
A Prological Definition or HASL a Purely Functional
Language with Unification Based Conditional Binding

Expressions

Harve71 Abramson

Department. or Computer Science
University of British Columbia

Vancouver, B.C. Canada

Technical Report TR 83-8

ABSTRACT

We present a definition in Prolog or a new purely functional (applicative)
language HASL (HArvey's Static Language) . HASL is a descendant of Turner's
SASL and differs from the latter in several signi6cant points: it includes
Abramson's uni6cation based conditional binding constructs; it restricts each
clause in a definition of a HASL function to have the same arity, thereby compli
cating somewhat the compilation of clauses to combinators, but simplifying con•
siderably the HASL reduction machine; and it includes the single element domain
{fail} as a component of the domain of H...\.SL data structures. It is intended to
use HASL to express the functional dependencies in a translator writing system
based on denotational semantics, and to study the feasibility of using HASL as a
functional sublanguage of Prolog or some other logic programming l:rnguage.
Regarding this latter application we suggest tha.t since a reduction mechanism
exists ror HASL, it may be easier to combine it with a logic programming
laaguage than it wa., for Robinson and Siebert to combine LISP and LOGIC into
LOGLISP: in that case a fairly complex mechanism had to be invented to reduce
uninterpreted LOGIC terms to LISP values.

The definition is divided into four parts. The first part defines the lexical
structure or the language by means or a simple De6nite Clause Grammar which
relates character strings to "token" strings. The second part defines the syntactic
structure or the language by means of a more complex Definite Clause Grammar
and relates token strings to a parse tree. The third part is semantic in nature and
translates the parse tree deftnitions and expressions to a variable-free string or
combinators and global names. The fourth part or the de6nit.ion consists or a set
or Prolog predicates which specifies bow strings of combinators and global names
are reduced to "values" , ie., integers, truth values, chara.cters, lists, fu_nctions,
rail, and bas an operational flavour: one can think or this fourth part as the
definition ot a normal order reduction ma.chine.

July 26, 1983

A Prological Definition or HASL a Purely Functional
Language with Unification Based Conditional Binding

Expressions

1. Introduction

Harvey Abramson

Department or Computer Science
University or British Columbia

Vancouver, B.C. Canada

Technical Report TR 83-8

In this paper we shall use Definite Clause Grammars (DCGs) and Prolog to present a
definition of HASL, a purely functional language incorporating the unification based conditional
expressions introduced in IAbramson,82aJ.

Metamorphosis grammars were introduced in !Colmerauer,78J and were shown to be effective
in the writing or a compiler for a simple programming language. Definite Clause Grammars, a
special case of metamorphosis grammars were introduced in 1Pereira&Warren,80J and shown to be
effective in "compiling", ie , translating a subset or natural language into first order logic.
Metamorphosis grammars (M-grammars) have been used to describe several languages, namely
ASPLE, Prolog, and a substantial subset or Algol-68 !Moss,81J, !Moss,79); see also !Moss,82) for
the use of Prolog and grammars as tools in language definition. Although neither M-grammars
nor DCGs were mentioned in !Warren,771, that paper is or interest in the use or Prolog as a com
piler writing tool . The use or DCGs and Prolog ror the implementation or SASL !Turner,76,79,81),
a purely applicative language, was reported in IAbramson,82bJ.

The language HASL which we shall define below arose out or the Prolog implementation or
SASL. One reason for defining the new language was to incorporate unification based conditional
binding expressions; another was to simplify and clean up the combinator reduction machine
introduced by Turner to evaluate SASL expressions; a third was to provide a possible functional
sublanguage for Prolog ; and a fourth was to provide a functional notation for a denotational
semantics based translator writing system akin to Mosses ' Semantics Implementation System
[Mosses,79J but to be tied to DCGs. Although we do not present a purely logical definition of
HASL, we reel that the departures from Horn clause logic in the definition presented below (the
use of the cut for control; negation as failure; and extension or HASL 's database or globally
defined functions) are not significant enough to mar the formality or the definition or its
comprehensibility. The definition can be used as a specification of HASL, as an interpretive imple
mentation or HASL, and as a guide to a more efficient implementation of HASL in some system
programming language.

In section 2 we shall informally and briefty describe HASL. Section 3 contains a description
of the general definition strategy: HASL expressions are compiled to variable-free strings of com
binators, global names, and uses of the two primitive operations of function application (- >)
and pa~ construction(:, like LISP 's CONS). Following this are sections d voted to: the DCG for
lexical analysis; the DCG and associated predicates which perform syntactic analysis and parse
tree formation; the translation to combinators; and the HASL reduction machine. A final section
will suggest some further work which we intend to pursue.

- 2 -

I. HASL - Informally and Briefly

HASL is descended from Turner's SASL (see ITurner,76,79,811) and obviously owes much to
it. We have chosen to name this language HASL not to suggest presumptuously that what we
present is totally original, but that there are enough departures from SASL to warrant a new
designation. At the source level HASL resembles SASL except that (see below): all clauses
defining a function must have the sa.me arity; unification based conditional binding expressions,
which may be thought or either as pattern matching constructs or as anonymous functions, may
be used in expressions; and fail is a HASL data object. The differences between the two languages
lead to a simpler reduction machine than Turner's original machine. The credit for introducing
the notion or a combinator reduction machine, or course, goes to Turner.

A HASL program is an expression such as

ll,2,3J + + l4,5,6J

with value

(1,2,3,4,5,61

or an expression with a list or equation al definitions qualifying the expression:

f X

where
x= hd y
hd (a:x) = a,
y = 3:y,
r o = 1,
fx = X • f(x-1)

with value 6.

We note in this list or definitions that

Ill A function such as/ may be defined by a list or clauses. The order or the clauses is impor
tant: in applying/ to an argument the first clause will be "tried", then the second, etc.

(21 In the definition or hd the argument must be a constructed pair, specified by (a:z) where : is
the HASL pair constructor. Structure specifications may involve arbitrary list structures of
identifiers and constants.

131 HASL makes use or normal order evaluation which is "lazy" (!Henderson & Morris,761) so
that infinite lists such as IJ may be defined, and elements or such lists may be accessed, as in
hd 11 without running into difficulties.

A list may be written as

ll,2,3J

which is syntactic sugaring for

1: 2: 3: 11

where II denotes the empty list and the notation 'string' is a sugaring for the list or character
denotations:

%s: %t: %r: %i: %n: %g: II
There are filnctions such as number, logical, char and /unction which may be used to check

the types or HASL data objects. The following HASL expressions all reduce to the value true:

number 12 = true
logical 5 = raise
char %% = true
function hd = true

- 3 -

Functions may be added to HASL 's global environment as follows:

def
string II = true,
string (a:x) = char a & string x,
string x = false,
cons ab= a:b

Each claus defining a HASL function f must have the same number or arguments or arity. Thus
abov e, each clause in the definition of string bas arity one. Io the second clause for string how
ever, a single structured argument is designated . Although HASL functions may be written a.s if
they bad several arguments, such a.s cons abov e, HASL function s are all considered to hav e in fact
single arguments. The single argument is a HASL data object which may be a character, a truth
va lue, an integer , fail, a list of HASL objects, or a function or HASL objects to HASL objects.
The value or such a function may be any HASL object - including a function. Thus the value of

cons %a

is the HASL function which puts %a in front of lists. The reader is reminded that the order of
claust>s in a definition is important.

The HASL object fail is the result or, for example, applying hd to a number:

hd 5 = fail

The object fail is not a SASL object and is one or our departures from that language.

Another departure is in the introduction or the restricted unification based conditional bind
ing constructs {- and -} or [Abramson ,1982].

formals {- expl => exp2 ; exp3

The meaning or this is that if expl can be unified to the list of formal s, t hen the value of this
expression is the value of e:ip Q quali.fied by the bindings induced by the match ; ot herwise, it is the
value or ezp8. This may be expressed somewhat inefficiently using the HASL conditional expres
sion (a •> 6; c):

(fail = r expl
where r formals= exp2) ->

exp3;
(f expl
where r formals = exp2)

Thus the unification expression may be regarded as the definition and application or an
anonymous function.

The unification expression is in fact the basis of the compilation or HASL clausal definitions
into a single function. Ir member is defined by the following clauses:

def
member a IJ = raise,
member a (a:x) = true,
member a (b:x) = member ax

then the HASL specification and interpreter treats this as:

member xl x2 =
a II {- xl x2 => raise;
a (a:x) {- xl x2 => true;
a (b:x) {- xl x2 => member ax;
fail

- 4 -

3. The Top Level of the HASL Specfflcatlon.

We use Edinburgh C-Prolog jPereira,1982] as our metalanguage; we make somewhat exten
sive use or the cut "!".

