 0 then 1 else n X/ac(n-1) 
facc(n,p) = lf n = 0 then p else /acc(n-1,n Xp) 

the property /ac(n) = facc(n,l) can be proven only by induction. This property is a very impor
tant one because it permits a raster computation or factorials. 

The denotational semantics uses Scott's models or lambda calculus as the basis tor semantics. The 
above identity is proven by Scott's induction. The semantics or R-Maple uses the first order 
Peano arithmetic and subsequently the identity ( or rather the one with predicates instead or 
functions ) is proven with the help or proof by ordinary induction on n or 

fac(n)Xm = facc(n,m) 

Part I contains all or what a practical programmer expects rrom the definition or a programming 
language: The syntax is fully and formally specified. The execution or programs is precisely 
defined. As a bonus, we define the intended meanings or programs. 
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A description or a new programming language is usually welcomed with a slightly bored sigh: 
"Yet another one or those languages! It introduces a couple or new features and we are asked to 
wade through pages or boring syntax descriptions." To counter such objections we would like to 
sum up what we think is a novel approach in R-Maple: 

1) R-Maple is based on relations rather than on functions. Thus it is not another classical pro
gramming language. It bas explicit control over sequential and parallel processing. Rela
tions permit additional non-determinism. R-Maple bas a straight-forward and obvious mean
ing component. Actually, only such constructs have been included which map directly to 
logic. 

2) Great care is exercised to show that the computation or R-Maple programs leaves the 
intended meaning intact. Whenever a relation permits more results, some of whioh are 
rejected by a<idition~l tests later in the program, backtracking must be invoked. This means 
that a different result is to be tried. Prolog bas backtracking built into the interpreter. Con
sequently, one has only a dim perception or what is going on and one can only hope that no 
results are left untried. Computation rules or R-Maple make backtracking totally visi6/e and 
one has confidence that all alternatives will be tried before failure is admitted. 

3) The semantics or R-Maple is defin ed on abstract programs which have a simple structure 
but are not suitable for human readers. We also present a concrete syntax permitting a very 
readable form or programs. Our concrete syntax even covers the composition or relations. 
This escapes the constant need to invent new variable names for auxiliary results as in Pro
log. Another very high level syntax sugaring or concrete syntax is that it permits both pro
cedural and clausal form or definitions or predicates. Both the composition and definitions 
by clauses effectively combine the best features or functional and logic programs. 

4) The relation between the abstract and concrete syntax is quite novel . Programs in concrete 
syntax are not translated into programs in abstract syntax. Concrete programs are mere 
abbreviations of abstract programs. As abbreviations, they do not have an independent 
existence and one does not need to show that the meaning is preserved by the transition. 
The abbreviations are specified in an exact way by schemas of obbreviotions. 

Let us outline the contents or Part I. The connection between computations and proofs is investi
gated in section (2). R-Maple is informally presented in section (3). Section (4) is concerned with 
formal logical principles underlying the design or R-Maple. The abstract syntax and the naming 
lunction is given in section (5). Some meta-theoretic properties or R-Maple programs are defined 
in section (6). Definitions or predicates are presented in section (7). Sections (8) through (11) intro
duce the concrete syntax or variables, predicates, expressions, programs, and definitions of predi
cates. Section (12) is concerned with the Prolog-like form or predicate definitions. Section (13) 
introduces the composit ion of relation s. Section (14) presents the predefined predicates or R
Maple. The rul c.>s or computation are given in sections (15) through (17). Finally, section (18) gives 
various examples or computation and compares programs in R-Maple and Prolog. 

The present author was greatly helped by long discussions he had with his colleagues Karl Abra
hamson , Paul Gilmore, and Akira Kanda. Their contribution is gratefully acknowledged. 

I. Computation• •• Proofa. 
Let us have a closer look at the connection between computations and proofs. We have said that 
a computing machine uses certain axioms and rules or inference during the computation or a pro
gram. These do not necessarily include all axioms and rules or inference or a fonnal logical 
theory . 

For instance, the computation or programs written in functional programming languages such as 
LISP or SASL [8,16J is based only on the /J,-rule ol lambda calculus and on the Theorem or 
Equivalence. 

The rule fJ is actually ao axiom 

(Xz.a)(a) = •I z:=a] 
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where •I z :=a I stands for the term obtained from • by the substitution or a for all free 
occurrences or the variable z. 
The Theorem or Equival nee permits us to replace identical terms or equivalent formulas in other 
terms or formulas without changing the meaning of the latter terms or formulas . The computa
tion of a lambda-program replaces in a computed program an application / (a), where J = >.:i:.1 1 

by the term •I z:=a I to obtain a new program identical to the original one. 

Control or functional programming languages does not give the executing machine great freedom 
in the way a proof is performed. Most programming languages insist on the normal order of com
putations where the leftmost and innermost function applications are removed first. 

The computation in Prolog is based mostly on the transitivity or implication: When a program 

.., ( A1 & A2 & · · · & A, & · · · A11 ) (1) 

is to be refuted, then in each computation step a properly instantiated axiom B - A, is applied 
to obtain 

(2) 

As a result we have (1) - (2). This process is repeated until a false formula F is reached. We 
have then (1) - F, i.e . .., (1). The special form or axioms in Prolog ( Horn clauses) and the use or 
the transitivity or implications instead of the Equivalence Theorem contributes to the difficulties 
with negations in Prolog . Ir the sequence or implications reduces to T then nothing can be said 
about the original program (1 ). 
An interpreter or Prolog bas in theory, but not in practice, considerable freedom in choosing what 
part or (1) is to be replaced by what axiom. The interpreter could almost be a theorem prover. 
This freedom would necessarily slow down the execution or Prolog programs. 

Finally, the "proofs" performed by mac.hines executing programs in classical programming 
languages as Algol and Pascal can be viewed as based on a set of rewriting rules. Parr. of a pro
gram containing UIS of a rewriting rule is replaced by the RHS or the rule . The rewriting rules 
are usually quite arbitrary, similar to algorithms or Markov. This arbitrariness makes the connec
tion to the meaning, i.e. to logic, difficult. 

Computations in Prolog are the ones most closely connected to proofs in logic. But even so, the 
truly interesting proofs, the ones by induction, are not performed. 

The computation or functional programming languages proves identity among terms. The compu
tation in Prolog refutes formulas . Computation in R-Maple is performed on terms corresponding 
to certain formulas of predicate calculus. In this respect R-Maple is closer to Prolog. But unlike 
Prolog and like functional programming languages, the computation in R-Maple is based on the 
Equivalence Theorem. Part of a computed program is replaced by a program with the same 
meaning to yield a new program which bas the meaning intact. 

The Prolog machine bas great freedom in applying the rules or computation. The R-Maple 
machine can apply a transformation only on certain positions within the program being com
puted. Whenever more transformations are applicable, the ma.chine is free to choose any one. 
Unlike functional programming languages, R-Maple contains about one hundred different transfor
mation rules. After all, R-Maple is a concurrent language with backtracking. Even so the rules 
are quite simple inasmuch as they are based on logical tautologies. The relatively large number or 
rules is necessary to assure the efficiency or computations. 

a. Informal Introduction to R-Maple. 
R-Maple is a relational programming language without side effects caused by state changes. Rela
tional - as opposed to functional - means that the basic objects are relations. Functions have at 
most one result for each value or arguments. Relations can have more "result" values satisfying 
the same arguments. The possibility or multiple results brings into R-Maple non-determinism 
which is not present in functional programming languages. 
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Although we speak of variables and, in a figurative sense, ol assignments to variables, R-Maple is 
an applicative language. Perhaps a better term is attributive because relations are attributed, 
rather than applied, to attributes. Once a variable obtains a value by a substitution the value is 
never changed again. 

R-Maple is so closely connected to predicate logic that it can be called a logic programming 
language. Programs of R-Maple correspond to formulas of predicate calculus. Computation of a 
program corresponds to a proof of a formula. 

Formulas of predicate logic are constructed from terms which can contain individual variables. 
Terms occur in atomic formulas. Atomic formulas are connected by logical connectives and 
quantifiers. Programs of R-Maple are const,ucted from ezpresBions which can contain program 
variables. Expressions occur in invocations. Tnvocations are connected by connectives and 
searches. The following table summarizes the correspondence: 

R-Maple: Logic: R-Maple: Logic: 

program 
prog. variable 
search 

formula 
indiv. variable 
3' quantifier 

expression 
invocation 
connective 

term 
atomic formula 
connective 

Every program of R-Maple names a formula of predicate logic. The meaning of the named for
mula gives the int ended meaning, or partial correctness, of the program. Two or more programs 
with the same meaning can differ in the control component. The control component or a program 
directs the proof of the program when it is computed by R-Maple machine. 

The invocation P( z) invokes the program predicate P with the argument z. P may be a 
predefin ed or defin ed (program) predicate . The invocation Eo(4,5) which can also be written as 
4 eq 5 invokes the predefined predicate Eq. This invocation will be transformed by computation 
into the program F naming falsehood . The invocation I 4,5] eq I 4,5 I transforms to truth : T. 
Braces "I ]" enclose pairs. Predicates which reduce to T or F are called tests. The program 
4 eq 5 names the the atomic formula ,I = S. 

The invocation Add(3,5 I z) contains two input arguments 3, 5 and the output variable z. Add is 
a predefined gen erator and when computed it transforms into an assignment to its output vari
able: z:=8. Add(3,5 j z) names the formula S+ S = z; this is equivalent to z = 8 which is 
named by the assignment z :=8. 

Tests and generators are connected by connectives. A; B is a sequential and. First the program 
A is computed. When it reduces to T then the program B is computed and its result is the result 
of the whole program. II A reduces to F then the whole program reduces to F. A II Bis a par;allel 
and. Computations or both operands are performed in parallel. This time B can reduce to F thus 
reducing the whole program to F. The other connectives are negation not , and sequential and 
parallel disjunction: or , orp . The computation ol these connectives uses the corresponding 
truth tables or propositional logic. Conjunctions and disjunctions group to the right; conjunctions 
bind stronger than disjunctions. 

The program 

z eq 8 II 6 It g or not 5 eq 6 ( 1) 

names the formula z = 8 & 6 < 9 V -, S = 6. Both sequential and parallel disjunctions name 
the disjunction "V ". Conjunctions name" & ". The program (1), when evaluated, reduces to 
z eq 8 or not 5 eq 6. The computation is then delayed on the identity test z eq 8 until a parallel 
program substi!utes a value for the variabl z. II we replace the sequential disjunction in the 
program ( 1) by a parallel orp then the program (1) reduces to T even though the value or z is 
not yet known. 

A frequent occuring combination A; B or not A; C can be shortened to the familiar form or 
decision 

If A then B elae C 

This If statement, obviously, names the formula A & B V -, A & B. If statements are more 
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efficient to execute than the explicit Corms since the test A is computed only once. 

Generators and tests can be put into the scope or a search: 

find z ln Add(6,7 I z); z It 15 (2) 

This search names the formula 3z(6+ 7 = z & z<JS). Since the computation in R-Maple 
always leaves the meaning invariant, we can expect the execution or (2) to yield T. 
The execution or (2) will start by the execution or the predefined generator Add leading to 

find z ln z:=13; z It 15 

Now the transformation or successful search 

find z ln z:=■; P(z) > P(■) 
is applied to obtain "13 It 15" and from there T. The transformation or 11uccesful search is based 
on the logical tautology 

3z(z = • & P(z )) - P(■) 

provided that the variable z does not occur free in •· 

Tests (Even) and generators (Succ) are defined by predicate definitions: 

Even(z) la ftnd r ln Rem(z,21 r); r eq 0 
Succ(z I nezt)l■ Add(:r; 1 j nezt) 

These definitions name the formulas 

Vz( Even(z) - 3r( Rem(z,2,r) & r = 0)) 
Vz( Succ(z,nezt) - Add(z,1,nezt)) 

(3) 

Note that the difference between tests and generators, so important on the level or control, com
pletely disappears on the level or meaning. Incidentally, (3) is equivalent to 

Vz( Even(z)- 3rRem(z,2,0)) 

The invocation Even(8) is computed as 

Even(8) > find r ln Rem(8,2 Ir); r eq O > find r In r:=O; r eq O > 0 eq O > T 

Generators can have multiple results. 

G( I z) la z:=3 or z:=5 or z:=8 

Generators with multiple results cause backtracking when a generated value fails to satisfy a sub
sequent condition: 

ftnd a ln G( I a); a gt 6 (4) 

First the invocation or G is computed: 

ftnd a ln ( a :=3 or a :=5 or a :=8); a gt 6 

As a part or the execution or a :=3, and in the preparation for p06sibJe backtracking, the sequen
tial and will be distributed over the sequential or. This transformation preserves the meaning 
since it relies on the distributivity or logical connectives. 

find a ln a:=3; a gt 6 or (a:=5 or a:=8); a gt 6 > 
(ftnd a ln a:=3; a gt 6) or (find a In (a:=5 or a:=8); a gt 6) 

The last step relies on the logical tautology: 

3z( A(z) V B(z)) - :bA(z) V 3zB(z) 

The computation continues in familiar way: 

3 gt 6 or ( ftnd a ln (a:=5 or a:=8); a gt 6) > 
For ( find a In (a:=5 or o:=8); a gt 6) > 
ftnd a ln (o:=5 or a:=8); a gt 6 

The first result was unsucessfully tried; the computation is just about to distribute the 
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conjunction again in order to try out the second result a :=5. This fails and we shall have 

ftnd a In a :=8; a gt 6 > T 

Had we replaced the test a gt 6 by the test a eq 6 in the program (4) then all three alternatives 
would fail thus railing the whole program. 

Tests and generators can be recursive 

Range(/ow ,high I z) la 
low le high; ( z:=low or ( ftnd ll ln Succ(low Ill); Range(ll,high I z))) 

Range successively generates all values z in the interval low :5 z :5 high. 

The intended meaning or the predicate Range can be proven by induction to be equivalent to: 

Range(low,hi~f.,..,) .-. low:5: & z:5high 

The nuisance or invention or names for auxiliary variables, like ll in the above example, will be 
overcome by a neat syntax sugaring permitting the composition or relations. The generator Range 
can be written in a compact form: 

Range(low,high I z) la low le high; ( z:=low or Range(low+ l,high I z)) 

Split search is the lac.t primitive construct or R-Maple: 

ftnd I hd,tl J:=list In P(hd,tl) (5) 

Split searches permit us to break apart pairs and find the corresponding values for pairs or vari
ables. For instance, ir the list let obtained the value I 6,lst 2 J then the execution or (5) would lead 
to the execution or P(6,lst 2). 

The split search (5) names the following formula. 

3hd3tl( lhd,tl] = list & P(hd,tl)) 

4. Formal Prlnclplea of R-Maple. 

R-Maple programs operate on natural numbers which can be also viewed as pairs composed or 
natural numb rs or another pairs. An R-Maple program can be viewed from three aspects: 

1) As a sequence or symbols with a fairly rich syntactic structure which makes the program 
readable and easy to understand. 

2) As a sequence or symbols composed in a hierarchical way which is less readable by humans 
but may be easily composed and decomposed by other program. Such a program is encoded 
as data. 

3) As an abstract object or certain properties. These properties can then be asserted in order to 
ascribe meaning to the program. 

Programs in the first form are in the theory or programming languages said to be in 
concrete s11ntaz. Programs or the second form are in abstract a11ntaz. Programs in the third form 
are said to be denoted by programs in the first two forms. 

We shall define programs or the first two forms to be terms in a formal theory. Programs or the 
third form will then be objects from the universe or an interpretation or the theory. Since pro
grams are to operate on natural numbers and also be data for other prograrru, the abstract 
objects will have to include natural numbers. Although it may come as a surprise, we do not need 
more than natural numbers. We shall manage without additional data structures and even 
without functions or the lambda calculus variety. The formal theory in which the programs or 
the first two forms are terms will be the most common or all theories, first order Peano arith
metic. 

The notation and terminology or .formal arithmetic used in this paper is based on two basic logical 
texts: Kleene's Introduction to Meta-mathematics, and Schoeofield 's Mathematical Logic l6,14J. 
We shall, however, slightly modify the symbols for individual variables and for predicates. Instead 
ol traditional and rather dry symbols as z,71,z, ... and F,G,H, ... we shall use identifiers ol 
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programming languages. Identifiers will start with capital or small letters and consist or digits or 
small letters. Capitalized identifiers will be used 88 symbols for predicates whereas small letter 
identifiers will be individual variables. For reasons which will become clear shortly, individual 
variables, constants, and predicate symbols of formal arithmetic will be underlined. Thu 
L, product, I..UJUl. , ... are individual variables ranging over natural numbers. We shall employ only 
one-place predicate symbols like Append. Reverse , [i., .... Numerals or arithmetic will be in italics: 
1 ,e ,9, · · · Numerals 1 ,e ,9, · · · are introduced as abbreviations for 01 ,011 ,0111

, • • • respec
tively. 

We shall work in a recursive extension or arithmetic where, the operation ~) satisfying 

~) = 0 

(11) = ~)+ 11 

h~ been introduced. We can now introduce the constant .nil and the operation of pairing by expli
cit definitions: 

nil= 0 
<ab>= '11.+1+ l)+ a+ 1 _,_ l !! J -

Note that that the op ration "< ,>" satisfies the uniqueness property expe ted from a pamng 
operation . Also note thal due to the factor + 1 in the definition, no pair is equal to !ill· Both com
ponents or a pair are lesser numbers than the number encoding the pair. Every number either 
encodes a pair or is ru1, We thus have: 

<.!!.,!> = <.!!.' ,!' > ++ .!!. = .!!.' & .! = .!' (1) 
<.!!.,.!> ~ nil (2) 
.!!. < <.!!.,.!> (3) 
1 < <.!!.,!> (4) 
.!!. = nil V 3!3.d.!!. = <.!,t.>) (5) 

Programs in the abstract syntax are defined as n-tuples of natural numbers. N-tuples can be 
introduced as abbreviations. 

<a 1,a 2, ••• ,an>= <a 1,<a 21 .•• ,an>> 
The sequence or symbols at the left abbreviateB the sequence at the right . The symbol = 
expresses the identity or terms taken as sequences or symbols. R-Maple programs are composed 
of n-tuples consisting or an operator and n-1 operands. Each operator bas a fixed arity : 

< operator ,operand1,operand21 ••• , operandn-i> 

Although the approach taken here is more formal, the reader will recognize a touch or LISP. 
Abstract programs express the data they operate on as literals. Literals are terms or arithmetic 
denoting natural numbers and consist or numerals and pairs. Numerals and literals are defined as 
smallest cl~ses satisfying formation rules. Formation rules for numerals are: 

a) The symbol O is a numeral. 

b) If• is a numeral so is ■1 • 

Formation rules for literals are: 

a) Every numeral is a literal. 

b) The symbol ml is a literal. 

c) Ir ■ and t are literals so is <•,t>. 
Readers objecting to an apparent confusion between natural ou.mbers and pairs should realize 
that a sequence or bits in computer memory can be also interpreted by a program as an integer or 
a floating-point number. Natural numbers can be viewed either as themselves or as pairs. The 
intended use must be built into R-Maple programs. R-Maple is a completely typeless language, 
just as 88semblers are. LISP, which is considered a typeless language, bas a form of typing calJed 

, . .. 
i 
I. 

( 
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weak or dynamic with checks for type violations performed during the execution. 

Another possible objection, that or tricky encoding or pairs into natural numbers will, be dealt 
with in a moment arter a discussion or abstract programs which are encoded in an even "trickier" 
form. Abstract R-Maple programs are subsets or literals and they consist or two components, 
control and meaning. A control component is solely concerned with the efficiency of computation. 
The question or convergence or computations is understood as a question or control. A non
terminating program can be viewed as being computed in an absolutely inefficient way (having 
the infinite complexity). 

Abstract programs are terms of arithmetic and as such they directly denote natural numbers in 
the standard interpretation or arithmetic. These numbers, however, do not express the meaning or 
programs. The meaning component or an abstract program will be given by a naming function 
denoted by "•" which is defined on the domain or abstract programs (a subset or literals). Its 
range are terms and formulas or formal arithmetic. R-Maple ezpressions, which are data possibly 
containing program variables, name terms possibly containing individual variables. Abstract pr~ 
grams of R-Maple name formulas of arithmetic. The standard interpretation or arithmetic assigns 
denotations to the terms and rormulas. Thus the intended meaning or a program a is the meaning 
of the formula a•. The naming function is defined on formal objects (terms and formulas) and 
thus it belongs to meta-theory rather than to the theory or arithmetic. 

Readers familiar with meaning functions employed, in what is called, the denotational semantics 
of programming languages will probably be surprised by the simplicity of the naming function 
"•". The way meanings are assigned to R-Maple programs can be also called denotational seman
tics. 

Standard denotational semantics assigns meanings into models or lambda calculus as developed by 
D. Scott jl2]. The models of lambda calculus are, obviously, more complicated than models or 
arithmetic. This additional complexity or lambda calculus models would not normally be an obs
tacle to practical semantics of programming languages. The real obstacle is that there is no 
workable formal theory or lambda calculus in which properties or programs can be easily derived. 
We are alluding here to the complications associated with the practical use or Scott's induction 
rule as opposed to the simplicity or induction in formal arithmetic. Another obstacle is that the 
meaning (unctions associated with lambda calculus tend to be quite complicated and generally 
unworkable. 

A program a names the formula a•. Thus a resembles the Godel number or the formula a•. 
There is a slight difference, however. Not all formulas of arithmetic are in the range or the nam
ing (unction. Formulas containing universal quantifiers are not named by R-Maple programs. On 
the other hand, two or more programs having different control components can have the same 
meaning trivially when they synonymously name the same formula. We say trivially because there 
are R-Maple programs which have identical meanings non-trivially. They name different formulas 
which can be then proven equivalent. 

Now we are ready to answer the objection to tricky Godelization. R-Maple computation, just as 
computatations in the languages based on lambda calculus, is performed by transformations or 
terms. The use of "Godel numbers" in the semantics of R-Maple is just for the interpretation of 
R-Maple programs into the arithmetic. Even so, the interpretation is straight--forward and 
natural, without any use or prime factorization as perhaps readers might have suspected. R
Maple computation is never hampered by huge Godel numbers, whereas the semantics of R-Maple 
provides theorems which - when one is proving properties of R-Maple programs - circumvent the 
direct use or Godel numbers. 

One of the major advantages of abstract programs of R-Maple and LISP is that programs can be 
manipulated and computed by other programs. A possible mistake or the designers or LISP was 
that they did not go beyond abstract programs. Practical programs tend to be quite large and 
the pragmatic aspect or readability of programs by humans (rather than by machines) cannot be 
overlooked by any designer of programming languages. 
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The aspect or human engineering is taken into consideration in the concrete 5yntax or R-Mapl 
programs. Abstract syntax or R-Maple is qui~i simple and can be defined by simple formation 
rules a.s used in mathematical logic. Concrete syntax or programming languages is more complex 
and contains a vari ty or syntactic classes. It is traditionaly described by formal grammars, most 
often by a BNF notation. The correspondence between a concrete and abstract 5Yntax (if a 
language bas one at all) is then either defined by a translation scheme, or completely dismissed as 
trivial . The latter is almost invariably the case in denotational descriptions or existing program
ming languages. 

We do not think that the correspondence is 110 trivial that it !Should be left unexplained. A reader 
who thinks otherwise should inspect the correspondence given in 11eCtions (9) to (13) first . On the 
other hand, the use of syntax translation schemes belongs to the theory of grammars and transla,
tions and cannot be directly related to mathematical logic which forms the basis or our discourse. 
The solution adapted here is quite novel from the point of view of both programming languages 
and mathematical logic. 

We treat a program in a concrete form as a mere abbreviation which stands for a term in abstract 
form. No translation on the level or th.e theory is necessary sine both forms are the same. Abbre-
via.tions are wide ly used in logic but this approach does not seem to be used in programming 
languages . On the other band, the concrete syntax is quite complicated and had we tried to han
dle it in a standard logical way , by informal descriptions in English, we could have run into 
many problems or ambiguity. The syntax of abbreviations will be described by BNF rules. The 
abbreviations are then related via schemas of abbreviations to the terms abbreviated. 

The reader should always bear in mind that R-Maple programs presented in the concrete 5Yntax 
are not sequences of terminal symbols as specified by the BNF productions. Terminal sentences 
only st.and for R~Maple programs in the abstract syntax. The concrete syntax or R-Maple pro
grams does not have the kind or ontological independence as in other programming languages. 
Thus the abbreviations provide a true "syntax sugaring" or the language. 

The process of elimination or abbreviations in a concrete program in order to obtain the abstract 
program will be called compilation or the program. A compilation can be performed mechanically 
by another program called a compiler. 

In order to prove correctness or compilers or ordinary programming languages one has to show 
that the meanings or both source and target programs are the same. Compilation in R-Maple is 
not concerned with the meaning at all. One only has to show that the abbreviations are removed 
correctly. Programs in the concrete syntax have no autonomous meaning. 

6. Abstract Syntax of R-Maple. 

Operators of abstract syntax are introduced by the abbreviations: 

.1!.Q.!.QJ!. = o, auoteop = 1, ~ = e, R..U..d.R.R. = s, J.au..oR. = 4, 
falseop = s, ~ = 6, andsop = 7, andpop = B, RU.QR. = 9, 
JlIUJ2_ := 10 I ~ =: 11 , il.RR. = 12, liB.d..u. = 1 s I afilil 5 14 1 

ki..u. = 15 m. = 16, whereop = 17, moveop = 18 

Abstract R-Maple programs form a subset or literals, thus they are terms or arithmetic. The fact 
that abstract programs are a subset or R-Maple data enables the reftexivity or programs: pro
grams may operate on programs. For the definition or the class or programs we need to define 
three auxiliary subsets or literals: program variables, program predicates, and ezpressions. 

Formation rules for these classes are given with the help of meta-variables. Meta-variables are 
a11ntactic variables ranging over terms. The following syntactic variables will be used. 

Num,Num1,Num2, · · · to range over numerals 
Llt,Llt1,Llt2 , • · • to range over literals 
Var,Var 1,Var2, · · · to range over program variables 
Pred ,Pred 1,Pred2, · • · to range over program predicates 
Expr,Expr1,Expr2, · · · to range over expressions 
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Prog,Progi,Prog2, • · · to range over programs 

Syntactic variables are used in the standard way of logic and they should not be confused with 
non-terminals or context-free grammars. Syntactic variables of the same kind, but with different 
subscripts, range over their domains independently. Two or more occurrences of the same syntac
tic variable in a schema have to be replaced by the same sequence of symbols. We are stressing 
this point because in the description of concrete syntax we shall use symbols as Pred, Expr, · · · 
as non-terminals in BNF productions for the concrete grammar. 

Program variables, predicates, expressions, and programs are the least sets of terms satisfying 
their respective formation rules. 

Formation rule for program variables: 

<J.!.Q.!..QJ!.,Num> is a program variable. 

Formation rule for program predicates: 

<~,Num> is a program predicate. 

Formation rules for expressions: 

a) <quot eop,Llt> and Var, are expressions. 

b} Jr Expr1 and Expr2 are not both quoted then <J!.!!!!il,Expr1,Expr2> is an expression. 

An expression is quoted if it is of the form <guoteop,Llt>. An expression is coneed if it is of 
the form <li1LQJ!.,Expri,Expr2>. 

Formation rules for programs: 

a) < lru eop .nil>, < [alscop ,Dil>, < attrop .Pred,Expr>, 
<.i.lfil2. ,Prog1,Prog2,Pros~> , < find op ,Var,Prog>, <!.11.fil.Q2.,Var1,Var2,Expr,Prog>, 
< or sop ,Prog1,Prog2>, <.£!2.!U?.,Prog1,Prog2>, < andsop ,Prog1,Prog2>, 
< andpop ,Prog1,Prog2>, < not op .Pro1> are programs. 

b) <~.Prog>, <whereop,Prog,Var,Expr>, <moveop,Var1,Var2,Prog> are pro-
grams. 

Operators of group b) are called proceseee or program-countere. They mark positions in pro
grams where transformations take place. Processes are created, delayed, and terminated by the 
computing machine executing R-Maple programs under direction or the control component or pro
grams. This involves the insertion, modification, and removal or program-counters. "Users" writ
ing programs in R-Maple are not allowed to use the formation rule b ). Thus processes are created 
only by the executing machine. 

Formation rules give a purely syntactic characterization or programs. There are some additional 
syntactic constraints on properly formed programs which cannot be expressed by formation rules. 
For instance, a properly formed program may not contain free (undeclared) program variables. 
The additional constraints are explained in section (7). 

Expressions of R-Maple may contain program variables which will be replaced during a computa-
tion by literals. At the same time R-Maple programs may operate on literals or any form. In order 
to be able to tell whether 

<~.<~,9>,< auoteop .wJ> > 
is a consed expression still containing a program variable or whether it is just pure data contain
ing the literal <Jlll..I.QR.,9> we have to quote literals. But even with literals quoted we BtiJJ cannot 
tell whether <J!.WJ?.. , 6 > is an expression still containing a program variable or it is a pair with 
number 90. Thus we have to cons pairs. 

The difference between consed and quoted expressions corresponds to the difference between 
(cons a 3) and (quote (a . 3)) in LISP. The first expression is meant to be evaluated with the 
value or the variable a to produce a pair whereas the latter expression evaluates directly to a 
pair. 
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Expressions in LISP are evaluated to constant $-expressions before they can be used as arguments 
to functions. Expressions in R-Maple are not evaluated; program variables occurring in them are 
merely replaced. It is possible to "pass" still "unevaluated" expressions to a predicate. This 
enables a predicate to be evaluated in parallel with programs computing values of program vari
ables contained in expressions. 

It is certainly possible to extend LISP with unevaluated expressions in order to permit lazy 
evaluations , but the schemes the present author knows about 12,3} are not very pleasing from the 
points or view or both syntax and seman tics. 

Prolog, as a representative of what is called logic programming, relies heavily on the use of 
unevaluated expressions but it lacks the explicit control component which we deem necessary to 
enable efficient computations. 

We shall now specify the objects named by program variables. Let us order all individual vari
ables or arithmetic alphabetically into a sequence: 

.4,.!.,~, ... , il,.a.!,.4'-, ... , .a..L ... , d.b.a., · · · 

Let a stand for the i-th symbol (counting from 0) in the sequence. We set 

<l!a!.QJ!., i> • = a 

In order to establish the naming for program predicates let us alphabetically order the predicate 
symbols of arithmetic: 

A,Il.,.Q, ... ,.!4,M,&, ... ,Al, ... ,il&, · · · 
Jr the i-th symbol, counting from 0, in the sequence is denoted by a then we set 

<Jl,U..4QR.,i >• = a 

The meaning or the terms or arithmetic named by quoted and consed expressions is specified by 
induction on the structure of expressions: 

<auoleop,Llt>* = Lit 
<J?fil..!:.QJ!.,Expr 1,Expr2>• = <Expr:,Expr2> 

AB an example we have: 

<J1.fil!.Qll.,< varop .9 >, < guoteop ,nil>>* E < < varop ,9 > •,< guoteop ,nil>*> 
s <l,ml.> 

The formulas named by programs are specified inductively on the structure or programs: 

<trueop .nil>*= "IL L=.l 
< folu op ,nit>•= =i.!.1."rL 
<~.Pred,Expr>• = Pred•(Expr•) 
<il.fill.,Prog1,Pro1J2,Pro1s>• = (Proa: .fl Prog2) V (-. Proa: .fl Prog;) 
< findop .Var,Prog>• = 3Var• Prog• 
<~,Vari,Var2,Expr,Pro1>• e 

3Var:'3Var2( <Var:,var2> = Expr• .fl Proa*) 
<Q!W.,Prog1,Prog2> • = Prog: V Prog; 
<.2ll!1U!,,Prog1,Prog2> • = Prog: V Prog2 
<andsop,Prog1,Prog2>* = Prog: .fl Prog2 
< andpop ,Prog1,Prog2> • = Prog; .fl Pro12 
<.!!.Q!.e.R.,Prog>• =.., Prog• 
<.w.2.,Pro1>* = Prog• 
<whereop .Prog,Var,Expr>• = Prog• .fl Var•= Expr• 
< move op ,Var1,Var2,Prog> • = :!Var: Prog• 

The naming function ror most of the operators has been already discussed in section (3); the phi
losophy behind the processes will become obvious once their behavior during a computation will 
be explained in fa> sections (15) through (17). 
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e. Some Syntactic Propertle■ of Program•. 
Expressions and programs or R-Maple have similar syntactic properties as terms and formulas or 
arithmetic. Program variables occurring in terms or R-Maple share syntactic properties with indi
vidual variables or arithmetic. 