A HASL expression denotes a value. We may express this by the notation

hasl(Expression,Value).

This relation requires some refinement, however. The expression is written as some sequence or
characters, including spaces, carriage returns, etc., and the characters mu t be grouped into a
sequence or meaningful HASL "tokens". These tokens must then be grouped into meaningful syn
tactic units determined by the syntax of HASL expressions. These two relations , the lexical and
syntactic, are expressed by means or two DCGs: one OCG defines the relation between a sequence
of characters and a sequence of HASL tokens; a second DCG defines the relation between a
sequence or HASL tokens and a representation or the syntactic structure of a HASL expression as
a tree.

Further , the expression or the relation between the tree and the value denoted by the origi
nal sequence or characters requires refinement. The tree represents the abstract syntax of the
HASL expression. A semantic relation holds between this tree and a sequence or combinators, glo
bal names, function application operators (-->) and pair construction operators (:). Tb is relation
therefore defines a translation rrom a syntactically sweet string of symbols (HASL) to a
mathematically equivalent - but rather unreadable - sequenc of symbols suitable for mechanical
evaluation or reduction. The reduction relation(=>>) specifies how such a sequence or symbols
is related to another sequence or symbols which is the head normal form or the first. A final rela
tion (> > >) between head normal form and HASL values (normal form) completes the
specification or the relation has/:

hasl(Expression,Value) :
lexical(Expression,Tokens),
sy nt.actic(Tokens,Tree),
semantic(Tree,Combinators),
Combinators => > HeadNormal,
HeadNormal > > > Value.

The lexical relation may be specified in terms or a relation lexemes (see next section):

lexical(Expression,Tokens) :- lexemes(Tokens,Expression,IJ).

and the syntactic relation may be specified in terms or a relation ezpression (see Section 5):

syntactic(Tokens,Tree) :- expression(Tree,Tokens,11).

The two relations lezemes and ezpreeeion are defined below by definite clause grammars.

,. The Lexical Spectftcatlon of HASL.

This relation requires little comment. A sequence of characters such as

"def rac O = 1, fac x = x • rac(x-1);"

is grouped into the following string or tokens:

- 5 -

[dd,id(rac),constant(n um(O)),op(3,cEQ),constant(num(I)),comma,id (fac),id(x),
op(3,cEQ),id(x),op(5,cMUL T),id(Cac),lparen,id(x),op(4,cSUB),constant(num(I)),
rparen ,semicolon I

Identifiers such as Jae are represented by id(foc}, constants such as O are represented by
constont(num(O}). Some reserved words and punctuation are represented by atoms such as def
and comma.

A sequence or definite clause rules such as

tIDENT(id(Id)) -> (id(Id)J.

defines the function symbols which are the terminals for syntactic analysis.

The lexical specification also contains the declaration or the operators for function applicir
tion (->), pair construction (:), reduction to bead normal form (=> >), and reduction to nor
mal form(>>>).

The complete Prolog specification or HASL is at the end or this report following the Rerer
ences.

6. The Syntactic Speclflcatlon of HASL.

As mentioned above, the eyntoctic relation is between token strings and parse trees which
represent the abstract syntax or HASL expressions.

The leaves or a parse tree may be identifiers such as id(fac}, constants such as logical(true),
num(12B), char(C}, fail, or they may be the names or certain known HASL combinators such as
cADD for addition, or cMATCH used in unification, etc . These names follow the convention of a
lower case c followed by some other letters (usually upper case), digits or underline characters.

There are several kinds or branch nodes . A branch may be labeled by the HASL runction
application arrow (->) or by the HASL pair construction colon (:). The arrow associates to the
left, the colon to the right. Thus the linear parse tree representation or a+ 1 is:

cADD -> id(a) -> num(I)

and that for hd 'abc' is:

cl-ID - > %a : %b : %c : II
Another kind or branch node is labeled with the runctor where and bas one subtree which is

an expression and another which is the subtree ror a list or definitions qualirying the expression:

where(Exp,Defs)

Global definitions are subtrees or a tree where the root is labeled with the functor global

global(Dds)

To each definition there is a branch node labeled with the functor def and with three sub
trees: the name or the identifier being defined; the arity associated with the name being defined;
and, the expression or list or clauses to be associated with the name. For a name with arity 0
such as in:

def b =a+ l;

the definition node looks like:

def(id(b),O,cADD-->id(a}->num(l))

When a function is being defined, the arity is at least one, and the third argument is a list or
clauses, each or the form:

-6-

runc(Fseq,Exp)

where Fseq is a list or arguments or length arit11 for the function being defined, and Exp is the
expression associated with that clause. Thus, the definition or member in Section 2 is represented
in a parse tree as:

def(id(member),2,
!runc(lid(a)IO ist(id(b }:id{x))J ,id(member)--> id(a)-> id(x)),
(unc(I id(a)l Oist(id(a):id(x))I, logical(true))I
runc([id(a)jcon st(n ii)) ,logical(false))J)])

The functor fl.isl is used to label a branch or a tree in which a list structured argument to a (unc
tion is specified. The context sensitive restriction that each clause defining a function have the
same arity is specified by the predicate mergedef which merges separate clauses (or a (unction into
one node or the above description. (See the next two sections for further discussion or this restric
tion.)

One other point to note is that a list or definitions or arity Osuch as

lx,y,zJ = x

is represented as a list or definition nodes:

jdd(id(x),O,cHD-> id(x)),
def(id(y),0,cHD->(cTL->id(x))I
def(id(z),O,cTL->(cTL-->id(x))J

This is specified by the predicate erpandef.

The last remaining kind of branch node is that for a unification based conditional binding
expression.

(a:x){-y=>x;fail
y-}(a:x)=>x;fail

would both be represented as:

u nify(O ist(id(a):id (x)),id(y),id(x),fail)

The DCG specifying the syntax or HASL is fairly straightforward. There is some slight intri
cacy in the specification or the grammar rules (or expressions involving the HASL operators:
operator precedence techniques are used to build the appropriate subtrees.

The function symbols beginning with a lower case t are the terminals for this grammar and
specify HASL tokens as defined by the lexical DCG.

I. The Semantic Specification of HASL.

The semantic relation is one which holds between parse trees as specified in the previous
section, and certain strings or combinators, constants, global names, and the primitive HASL
operations or function application (-->) and pair construction (:). These strings may in fact be
regarded as modified parse trees in which the global, where, def, June, flist and uni/11 nodes have
been eliminated and replaced by variable-free subtrees. Th elimination or these nodes depends
on a discovery or the logician Schoenfinkel: that variables, although convenient, are not necessary.

Schoenfinkel's discovery that variables can be dispensed with relies on a sort or cancellation
related to extensionality. Ir in HASL we defined

successor x = plus 1 x
plus ab= a+ b

then we could say that

- 7 -

successor= plus 1

for both sides, when applied to the same argument, are always equal.

Schoenfinkel related a variable, an expression which may contain that variable, and an
expression from which that variable bad been abstracted (removed) with the a.id or the following
combinators:

cS x y z = x z (y z)
cK x y = x
cl X = X

(Our convention is that a lower case c followed by an identifier, usually in upper case - designates
a combinator.)

The specification or the abstraction or removal or a variable is given by the predicate abstrO:

abstr0(V,X->Y,cS->AX->AY) :- ! ,
a.bstrO(V,X,AX) ,
abstrO(V,Y,AY).

abstr0(V, V ,cl) :- !.
abstrO(V ,X,cK- > X).

Vis a variable, Xis an expression, and the third argument or abstrO is the expression with vari
able removed. So in the following:

abstr0(id(x),plus-> num(l)-> id(x),X).

we have

X = cS->(cS->(cK->plus)->(cK->num(l)))->cl

with no variables, and only the constants plus and num(l), the combinators and ->.

When the resulting expression is applied to an actual argument, these combinators, speaking
anthropomorphically, place the actual arguments in the right places so that the evaluated result is
the same as would be given (by extensionality) by evaluating the original expression wit.h vari
ables and by making the appropriate substitutions or actual arguments for variables. The advan
tage or not using variables, or course, is that an environment is not necessary and that no substi
tution algorithm is necessary.