An R-Maple term a contains the term b ifl' b is a subterm or a and the occurrence or b is not a 
part or any subterm < guot eop .c> or a. A program variable occurs in a term a or R-Maple iff a 
contains the variable. Program variables occurring in programs can be either free or bound. An 
occurrence or the program variable Var is free in the term a ill' the corresponding occurrence or 
the individual variable Var* is free in the term or formula a•. An occurrence of the program vari
able Var in the program Prog is bound iff the corresponding occurrence ol the individual vari
able Var• in the formula Prog• is bound. Note that program variables cannot be bound in 
expressions. 

Operators ~ and ~ are variable binding operators. Both variables in ~ are bound. 
The variable Var 1 is, obviously, bound in < moveo11 ,Var1,Var2,Prog>. There is no correspond
ing variable in the formula or arithmetic for Var2. We stipulate that Var2 is tree, i.e. that 
moveop binds only its first variable. Program variables bound by these operators are said to be 
declared in the scope or operators. 

We shall now define a meta-theoretic function designating terms or R-Maple obtained by substitu
tion for program variables in another terms. The substitution for program variables is once again 
closely correlated to the substitution for individual variables in arithmetic. We shall designate by 
a{Var:=Expr} the term or R-Maple which is obtained by the substitution or the expression 
Expr for all free occurrences or the program variable Var in the term a. The substitution in 
expressions, i.e. terms and formulas, of arithmetic is designated by •I x:=1]. The substitution for 
program variables will be defined in such a way that 

a{Var:=Expr }* = a*[Var•:=Expr*J (1) 

The substitution for individual variables, as defined in [6,141, is meaningless when a term contain
ing a tree variable comes into the range or a variable binding operator with the same variable. It 
is only cumbersome in logic to make sure that this does not happen; in R-Maple we cannot prop
erly define computations with such an understanding of substitution. 

Various devices have been designed to assure that a substitution is always well defined . One 
widely used device uses different symbols for bound and free individual variables. Thus a rree 
variable of a term can never enter a scope of a bound variable. The problem with this device is 
that it does not directly permit the applications of the Equivalence Theorem in the scope or 
quantifiers. 

In order to demonstrate the problem let us assume that we have as a theorem 

E(.a.) - 3..B.(.a.,.l.) (2) 

It is impossible to replace E(.l.) by the Equivalence Theorem in the formula 

3i.(E(.:.) & .Q(i.)) 

because it involves the substitution of bound variable ., for free variable .4 in the formula (2). 
Note that had this been allowed, a bound variable would have come into a scope of the same 
bound variable. 

We can, however, use the device of Curry developed for the substitution in lambda calculus [see 
for instance SJ. We shall use it for both kinds ol substitution. A precise meta-theoretic definition 
of substitution requires an inductive definition on the structure of formulas and terms. Since the 
definition is otherwise straight-forward, we present here only its crucial case. Substitution involv
ing a variable binding operator, for instance "3" is defined as follows. 

(3vA)[w:=1J = I ::~[w:=11) 
3x(A[ v:=x JI w:=1 I otherwise 

lfv = w 
If-, v = w & vis not free in• 
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where x is the first variable in the alphabetic sequence different from w not occurring in either a 
or A. Bound variable v is in the third case first renamed by the variable x. 

Substitution for program variables is defined similarly. AB an example let us assume that Var 
denotes the variable with the least index not occurring in either or Var2, Pro1, Expr; and that 
Var1 is free in Expr. Then we shall have: 

< (ind op ,Var1,Pro1> {Var2:=Expr} = 
<lilli!9.J?.,Var,Prog{Var1:=Var} {Var2:=Expr }> 

In the case or 

< Bplitop Var 1,Var2,Expr ,Prog> {Var3:=Expr1} 

variables Var1 and/or Var2 must be renamed when free in Expr1. 

There are no bound program variables in expressions. Thus the substitution for a program vari
able simply replaces all occurrences or the variable by the expression being substituted. An 
expression previously containing variables can be turned by a substitution into a constant expres
sion. The formation rule b) for expressions (see section (5)) may become violated in the process. 
The operation of substitution is defined in a such way that it replaces every occurrence or the 
term 

<11..fil!.QJl,< auot eop .Llt1>,< auoteop .Llt2> > 
which is not an R-Ma.ple expression by 

<auoleop ,<Llt1,Llt2> > 
For instance: 

< oltrop .<~1 0> ,<poirop .<WLQR_,<~,1 >,<auoteop ,6 > >,< quoteop .!lil> > 
{ <!!1!.!.il. ,1 > := < ouo!eop .S >} = 

< ottrop ,<~,O >,< quoteop .< <S ,6 >,nil> 

The meaning component or expressions is not affected by such substitutions and the property (1) 
is upheld. In our example we have: 

<ottrop ,<~,O,<quoteop ,< <9 ,6>,nil>>* = A(< <!,6>,.n!l.>)l!:=9 J 

The reader interested in the exact meta-theoretic definition can infer it from its arithmetic, i.e. 
formal theoretic, counterpart as discussed in Part II. 

7. Deftnltlona of Predicate■• 

Definitions or predicates give names to programs. Named programs turn into predicates. Program 
predicates are one place (one argument). The effect of many-place predicates is achieved via n
tuples. There are two kinds of predicates tests and generators. Arguments of tests are input 
arguments. Arguments or or generators are either output only, or they are pairs or input and ou~ 
put arguments. 

Predicates are invoked by the operation or attribution: <.!Uw,,Pred,Expr>. If Pred is a test 
then the evaluation or the atrribution is expected to reduce (to transform ) to either T or F. Oo 
the other hand, if Pred is, say with both input and output variables, then the argument Expr 
should have the form I Expr1,Var J where Expr1 is the input argument and Var is the output 
variable. The computation of this invocation shou.ld result in an assignment of an expression to 
the output variable Var. Ir there are more possible output values then backtracking will be 
invoked to try as many output values as necessary. Ir no output value can be found then the 
invocation should reduce to F. The computation, i.e. evaluation, or attributions will be discussed 
in section (16). 

Definitions or predicates have the abstract form: 

<Mluz.,Pred,Var,Pro1> (1) 

The distinction between tests an generators is on the level or Prog in the way it reduces to a 
truth value or to an assignment. A generator Pred is said to be with input when it is defined as 

, 
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<J.d.QR.,Pred,Var,<u.J.ililL,Var1,Var2,Var,Prog>> 

Var1 is the .input variable, Var2 is the output variable. Jr the definition (1) or a generator is not 
or this form then the generator is said to be with output onl11. The variable Var is then the out
put variable. 

The distinction between tests, generators, input, and output variables is significant only on the 
level of control. The intended meaning or definitions is set by: 

<~,Pred,Var,Prog>* = War*(Pred*(Var*) ++ Prog*) 

The intuition behind the intended meaning of definitions is that by writing down a predicate 
definition one should be able to introduce by the way or recursive extensions or arithmetic a 
predicate satisfying the intended meaning. This is, however, achievable only if the computation 
of the predicate car: be s own to terminate (see Part II). 

An example of a program predicate for which the intended meaning cannot be asserted is the test 
defined as 

<~.<~,1>,<varop,0>,notop.attrop.<R.!ill.R.,1>,~.o> 

The intended meaning 

Y .2.( H(-2.) ++ ., H (.~) ) 
can be derived only at the cost or inconsistency. 

Definitions or predicates can be grouped together into a list or definitions. Let us use the syntac
tic variables Def and Def■ to range over predicate definitions and lists of predicate definitions 
respectively. Lists or definitions are then the least set of terms satisfying the following lormation 
rule. 

nil and <Def,Def■> are lists or definitions. 

The formula named by a list of definitions is the conjunction of formulas named by single 
definitions: 

nir = \,/~ e=A, 
<Def,Def•>• = Def* & Def■* 

There are some additional constraints on terms used in definition or predicates. These cannot be 
given by "context-free" formation rules. The constraints correspond to usual constraints of pro
gramming languages: all identifiers must be declared; procedures should be invoked with the 
correct number and kind (input - output) or arguments. 

Such constraints are sometimes referred to as semantic constraints, although a more appropriate 
term is being increasingly used: contezt-BenBitive Byntaz. The constraints on the form, i.e. on the 
syntax, or terms constituing R-Maple programs are defined in the meta-theory and in English . 
Formal definition of these constraints is given in Part II. 

T_he program Prog or (1) and (2) is called the body or the predicate Pred; the variable Var is 
called the (/ ormal) argument. With the exception or formal arguments all program variables 
occurring in bodies of predicates must be declared (bound). 

Predicate Precl is invoked in a program Prog ii Prog contains a term <atlrop,Pred,Expr>. 
A predicate Precl is invoked in the list of predicate definitions Deft if it is invoked in a body or a 
definition contained in the list. The predicate Pred is said to be prede/ined if Pred* is one or 
the following: 

E.g,li.!.,/d.,l&..,Gt ,fh .Print .Return .M..4.,M,M!l,lml.,fum. 
Predefined predicates (see (14)) do not have explicit definitions . Invocations or predefined predi
cates are computed in a different way than invocations or defined pr dicates (see (16)). 

Predefined predicates may not be defined in a list of predicate definitions Defa. Every other predi
cate Pred invoked in Def■ must be defined ex2Lctly once in Deta. There are otherwise no restric
tions on simple or mutually recursive invocations of predicates in Def■. 



, 
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Every invocation or the generator Pred which is without input must be or the rorm 

<.a.U.r.u. ,Pred, Var> 
Every invocation or the generator with input Pred must be or the rorm 

< .a.LJ.r.u. ,Pred ,uil:u,,Expr ,Var> 

8. Concrete Syntax of Numerala, Constants, Varlabl•, and Predicates. 
Concrete syntax or R-Maple is described by BNF productions. Terminal sequences produced rrom 
non-terminals are not independent entities but rather abbreviations for terms or abstract R
Maple. The correlation between an abbreviation and a term of abstract R-Maple is given in an 
informal way for numerals, constants, program variables, and program predicates. The conela
tion for all other syntactic structures is given by schema, of a66revialion,. 

Abbreviations do not give any meaning to syntactic constructs. Obviously, if two different R
Maple constructs a and 6 abbreviate the same term ( a = b) then, because of the reftexivity or 
the identity relation, they denote the same object ( a =b ). 

BNF productions have the usual form 

8 ::= a I b IC .. • 

Non-terminals will be capitalized and bold-faced. The symbols T and F are the only capitalized 
bold race terminals. Two terminal symbols "I" and "II" are composed or symbols for alternatives. 
These four terminals will be surrounded by quotes in BNF productions. Everything else on the 
RHS or productions are terminals. 

Numerals and constants abbreviate some or the quoted expressions of abstract syntax. The BNF 
rules for numerals are as follows. 

Num ::= Digit I Num Digit 
Digit ::= 0 11 I 2 I 3 I 4 I 5 I 6 I 7 1 s I 9 

Note that "concrete" numerals are in roman font. The abbreviations are given as 

0 = < quoteop .O > 
1 = < quoteop .1 > 
2 = < quoteop .e > 
3 = <quoteop.S> 

Thus we have a natural correlation between numerals or concrete syntax and arithmetic, for 
instance: 5• = 5. 

We follow the standard practice or programming languages and use identifiers for three different 
lexicographic groups: reserved words, constants, and program variables. 

Jdent ::= Letter I Ident Letter I Ident Digit 
Letter ::= a I 6 I c I d I e I / I g I A I i I 

ilklllmlnlolplqlrl 
•lllulvlwlzlulz 

Reserved words are the following ones. 

div, eq, else, ge, gt, find, if, in, le It, move, ne, not, or, orp, rem, then, where 

In order to increase the readability of programs the reserved words will be printed in boldface. 

Constants are identifiers different from reserved words. Initially there is only one constant in R
Maple: 

Con■t : := nil 

The abbreviation is: 

nil = < guoteop . .nil> 
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Additional constants can be defined by an eztension or concrete syntax. Extensions add new BNF 
productions to the concrete language. Constants are introduced in groups. Each group is given a 
name. For instance a group or constants a0,a1,a2, ... ,a,. named A can be introduced by a new 
alternative for Const: 

Con1t ::= A 
A ::= Ao I &1 I · · · I &n 

A group or constants is always set to abbreviate numerals O through n, i.e. for all OS i Sn: 

•• = < auoteog .i> 
Groups or constants are similar to enumerated types or Pascal. 

Let us introduce a group or constants Opcode■ naming the primitive operators or R-Maple: 

Con1t : := Opcode■ 

Opcode■ ::= varop I quoteop I pairop I predop I trueop I /aleeop I attrop I 
andsop I andpop I orsop I orpop I notop I i/op I /indop I 
split op I def top I de/Qop I ezop I whereop I move op 

All constants introduced sofar name the correponding constants or arithmetic, for instance 
nil•= ml if op•= ili.L-
ldentifiers which are neither reserved words nor constants can be used as program variables. 

Var ::= ldent 

The correlation or abbreviations for program variables is obtained in a similar way as their names. 
Let us order all identifiers alphabetically into the sequence: 

a,b,c, ... , aa,ab,ac, ... , al, ... , a9,ba, · · · 

Let a stand ror the i-th identifier in the sequence (counting from O ). Ir a is neither a reserved 
word nor a constant then we set 

• = < .!'..a.!.Ql?.' i > 
This correlation gives us the natural property that a program variable names the individual vari
able with the same identifier. For instance: result•= result. On the other band, not all abstract 
variables have abbreviations in the concrete syntax. 

BNF productions ror program predicates are as follows. 

Pred ::= Cletter I Cletter Digit I Cletter ldent 
Cletter ::= A I B I C I D I E I F I G I I I J I 

KILIMINIOIPIQIRISI 
Tl VI VI WIXI YIZ 

Ir a is the i-th program predicate in the alphabetic sequence of predicates (Pred) and a is neither 
T nor F then 

•= <ww,i> 
We have the natural correlation again: Add•= .4JU, 
Program variables, predicates and numerals will be used more orten than individual variables, 
predicate symbols and numerals or arithmetic. This explains why the symbols or arithmetic are 
underlined. 

9. Concrete Syntax of Expre11lon1. 

We shall now give a complete list or BNF productions for expressions but will defer the discussion 
of some constructs until other relevant constructs have been introduced. 

Expr ::= Mexpr I Mexpr + Expr I Mexpr - Expr 
Mexpr : := Sex pr I Sexpr X Mexpr I Sexpr div Mexpr I Su:pr rem Mexpr 
Sexpr ::= Var I Num I Con■t 11 Expr , Expra 11 

Const ( Expra ) I De■cr I ( Expr ) 



Descr ::= . Pred I . Pred ( Exprs) 
Exprs ::= Expr I Expr, Expra 
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Terms abbreviat d by arithmetic operators"+ ,-,X, div, rem" as well as by "nested" invoca
tions or predicates produced by Deacr are defined by conteztual abbreviatione. Contextual abbre
viations eliminate nested invocations whenever they occur in the context or programs. The discus
sion or contextual abbreviations must be thus dererred until the abbreviations for programs have 
been introduced (10). 

We shall now give the correlation between concrete and abstract expressions as long as the con
crete expressions are produced only by the first alternatives or Expr and Mexpr and by the first 
five alternatives or Sexpr. Parentheses"( )" are used just ror grouping and disappear completely 
in the abstract syntax. 

The abbreviations ror Var and Num and Con• have already been discussed. 

The abbreviations ror consed pairs and consed n-tuples are specified by schemae of abbrevia
tione: 

I <auotrop,Llt1>,<auoteopLlt2> I= <auoteop,<Llt1,Llt2>> 
[ Expr 1 Expr2l = <l/..fil.!:QR. Expr11Expr2> if Expr1 and Expr2 are not both quoted 
[ Expr 1 1Expr2,Expr■ I = [ Expr1,I Expr2,Expre JI 

Schemas or abbreviations escape the inrormal use or dots and English in logic when specifying 
abbreviations. A schema or abbreviations usually stands for an infinite number or abbreviations. 
It contains syntactic variables. Two or more occurences or the same syntactic variable in a 
schema always stand ror the same term assumed by the syntactic variable. We shall employ sym
bols for non-terminals, possibly subscripted, as syntactic variables ranging over terminal produc
tions obtained from the corresponding non-terminals. 

For example let us find the term abbreviated by the quadruple 16,c,9,nil I- We set Expr 1 = 6, 
Expr2 = c, and Expl'I = 9, nil in order to obtain j 6,[ c ,9, nil J J by the application or the third 
schema. Applying the third schema to the second component again we obtain 

j6,c,9,nil] = [6,jc,j9,nillJJ 

Now all terminal productions or Expr• have been eliminated and the quadruple bas been reduced 
to consed pairs. Using the abbreviations for nil and numerals while applying the first schema we 
have: 

[9,nil J =I< quot,eop ,9>,<auoteop .nil> J = < quoteop,<9,ml> > 
Since c = < var op,£> is not quoted, ihe second schema applies in: 

I c ,[ 9, nil I I = I< varop ,£ >,< quoteop .9 ,ml> I == <uiuR.,<J!.!!!JUZ.,f > .auoteop .9 ,Di!> 
This is consed, and thus not quoted, and the second schema applies again: 

I 6,c,9,nil I = <J!.Gir.eR.,< auoteop ,6 >,wr.tt,<~,e >.auoteop ,9 ,Di!> 

Note bow the abbreviations ror consed pairs take into a.ccount the rorm.ation rule b) or abstract 
expressions {section (5)) and at the same time permit natural notation for constants of R-Maple. 
The meanfog function maps expressions of R-Maple in a strai.ght-forward way to the terms of 
arithmetic: 

II 6,2,nil J,[ a ,6 l,b 1• = < < 6 ,e ,.rw>,<11.,6 >,!.> 
We also have the "natural" property of substitution: 

jExpr1,Expr2 1{Var:=Expr3} = jExpr1{Var:=Expra},Expr2{Var:=Expr3} I 
Since the abbreviations and substitutions automatically quote literals one can naturally write 
literals in a fully consed notation: 

j[pairop,6,8,J,o J = <pairop.<quoteop,pairop.6,8>,vorop,0> 

_One can do the same thing in LISP but not in a readable way since LISP does not have concrete 
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syntax. Moreover, the consed notation in LISP means evaluation. 

The abbreviations for the fifth alternative of Sexpr are 

Conat(Expra) = I Con■t,Expra I 
Thus we have a neat notation for expressions similar to the terms of Prolog. For instance 

ottrop (predop (2),poirop ( vorop (6),7)) = I ottrop ,I predop ,2 I,[ poirop ,I vorop ,6 J,7 J J 

10. Concrete Syntax of Programs. 

Programs consist. or decisions ( If), searches (find ), disjunctions ( or , orp ), conjunctions (";", 
" II "), negations ( not ), invocations , comparisons , assignments ( := ) , successes ( T ), and 
failures (F). 

Pros ::= Dprog I 
If Prog then Prog elae Prog I 
ftnd Decla ln Prog I 
move Var beyond Var ln Prog 

Dprog .. - Cprog I Cprog or Dprog I Cprog orp Dprog 
Cprog ::= Sprog I Sprog ; Cprog I Sprog "II" Cprog I 

Sprog where Var := Expr 
Sprog ::= " T " I " F" I not Sprog I Sprog ! I Atomp I Var := Expr I ( Pros ) 
Atomp ::= lnvoc I Expr Relop Expr 
Relop ::= eq I ne I lt I le I gt I ge 
lnvoc ::= Pred ( Expra ) I Pred( Expr■opt "I" Var ) 
Expnopt ::= Expr■ I 
Decla ::= Deel I Deel ; Decla 
Deel :: = Var I Svar := Expr I Pred( Expr■opt "I" Svara) 
Svar ::= Var 11 Svar, Svara I 
SvaH ::= Svar I Svar , Svara 

Schemas or abbreviations will be given in the reverse order or BNF productions: simple constructs 
first. 

Predicates or R-Maple are single argument. Invocations with more arguments are reduced to invo
cations with single arguments: 

Pred(Expr) = < .Q.LJ.r.u. ,Pred,Expr> 
Pred(Expr,Expr■ ) = Pred(j Expr,Expra I) 

These schemas are used for invocations or tests. 

Invocations or generators place the output variable in a distinguished syntactic position. 

Pred( I Var)= Pred(Var) 

This schema is for generators without input. 

Generators with input are invoked with the help.of two schemas: 

Pred(Expr I Var)= Pred(IExpr,Varl) 
Pred(Expr,Expra I Var)= Pred(IExpr,ExpraJ I Var) 

Assignments are reduced to invocations or predefined generator Return (see (14)J: 

Var:=Expr = Return(Expr I Var) 

The term assignment is used only in a figurative sense. R-Maple is an "applicative" language 
without any notion or states. 

Comparisons are reduced to invocations or predefined comparison tests (see (14)J: 

Expr1 eq Expr2 = Eq(Expr 1,Expr2) 
Expr1 ne Expr2 = Ne(Expr1,Expr2) 
Expr1 It Expr2 = Lt(Expr11E.xpr2) 



Expr1 le Expr2 = Le(Expr1,Expr2) 
Expr1 st Ex-pr2 = Gt(Expr1,ExPr2) 
Expr11e Expr2 = Ge(Expr1 Expr2) 
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The remaining simple programs have straight-forward abbreviations: 

T = <~.nil> 
F = < C aleeezz .nit> 
not Simple= <.nwuz.,Slmple> 
Simple! = <~,Simple> 

Abbreviations for conjunctions: 

Sprog; Cprog = < ands op ,Sprog,Cprog> 
Sprog 11 Cpro1 = < andp op ,Sprog, Cprog> 
Sprog where Var:=Expr = <whereep,Spro1,Var,Expr> 

Abbreviations for disjunctions: 

Cprog or Dprog = <RU.Q.1Z.,Cpro1,Dpro1> 
Cprog orp Dprog = <.QlJI.QR.,Cprog,Dprog> 

Abbreviations for decisions and moves are straight-forward: 

lf Prog1 then Prog2 else Prog3 = <.il.u.,Pr011,Prog2,Prog3> 
move Var1 beyond Var2 ln Pro1 = <mot•eop .Var1,Var2,Prog> 

Searches permil us to specify output variables and optionally generators supplying values for the 
variables. Variables and/or generators are specified in Deci. and they are used in Prog. At the 
same time it is possible to break down a complex n-tuple into components and assign them to 
separate program variables. 

Declarations with syntax and semantics somewhat similar to our searches are often used in func
tional programming languages. However, there is an important difference: R-Maple works with 
relations rather than functions and it may happen that values generated in Decle do not satisfy 
Prog and new values must be produced by backtracking into the generators !see (17)J. There is no 
backtracking in declarations or functional programming languages since functions produce unique 
values. 

We shall give the abbreviations for searches in a sequence which demonstrates how complex 
searches can be reduced to simpler ones by the elimination or abbreviations. The order or removal 
or abbreviations is actually immaterial since the schemas for searches can be applied in a unique 
way only. 

Multiple searches are reduced to simple searches by: 

find Deel; Deci. In Prog = find Deel In find Decla In Pr01 

The first alternative of Deel directly abbreviates a basic operator: 

find Var In Prog = <lin.m,Var,Prog> 

This is the unbounded form of a search. The remaining two alternatives of Deel specify a 
bounded search with an explicit generator producing, or declaring, the value eearcbed for. 

The second alternative of Deel is reduced to the the third form by: 

tlnd Svar:=Expr ln Prog = tlnd Return{Expr I Svar) ln Prog 

Bounded searches with simple variables are unbounded searches written in a shorter notation: 

tlnd Pred(Expraopt I Var) In Pr01 = tlnd Var ln Precl{Expraopt I Var); (Pro1) 

Searches permit to break the single value or the output variable produced by a generator into its 
constituents when the value is an n-tuple. The constituents are then assigned to simple variables 
from a list or structured variables. 

Searches with lists of structured output variables are first reduced to searches with structured out
put variables: 
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ftnd Pred(Expraopt I Svar,Svar■ ) lo Prog = 
ftnd Pred(Expr■opt 11 Svar,Svar■ I) lo Prog 

There are (our different Corms or structured variables: 

IISvar,SvaraiJ,Svar■2 1, IVar,Svar,Svar■ I, IVar,ISvar,Svar■ JI, jVar1,Var2 J 

The schemas of abbreviations given below will reduce Corms occurring earlier in the list to simpler 
Corms later in the list. 

Abbreviations tor structured output variab)es with first components being again structured vari
ables are removed first: 

flnd Pred(Expr■opt 11 I Svar,Svar■iJ,Svar■2 I) lo Prog = 
flnd Pred(Expr■opt I [Var,Svar■2 1); jSvar,Svar■iJ:=Var lo Prog 

This schema of abbreviations introduces (or eliminates) a new bound program variable Var which 
is not present in the abbreviated Corm. 

Similar introduction or bound variables by abbreviations occurs in logic when, for instance, one 
defines the predicate "S" by the abbreviation 

■St= :IL•+ 1:,=t 
Intuitively, it does not matter which bound variable is introduced when the abbreviation is 
removed as long as the new variable is not Cree in the terms • and t. Technically, however, one 
has to present a definite construct which the abbreviation stands (or. Let us therefore stipulate 
that the syntactic variable Var stands Cor the program variable < varop ,i> with the least index 
i which does not occur in any or the terms within the abbreviation schema. 

From now on, whenever an abbreviation schema introduces a new bound variable we shall tacitly 
assume that the introduced variable is the first one not occuring in the schema. 

The second Corm or structured variables is reduced to the third one by: 

flnd Pred(Expr■opt I IVar,Svar,Svar■ I) lo Prog = 
flnd Pred(Expr■opt I I Var,I Svar,Svar■ II) lo Prog 

The structured variable as the second component or a structured variable ( first component being 
a simple variable ) is removed by: 

flnd Pred(Expr■opt I 1Var1,I Svar,Svar■ II) lo Prog = 
flnd Pred(Expr■opt I jVar1,Varl); jSvar,Svar1J:=Var lo Prog 

The fourth Corm or structured output variables reduces differently when Pred is not Return: 

ftnd Pred(Expr■opt I 1Var1,Var2 I) In Prog = 
ftnd Pred(Expr■opt I Var); I Var1,Var2 J:=Var lo Prog 

if ., Pred = Return 

It remains to tackle the case or Pred standing Cor Return. 

R-Maple does not contain primitive projection (unctions. The only way to access components or 
pairs is through split searches abbreviating directly a basic operator: 

flnd Return(Expr I 1Var1,Var2 1) lo Prog = <~,Var1,Var2,Expr,Prog> 

Note that the typical search 

ftnd I hd,tl J:=liet lo P(tl,hd) 

abbreviates by the above schemas directly to the primitive operation: 

< eplitop .hd, ti ,list ,P( ti ,hd )> 

Examples of searches will be given in next section. 
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11. Concrete S;yntax of Definition■ of Predicate■ 
The BNF production for concrete syntax of predicate definitions is as follows. 

Def ::= Pred ( Svara) la Prog I 
Pred ( Svar■opt "I" Var) la Prog I 
Clauaee 

Svaraopt ::= Svara I 
This first alternative is used to define tests. Generators are defined by the second alternative. 
Both forms of definitions are called procedural definitions. This is because they resemble the usual 
definitions of procedures. The third alternative permits the definitions of predicates in a clausal 
/ orm similar to Prolog. Clauses will be discussed in the next section. 

Abbreviations for definitions of tests: 

Pred(Var) la Prog = <M..M,Pred,Var,Prog> 
Pred(I Svar,Svara I) la Pro1 = Pred(Var) la find I Svar,Svar1 J:=Var In Prog 
Pred(Svar ,Svara) la Proa = Pred(I Svar ,Svara I) la Pro1 

Abbreviations for definitions or generators without input: 

Pred( I Vu) la Prog = Pred(Var) la Prog 

Abbreviations for definitions of generators with input: 

Pred(Svar I Var) la Prog = Pred(Svar,Var) la Prog 
Pred(Svar,Svara I Var) la Prog = Pred(ISvar,Svaral I Var) la Prog 

The generator Append(/re,ecnd I res) with two inputs which appends the list send to the list /re 
to form the output list res can be defined as: 

Append(f re ,send I ree) la 
II /rs eq nil then ree:=ecnd 
elae find I hd ,tl J:=/re; Append(tl ,send I ares) In res:=( hd ,ares I 

This form of Append is not a final one. Additional syntax sugaring eliminating the auxiliary 
search for ares will be given in the next section. 

As an illustration we remove from the above definition or Append all abbreviations except the 
ones directly related to abstract operators. 

Append( a) la 
find I b,ree !:=a In 

ftnd lfre,ecndj:=b In 
II /re eq nil then Return(! ecnd,ree I) 
elaeftnd lhd,tlJ:=/re In find ares In 

App end (I! tl ,send J, ares I); Return (I I hd, ares J, ree I) 
Let us give an example of a generator with structured output. Consider the generator 
Splat(let I lst2) which is the contraposition of Append. Split(lsl I let2) generates all possible pairs 
of lists lst2 which can be transformed back to lat by Append(let2 j 1Bt). 

The definition of Split without syntax sugaring for multiple results is : 

Split(let I lst2) la /et2:=( nil,lst I or 
(flnd !hd,tlJ:=let; Split(tl I alet2); IJr,scJ:=alst2ln let2:=((hd.Jrl,scJ) 

The same definition using the full syntactic power of bounded searches is: 

Split(lst I let2) la let2:=lnil,lstJ or 
( find I hd, ti I := let; Split ( tl I Jr ,ec) In let 2:=( I Ad ,Jr J,ec I ) 

We shall show in Part II bow to introduce predicate symbols Append and Split into formal arith
metic in such a way that the intended meaning of the above definitions is satisfied. With the 
predicates introduced one can prove by induction: 

Append(<fu,ecnd> ,!£!) - SRfil(.!:£!.,<fu,ecnd>) 
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Readers familiar with Prolog will note that there is no need for Split in Prolog. Append works 
both ways. 

Is there a reason to distinguish between input and output variables at all! A£, the meaning func
tion confirms, there is no such need from the point or view or meaning. Arguments of logic pro
grammers that there is no need to distinguish the kinds or variables also from the point or view of 
control are usually illustrated by such predicates as Append. 

Append works both ways because it is defined in a simple way over the structure of lists. Such 
predicates can be computed both ways with reasonable efficiency. Predicates which rely on arith
metic, rather than structural, properties are usually one wou predicates. Two such predicate 
Jntree and Gentree relying on a mixture or structural and arithmetic properties will be shown in 
a Prolog-like notation in section (12). Jntree ( n ,t) tests whether n is in the binary search tree t, 
Gentree( t I n) is the contraposition successively generating into n all elements of t. It will be 
shown that even in Prolog the programmers would write two different programs although from a 
logical point of view one, working both ways, suffices. 

Another example is the following Prolog predicate. 

Fac(O,l) 
Fac(n' ,r) +- Fac(n,auz), r = n 1 Xauz 

The only sensible way to use Fae is with the first argument as input and the second one as out
put. An attempt to use it the other way, as for instance Fac(z ,120), leads - on most interpreters 
of Prolog - to non-terminating computations. An ultra-sophisticated Prolog interpreter would be 
probably capable of computing the factorial the other way, though at a significant cost of 
efficiency. But unfortunately, it is in the nature or arithmetic functions that they can be com
puted laster in the natural way, and subsequently there is no hope for ever designing an inter
preter working with reasonable efficiency both ways. The existence of truly one-way functions, as 
the ones used in the public key cryptography 1111, should make this point obvious. 