It is clear, however, that this abstraction specification (abstrO) albeit elegant, leads to
expressions much longer than the original . It is possible, however, to control the size or the result
ing expression by introducing combinators which are "optimizing" in the sense that if a variable
which is being abstracted is not used in the original expression, then the resulting expression will
not have any redundancies. Some or these optimizing combinators introduced by Curry are
described in !Curry&Feys,1958] and [Burge ,1975J; a more effective set was introduced by Turner
who also extended the notion or abstraction or variables to a context in which there was a primi
tive operation or pair construction in addition to the primitive operation or function application.

The predicate for abstraction in the specification or HASL 's semantics is based on Turner's
technique: abstract specifies bow a list or variables is to be removed; abstr specifies bow a single
variable is removed; and combine specifies the optimizations which control the size or the resulting
expressions.The first argument to abstract is a list uncurrying combinator which splits a structure
into its components, and is an aspect or HASL's (restricted) u.nificatioo. Jr a rorma.l argument on
the left band side or a clausal definition is being "opened up", the combinator (cUJ) is strict: if
the actual argument does not have the appropriate list structure then the value fail must result;
in other cases, the list uncurrying combinator (cU) need not be strict.

Since constants may be HASL arguments, the abstraction predicate must specify what the
resulting expression ought to be: in a strict position, removing a constant from an expression E
means that when the resulting expression is applied to an actual argument, that argument must
match exactly the removed constant, and so the parse tree is modified from E to

- 8 -

cMATCH-> X-> E

where Xis the constant being abstracted; otherwise the resulting tree is cK---> E.

We may now examine the eemantic relation in detail. The eemantic relation specifies a
traversal of the parse tree which results in a new tree from which all identifiers except global
identifiers have been removed. For a subtree or the form X: Y or X ---> Y, the resulting tree is
specified by:

semantic(X:Y,Sx:Sy) :- semantic(X,Sx), semantic(Y,Sy).
semantic(X-> Y,Sx->Sy) :- semantic(X,Sx), semantic(Y,Sy).

Related to a subtree or the form where(Ezp,Defe) is a subtree Combinatore specified by

semantic(where(Exp,Defs),Combinators) :- abstractJocals(where(Exp,Defs),Combinators).

The predicate abetract_locale reforms the where node into a subtree of the form

AbsE -> (cY -> AbsD):

abstract_locals(where(Exp,Defs),AbsE->(cY->AbsD)) :-
comp _defs(Dets ,Ids ,Abs),
abstract(cU,lds,Exp,AbsE),
abstract(cU,lds,Abs,AbsD).

c Y is HASL 's fixed point combinator whose reduction is defined as

cY->X =>>Res:- X-> (cY-> X) =>> Res.

This is read a5: cY--->X reduces to Ree it X--->(cY--->X) reduces to Res. In the
abstract_locals predicate, De/a are compiled by comp_defs to a list or identifiers defined {Ids) and a
list or defined expressions from which all local variables have been removed (Abs) . The list or
variables is abstracted from Ezp and from Abs, specifying the subtrees AbsE and AbsD, respec
tively. The abstraction ot Ids from Abs is the method or implementing mutually recursive
definitions. ·

The predicate comp_defs builds the list or identifiers and abstractions by compiling each
definition in Def using the predicate comp_def A definition of arity 0 is left unchanged by the
first clause or comp_def. As was mentioned in Section 2, the clauses defining a function are com
piled as it one large unification expression bad been specified. This compilation is specified by the
predicate compJunc. The variables which are introduced by compJunc are or the form
id(l},id{f}, etc ., (these are not HASL variables) and must later be abstracted from Code0 which is
returned by compJunc to yield the Code tree for a definition:

comp_def(det(Name,0,Def),def(Name,0,Der)) :- !.
comp_def(det(Name,Arity ,Funcs),det(Name,Arity ,Code)) :
Arity > 0,
comp_tunc(Funcs,Arity ,Code0),
generate_seq(Arity ,Ids),
abstract(cU _s,Ids, Code0, Code).

The predicate generate_seq specifies a relation between Aritu and the list or introduced identifiers
Ids which later gets removed!

A function is compiled clause by clause in reverse order. The last clause of any function is
compiled by compJunc to

cCONDF ->Abs-> fail

where Abs is variable-free. cCONDF is a combinator defined a5 follows:

- 9 -

cCONDF -> X --> Y =>>Res:
X =>>Rx,!,
condJail(Rx ,Y ,Res).

and is read : cCONDF--->X---> Y reduces to Rea if X reduces to Rz and if Rz is not fail as deter
mined by condJail; otherwise, condJail specifies that the value or Res is the value or the reduc
tion or Y.

Remaining clauses defining a function are compiled by compJJunc to:

cCONDF ->Abs-> Sofar

where Abs is the compiled clause and Sofar is the code for the clauses already compiled.

A clause is compiled by the predicate comp __ clauae:

comp _clause(ru nc(Fseq,Ex p), Ari ty ,Abs) :-
note _repeats(Fseq ,MarkedFseq),
semantic(Exp,Sexp),
abstra.ct(cU_s,MarkedFseq,Sexp,Aps),
generate_applies(Aps,Arity ,Abs).

In the definition or comp_clauae note that:

III The predicate note_repeata relates a list or formals , Faeq, to a marked list or formals Mark
edFaeq, where the second, third, etc., occurrences or a formal identifier id(:r) have been
replaced by match(id(z)). When id{z) is eventually abstracted from the right-band side or a
clause, this insures - by unification - that each occurrence or id{:r) is matched to the same
value. In the definition or member for example,

member a (a:x) = true

both occurrences or a must be bound to the same value. The abstract predicate treats
repeated occurrences or an identifier in the way it treats constants.

l2J Exp is related by the semantic relation to Sezp.

l3J The marked formal sequence is abstracted from Sezp to yield Apa.

j4J The identifiers id(l}, id(£), etc., are introduced .

The interested reader may follow on his own the specification or the semantic relation for
subtrees labeled by the functor unify and for trees rooted at the functor global. It only needs to
be 5aid that a globaJ definition 5uch as

def sue x = 1 + x;

results in the following clause being added to HASL 's database:

global(suc,cCI->cCONDF->(cADD->num(l))->fail).

Global names in any HASL expression are replaced at reduction time by their value as specified
by the second component or global.

Some comments are due about the way we have compiled clauses into a function. In SASL,
Turner allowed different clauses defining a function to have different arities. For example:

rob= c
r I= d
rxyz=e

Thus, when an application or/ is encountered in a SASL expression, it is impossible to know in
advance, ie, at compile time, how much of the SASL expression to the right or/ would actually
be used by f. To cope with this, Turner introduced what he caJled a combinator "TRY, with
rather peculiar reduction rules" 1Turner,1981J. We had earlier implemented SASL in Prolog, and
the specification of TRY in logic caused an enormous amount or trouble: it seemed to require at

- 10 -

reduction time a stack to hold everything to the right or Jin a SASL expression (ie, either to the
end of the SASL expression, or to the first right parenthesis). The TRY combinator itself seemed
to come in two arities: one or arity 3 for stacking everything to the right to be passed to each
clause to be tried; and one or arity 2 to attempt clauses in order to find the applicable one. No
other combinator seemed to require this explicit stack, but at reduction time the stack had to be
passed as part or the state of the reduction to each combinator rule in case some clausally defined
function were invoked. The presence or the stack in the logical specification seemed too opera
tional and too distasteful, and there seemed no way to write the SASL reduction rules completely
without it. This may have been simply a result of our confusion; or more profoundly a case where
Wittgenstein's dictum held: Waa aich ueberhaupt ,agen laesst, laesst sich klar aagen; und wovon
man nicht reden kann, darueber musa man schweigen. At any rate, HASL was born partly as a
result or the hassle or trying to clean up the SASL reduction machine.

The cCONDF combinator was introduced to deal with a kind or conditional expression
which arises often in dealing with unification based conditional binding expressions and in apply
ing clausally defined functions: we could simply use the cCOND combinator, but the resulting
code would be longer. Either way is simpler and clearer than using the TRY combinator! It
should finally be noted that the restriction that all clauses defining a function have the same
arity, a suggestion made by Turner as possible future work and which makes use or the cCOJ\.'DF
combinator feasible for compiling functions imposes no loss of generality on what can be
expressed in HASL: the sole interesting example in !Turner,198IJ which makes use or different ari
ties can be expressed without utilizing clauses or different arities.

7. The Specl.ftcatton of HASL Reduction.
The specification or the HASL reduction relation consists mainly of a set or rules as to how

the HASL combinators are reduced. The combinator cS, for example, introduced in the previous
section, is reduced as follows :

cS -> X -> Y --> Z =>>Res:
X--> Z -> (Y -> Z) =>> Res.