The fact that two semantically similar predicates such as Append and Split have two quite 
different R-Maple programs underscores the fact that a practical programming language cannot 
a// ord to ignore the control component. Alter all, some Prolog compilers expect the input
output indication for the user-defined predicates. 

U. Claueal Form of Predicate Deftnltlon1. 
Procedural definitions of R-Maple predicates in the concrete syntax do not deviate too much from 
the standard style or definitions in other programming languages. There is a growing community 
of programmers who prefer the elegant definitions or predicates in Prolog. Clauses of Prolog keep 
the definitions simple and when read as implications they express directly the properties or predi
cates. 

The predicate Append is defined in Prolog as 

Append(nil,a,a) 
Append(! hd ,ti J,a ,I hd ,auz I) +- Append(tl ,a ,auz) 

We shall now give BNF productions and abbreviations for Clauaea permitting a clausal form or 
definitions. Clausal definitions introduce the elegance of Prolog syntax without its semantic 
shortcomings. By shortcomings we mean the cuts. 

Clau■e■ ::= Clauee I Clauee Clau■ea 
Clauee ::= lnvoc . I Invoc +- Atompeopt . I Invoc +- Atompeopt " I" Prosopt . 
Atomp■ ::= Atomp I Atompa ; Atomp 
Atomp■opt ::= Atompa I 
Prosopt ::= Pros I 

A clause of the form lnvoc +- Atompa I Pros. has as its meaning the formula 

Atomp■• lil Pros• - lnvoc• 

If one of the terms in the antecedent is empty then the the formula must be adjusted in the 
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obvious way. The meaning or Clauae■ is the conjunction or meanings or single clauses. We shall 
use the term meaning informally, instead of the function "•", because the clauses taken 
separately do not correspond to conctructs of R-Maple. 

Schemas or abbreviations for Clau■e■ permit us to transform any procedural definition to the 
clausal form. The transformation is achieved by a sequence of steps which remove from the 
definition sequential disjunctions, decisions, split searches, identities, and assignments. 

For each schema of the form A = B we have as tautology B' - A' where A' ,B' are meanings 
or A,B respectively. The first abbreviation has as B a definition of a predicate (Def). It follows by 
the transitivity or implication that for every clause C derivable by a sequence of abbreviations 
from the predicate definition B we have e• - C'. Thus under the assumption that e• can be 
asserted, the meaning C' or every constituent clause can be asserted 88 the property of the 
defined predicate. 

First abbreviationfli weakens an equivalence to an implication. 

Pred(Svar■ ) +- I Prog = Pred(Svar■) l■ Prog. 
Pred(Svar■opt I Var)+- I Pros= Pred(Svar■opt I Var) l■ Prog 

The meaning is obviously upheld by the tautology: 

'TL(E(L) - A)-+ (A-+ E(L)) 

A "clause" of the above form has a little resemblance to the clauses or Prolog, but at least we 
made good on our promise that every definition or a predicate can be transformed into a "clausal" 
form. The antecedent or the clause bas now assumed a form of an invocation. Following sche
mas or abbreviations will gradually move the marker "I" to the right in the body Prog. 
An or-elimination removes a sequential or from a body by creating two clauses: 

lnvoc +- Atomp1opt I Cprog. 
lnvoc +- Atomp1opt I Dprog. = lnvoc +- Atomp■opt I Cprog or Dprog. 

Or eliminations rely on the tautology 

(A V B -+ C) - (A -+ C) & (B -+ C) ( 1) 

Let us denote by Pros' the oppoaite or the program Prog. The opposite or Prog is generally 
not (Prog) unless Prog is an invocation of a comparison (or its abbreviation). In the latter case, 
the pairs or invocations of Eq,Ne and Lt ,Ge and Gt ,Le are opposite to each other. For instance 

( z It 6 )' = z 1e 6 

An if-elimination removes a decision from the antecedent of a clause. Ir-eliminations are based 
on the intended meaning of It and on (1). 

lnvoc +- Atomp11opt I (Prog); (Prog1). 

lnvoc +- Atomp11opt I (Prog' ); (Prog2). = 
lnvoc +- Atomp■opt I If Prog then Prog1 el■e Prog2 . 

A find-elimination removes a search from the antecedent or a clause. 

lnvoc +- Atomp■opt I Prog. = lnvoc +- Atompaopt I tlnd Var In Prog. 
if Var not free in lnvoc and Atompaopt 

Find eliminations are based on the tautology 

(3.l.A - B) - (A -+ B)provided 3. is not free in B 

Jdentitu and oa,ignment eliminations remove identities or assignments from antecedents of 
clauses. 

lnvoc{Var:=Expr} +- Atomp1opt{Var:=Expr} I Cprog. = 
lnvoc +- Atompaopt I Atomp; Cprog. 

if Atomp = Eq(Var,Expr) V Atomp = Var eq Expr V 
Atomp = Return(Expl' I Var) V Atomp = Var:=Expr & 
Var not free in lnvoc and Atompaopt 



These eliminations are based on the tautology 

(.z = I - A) - Al .z :=•I 
provided .z is not free in I or A. 
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(2) 

And-eliminationB move an invocation rrom one side or the bar to the other; they are justified 
trivially. 

Invoc - Atomp I Cprog. = Invoc - I Atomp; Cprog. 
lnvoc - Atomp11; Atomp I Cprog. = Invoc -Atom1>9 j Atomp; Cprog. 

provided an identity or assignment elimination is not applicable 

A split-elimination removes a split search rrom the antecedent or a clause. 

lnvoc{Var:=[Ve!' .,,Var2 I} - Atomp■opt{Var:==!Var 1,Var2 I} I Prog. = 
Invoc - Atomp1opt I find !Var1,Var2 J:==Var In Prog. 

if Var1,Var2 not free in Invoc and Atom1>9opt 

Split eliminations are a combination or find and identity eliminations. Ir a split search is used in 
a context similar to the following one 

11.z eq nil then Pros elae find I 11,z J:=.z In Prog1 

then the following abbreviations will be applicable in the second clause immediately after the 
split-elimination . 

lnvoc - I Prog. = Invoc - 1Var1,Var2 J ne nil I Pros. 
Invoc - Atomp11 I Prog . = Invoc - At1>mp1; !Var 11Var2 J ne nil I Prog. 

The transformations are based on the property (4.2) or pairs. 

When the bar in a clause reaches the right end it can be removed by: 

Invoc - AtomEopt . = Invoc - Atom1opt I . 
The above transformations do not correlate all terminal productions or Clau■e■ to the abstract 
syntax. As an context sensitive semantic constraint we stipulate that only Clauae• abbreviating a 
predicate definition are considered legal . 

The removal or abbreviations for clauses can be seen as a rorm or compile-time uni/ ications. 
Unifications are used by the interpreters or Prolog in the run-time. Unifications are quite time 
consuming, thus the compilers or Prolog perform essentially the same transformations as ours to 
convert into procedural definitions. 

The unification in Prolog is a little bit smarter than ours. For instance the variables can be 'Sys
tematically renamed . We did not include renaming because it would needlessly complicate the 
abbreviations and the gain would be only marginal. 

On the other band , our clauses permit a mixed clausal and procedural form or definitions with 
the bar not fully removed . The mixed mode allows universal quantifiers in antecedents or clauses 
(via not find · · · ). This is, obviously, impossible in Prolog. 

It should be noted that our clauses are stricter than the clauses or Prolog. A sequential order is 
prescribed by the use or sequential operators in the clauses. The de facto sequential control or 
Prolog interpreters exhibits identical behavior. 

Let us convert the generator Append into clausal form. After the introduction or" - " and after 
if-elimination we have two clauses: 

Append(!rs,Bcnd I res) - I /rs eq nil ; res:=acnd. = 
Append(nil ,scnd I res ) - I res:= ecnd. = 
Append(nil ,ecnd I send) - I. = Append(nil,scnd I send). 

Appmd(!rs, scnd I rs).,_ I fr s o e nil ; 
(ftnd lhd,tlJ := fr s; Append(tl ,scnd I ares In reB:=lhd,arescl) . = 

Append([hd,tll, scnd I reB ) - I App end(tl ,scnd I areB); res:= jhd ,aresJ. = 
Append(lhd,tll, Bcnd I res ) -App end(tl, scnd I ares ) I res :=lhd ,aresJ. = 

(3) 
(4) 

(5) 
(6) 
(7) 
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Append (I hd ,ti l,acnd I hd ,area) +- Append( ti ,acnd I ares). 

The transitions from (3), (4), and (7) are by the elimination of identities and assignments. The 
step from (5) eliminates the split search and the superfluous invocation of pad ,ti J ne nil. And
elimination is applied in the step from (6). 
This form or Append, which is not yet a final one, is exactly as in Prolog: 

Append(nil,acnd I send). 
Append(lhd,tl),scnd I hd,ares) +-Append(tl,scnd I area). 

Actually almost all clausal definitions look as in Prolog. The significant difference is that we do 
not compute with the help of clauses and can afford to use negations in antecedents. Negations 
appear in antecedents after if-eliminations. Prolog has to use cuts to escape double evaluation of 
tests. 

The clausal form or Split is: 

Split ( 1st I nil, 1st). 
Split(hd,tl I lhd,Jrl,sc)+- Split(tl I fr,sc). 

Let as give the clausal definitions of /nlree and Gentree: 

/nlree(n,m,l,r) +- n It m; Jntree(n,l). 
Jntree(n ,n ,l ,r ). 
/ntree(n,m ,l , r) +- n at m; /nlree(n,r). 
Gentree(m,l,r In)+- Gentree(l In). 
Gentree(n,l,r In). 
Gentree(m,l,r In)+- Gentree(r In). 

In Prolog one could use Gentree also as a test . But such a use would defeat the very purpose or 
binary search trees where th.e comparison against the top node saves the search of one side of the 
tree. We can see that the knowledge that we are going to use Gentree only as a test allows an 
efficient employment of control. 

13. De1crlptlon1. 

There is one frequently mentioned advantage or functional programming languages over program
ming languages bas d on relations. It is the possibility of comp06ing function applications into 
complex terms. lo relational programming languages new auxiliary variables have to introduced 
to name intermediate resuJts. 

Whereas in a functional language one would write 

Print (Append (Append(! 1, nit 1,12,ni/ 1),13,ni/ I)) 

we have to write 

8ndAppend(ll,nitJ,l2,nitJ I a);Append(a,13,nil) I h)lnPrint(h) 
Note th.at the advantage or functional programming languages does not lie in greater computa
tional power. The advantage is purely syntactical: a compact and more readable notation. 

The same problem or readability occurs in logic where it is solved either by cooserv ative exten
sions of theories by introduction of new functions or, alternatively, by the use or descriptions as 
proposed by B. Russell. Whenever we are able to show that the predicate .E(.2.,!.) satisfies the 
existence and uniqueness properties: 

:l!E(.!,!) 
_E(_g_,!.) 6t £.(A&) -1 = £ 

we are justified to introduce (by a conservative extension) a new function p (.!.) by the defining 
axiom 

p (.a.)=! - E.(1!,!.) 
As it is suggested by the term conservative this new axiom does not lend any more power to 



the theory being extended. Whatever can be proven with the axiom can be proven without it 
after systematic elimination or terms p (1 ). 
Descriptions are or the form t!E(.a.,!.) which is read as "the unique !. such that .f.(.a.,!.) if there is 
such". Descriptions are treated as conteztual abbreviations. Every occurrence or a description in 
a context or formulas can be eliminated. For instance 

E.(tbP(.a.,!.)) = 3!( ~.dE(.a.&) +-+ ~ = !.) & B.(!.) ) 
Our generator Append generates a unique value for all input arguments. Thus we could either 
introduce a function append or resort to descriptions. But functional relations, i.e. relations satis
fying the existence and uniqueness properties, are only special - if quite common - cases among 
relations. R-Maple is based on generators which can produce more than one value. It does not 
seem to be advant~~"nt.,c; t-0 introduce functions to take care only of the special case. Indeter
minate descriptions or Hilbert l4J are more suitable. The notation d.f.(A,!.) can be read as "any.! 
such that P(.a.,!) if there is such". Now only the existence property has to be satisfied. 

There are systems or predicate logic which have Hilbert's E-notation as primitive. We are, how
ever, not prepared to use such expressive logical systems as the basis for R-Maple. We shall view 
indeterminate descriptions as contextual abbreviations: 

B.(c£(.a.,!)) = 31( E.(1! ,!) & B.(1)) 
Due to distinguished syntactic positions of output variables in invocations of R-Maple generators 
we can escape the use or explicit variables bound by the operator i. Descriptions or the form 
.P(z) are used as taP(z I a). Indeterminate descriptions in a context or programs can be then 
eliminated, as for instance: 

z eq [6,.P(z)J = ftnd P(z I a) In z eq [6,a J 

Indeterminate descriptions are obtained by applications of the BNF production De■cr. 

We say that an occurrence or a program variable is in output po8ition if the occurence is the out
put variable or a generator invocation. When an occurrence of the program variable Var is in 
Expr2 and Expr1 contains a description then any expression containing I Expri,Expr2 J is said to 
contain a description in front or the occurrence of Var. 
Let us assume that the program Sexpr is a predicate invocation. Furthermore, assume that 
Sexpr contains ezactly one occurrence or the variable Var which is, however, not in the output 
position and that no description is in front of it. Ahlo assume that Expra does not contain any 
descriptions. Then we set: 

Sexpr{Var:= .Pred} = 8nd Pred( I Var) In Sexpr 
Sexpr{Var:= .Pred(Expra)} = 8od Pred(Expra I Var) In Sexpr 

As an additional constraint we stipulate that, apart of its distinguished position in Sexpr, the 
program variable Var does not occur in any other term within the schema and that it is the first 
in the sequence or variables not occurring in the schema. This requirement assures that when a 
description is eliminated a new variable with the smallest possible index is introduced. 

When descriptions, both in predicate calculus and R-Maple, are treated 88 contextual abbrevia
tions then the scope to which a description applies, i.e. the scope of the introduced existential 
quantifier, and the order or elimination of descriptions is significant. Because or the notion of con
trol in R-Maple, the ordering or descriptions is crucial. The scope or descriptions in R-Maple is 
limited to invocations. The order or elimination is given by the above constraints: the le/ tmoet 
and innermoet description is removed first. For instance: 

.P(z) eq [6,.Q(.P(z),u)J = 
ftnd P(z I a) ln a eq [6,.Q(.P(z),u)I = 
ftnd P(z I a); P(z I b)ln a eq 16,.Q(b,u)J = 
ftnd P(z I a); P( :r I b ); Q( b ,11 I c) ln a eq I 6, c I 

Note that what can be at first sight considered a "common subexpression": .P(z) muet be 
transformed into two separate searches because P can be a generator producing multiple results 
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and two separate backtrackings may be initiated before the identity test is satisfied. Common 
subexpressions in Algol-00 cannot be optimized by compilers because or possible side effects dur
ing the evaluation or two identical runction calls. Side effects within expressions in modern pro
gramming languages are considered harmurul . We have retained the syntactic mark "." of 
descriptions to underscore the fact. that descriptions are indeterminate and generally do not stand 
for the same value. 

Computation of nested descriptions corresponds to what is called a normal order of evaluation: 
evaluate all arguments from left to right before applying a procedure. 

Readers familiar with more relaxed constraints on evaluation or nested expression.s in program
ming languages as Algol-68 or Ada sbould note that a different order of evaluation can be always 
achieved by the explicit use of control without descriptions. We have decided to base R-Maple 
strictly on predicate logic and thus we are farced to deftne descriptions in a uruque way. Also 
note that descriptions or R-Maple are entirely within the realm or concrete syntax and have no 
independent semantic properties. 