Here, "= > >" is the infix reduction operator. The above specification is read:

cS -> X -> Y -> Z

reduces to Res if

X --> Z - > (Y - > Z)

reduces to Rea.

Associated with each combinator is an arity, for example:

arity(cS,3)

which indicates the number of arguments necessary for the reduction to take place. An expression
such as

cS-> X-> Y

cannot be further reduced as it is already in head normal form. The reduction rules are listed in
order or increasing arity; at the end or each group or rules for a given arity, there is a rule such
as:

C->X->Y=>>C->X->Y~
arity(C,D), D >= 3, !.

which would specify that cS ---> X ---> Yis already in head normal form.

The general reduction rule is to reduce the leftmost node or the combinator tree (the left
most red ex); if that node has not been reached, none of the combinator reduction rules apply. To
handle the case or moving to the leftmost redex, the following (last but one) reduction rule

applies:

X --> Y-> Z ==>>Res:
X --> Y ==> > Rxy,
not same(X--> Y,Rxy),
Rxy -> Z ==>>Res.

- 11 -

The reduction rules are recursively applied to try and reduce X -··> Y to head normal form; ir X
•··> Y is not in bead normal Corm, then Rz11 is head nonnal Corm Cor X ···> Yand Rzy •··> Z
is reduced to Res.

The last reduction rule X ==> > X specifies that Xis already in head normal Corm.

Some combinators, such as the combinator cCONDF, defined in the last section, recursively
call on the reduction machine. So does the combinator cMATCH which specifies unification:

cMATCH -> X-> Y-> Z ==>>Res:-
X =>> Redx, !,
Z ==> > Redz, !,
eqnormal(Redx,Redz,Y,fail,Req),
Req =>> Res.

X and Z are reduced to Redx and Redz, respectively, and ir they have the same normal form, Y
is unified with Req and is reduced to Res; otherwise, fail is unified with Req and a trivial reduc
tion reduces the entire match to fail. The binding or arguments to HASL formal variables -
another part oC HASL 's restricted unification - is accomplished at the reduction stage by the com
binators simply placing the actual arguments in their proper places ror evaluation!

HASL numbers, truth values, and characters are tagged by the functors num, logical and
char. (Lists are tagged by :.) Various parts or the reduction machine use these functors for type
checking. For example, the addition component or the "arithmetic unit" specifies that addition is
strict:

add(num(X),num(Y),ni.:m(Z)) :- Z is X + Y, !.
add(X,Y,fail).

HASL type checking functions such as number are defined globally and apply type checking com
binators such as

c1'.1UMBER -> X =>>Res:- type_cbeck(num(X),Res).

The predicate t11pe_check is specified by:

type_check(Form,logical(true)) :- Form, !.
ty pe_check (Form,logical(false).

The reduction Crom bead normal Corm to nonnal form is specified by the relation > > >
which also bas the side effect or printing the value or the original HASL expression in an
appropriate Cormat.

8. Appllcatlon■, Conclusion■, Further Work.

jl] One or our interests is in building a logical translator writing system based on Scott
Stracbey denotational semantics. The general idea is to use DCGs Cor lexical and syntactic
analysis and to produce an applicative expression which denotes the "value" or a program.
The applicative expression must then be reduced to its value. It is our intent to construct
the system so that HASL expressions are used as the applicative expressions which denote
the values or programs.

Peter Mosses 1Mosses,1979J Semantics Implementation System (SIS, implemented in BCPL)
provides a "hard-wired" model for this project. It aJlows one to specify a grammar and the

- 12 -

reduction semantics or a language, and produces for any program in that language an applicative
expression in a language called DSL which is a slightly sugared version or a lambda calculus
language LAMB. ~ a first step in our project we will probably compile DSL expressions to com
binators and use the HASL reduction machine to reduce DSL expressions to the values which
they denote.

12] HASL may be thought or as a functional sublanguage or Prolog. More generally, we can
think or a deduction machine (eg, Prolog) which ha.s a reduction machine (eg, HASL) as a
component. Another model here is LOGLISP [Robinson&Siebert,1980] in which LOGIC is
the deduction machine and LISP is the reduction machine. In the case or LOGLISP, how
ever, it took quite a lot or work to define a suitable reduction mechanism for LISP: the
notion or reduction or LISP expressions is fairly complex and is not identical to evaluation
or LISP expressions. We suggest that since HASL is defined in terms or a notion or reduc
tion ab initio, it is simpler and perhaps cleaner mathematically to consider a deduction
reduction machine with HASL as the reduction component. LOGLISP, however, treats the
LOGIC machine and the LISP machine as equal components able to call on each other for
computations; it remains to be investigated how HASL might call on the deduction
machine.

13] The HASL reduction machine bas some notion or partial evaluation. Ir one defines

def r cond a b = cond - > a ; b ;

then / true is the function which when applied to two arguments selects the first one. In
terms or combinators, the reduction or/ true is:

cC->(cBl->(cBI->cCl)->cCONDF->
cCOND->logical(true))->fail

Another observation is that the abstraction or variables from an expression is a relation
between a variable, an expression, and another expression without that variable. The abstraction
may be run "backwards" and a variable may be put into a variable-free combinator expression to
get something more readable. For example, in:

abstr0(id(x),E,cS->(cS->(cK->plus)->(cK->num(l)))->cl).

we have

E = plus->num(l)->id(x).

HASL abstraction is more complicated than this, but in principle one may think or decom
piling variable-free expressions.

One might think or combining these two observations to get a notion for a debugging
method for applicative languages: a partially evaluated expression may have some variables put
back into it, and then one might try using the lexical and syntactic DCGs as generators rather
than as recognizers to produce a readable HASL expression.

It may not be entirely frivolous to think in fact or generating programs which compute a
given value. The reduction relation may be run backward to derive combinator strings which
could be translated into HASL expressions. or course there are infinitely many such expressions
and most or them are trivial and/or uninteresting. Could one place constraints on the searching or
the space or HASL expressions which compute a given value to produce interesting expressions!

[4] Pragmatically, Prolog is ideal for designing and testing experimental languages. One tends
not to carry out language experiments other than on paper - or in one's head - if implemen
tation requires extensive coding in a low level language. But - the HASL interpreter
described here, implemented in CProlog to run on a VAX 780 under Berkeley UNIX, is slow.
A Prolog compiler which optimizes tail recursion and runs under UNIX is an absolute neces
sity.

- 13 -

G. Acknowledgements.

This work was supported by the National Science and Engineering Research Council or
Canada. I would like to thank Richard Currie for many useful suggestions which helped to clean
up this definition. I must also thank the UBC Laboratory for Computational Vision for time on
its VAX running Berkeley Unix: modern and adequate computing facilities are not currently made
available to the computer science department by UBC.

10. References.

IAbramson,1982aJ

Abramson, H., Unification-based Conditional Binding Constructs, Proceedings First International
Logic Programming Conference, Marseille, 1982.

IAbramson,1982bJ

Abramson, H., A Prolog Implementation of SASL, Logic Programming Newsletter 4, Winter
1982/1983.

1Burge,1975J

Burge, W.H., Recursive Programming Techniques, Addison-Wesley, 1975.

!Colmerauer, 1978J

Colmerauer, A., Metamorphosis Grammars, in Natural Language Communication with Comput
ers, Lecture Notes in Computer Science 63, Springer, 1978.

!Curry&Feys, 1958J

Curry, H.B. & Feys, R., Combinatory Logic Volume I, North-Holland Publishing Company, 1958.

[Henderson&Morris,19i6J

Henderson, P. & Morris, J.H., A lazy evaluator, Conference Record or the 3rd ACM Symposium
on Principles or Programming Languages, pp. 95-103, 1976.

!Moss, l 979J

Moss, C.D.S., A Formal Description of ASPLE Using Predicate Logic, DOC 80/18, Imperial Col
lege, London.

1Moss,1981J

Moss, C.D.S., The Formal Description of Programming Languages using Predicate Logic, Ph.D.
Thesis, Imperial College, 1981.

!Moss, 1982)

Moss, C.D.S., How to Define a Language Using Prolog, Conference Record or the 1982 ACM Sym
posium on Lisp and Functional Programming, Tittsburgh, Pennsylvania, pp. 67-73, 1982.

!Mosses, l 979J

Mosses, Peter, SIS - Semantics Implementation System: Reference Manual and User Guide, DAIMI
MD-30, Computer Science Department, Aarhus University, Denmark, 1979.

!Pereira, l 982J

Pereira, F .C.N. (editor), C-Prolog User's Manual, University or Edinburgh, Department or Archi
tecture, 1982.

1Pereira&Warren,1980J

Pereira, F.C.N. & Warren, D.H.D, Definite Clause Grammars for Language Analysis, Artificial
Intelligence, vol. 13, pp. 231-278, 1980.

IRobinson&Siebert, 1980a]

Robinson, J.A. & Siebert, E.E., LOGLISP - an alternative to Prolog, School or Computer and
Information Science, Syracuse University, 1980.

- 14 -

IRobinson&Siebert, 1980b]

Robinson, J.A. & Siebert, E.E., Logic Programming in LISP, School of Computer and Information
Science, Syracuse University, 1980.

!Turner, 1976J

Turner, D.A., SASL Language Manual, Department or Computational Science, University or St.
Andrews, 1976, revised 1979.

!Turner ,1979J

Turner, D.A., A new implementation technique for applicative languages, Software - Practice and
Experience, vol. 9, pp. 31-49.

jTurner,1981]

Turner , D.A., Aspects of the Implementation of Programming Languages: The Compilation of an
Applicative language to CombinatorJI Logic, Ph .D. Thesis, Oxford, HIBl.

!Warren, 1977]

Warren, David H.D., Logic programming and compiler writing, DAI Research Report 44, Univer
sity of Edinburgh, 1977.

Appendix I. Lexical Rules.

/• Operator declarations•/

- 15 -

:- op(603,y(x ,' > > > '). /• reduction to normal rorm • /
:- op(603,y(x,'=> > > '). /• reduction to bead normal form •/
:- op(602,y(x,'-> '). /• (unction application •/
:- op(601,dy,':'). /• pair construction•/

reserved (true ,consta.n t(logical(true))).
reserved('TRUE' ,constant(logical(true))).
reserved (false,constant(logical(false))).
reserved('F ALSE' ,consta.nt(logical(false))).
reserved (fail ,consta.n t(rail)).
reserved('F AIL ',constant(fail)).
reserved (der ,def).
reserved('DEF',dd).
reserved(where ,where).
reserved('WHERE' ,where).

lexemes(X) -> space , lexemes(X).
lexemes(!XIYJ) -> lexeme(X) , lexemes(¥).
lexemes(II) - > II-

lexeme(Token) -->
word(W) , ! , { name(X,W) , (reserved(X,Token) ; id(X) = Token) }.

lexeme(constaut(Con)) -> constant(Con), !.
lexeme(Punct) -> punctuation(Punct) , !.
lexeme(op(Pr,Comb)) -> op(Pr,Comb) , !.

space - > " " , !.
space-> ll0J, !. /• carriage return•/

num(num(N)) -> number(Number), ! , { name(N,Number) }.

number(IDIDsl) -> digit(D) , digits(Ds).

digit(D)-> fDJ , { D>47, D<58 }. /• ascii: 0 ... 9 •/

digits(IDIDsl) -> digit(D) , digits(Ds).
digits(!]) -> IJ.

word(ILILsl) -> letter(L) , lords(Ls).

letter(L) -> fLJ , { (L>96,L<123; L>64,L<90) }. /• ascii: a-z, A-Z •/

lords(ILILsl)-> (letter(L); digit(L)), lords(Ls).
Jords(IJ) -> fl.

/• in op(N,O) N designates the binding power or the operator 0. • /
op(0,cAPPEND)-> "+ +" , !.
op(0,cCONS) --> ":" , !.

op(l,cOR) --> "I" , !.
op(2,cAND) -> "&" , !.
op(3,cLSE) -> "<=" , !.
op(3,cGRE) -> ">=", !.
op(3,cNEQ) -> "=" , !.
op(3,cEQ) -> "=" , !.
op(3,cGR) -> ">", !.
op(3,cLS) -> n<" , !.
op(4,cADD) -> "+" , !.
op(4,cSUB) -> "-" , !.
op(5,cMUL T) -> "•" , !.
op(5,cDIV) -> "/" , !.
op(6,cB) -> "." , !.

- 16 -

haslJtring(C:Cs)-> stringchar(C), haslJtring(Cs).
haslJtring(nil) -> IJ.

hasl_char(C)-> "%" , stringchar(C), !.

stringcbar(cbar(A)) -> !CJ , { C =\= 39 , name(A,ICI) } , !.
stringcbar(char(""))-> """ , !.

string(S) -> "'" , haslJtring(S), ""' ,!.

constant(N) -> num(N), !.
constant(C) -> hasl_cbar(C) , !.
constant(S) -> string(S) , !.
constant(nil)-> "II" , !.

punctuation(tilde) -> "_,, , !.
punctuation(comma) --> "," , !.
punctuation(lparen) -> "(" , !.
punctuation(rparen) -> ")" , !.
punctuation(condarrow) -> "->" , !.
punctuation(rigbtcrossbow) -> "-}", !.
punctuation(ldtcrossbow) -> " {-", !.
punctuation(lbrack) ->"I",!.
punctuation(rbrack) -> "I",!.
punctuation(unifyarrow) -> "=>", !.
punctuation(semicolon) -> ";" , !.

/• The following predicates constitute the interface
between lexical and syntactic analysis. Predicates
with names starting with 't', eg, tCOLON, are the
terminals in syntactic analysis.

•/

tCOLON
tPLUSPLUS
tCOMMA
tLBRACK
tRBRACK
tLPAREN

-> lop(0,cCONS)J.
-> lop(0,cAPPEND)J.
-> !commaJ.
--> llbrackJ.
-> lrbrackJ.
-> llparenJ.

- 17 -

tRPAREN -> (rpareoJ .
tUNIFY ARROW -> lunifyarrowJ.
tLEFTCROSSBOW -> lleftcrossbowJ.
tRIGHTCROSSBOW -> lrightcrossbowJ.
tCONDARROW -> lcondarrowJ.
tEQUAL -> (op(3,cEQ)J.
tSEMICOLON -> lsemicolooJ.
tWHERE --> lwhereJ.
tDEF -> (de~.
tNOT -> !tilde!.
tNEGATE -> lop(4,cSUB)J.
tPLUS -> lop(4,cADD)I.
tIDENT(id(Id)) -> lid(Id)j.
tCONSTANT(C) -> lconstant(C)J .
tOP(Pr,Comb) -> (op(Pr,Comb)J.

Appendix II. Syntactic Rules.

def(global(Ds)) ->

- 18 -

tDEF , defs(Ds) , tSEMICOLON.

definition(der(Id,Arity ,runc(Fseq,Exp))) ->
tIDENT(ld), fseq(Fseq), ! , tEQUAL , expression(Exp) ,
{ seq.Jengtb{Fseq,Arity) }.

defini tion(Def) - >
formal(Formal) , ! , tEQUAL , expression(Exp) ,
{ expandef(def(Formal,0,Exp),Def) }.

defs(Ds)-> definition(D), ! , { append_def(D,IJ,De0ist)} ,
defs l(De6ist,Ds).

defsl(D,Ds) -> tCOMMA , de6nition(Def), ! ,
{ mergedef(D,Def,Dm) } , defsl(Dm,Ds).

defsl(D,D) -> 11-

fseq(Fseq) -> formal(Formal), ! , fseql(Formal,Fseq).

rseql(Fl,IFIIFI)-> formal(F2), ! , rseql(F2,F).
fseql(F,F) -> IJ .

formal(Id) -> tIDENT(Id), !.
formal(const(C)) -> tCONSTANT(C), !.
formal(0ist(Flist)) -> tLBRACK , ftist(Fhst) , ! , tRBRACK.
formal(0ist(Flist))-> tLPAREN, fprimary(Flist), ! , t.RPAREN.

8ist(Fl:F2)-> fprimary(Fl), ! , 8istl{F2).
0ist(const(nil)) -> 11-

0istl(F) -> tCOMMA, 0ist(F).
0istl(const(nil)) -> IJ.

fprimary(F) -> formal(Fl), ! , fprimaryl(Fl,F).

lprimaryl(Fl,Fl:F)-> tCOLON, formal(F2), ! , fprimaryl(F2,F).
fprimaryl(F,F)-> (I.

expression(E) -> def(E).
expression(E)-> unification(El), ! , expression(El,E).

expression(El,wbere(El,Ds)) -> tWHERE, defs(Ds).
expression(E,E) -> (I.

unification(unify(Fseq,El ,E2,E3)) ->
fseq(Fseq), tLEFTCROSSBOW, expressioo(El), tUNIFYARROW,

expression(E2) , tSEMICOLON , expression(E3).

unification(U) -> condexp(U).