Descriptions allow a compact form or Append in a procedural form: 

Append(Jrs,scnd I res) la 
11 /rs eq nil then res:=ecnd 
eJ.e ftnd I hd,tl J:=/re In ree:=I hd,.Append(tl,eend)J 

Append in a clausal form is as follows. 

Append(nil,ecnd I ecnd). 
App end(I hd, ti !,send I hd, .Append( tl ,send)). 

The generator Perm permuting a list can be defined in a procedural way as follows. 

Perm(a I 6) la 
If a eq nil then 6 :=nil eJ.e ftnd Pickup ( a I e ,e) In 6 :=I e ,.Perm( e )I 

Piekup(hd,tl I a) la a :=I hd,tl J or flnd Pickuj,(tl I one,b) In a:=I one,hd,b J 

Both generators have this simple clausal forms: 

Perm(nil I nil). 
Perm(a I e,.Perm(e)) +- Piekup(a I e,e). 
Pickup(hd,tl I hd,tl). 
Pickup(hd,tl I one,hd,b) +- Piekup(tl I one,b). 

We are now in position to give schemas or abbreviations for arithmetic operators occurring in 
expressions: 

Mexpr+ Expr = .Add(Mupr,Expr) 
Mexpr- Expr = .Sub(Me:llpr,Expr) 
Sexpr xMexpr = .Mul(Sexpr,Mexpr) 
Sex pr div Mupr = .Div (Sexpr ,Mexpr) 
Sex-pr rem Mexpr = .Rem(Sexpr,Mexpr) 

Generator Fact can be defined as 

Faet(O 11). 
Faet(n I n x.Faet(n-1)) +- n ne 0. 

The reader is urged to compare this version with the one in Prolog. 

14. Predeftned Predicate,. 
R-Maple contains thirteen prede/ined predicates which can be invoked without explicit 
definitions. There are seven predefined tests 

Eq,Ne,Lt ,Gt ,Le ,Ge ,Print 

and six predefined generators with inputs: 

Return ,Add, Sub ,Mui ,Div ,Rem 
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Print is used to print out the values or results, the remaning tests are binary relations or com
parisons. Return generates the value or its argument, the remaining generators are arithmetic 
generators with two inputs. 

The meaning runction correlates predefined predicates to the predicates or rormal arithmetic with 
the same identifiers. We shall now give explicit definitions or the predicates in rormal arithmetic. 
Then the intended meaning or predefined program predicates will be given by the meaning or the 
rormal arithmetic predicates. 

rufaJ - 3_g_3!fa = <.!!.!.> & .!! = 1) 
J:1.a..!.) +-+ 39..3!.(A = <.!!,!> & 1! 'F !) 
lJ.(.!.) +-+ 3_g_3'1(.l = <A,!> & 1! <i) 
Gt(A) - 3.!!3!(.l. = <A,!> & ! <.!!) 
g(,1) - 39..3!(L = <.a.,!> & .., ! <.!!) 
~(.t) +-+ 3.!!31(.!. = <.!!,!.> & .., J! <!.) 
.f!iru.(.l.) - £ = L 
Return (A) - .rufa.) 
A!l.4(~) - 3'.!!3!3.dA = < <.!!,.!> &> & .!! + .! = £.) 
Sub (A) +-+ 3_g_3!3£(.!. = < <.!!,!> &> & £ + !. = .!!) 
MY{(,t) +-t 39..3131:.(.!. = < <.!!,!> &> & .!! X! = £.) 
fu(.~) - 3_g_3!.3'£(.l = < <.!!,!> &> & .., 1! <!X£ & .!! <!X k+ 1)) 
Rem(A) .... 3'..!!313.£31(.!. = <<.!!,l>&> & Div(<<.!!,!>,!>) & .!! = .!X!+.QJ 

Note that th predicate Print is satisfied by any value or its argument. This suggests that ir the 
program predicate Print serves any purpose at all , its userulness must lie in the control !see {16)). 

Although the form or the definitions is not the most suitable for direct computation, all predicates 
are primitive recursive. There is no need for the primitive recursive form or definitions because we 
do not intend to compute the predicates that way . We shall rather delegate the actual computa
tion to the machine implementing R-Maple. However, the definitions of predicates are sufficient to 
prove the expected properties. And this is as it should be. The arithmetic counterparts of 
predefined predicates are stripped or any indication or the way how to compute them, they are 
intended merely for the meaning. 

Note that the predicates can be satisfied only if supplied with the proper number of arguments: 
~11if) and Mui( <.niL6 >) are false . The relations or integer division (Div) and of remainder 
(Rem) cannot be satisfied ir the second argument is 0. The first argument of subtraction (Sub) 
may not be less than the second one. 

We shall adopt the sam abbreviations for the predicates in the formal arithmetic as for iuvoc&
tions or program predicates. Thus Ail!l(S,S I .l.) stands for ~(<<S,S>,~>). 

AB a straight-forward consequence of definitions we have: 

lJ.{.!!,1) - .!. <1 
similar equivalences are true or the other comparisons. This permits the expected correlation or 
comparison tests in R-Maple to the intended meaning: 

(Exprl It Expr2r - Expr;<Expr; 

Similarly for other comparisons. 

We also have 

(Var:=Expr t - var• = Expr• 

16. Computation of Program1. 
A computation or an R-Maple program a which does not contain processes (program counters) is 
performed in the environment or predicate definitions d. Definitions of predicates are used ror the 
execution or invocations or defined predicates. A computation proceeds by steps which succes
sively modify the original program a. The computation starts with the creation or a forward 
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process a!. A computation sequence is a possibly infinite sequence or programs 

( 1) 

The first element in the sequence is a!, i.e. a0 = a!. Each successive element ••+i is obtained 
from the preceding element a, by an application or a trans/ ormation. A trans/ ormation schema 
is or the form 

6 !> C 

where 6 and c are terms possibly containing syntactic variables. A trans/ ormation is an instance 
or a transformation schema obtained by the substitution for all syntactic variables. A transforma
tion b > c can be applied to the program a, if the program contains b. The term a,+ 1 is 
obtained by the replacement ol the subterm b by the term c in a,. 
A computation is called sequential if at most one transformation is applicable at any given time. 
Ir two or more transformations are applicable at the same time then the next element in a compu
tation sequence can be obtained by the applicaliion or any or the applicable transformation. One 
or them is randomly chosen, thus achieving the effect or parallel computation and its associated 
non-determinism. 

A computation sequence is called terminating ii the sequence ia finite. A computation sequence 
is proper if it terminates with the last term or the form T!. An infinite computation sequence 
(1) is fair if for every i~O there exist programs b1+ 1,b1+2, .. . ,bn such that the computation 
sequence 

llo,•11 ... , a, ,b1+1,b,+2, ... , bn 

is proper. The idea behind fair sequences is that although they do not terminate, they can be 
always stopped by rair scheduling or processes. Fair scheduling does not delay a process 
indefinitely. Ao improper computation sequence which terminates with the term •n different 
from T! leads to a deadlock. Obviously, there is no transformation applicable to the last term •n. 
A computation or the program a in the environment or d is proper if each possible computation 
sequence i.s either proper or fair. 

These definitions are meta-theoretic. The reader may have noticed certain analogy with the sys
tem or formal equations for recursive functions or Kleene l6J. By the proces of arithmetization, 
similar to the arithmetization or systems or formal equations, we shaU introduce arithmetic predi
cates corresponding to the met~theoretic ones. These predicates are introduced in Part II as they 
are needed for the definition or semantics oC R-Maple. 

Transformations are chosen in such a way that for each transformation b > c other than inv~ 
cation of a defined predicate we have as logical tautology b• ..... c•. For the transformation or 
invocation or a defined predicate b > c applied in t.be environment or definitions d we have as 
logical tautology d' - (b• ..... c*). As a consequence or the Equivalence theorem we have for the 
computation sequence (1): 

d* - (a~ ..... •••+1) 

as logical tautology. Ir the &equence (1) is proper with the final term a,. then, because or transi
tivity or equivalence, we have 

d* - (a* ..... (T!)*) 

In the view or 

(a* ..... (T!)*) - (a* ..... "1£ £=£) - a• 

we obtain the rundamental property or proper computations: 

d* - a• (2) 

Terms on LHS or transformations always contain program counters. Thus transformations are 
applicable only in the positions or a program where the "control" is currently present. The process 
"!" moves forward in a program; sequencing sequential operators and forking on parallel opera.
tors. The process where is used to return results obtained by invocations or predefined 
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generators in a "backward" movement inside the scope or a search (in the scope of the "existen
tial" quantifier flnd ). The process move allows the "return" of data still containing variables 
whose values are currently being searched for in "lazy" evaluation situations. 

The computation, controlled by program counters, remains on the level of program operators. 
Expressions are passive in this respect. They are not "evaluated" even though they may contain 
variables. Program variables are removed from expressions by substitutions. It is assumed here 
that the operation or substitution for a program variable can be performed in one step. 

Schemas of transformations required for execution or R-Maple programs are presented in the next 
two sections. The reader should not be disappointed by the relatively large number of transforma
tions. Although there are many rules or transformations, they do not affect either the meaning or 
programs or the simplicity of the language. Whole groups or transformations have the same mean
ing; transformations within the same group differ only slightly in the control component. 

It is quite easy to define a machine with only a few instructions, alter all Turing Machines are or 
this kind. The large number of transformations in R-Maple is required for the efficiency of com
putation, just as real lire computers tend to have many essentially similar, instructions in order to 
increase the speed of computations. 

18. Transf'ormatlon11 of lnvocatlona. 

When a forward process reaches an invocation: Pred(Expr)! then there are two possible courses 
or action depending on whether Pred is a predefined predicate or not. Let us deal with invoca
tions of predefined predicates first. 

Transformations for invocations of predefined predicates rely on the primitive-recursiveness of the 
named formal predicates. Transformations depend on a decision whether the named predicates or 
formal arithmetic are satisfied for certain arguments. Ir the predicate named by a predefined gen
erator can be satisfied then there is a unique value or the output variable. For all predefined gen
erators there is a primitive recursive function computing the output value from the input argu
ments. Thus we can safely delegate the decision or satisfiability and the computation of the gen
erated value to the machine computing R-Maple in the knowledge that the machine can always 
proceed unassisted. 

The computing machine executing identity tests Eq, Ne and split searches ( see the next section) 
may be supplied with a quoted expression < czuoteqp ,Lit> which must be split into two literals 
Llt1 and Llt2 such that 

<Llt1,Llt2> = Lit 

The pairing operation and both of its inverse operations are primitive recursive. The values com
puted are unique but the terms denoting the values are not. For instance, if Lite <S,S> then 
obviously Llt1 = S but also Llt1 = < l,nit>. 

Ir R-Maple programs rely on the complete typelessness or the language and mix numerals and 
pairs in a manner which would be considered a type error in other programming languages then 
the computing machine will have to do some computation of Godel numbers as well. We are not 
saying that this is a good programming practice, but the invocation of Add(4,<1,nil> I v) 
should come back with the value v:=7. Similarly the execution or the split search 

flnd I hd ,ti J:=3 ln Prog 

should find values for hd and ti, say hd:=l and tl:=nil. 

We leave it to the computing machine to come up with suitable literals when splits are required, 
and to convert between numeral and pair forms or literahi. The form or literals can influence the 
efficiency or computations but never the meaning. 

The lour predefined ordering tests Lt,Le,Gt,Ge are computed as follows. 

Ordering Trans/ ormation (Pred = Lt ,Le, Gt, Ge): 

[ 
T' if Pred•(Llt) 

Pred( < auoteqp ,Lit>)! > F; otherwise 
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In order to justify this transformation we have to show that it leaves the meaning component 
invariant. Under the assumption Pred•(Llt) we have 

Pred( < guoteo,z .Lit> W = Pred•(Llt) ++ 1./J. J.=J. = (T!t 
On the other hand, if.., Pred•(Llt) then 

Pred( < guoteop .Lit>)!•= Pred.(Llt) ++ 3... J.=/,J. = (F!t 
The control will delay the process invoking an ordering predicate until the argument is a quoted 
expression. Then the computing machine will make the decision by computing the named primi
tive recursive formal predicate. 

Note that the process invoking an ordering predicate with a consed expression, i.e. an expression 
still containing program variables, is delayed - because there is simply no applicable transforma
tion - until a parallel process substitutes literals for all free variables. The last substitution will 
automatically transform the consed expre&Sion to a quoted one (see section (6)1, 
Predicates or identity Eq and Ne do not require both arguments to be fully reduced. This some
times permits an earlier decision on still consed expressions: 

Identity Trans/ ormations: Expri,Expr2 are not variables 

I Eq(Expr2,Expr6 )! II Eq(Expr3,Expr8)! 
Eq(Expr 1 Expr .)! > Tl 

Fl 

I if Expr~= <Expr;,Expr:> & Expr:=<Expr:,Expr:> 

Expr: = .D.iL & Expr: = Di1. 
otherwise 

I Nt{Expr2,Expr6)! orp Ne{Expra,Expr8 )! 
Ne{Expr i,Expr 4)! > F! 

Tl 

[ 

ir Ex~r;=:Expr;,E:pr;~ & Expr:=<Expr:,Expr:> 
Expr1 = ml & Expr4 = rul 

otberwi$e 

The justification of identity transformations is shown in a similar way as the justification of ord
ering transformations with the utilization or properties (4.1) and (4.2) or pairs. 

When both sides of an identity test are pairs (consed or quoted) then control forks into two 
separate tests tests of the respective left-hand and right-hand sides. Note that there are no 
transformations for some equality tests as lor instance z eq nil !. The execution cannot proceed 
and the process is delayed until a value or the program variable z is substituted by a transform~ 
tion in a concurrent process. 

Print Trans/ ormation: 
Print(<guoteo,z .Llt> )! > T! 

The transformation is trivially justified by the property of £rin1. 
The sole purpose of the predefined test Print lies in its control component. The forward process 
invoking Print is delayed until its argument becomes a quoted expression. Then the literal is 
printed out and the invocation reduces to T!. 

Predefined generator Return has the following transformation: 

Return Trans/ ormation: 
Return(Expr I Var)! > T! where Var:=Expr 

It is easy to see that the transformation preserves the invariance of meaning: 

Return(Expr I Vart ++ Expr• =var•++ 
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Yi i=i & Expr• =var•= (T! where Var:=Exprt 

The significance or Return transformation lies in its control component. A where process 
which will proceed in parallel with the process T! is created. T! is delayed for the time being. 
The return process will try to bring the value or the variable Var back to the closest enclosing 
operator find on the same variable. Transformations governing the behaviour or where are 
given in the next section. 

Arithmetic Transformations (Pred = Add,Sub,Mul,Div,Rem): 
Pred( < quot eop ,Lit> I Var)! > 

[ 
T! where Var:=< quoteop .Llt1> if Pred•(Llt,Llt1) 

Fl if .., :l.!!.Prect•(Llt&) 

The justification or transformations is similar to the justifications for Return and ordering tests. 

All five arithmetic generators require their input arguments quoted before the execution can 
proceed. When arithmetic predicates can be satisfied a return process where with the unique 
value satisfying the predicate is created. 

Invocations or defined predicates are computed by the schema or attribution transformation. Let 
us assume that Def■ stands for a list or definitions containing the definition or Pred: 

Pred(Var) la Prog 

Attribution transformations are the only ones which require predicate definitions: 

Attribution Trans/ ormation (Pred is defined in Def■ ): 
Pred(Expr)! > Prog{Var:=Expr}! 

Let us show that the attribution preserves the meaning or programs relative to Def■ . First or all 
we have as tautology 

Def■•-+ vvar•(Pred*(Var*) - Prog*) (1) 

As an instance or the substitution tautology or predicate logic we have 

War•(Pred*(Var*) - Pro1•)-+ (Pred•(Expr•) - Pro1•1var•:=Expr•I) 

Because or the property (6.1) or substitution we have: 

Prog{Var:=ExprW- Pro1•1var•:=Expr•J 

As a consequence or (1), (2) and (3) we have: 

Def■*-+ ( Pred*(Expr*) - Prog{Var:=Expr}!•) 

which justifies the transformation or attribution. 