- 19 -

condexp(E) -> expl(El,0), ! , condexpl(El,E).

condexpl(El,cCOND ->El-> E2 -> E3)->
tCONDARROW, expression(E2), ! , tSEMICOLON, condexp(E3) .

condexpl(El ,unify(Fseq,El ,E2,E3)) ->
tRIGHTCROSSBOW, fseq(Fseq), tUNIFYARROW,

expression(E2) , tSEMICOLON , expression(E3).
condexpl(E,E) -> I].

expl(E,P) -> tPLUS , expl(El,6), ! , exp2(El,E,P).
expl(E,P) -> tNEGATE, expl(El,6), ! , exp2(cNEGATE -> El,E,P).
expl(E,P)-> tNOT, expl(El,3), ! , exp2(cNOT -> El,E,P).
expl(E,P) -> comb(El) , ! , exp2(El,E,P).

/• since : or cons is a primitive in HASL: •/
exp2(El,E,0) -> tCOLON, expl(E2,0), ! , exp2(El : E2,E,l).

/• since + + or append is the only other zero level operator: •/
exp2(El,E,0) -> tPLUSPLUS , expl(E2,0), ! , exp2(cAPPEND -> El--> E2,E,1).

/• : and + + are right associative; aJI others are left associative: • /
exp2(El,E,P) -> tOP(Q,Op) , { P < Q } , ! , expl(E2,Q) ,

exp2(Op -> El-> E2,E,P).

exp2(E,E,P) -> IJ.

comb(C) -> primary(P), ! , combl(P,C).

combl(Pl,C)-> primary(P), ! , combl(Pl -> P,C).
combl(C,C) -> I].

primary(L) -> tLBRACK, explist(L), ! , tRBRACK.
primary(I) -> tIDENT(I) , !.
primary(C)-> tCONSTANT(C), !.
primary(E) --> tLPAREN, expression(E), ! , tRPAREN.

explist(El : E2) -> expl(El,0), ! , explistl(E2).
explist(nil)-> IJ.
explistl(E) -> tCOMMA , explist(E).
explistl(nil) -> IJ.

/• The following predicates are used to check that each clause
defining a function has the same arity, and to merge all
definitions made at the same time into a single list or
definitions.

•/
mergedef(Deftist,Dd,Dermerge) :

ftat(Def ,FlatDer) ,
merge(Deft ist,FlatDer,Dermerge).

merge(Deftist,!DdlDdsJ ,Defmerge) :
merge(Deftist,Der,Deftistl) ,

merge(Dellistl ,Defs,Defmerge).

merge(lder(id(X),O,D)IDellistJ,
def(id(X),O,Dl),
Ider(id (X),0 ,D)IDellist I) :
write(X) ,

- 20 -

write(' is a constant already defined: ') ,
write(D) , nl ,
write('definition ignored: ') ,
write(Dl), nl.

merge(ldef(id(X),N ,D)IDellistJ,
def(id(X),N,Dl),
ldeC(id(X),N,IDIIDl)IDeftistl) :- !.

merge(ldef(id(X),N,D)IDeftistJ,
def(id(X),M,Dl),
ldef(id(X),N,D)IDeftistl) :-
write('wrong number or arguments in definition of:') ,
write(def(id(X),M,Dl)),
write('sbould be ') , write(N) , nl.

merge(!def(id(Y),M,Dy)IDeftistJ,
def(id(X),N,D),
ldef(id(Y),M,Dy)IDeOistl) :
defined(X,DeHist,Dx), ! ,
write(X) ,
write(' already defined: ') ,
write(Dx) , nl ,
write(def(id(X),N,D)) ,
write(' ignored.'), nl.

merge(Dellist,
Def,
IDeflDellistJ).

defined(Y,ldef(id(Y),_.Dy)I..J,Dy).
defined(Y ,ldef(id(X), ... jlDeftistJ,Dy) :

defined(Y ,Deftist,Dy).

seqJengtb(IFIGJ ,N) :- ! ,
seq.Jengtb(G,M) ,
N is I+ M.

seqJengtb(F ,1) .

append_def(der(A,B,C),Z,ldef(A,B,C) IZI) :- !.
append_def(IXIYJ,Z,IXIWI) :-

append_def(Y ,z, W).

8at(def(X,Y,Z),def(X,Y,Z)).
8 at(I def(X, Y, Z)IDefsJ, ldef(X, Y ,z)IFDefsJ) :

Bat(Defs,FDefs) , ! .
8at(IDen-IdlDerrlJ,Flat) :

ftat(Den-Id,FlatHd) ,
8at(Derfl,FlatTI) ,
append_der(FlatHd,FlatTl,Flat).

• 21 -

expandef(Ders,Der) :-
expand(Ders,Defl) ,
ftat(DeU ,Del).

expand(def(Oist(X:const(nil)),O,Exp),Derx) :
expand(dd(X,O,Exp),Derx).

expand(def(Oist(X:Y),O,Exp),IDefx!DefyJ) :
expand(def(X,O,cHD -> Exp),Defx),
expand(def(Oist(Y),O,cTL -> Exp),Defy).

expand(def(Oist(X),O,Exp),def(X,O,Exp)) .
expand(def(F ,O,Exp),def(F ,O,Exp)).

Appendix III. Semantic Rules.

semantic(X:Y,Sx:Sy) :
semantic(X,Sx) ,
seman tic(Y ,Sy).

semantic(X-> Y,Sx->Sy) :-
semantic(X,Sx) ,

- 22 -

semantic(Y,Sy).
semantic(where(Exp,Defs),Combinators) :

abstract_Jocals(where(Exp,Defs) ,Combinators).
semantic(uniJy(Fseq,El,E2,E3),cCONDF->Exp->Se3) :

semantic(El ,Sel) ,
semantic(E2,Se2) ,
semantic(E3,Se3) ,
translate_unification(Fseq,Se l ,Se2,Exp).

semantic(global(Dds),global) :-
installdefs(De(s).

semantic(X,X).

abstract(U,nil,Abs,Abs).
abstract(U,0ist(Flist),Exp,Abs) :-

abstract(U ,Flist,Exp ,Abs).
abstract(U, IXIYJ ,E,Abs) :

abstract(U ,Y ,E,Absl) ,
abstract(U,X,Absl,Abs).

abstract(U,id(X),E,Abs) :-
abstr(id(X),E,Abs).

abstract(cU,const(X),E,cK -> E).
abstract(cU_i;,const(X),E,cMATCH -> X -> E).
abstract(cU_i;,mat.cb(X),E,cMATCH -> X -> E).
abstract(U,(X : Y),E,U - - > Abs) :-

abstract(U,Y,E,Absl),
abstract(U,X,Absl,Abs).

abstr(V,X -> Y,Abs) :
abstr(V,X,AX) ,
abstr(V,Y,AY) ,
combine(->,AX,AY,Abs), !.

abstr(V,(X : Y),Abs) :
abstr(V,X,AX) ,
abstr(V,Y,AY) ,
combine(:,AX,AY,Abs), !.

abstr(id(X),id(X),cl) :- ! .
abstr(V,X,cK -> X).

combine(->,cK -> X,cK -> Y,cK-> (X -> Y)).
combine(->,cK-> X,cl,X).
combine(->,cK-> (Xl -> X2),Y,cB1 -> Xl -> X2 -> Y).
combine(-> ,cK -> X,Y,cB -> X -> Y).
combine(-> ,cB -> Xl -> X2,cK -> Y,cCl -> Xl -> X2 -> Y).
combine(-> ,X,cK -> Y,cC -> X -> Y).
combine(->,cB -> Xl -> X2,Y,cS1 -> Xl -> X2 -> Y).
combine(->,X,Y,cS -> X-> Y).

- 23 -

combine(:,cK -> X,cK --> Y,cK -> (X: Y)).
combine(:,cK -> X,Y,cB_p -> X -> Y).
combine(:,X,cK --> Y,cC_p -> X --> Y).
combine(:,X,Y,cS_p -> X -> Y).

generate_seq(I,id(I)) :- !.
generate_i;eq(N ,Y) :-

NI is N - I ,
gen_seq(NI ,id(N) ,Y).

gen_i;eq(l,X,[id(l)IX]) :- !.
gen_i;eq(N,X,Y) :-

NI is N - 1 ,
gen_seq(Nl ,jid(N)IX] ,Y).

generateJpplies(X,N,Y) :
generateJeq(N,Seq) ,
gen_applies(X,Seq,Y).

gen_applies(X,[Hd!TIJ,Y) :- ! ,
gen_applies(X -> Hd,Tl,Y).

gen_applies(X,S,X -> S).

restructure(X -> (Y -> Z),W) :- restruct(X,Y -> Z,W).
restructure(X -> Y,X -> Y).

restruct(X,Y -> Z,A -> Z) :- restruct(X,Y,A).
restruct(X,Y,X --> Y).

comp_clause(func(Fseq,Exp),Arity ,Abs) :-
noteJepeats(Fseq,MarkedFseq) ,
semantic(Exp,Sexp) ,
abstract(cU_i;,MarkedFseq,Sexp,Aps) ,
generate_applies(Aps,Arity ,Abs).

compJunc(lrunc(Fseq,Ex p)IFuncsJ ,Arity ,Code) :
comp_clause(func(Fseq,Exp),Arity ,Abs) ,
complJunc(Funcs,Arity,cCONDF ->Abs-> rail,Code).

compJunc(runc(Fseq,Exp),Arity,cCONDF ->Abs-> fail):
comp_clause(func(Fseq,Exp),Arity ,Abs).

comp lJunc(lrunc(Fseq,Exp)IFuncsJ ,Arity ,Sofar, Code) :
comp_clause(func(Fseq,Exp),Arity ,Abs) ,
complJunc(Funcs,Arity,cCONDF ->Abs-> Sofar,Code).

complJunc(func(Fseq,Exp),Arity,Sorar,cCONDF -> Abs-> Sorar) :
comp_clause(runc(Fseq,Exp),Arity ,Abs).

comp_def(dd(Name,0,Der),der(Name,0,Der)) :- !.
comp_dd{der(Name,Arity,Funcs),der(Name,Arity,Code)) :-

Arity > 0, ! ,
compJunc(Funcs,Arity ,Code0) ,
generateJeq(Arity ,Ids) ,
abstract(cUJ,lds,CodeO,Code).

- 24 -

comp_defs(IDeflDefsJ,lds,Abs) :
comp_def(Def,def(id(Jd),Arity ,Abs I)) ,
comp_defsl(Defs,id(Id),Absl,lds,Abs).

comp_defsl(ll ,Ids,Abs,Ids,Abs).
comp_defsl(IDeflDersJ ,Id sin ,Absln,lds,Abs) :

comp_dd(Def,def(id(Id) ,Arity ,Absl)) ,
comp_defsl(Defs,id(Id):Jdsln,Absl:Absln,lds,Abs).

abstract_Jocals(where(Exp,Ders),AbsE -> (cY -> AbsD)) :
comp_defs(Ders,lds,Abs) ,
abstract(cU,lds,Exp,AbsE) ,
abstract(cU,Ids,Abs,AbsD).

translate_unification(Fseq,El,E2,Exp) :
noteJepeats(Fseq,MarkedFseq) ,
abstract(cU_s,MarkedFseq,E2,Abs) ,
restructure(Abs -> El,Exp).

installdefs{Defs) :
comp_defs(Ders,Ids,Abs) ,
install{lds,Abs).

install{id(ld):lds,Def:Dds) :
global{Id,Dend), ! ,
write{ld) , write(' already globally defined.') ,
write(' New definition ignored.'), nl,
install(lds,Defs).

install(id(Id):Jds,Def:Ders) :
assertz(global(Id ,Der)) ,
install{lds,Ders).

install(id(Id),Abs) :
global(Id ,Dend) , ! ,
write{Id) , write(' already globally defined.') ,
write(' New definition ignored.') , nl.

install(id(Id),Der) :-
assertz(global(Id ,Der)).

member(Id,!Idl_J).
member(Id,l....lldsl) :- member(Id,lds).

noteJepeats(Fseq,Marked) :-
markJepeats(Fseq,!1,_,Marked).

markJepeats(id(Id),Jn,ln,match(id(Id))) :-
member(Jd ,In),!.

markJepeats(id(Id),In,!Idlinj,id(Id)).
markJepeats(Oist(Flist),In,Out,Oist(Marked)) :

markJepeats(F list,Jn, Out,Marked).
markJepeats(Hd:Tl,In,Out,MarkedHd:MarkedTI) :

markJepeats(Hd,ln,lnl,MarkedHd) ,
markJepeats(Tl,ln 1, Out,MarkedTI).

markJepeats(IHdlTlj,Io,Out,!MarkedHdlMarkedTIJ) :-
markJepeats(Hd,ln,lol,MarkedHd),

- 25 -

markJepeats(Tl,ln 1, Out,MarkedTI).
markJepeats([] ,In ,In ,II).
markJepeats(const(C),ln ,In,const(C)).

Appendix IV. Reduction Rules.

id(X) -> id(Y) => > Res:
global(X,DefX) ,
global(Y ,DefY) ,

- 26 -

Derx - > Der¥ = > > Res.

id(X) =>>Der:-
global(X,Def) , ! .

id(X) =>>_:
ol,
write('oot defined: ') ,
write(X) , ol , abort.

cl-> X =>>Res:
X =>> Res .

cY--> X =>>Res:-
X -> (cY -> X) => > Res.

cl-ID-> (X: Y) =>>Res:- ! ,
X =>> Res.

cl-ID-> X =>>Res:-
X => > (Hd: Tl) I! I
Hd =>> Res.

cTL -> (X: Y) =>>Res:-!,
Y =>> Res.

cTL -> X =>>Res:-
X => > (Hd : Tl) I! I
Tl=>> Res.

cCHAR -> X =>>Res:
type_check(char(X),Res) .

cFAILURE-> X =>>Res:
type_check(failure(X),Res).

cLOGICAL -> X ==>>Res:
type_check(logical(X),Res).

cFUNCTION -> X => > Res :
type_check(fuoctioo(X),Res).

cNUMBER -> X =>>Res:
type_check(o um(X),Res).

cNOT-> X ==>>Res:-
X ==>>Rx,!,
choose(R x,logical(false),logical(true),Res).

cNEGATE-> X ==>>Res:-
arith(sub,num(O),X,Res).

num(X)-> Y ==>> num(X).

logical(X)-> Y ==>> logical(X).

char(X)-> Y ==> > char(X).

nil-> X ==>> nil.

C -> X == > > C -> X :
arity(C,D) ,
D >== 2, !.

id(X)-> Y ==>>Res:
global(X,Der) , ! ,
Def-> Y ==> > Res.

id(X)-> Y ==>>Res :
nl,
write('not defined: ') ,
write(X) , nl , abort.

Y --> id(X) ==> > Res :
global(X,Der) , ! ,
Y-> Def==>> Res.

Y -> id(X) ==> > Res :
nl,
write('not defined: ') ,
write(X), nl, Y -> rail==>> Res.

(X: Y)-> num(l) ==>>Res:-!,
X ==>> Res.

(X: Y)-> num(Z) ==>>Res:-!,
Z > 1,
Zl is Z - 1 ,
Y -> num(Zl) ==>> Res.

(X: Y)-> Z ==>>Res:-
z ==> > num(Num) , ! ,
X: Y-> num(Num) ==>> Res.

cK-> X-> Y =>>Res:-
X =>> Res.

cU-> X-> Y ==>>Res:-
X -> (clID -> Y) -> (cTL -> Y) ==> > Res.

cUJ -> X-> (Y: Z) =>>Res:-!,
X-> Y-> Z ==>> Res.

cUJ-> X-> Y =>>Res:
y = > > (Hd : Tl) , ! ,

- 28 -

X-> Hd-> Tl=>> Res.
cUJ-> X-> Y =>> fail.

cAND-> X-> Y =>>Res:-
X =>>Rx,!,
choose(Rx,Y ,logical(false),Res).

cOR -> X-> Y =>>Res:-
X =>>Rx,!,
choose(Rx,logical(true),Y ,Res).

cEQ -> X-> Y =>> logical(Res) :
X =>>Rx,!,
y =>>Ry'!'
eqnormal(Rx ,Ry ,true,false,Res).

cNEQ -> X -> Y =>> logical(Res) :
X =>>Rx,!,
y =>>Ry'!'
eqnormal(Rx ,Ry ,false ,true,Res).

cAPPEND ->nil-> Z =>> Z :- !.
cAPPEND -> (X: Y) -> Z => > (X: Res):-! ,

cAPPEND -> Y -> Z => > Res.
cAPPEl\1D-> X-> Y =>>Res:

X = > > Resx , ! ,
not same(X,Resx) ,
cAPPEND-> Resx -> Y =>> Res.

cLSE-> X-> Y =>>Res:-
cNOT -> (cGR --> X -> Y) => > Res , !.

cGRE-> X-> Y =>>Res:-
cNOT-> (cLS -> X-> Y) =>>Res,!.

cLS -> X-> Y =>>Res:-
aritb(ls,X,Y,Res) , !.

cGR -> X-> Y =>>Res:-
arith(gr,X,Y,Res) , !.

cADD-> X-> Y =>>Res:-
aritb(add,X,Y,Res) , !.

cSUB-> X-> Y =>>Res:-
aritb(sub,X,Y,Res) , !.

cMULT-> X-> Y =>>Res:-
arith(mult,X,Y,Res) , !.

cDIV --> X -> Y => > Res :-
arith(div ,X,Y,Res), !.