(2) 

(3) 

The control side or attributions is straight-forward. The process invoking an attribution finds the 
definition or the defined predicate in the list or definitions, replaces the invocation with a suitably 
instantiated body or the predicate, and continues its forward movement. 

17'. Unconditional Schemu of Tran■formatlon■• 

All transformations presented in this section preserve the intended meaning uncoditionally, i.e. 
they do not rely on lists or definitions. 

We shall present the transformations in groups or related transformations. Whenever LHS and 
RHS of a transformation are mapped by "•" into different formulas we shall present the logical 
tautology assuring the invariance of computation under the meaning. 

Negation Scheduling: 
(not Prog)! > not (Pro1!) 

Conjunction Scheduling: 
(Pro11; Pro12)! > Pro11!; Pro12 
(Prog1 11 Prog2)! > Pro11!; Pro12! 

Disjunction Scheduling: 
(Prog1 or Prog2)! > Prog1! or Pro12 
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(Pro11 orp Prog2)! > Pro11! orp Pro12! 
Truth Table Trans/ ormations: 

not (T!) > F! 
not (F!) > T! 
T!; Proa > Prog! 
T! 11 Proa > Prog 
F!; Prog > F! 
F! II Prog > F! 
Prog 11 T! > Prog 
Proa II F! > F! 
F! or Proa > Prog! 
F! orp Proa > Proa 
T! or Prog > T! 
T! orp Prog > T! 
Prog orp F! > Proa 
Prog orp T! > T! 
find Var ln T! > T! 
flnd Var ln F! > F! 

Both sides or scheduling transformations map into identical formulas . The justification for the 
truth table group lies in simple tautologies as'¥., ;t.=;t. V Pro1• - Vz., z..=z... 
Note how two processes are created for parallel ands and ors. The execution of sequential ands 
and ors passes to the first argument and only if the truth value cannot be determined from the 
value or this argument the control moves on to the second one. 

Decisions can be expressed with the help or sequential or parallel ands, ors, and nots but the 
efficiency of computations is improved by having iliR. as a basic operator. 

Scheduling of Decisions: 
(lt Proa1 then Proa2 elae Proaii)! > lt Prog1! then Proa2 elae Proaii 

Trans/ ormotions of Decisions: 
lt T! then Prog2 else Pro1s > Prog2! 
lt F! then Prog2 elae Pross > Progii! 

Justification or the scheduling transformation is trivial, the other two rely on simple truth table 
tautologies. 

Evaluation or a decision is sequential. The test is evaluated first; when it reduces to T! or F! 
then the parts then or elae are evaluated respectively. Ir the test does not reduce to a truth 
value, the evaluation will either not terminate or terminates deadlocked. 

Split Trana/ ormotion: Vu 1,Vu2 not free in Expr; Expr not variable 
( ftnd 1Var1,Var2 J:=Expr lo l>ro1 )! > 

( 
Proa{Var 1:= Expr 1}{Var2:= Expr2}! if Expr• = <Expr:,Expr;> 

Fl otherwise 

The justification is based on the properties (4.1, 4.2) or pairs, (6.1) or substitution and on tbe tau
tology 

3.1.(.l == 1 & A) - A(.!_:=• J provided l. is not free in • (1) 

The execution of a split operation is delayed until its expression is not a program variable. A 
quoted expression can be split into constituents if its value is not equal to .nil.. A consed expres
sion can be immediately split into two constituents. Constituents or tbe expression to be split are 
then substituted in Prog for the two variables Var1 and Var2. 

Search Scheduling: 
(flnd Var ln Proa)! > tlnd Var lo Prog! 

The justification for the scheduling of searches is trivial. 
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An operation or search introduces a scope in which a value or values or the variable declared will 
be searched for. When the control reaches an invocation or a predefined generator then a return 
process, marked by the program counter where , is initiated. The return process will move the 
value or the generated variable backwards and upwards in the program until the value reaches its 
declaration. 

The last groups or transformations control the backward movement or the value. 

Backward Conjuction Group: 
Pro11 where Var:==Expr; Prog2 > (Prog1; Prog2) where Var:-=Expr 
Pro11 where Var:==Expr II Prog2 > (Prog1 II Prog2) where Var:==Expr 
Pro11 II Prog2 where Var:==Expr > (Prog1 II Prog2) where Var:==Expr 

The transformations for the backward movement of a value through conjunctions rely on commu
tativity and associativity or conjunctions. 

Backward Disjunction Group: 
(Pro11 where Var:==Expr or Prog2) or Proga > 

Pro11 where Var:=Expr or (Pro12 or Proga) 
(Pro11 where Var:==Expr or Prog2) orp Proia=> 

Prog1 where Var:=Expr orp (Prog2! orp Proia) 
(Prog1 where Var:==Expr orp Prog2) or Proia > 

Prog1 where Var:=Expr orp (Prog2 or Proia) 
(Prog1 where Var:=Expr orp Pro12) orp Prog3 > 

Prog 1 where Var:==Expr orp (Prog2 orp Proia) 
(Prog1 orp Pro12 where Var:=Expr) or Proia > 

Prog2 where Var:=Expr orp (Prog1 or Proia) 
(Pro11 orp Pro12 where Var:=Expr) orp Proia > 

Pro12 where Var:==Expr orp (Pro11 orp Proga) 
Prog1 orp (Pro12 where Var:=Expr or Proia) > 

(Pro11 or Pro13) orp Prog2 where Var:==Expr 
Pro11 orp (Pro12 where Var:=Expr orp Proia) > 

(Pro11 orp Prog3) orp Pro12 where Var:==Expr 
Pro11 orp (Prog2 orp Proia where Var:==Expr) > 

(Prog1 orp Pro12) orp Proia where Var:=Expr 

The transformations for the backward movement or a value through disjunctions rely on commu
tativity and associativity or disjunctions. 

Backtracking Group: 
(Prog1 where Var:==Expr or Prog2); Prog8 > 

(Prog1; Pro18) where Var:=Expr or Prog:?; Proia 
(Prog1 where Var:=Expr or Prog2) II Proia > 

(Pro11 II Prog8) where Var:=Expr orp Prog2! 11 Proga 
(Prog1 where Var:=Expr orp Prog2); Proga > 

(Prog1; Pro113) where Var:=Expr orp Progz; Prog3 
(Prog1 where Var:=Expr orp Prog2) II Prog8 > 

(Prog1 II Pro13) where Var:=Expr orp Pro12 II Prog8 

(Prog1 orp Prog2 where Var:=Expr); Prog3 > 
Prog1; Proia orp (Prog2; Prog3) where Var:-=Expr 

(Pro11 orp Prog2 where Var:=Expr) II Proia > 
Prog 1 II Prog3 orp (Pro12 II Proia) where Var:=Expr 

Prog1 II (Prog2 where Var:=Expr or Prog3) => 
(Prog1 II Prog2) where Var:=Expr orp Prog1; Prog8 

Pro11 II (Prog2 where Var:==Expr orp Proia) > 
(Pro11 II Prog2) where Var:==Expr orp Prog1 II Prog3 

Pro11 II (Prog2 orp Prog3 where Var:=Expr) > 
Prog1 II Pro12 orp (Pro11 II Pro1b) where Var:==Expr 
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Backtracking transrormations are based on the distributivity or conjunction over disjunction. 

The control prepares ror possible bactracking by routing the value being moved backward into 
one argument ol a disjunction while the other argument is set to produce a value should the first 
argument fail. 

Search Split Group: 
ftnd Var1 In Prog1 where Var2:=Expr or Prot12 > 

(find Var1 In Prog1 where Var2:=Expr) or (find Var1 In Prog2) 
ftnd Var1 In Prog1 where Var2:=Expr orp Prog2 => 

(find Var1 In Pro11 where Var2:==Expr) orp (find Var1 In Pro12) 
find Var1 In Prog1 orp Pro12 where Var2:=Expr > 

(find Var1 In Pro11) orp (find Var1 In Prog2 where Var2:==Expr) 

Find split transrormations are baaed on the tautology 

:l.!!.(A V B) - :l.!!.A V 3.!LB 

When one result is backed up to a find operator with a possible alternative result then two 
searches are created. The one with the value being backed up can be immediately terminated 
because or the next transrormation: 

Successful Search: Var is not free In Expr 
ftnd Var In Prog whue Var:=Expr > Prog{Var:=Expr} 

Tautology (1) justifies this transformation. When a result is backed-up up to a find operator on 
the same variable then it is substituted ror the variable in the scope ol the operation. Ir the vari
able Var occurs tree in Expr then the transformation is not applicable and the process where 
remains deadlocked. 

Move Scheduling Group: .., Var1 = Var2 
find Var 1 In Prog where Var2:==Expr => 

move Var1 beyond Var2 ln Pro1 where Var2:==Expr 

This transformation is justified trivially. Ir the result is on a different variable than the variable 
or a find then the operator find must be pushed back beyond the closest enclosing find on the 
variable ol the result. 

This happens when the expression I in v:=1 contains variables, i.e. a partial result is being 
returned, and the backward movement reaches a find one or the variables possibly rree in 1. 

The variables in the term • cannot be moved out or its scope. Such enlargement or scopes hap
pens in lazy evaluations. 

The process move pushes find operators backwards until a ftnd with the variable move looks 
for is reached. Last two groups or transformations control move processes. 

Scope Enlargement Group: 
(move Var 1 beyond Var2 In Pro11); Pro12 > 

move Var beyond V ar2 In Pro1; Pro12 
(move Var1 beyond Var2 ln Pro11) II Pro12 > 

move Var beyond Var2 lD Pros II Prog2 
(move Var 1 beyond Var2 ID Pro11) or Pro12 > 

move Var beyond Var2 ln Prog or Prog2 
(move Var1 beyond Var2 ln Prog1) orp Pro12 > 

move Var beyond Var2 ln Pro1 orp Pro12 
Prog2 II move Var1 beyond Var2 In Pr011 > 

move Var beyond Var2 ln Prog2; Prog 
Prog2 orp move Var1 beyond Var2 ln Prog1 > 

move Var beyond Var2 ln Prog2 orp Prog 

If Var1 is not free in Prog2 then Var = Var 1 and Prog = Prog1. On the other hand, ii the 
!ariable Var1 is free in Pro12 then Var is the least variable not occuring in either or Progi, 
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Pro12, and Prog = Progi {Vari:=Var} . The justification for the transformations or scope 
enlargement lies in the tautologies 

3vA kB - 3'v(A kB) 
3vA V B - :lv(A V B) 

where B does not contain the variable v free. The tautologies are always applicable after a possi
ble renaming or bound variable v so it does not occur free in B. 

Search Ezchonge Group: -, Vari = Vara 
flnd Vari In move Var2 beyond Vari In Proa > Snd Var2; Var1 In Prog 
flnd Vari In move Var2 beyond Vara In Proa > 

move Vari beyond Vara In move Var2 beyond Vara In Pros 

First transformation relies on the tautology 

3v3wA - 3w3vA 

while the justification for the second transformation is trivial. 

When a move process reaches an operator flnd declaring the variable or the return, the opera
tors are swapped so a following process where can remove the swapped operator flnd . At the 
same time the move process is terminated by changing it back into a flnd . The second transfor
mation creates a new move process by changing an outside operator flnd into a move so both 
move processes can proceed outwards until the first transformation is applicable. 

18. Example• of Computation. 

In the examples given below we shall use the symbol " > " for deterministic computation in the 
transitive sense: o > b means that there is a unique computation sequence or transformations 
initially applied to o and terminating in 6. The symbol " ~ " is used for non-deterministic 
computations: o ~ b means that there are more computation sequences starting with o and at 
least one or them reaches b. 

As the first example let us concatenate two lists and print-out the result: 

Print (.Append(l l,nil 1,12,ni/ I) 
Obviously, the computation has to proceed in an environment or definitions including the 
definition or Append. The computation sequence given below is not complete. Some obvious steps 
are not shown. We have to stress that this sequence is only one or the possible computation 
sequences, because there is a parallelism involved in the return or values generated by Append: 

Prinl( .Append(l 1,nil J. I 2, nil I) I = 
( ftnd Append(l l,nil 1,12, nil 11 o) In Print(o) )I= 
( find o lo App end (I I , nil J.12, nilj I o ); Print( o) )! > 
flnd o ID App end(lt ,nill,1 2,niiJ Io)!; Print(o) (1) 

The only process in (1) is the forward process on the invocation or Append. In order to make this 
example more managable let us show just the computation or Append until it starts to affect the 
rest or the program. The reader bas to bear in mind that the computation occurs inside or the 
whole program. 

App end(! I,nill,I 2,nil I I o )! > 
lfll,nilj eq nil ! then o:=12,nill 

elaeflnd lhd,UJ :='1,nill In o:= jhd ,.Append(tl,(2,nill)I => 
( ftnd jhd,t/J :=[l ,nilj In o:=jhd,.Append(tl,12,nill)])! -=> 
z:=I 11.Append( nil ,12, nil l) I I > 
ftnd b lnApp end(nil ,12,nill I b)! ; o:=jl ,bj > 
ftnd b ln b :=12,nilj !; o :=!I,b I > (2) 
flnd b In T! where b :=12,nilJ; a :='1,b I (3) 

The execution or the assignment b :=( 2,nil] (2) creates a second process. Since there are no 
applicable transformations the rorward process is delayed on T! in (3). The next transformation 
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is the backward conjunction or where : 

8nd b In T! where b:=12,nilj; o:=11,bJ > 
8nd b In (Tl; a:=11,bl)where b:=12,nuJ 

For the first time a non-deterministic choice bas to be made. Two transformations are applicable: 
the reduction or conjunctions and the transformation or successful search. 

ftnd b In (T!; a :=I 1,6 I) where 6:=[2,ni/J ~ 
8nd b In a :=j 1,6 J ! where 6 :=12,nil J ~ 
ftnd b In Tl where o :=11,b J where 6 :=j 2,nil J => 
T1 where a:=[ 1,2,nil I 

At this moment we have to show the computation in the context or the whole program because 
Append starts to affect it: 

ftnd o In Append(l l,nil LI 2,nilJ I a)!; Print (a) ~ 
ftnd o In Tl where o:=[ 1,2,ni/ J; Print(a) ~ 
flnd a In Print (a)! where a:= I 1,2, nil J > 
Print(! 1,2,nil I)! > T! 

The generator Append is a function and its computation proceeds without backtracking. 

Split is a multi-valued generator. It will be used in the second example to demonstrate the back
tracking. The following program tests whether the list I 1,2,nu J contains the list 11,nil J as its ini
tial sublist. 

( ftnd Split(! 1,2,nil I I /,a) In / eq I l,nil J )! > 
8nd a In Split (I 1,2,ni'I I a)!; (ftnd I/ ,s J:=a In / eq I l,nu I) > 
8nd o In (a:=I nil,'1,2,nilJJ! or Prog1); Prog 

We have set 

Pro11 = ftnd I hd ,tlJ:=I 1,2,nil J; Split (ti I /r ,ec) In o :==I I hd ,fr J,sc J 
Pro1 = (ftnd If ,8 J:==o In/ eq lt,ni/ I) 

Tbe computation continues a& follows. 

8nd a ln (a:== I nil, 1,2, nil J! or Pro11 ); Pro1 > 
8nd a ln {T! where a :=I nil, 1, 2, nil I or Pro11); Prog > 
ftnd o In (T!; Pro1) where a:= I nil, 1,2, nil J or Pro11; Pro1 i::::I> 
find o In Prog! where o:=I nit,1,2,ni/ J or Pro11; Prog -=> 
flnd a ln Prog! where o :=I nil ,1,2,nil J or (ftnd Pro11; Prog) > 
Prog!{a:=I ni/,1,2,nil I} or (tlnd a In Prog1; Prog) 

(4) 

(5) 

Tbe more interesting transformations are backtracking on (4), split or a search, and successful 
search on (5). 

Tbe overall backtracking situation should be obvious now: The computation is just about to try 
out whether the first pair or split lists satisfies Pro1. U this were the case then there would be no 
need to execute tbe program 

8nd o In Prog1; Prog 

which is held in the reserve. As it happens, the first alternative fails and the computation will fall 
back on the second alternative: 

Pro1!{11:=I nil,1,2,nit I} or (ftnd o In Pro11; Prog) => 
nil eq I 1,nitJ I or (find a In Prog1; Prog) > 
F! or (find o ln Prog1; Proa > ) 
8nd o In Proa1!; Pro1 > 
ftnd a In ( ftnd Split({ 2,nilj I fr ,BC) In o :=II I.fr J,ac I )!; Prog > 
ftnd o In ( find b In Split(l2,nilj I 6)!; (flnd l/r,sc]:=6 In a:=lll,/rJ,8cl) ); Pros~ 
find a ln ( o := II 1, nil I, I 2, nil I I ! or Prog2 ); Proa ~ 
I l,ni/J eq 11,nilj ! or (flnd o ln Pro12; Pro1) > T1 
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where 

Proa2 = (ftnd h In 
( flnd [hd,tlJ:=12,nilJ; Split(tl I /r,sc) In h:=llhd,!rl,scJ ); 
( flnd IJr,scJ:=h In o:=l!IJrJ,scJ)) 

When the last alternative or a generator with finite number or alernatives is exhausted, the gen
erator fails. For example: 

(ftnd Split ( nil I / ,B) In / eq 3)1 > 
find o In Split (nil I o )!; (find j / ,B J: =o In / eq 3) ==> 
find o In ( a:=( nil ,nil I ! or (find [ hd ,ti J:=nil In Pros) ); 

(flnd I/,, J:=o In / eq 3) ~ 
nil eq 3 ! or ( flnd II In (flnd I hd,tl J:=nil In Prog); (find If ,B J:=o In/ eq 3)) > 
find o In (find I hd ,tlJ:==nil In Pros)!; (find I/,, f:==o In/ eq 3) ==> 
find o In F!; (flnd If ,B f:=o In/ eq 3) => find o In F! > F! 

where 

Prog = flnd Split (tl I /r ,Be) In o :=I I hd ,Ir f,sc J 

Split is a finite generator. It can be backtracked into only finite number or times. An infinite 
generator can be backtracked into as many times as necessary. The simplest infinite generator is 

Nums(i In) la n:=i or Nums(i+ l J n) 

Provided that lll.mL can be introduced with the intended meaning then one can prove by induc
tion 

b'.11.m(i,n) - i$.t1 
Note that there would be no need to define Nums were it used just because or its meaning com
ponent; "i le n" would suffice. Num, is needed because or its control component. The invocation 
Nums(Num I n ), when backtracked into sufficiently many times, generates into n the natural 
numbers 

Num•,Num•+ 1,Num•+ e, · · · 
Nums is used in another infinite generator Primes which generates all primes: 

Primes( In) la flnd Nums(2 Ii) In lsprime(i); n:=i 

with the primality test lsprime introduced as follows: 

Candiv(i,n I o) la i Xi It n; (o :=i or Candiv(i+ l,n I o )) 
/sprime(n) la not (flnd Candiv(2,n Ii) Inn rem i eq 0) 

Primes is a filter generating only those values or Nums which are primes. Although Primes and 
/Bprime differ vastly in control, their intended meanings are easily proven equivalent: 

Primes ( a.) - lsprime (.n.) 
The intended meanings or Candiv and /sprime are: 

Candiv(i..n I .2.) - .2.x.1i.<.n. I: i$.2. 
hprime(n) - '-'ii. Canprime(t,.n..i.) - -, Rem(.n..i.,O)) 

The equivalence (6) is obtained by induction from the intended meaning of Candiv. 

(6) 
(7) 

The predicate /sprime is a good example of the importance of control. From the point of view of 
pure meaning the primality test could have been defined in arithmetic as 

/gprime(n) - 'Ii ( B.m!(.n..i.,O) - i-= 0 Vi,_ 1 Vi-=- .tL) (8) 
The auxiliary generator Candiv is required to turn the unbounded universal quantifier to a 
bounded one so lsprime can be computed. Efficiency is improved by testing the candidate divisors 
or 11 only up to the root or n. The proof that (7) and (8) are equivalent is straight-forward. 

When executing programs with infinite generators one has to have at least a certain degree or 
confidence that the termination condition will be eventually satisfied. 



- 40 -

It is ao opeo problem of number theory whether there is ao infinite number or prime twins as for 
instance J 7 and 19 . One would probably have some dill'iculties with the proof that the test for 
the second twin /sprime(n+ 2) in the rollowing program will become eventually satisfied tor a 
large prime. 

8nd Primes( In) Inn st 100000000; IBprime(n+ 2); Print(n) 

The bounded search in the above program is inherently sequential: first a prime will be round 
then it will be tested ror the terminating conditions. Primality tests for both candidate twins can 
be speeded up by a parallel computation: 

( 8nd n In Primes ( I n) II n st 100000000; /sprime ( n ); Print ( n) )! ~ 
flnd n In Primes( I n )! II Prog ~ 
8nd n In (T! where n :=Num or Pro11) II Prog ~ 
8nd n In ( T! II Prog) where n :=Num orp Prog11 II Prog ~ 
Prog{ n :=Num} orp (8nd n In Prog1! II Proa) 

where Num stands for a prime and 

Pro1 = n gt 100000000!; hprime(n+ 2); Print(n) 
Prog1 = (find Nuim{Num+ 11 i) In IBprimr:(i); n:=i) 

The search 8nd n In Prog1; Pro1 would be in sequential execution held back in reserve to fall 
back into wheo Prog fails. Parallel "backtracking", if the term is appropriate at all, invokes the 
search immediately. 

Note that nothing can be gained by having the terminating conditions in Prog connected by 
parallel ands. Neither or the tests can advance very much unless n bas been replaced by a quoted 
literal. 

The examples or both finite and infinite generators boperully demonstrated the elegance or our 
concept or backtracking. The backtracking in R-Maple is made explicit and straight-forward. 
Furthermore, one can immediately see that no alternative is lost. This is due to the invariance ol 
the meaning component. Contra.st this with the obscurity or backtracking bidden in interpreters 
or programming languages as Prolog. 

Let us present three examples where Prolog suffers because ol its intentional negligence or control: 

P(z) +- Q(z),!,R(z) 
P(z) +- S(z) 
+- P(a) 

This is a very common case where programmers rely on implicit control built into Prolog inter
preters. Let us assume that during the refutation or P( a) the test Q (a) is satisfied but R (a) 
fails. The next clause for P(.i) should be now tried. But the programmer does not want to try 
the second claus once Q(o) has been satisfied. He baa really meant the second clause to be 

P(z) +-.., Q(z),S(z) 

but because or the difficulties with negation in Prolog clauses, and tor obvious reasons or 
efficiency, he places a cut in the first clause baning the backtracking into the second clause once 
past Q(z ). Cuts cannot be explained in logic within the context or a clause and without an ord
ering or clauses. 

R-Maple acknowledges this very common situation and permits to write 

P(z) la It Q(z) then R(z) elH S(z) 

This has the meaning as ii the &ecood Prolog clause tor P(:i) baa started with.., Q(z) but without 
the inefficiency or double evaluation or Q(z). 

The second example: 

+- G(a,y),!,P(y) 

The programmer knows that the relation G(a,y) is a runction producing a unique y. He does not 
want to backtrack ioto G should P(11) rail. 
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We simply write P(.G(a)) or if we want to be explicit 

find G(a I u) In P(u) 

and know that no backtracking into G can occur if G is a functional generator where no assign
ment to J.I is moved back over a disjunction. 

The third example demonstrates how the execution or Horn clauses suffers because the quantifiers 
have been moved into prenex forms by Skolemization. 

P(a) 
P(z) - A(z) 
Q(z) - R(z,u) 
- P(z),Q(z),S(z) 

Standard Prolog interpreters unify the last clause witb the 8rst one to produce 

- Q(a),S(a) 

Now all natural numbers u in the third clause will be tried until, say, R ( a ,100) succeeds; but alas 
S( a) fails. The interpreter knowing nothing about the scopes or searches will backtrack into 
R (a, 101) and possibly go into an infinite search, although only the backtrack to the second clause 
for P(z) can find another z satisfying S(z ). 

R-Maple programs retain the full indication or scopes and the computation will go as expected: 

P( I z) la z := a or A ( I z) 
Q(z) la find Nums(O I u) In R(z,u) 

( find P( I z) In Q(z); S(z) )! ~ Q(a)!; S(a) or Proa~ 
( R(a,100)! or (find Nums(lOO+ 1 I u) In R(z,u)) ); S(a) or Proa~ 
T!; S(a) or Prog ~ S(a)! or Prog ~ F! or Proa~ Prog! 

where 

Prog = ( find z In A( I z); Q(z); S(z)) 

The reader is urged to program the predicate IBprime as another example or difficulties with con
trol in Prolog. 

Prolog has been designed as a language with programs concerned mainly with the meaning com
ponent. No matter how sophisticated the theorem prover in the interpreter of Prolog is, the overal 
efficiency can be assured only by explicit control. 

This can be seen from the above examples as well as from any large Prolog program which must 
be heavily infested with cuts in order to assure tolerable efficiency. 

We have built the control component directly into our programming language. As a consequence, 
a programmer can explicitly visualize and direct the ordering or execution. When this control 
component is suppressed by a programming language then, almost invariably, two things will hap
pen. 

1) Programmers will quickly master the scheduling strategy or the local interpreter and adjust 
their supposedly purely logical programs accordingly. When such a program is transferred 
to an environment with a "dumb" interpreter, tbe program will perform less efficiently it at 
all. 

2) The implementors of interpreters with automatic control component will invariably make 
some control mechanisms explicitly available. Now, what is worse: A programming language 
with explicit standard control or a language proudly claiming that the meaning is or over
riding importance only to be brought down to the earth by programs heavily infested with 
non-standard control! 

The first point seems to be also relevant to the growing tendency to suppress the control in 
modern programming languages. The freedom so generously profferred to tbe implementors or 
compilers for such languages can be the undoing of many a good program. Here again, our 
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approach seem to be a sound one: we provide for high level constructs such as descriptions and 
bounded searches which do not require that the programmers explicitly specify the control, but at 
the same time we make the control well defined. Actually we are forced to do so by the require
ments of logic. 

Some functional programming language permit infinite data structures, such as lists and trees, to 
be used in connection with lazy evaluation. For instance, one can define an infinite list of all 
primes and use it in subsequent computations only partially. 

There is nothing special about logical predicates satisfied by infinitely many individuals. It is cer
tainly less appealing to introduce infinite individuals into the universe or discourse to play the 
role or infinite predicates and then to use the infinite objects only finitely. 

The entire concept or computation rests on the concept or /inilenea,. To start with a very power
ful theory with models requiring infinite elements which are used finitely seems to us a slight over
kill. Mathematical induction rests on the downward finiteness or the sequence of natural numbers. 
What complicated forms or induction are required to prove properties or infinite objects which are 
never used in their entirety? 

As the last example we shall demonstrate the use or expressions still containing variables. The 
generator Insert inserts a natural number into an ordered list: 

Insert ( n ,1st I nlst) la 
It 1st eq nil then nlat :=I n, nil I 
elae find I hd ,tlJ ln lat 
It n It hd then nlst :=In ,Isl I 
elae If n eq hd then nlat :=lat 
elaeflnd auz ln nlat:=lhd,auzJ; lnBert(n,tl I auz) 

Note that the assignment to the result in the last line is executed before the recursive invocation 
of Insert. One would normally expect the last line to be 

elae nlat := I hd, .Insert ( n, ti )I 
Insert, as given above, permits an insertion of two or more elements in parallel: 

( find 6 ln ( find a ln /nBert(5,l3,'8t 11 a) II Inaert(4,a I 6) ); Print(6) )! ~ 
find 6 ln ( find a ln 

( find auz ln a :=I 3,auz I !; lnsert(5,lat I auz) ) II lnBert(4,a I 6 )! ); Print( b) ~ (9) 
find 6 ln ( find a ln 

( find auz ln lnBert(5,lat I auz)! where a:=13,auzl) II Inaert(4,a I 6)! ); Print(6) ~ 
Bnd 6 In ( find a In 

( move auz beyond a In lnBert(5,let I auz)! where a :=I 3,auz I ) II 
lneert(4,a I 6 )! ); Print(b) ~ 

Bnd 6 In ( find a In 
move auz beyond a ln ( lneert(5,lel I auz)! II lnserl(4,a I 6)!) where a:=13,auz I); 

Print(b) ~ 
find 6 In 

( Bnd auz; a In ( Insert (5,181 I auz )! II /n,erl(4,a I 6 )! ) where a:=={ 3,auz I ); 
Print(6) ~ 

find 6 In ( find auz In /neert (5,lst I auz )! II /nBerl(4,l 3, auz I I 6 )! ); Print( 6) (10) 

The 6rst invocation or lnBert bas constructed the partial result I 3,auz I in (9) which is passed to 
the second invocation or Jneerl in (10). The second /nBerl will be in practice delayed on the first 
decision inside its body while it waits r or the partial result. After the partial result is substitued, 
all decisions in the second invocations can be performed before the process might be delayed again 
in the recursive invocation to itself. 
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19. Conclualon1 of Part L 
We have decided not to include integers to R-Maple. Natural numbers as the starting point, 
make the intended meanings or predicate definitions simpler. R-Maple programs should be 
defined over the whole universe. This is because or the universal quantifier in the intended mean
ing or predicate definitions. The domain or pairs plus nil coincides with the domain or natural 
numbers. Thus a program operating on lists is also defined for all natural numbers and vice versa. 
Had we started with integers, then the negative numbers would not correspond to pairs and the 
universal quantifier would not express the intended meaning or programs as, for instance, Append 
which is designed to operate only on lists. 

This is not a serious difficulty, however. In the Part D we shall show how to restrict the universal 
quantifiers to apply 0~!~· to elements or certain types. With R-Maple extended by types the 
underlying formal theory can be the theory Z or integers, or even better the theory R or rational 
numbers. 

Other basic types as characters and strings can be formaUy introduced by embedding into natural 
numbers. 

For reasons or keeping this report simple, we have adapted the position that, during the computa
tion or invocations and split searches, the R-Maple machine performs the substitution in one step. 
This position is slightly unrealistic with the present day hardware. Such an understanding or sub
stitution involves a significant amount or copying and also costs time. lo practice the substitution 
will not be done but rather an environment wiU be maintained during the computation. The 
environment will carry the bindings or variables to the terms to which they have to be substi
tuted. Alternatively, the substitution can be performed via combinator, l5,16J. 
Both schemes are acceptable as long u that they support the effect or a virtual one-step substitu
tion. 

For the reasons or simplicity we have decided against the inclusion or higher-order predicates. 
Higher order predicates accept other predicates 1111 arguments. A predicate argument can be then 
allributed inside the body or a higher-order predicate. The definitions or predicates are terms 
which can be treated 1111 data. Thus there is almost no problem, at least from the computational 
point or view, with the introduction or higher-order predicates. However, the list or predicate 
definitions would dynamically change during the execution or programs. 

Predicates can yield another predicates as the values or output variables even now. This is p06si
ble because definitions or predicates are just literals. Some syntax sugaring is required before the 
generated predicates can be written in an elegant way. 

Predicates or higher-order would necessitate more profound changes in the semantics. These 
changes will be outlined in the Part Il. For the time being we lack the required formal apparatus. 

Another "feature", not treated in this report, is some sort or data base providing for the environ
ment in which one can store, retrieve, and execute both the general data, u well as the predicates 
which are data or a special sort. 

Such a data-base is currently the subject or research although the present author has some ideas 
or bow to structure the environment. The ideas come from his language Maple II7J which is the 
predecessor to R-Maple. 

A final word on the expected performance of an R-Maple machine: Although R-Maple is more 
powerful than Prolog because or its explicit control, and it is also stronger than LISP because or 
its non-determinism, it does not require a sophisticated interpreter. The reason for this is that the 
backtracking is expressed in the computation rules rather than built into the interpreter. Further
more, there is no need ror a unification &eheme which is so costly in Prolog. We do not see a rea
son why a good implementation should not be comparable to the implementations or LISP. 
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