- 29 -

cCONDF -> X-> Y =>>Res:
X ->>Rx,!,
condJail(Rx,Y,Res).

C->X->Y=>>C->X->Y~
arity(C,D),
D >= 3, !.

cCOND-> X-> Y-> Z ==>>Res:
X = > > Resx , ! ,
cboose(Resx,Y,Z,Res).

cMATCH ->nil-> Y -> Z -=>>Res:
matcb(nil,Z,Y,Res).

cMATCH -> num(X)-> Y-> Z =>>Res:
matcb(num(X),Z,Y,Res).

cMATCH-> cbar(X)-> Y -> Z =>>Res:
match(cbar(X),Z, Y ,Res).

cMATCH-> logical(X)-> Y-> Z =>>Res:
matcb(logical(X),Z,Y ,Res).

cMATCH--> X-> Y-> Z =>>Res:
X = > > Redx , ! ,
Z =>> Redz, ! ,
eqnormal(Redx,Redz,Y,rail,Req) , ! ,
Req =>> Res.

cS_p -> X-> Y --> Z =>>Res:
(X-> Z): (Y -> Z) =>> Res .

cB_p -> X-> Y-> Z =>>Res:-
X: (Y-> Z) =>> Res .

cC_p--> X-> Y-> Z =>>Res:
X-> Z: Y -=>> Res.

cS -> X -> Y -> Z => > Res :-
X -> Z-> (Y-> Z)-=>> Res.

cB-> X-> Y-> Z =>>Res:-
X-> (Y-> Z) =>> Res.

cC-> X-> Y-> Z =>>Res:-
X-> Z-> Y ==>> Res.

C->X->Y->Z=>>C->X->Y->Z~
arity(C,D) ,
D >==- 4, !.

cSl -> W -> X -> Y -> Z =:>>Res:-
W -> (X-> Z)-> (Y-> Z)=>> Res.

cBl -> W -> X -> Y -> Z ==>>Res:-
W -> X-> (Y-> Z) =:>> Res.

- 30 -

cCl -> W-> X-> Y-> Z -=>>Res:
W-> (X-> Z)-> Y =>> Res.

X-> Y-> Z =>>Res:
X-> Y=>> Rxy,
not same(X-> Y,Rxy), ! ,
Rxy -> Z ==>> Res.

X=>> X.

/• The following predicates are used by various combinators
and constitute a "lower level" or the reduction machine,
a sort or microcode

•/

same(X,X).

choose(logical(true),Y,Z,Res) :-
y =>>Res,!.

choose(logical(false),Y,Z,Res) :
z => > Res,!.

choose(X,Y,Z,rail).

match(X,Y,Z,Res) :-
y =>>Ry'! I

eqnormal(X,Ry ,Z,fail,R) , ! ,
R=>>Res,!.

eqnormal(X,Y,T,F,T) :-
equals(X,Y) , !.

eqnormal(X,Y,T,F,F).

equals(num(X),num(X)).
equals(char(X),char(X)).
equals(logical(X),logical(X)).
equals(nil,nil).
equals((A : B),(X : Y)) :

A->> Reda,
X ->> Redx,
equals(Reda,Redx) , ! ,
equals(B,Y).

isJailure((X - > Y)) :-
isJailure(X).

isJailure(fail).

isJunction((X -> Y)) :- isJunction(X).
isJunction(X) :- arity(X,..).

/• The clauses defining arity are used to check whether an
expression may not already be in head normal form • /

arity(cl,l).
arity(cY,l).

arity(cV,l) .
arity(cHD,l).
arity(cTL,l).
arity(cNOT,l).
arity (cFUNCTI ON, l).
arity(cCHAR, l).
arity(cLOGICAL,l).
arity(cNUMBER,l).
arity(cF All,URE,1).
arity(cK,2).
arity(cU,2).
arity(cUJ,2).
arity(cEQ,2).
arity(cNEQ,2).
arity(cAND,2).
arity(cOR,2).
arity(cAPPEND,2).
arity(cCONDF ,2).
arity(cSUB,2).
arity(cADD,2).
arity(cMUL T,2).
arity(cDIV,2).
arity(cGRE,2).
arity(cLSE,2).
arity(cLS,2).
arity(cGR,2).
arity(cS,3).
arity(cC,3).
arity(cB,3).
arity (cS_p,3).
arity(cCOND,3).
arity(cMATCH,3).
arity(cB_p,3).
arity(cC_p,3).
arity(cS,3).
arity(cSl,4).
arity(cBl ,4).
arity(cCl,4).

- 31 -

type_check(Form,logical(true)) :- Form , !.
type_cbeck(Form,logical(Calse)).

cbar(X) :- X a::a:> > char(_).

logical(X) :- X -=> > logical(_).

num(X) :- X =>> num(_).

lailure(X) :- X -=> > Rx , ! , isJailure(Rx).

/• "list" is a pre-defined HASL function •/
list(X) :- id(list) - > X -> > logical(true).

lunction(X) :- X ->>Rx,!, isJunction{Rx).

- 32 -

add{num(X),num(Y),num(Z)) :- Z is X + Y, !.
add(X,Y,fail).

sub(num(X),num(Y),num(Z)) :- Z is X - Y, !.
sub(X,Y ,fail).

mult(num(X),num(Y),num(Z)) :- Z is X • Y, !.
mult(X,Y ,fail).

div(num(X),num(Y),num(Z)) :- Z is X / Y , !.
div(X,Y ,fail).

eq(X,Y) :- X -=:= Y.

gr(num(X),num(Y),logical(true)) :- X > Y , !.
gr(num(X),num(Y),logical(false)) :- !.
gr(X,Y ,fail).

ls(num(X),num(Y),logical(true)) :- X < Y, !.
ls(num(X),num(Y),logical(false)) :- !.
ls(X,Y ,fail).

condJail(X,Y,X) :- not isJailure(X) , !.
condJail(_, Y ,Ry) :- Y = > > Ry.

arith(Operation,X,Y,Res) :-
X =>>Rx,
y =>>Ry'
aritbop(Operation,Rx,Ry ,Res).

arithop(add,X,Y,Z) :
add(X,Y,Z).

aritbop(sub,X,Y,Z) :
sub(X,Y,Z).

arithop(mult,X,Y,Z) :
mult(X,Y,Z).

aritbop(div,X,Y,Z) :
div(X,Y,Z).

arithop(ls,X,Y,Z) :
ls(X,Y,Z).

aritbop(gr ,X, Y ,z) :
gr(X, Y ,Z).

/• reduce to normal form •/

reduce list(nil ,nil).
reducelist(Hd : Tl,Nbd : Ntl) :- write(','),

Hd =>> Redbd, ! ,
Redhd >>> Nbd,
Tl=>> Redtl, ! ,
reducelist(Redtl,Ntl).

reducestring(nil ,nil).
reducestring(char(C),char(C)) :- write(C).

- 33 -

reducestring(Hd : Tl,Nhd : Ntl) :-
Hd =>> Redhd, ! ,
reducestring(Redhd,Nhd),
Tl==>> Redtl, ! ,
reducestring(Redtl,Ntl).

num(X) > > > num(X) :- write(X).

cha.r(X) > > > cha.r(X) :- write('%'), write(X).

logical(X) > > > logical(X) :- write(X).

X > > > tail :- isJailure(X) , write(lail).

nil > > > nil :- write('II').

/• In the next definitions, "string" and "list" are
predefined HASL functions. •/

Hd:TI > > > Nstr :-
id(string)-> (Hd:Tl) =>> logical(true), ! ,
write("") ,
reducestring(Hd:Tl,Nstr) ,
write("").

Hd : Tl > > > Nhd : Ntl :-
id(list) -> (Hd:TI) => > logical(true) , ! ,
,.,.,ite('I') ,
Hd =>> Redbd, I,
Redhd >>> Nhd,
Tl=>> Redtl,
reducelist(Redtl,Ntl) ,
write('I').

Hd : Tl > > > Nhd : Ntl :-
Hd =>> Redhd, I,
Redhd >>> Nhd,
write(':') ,
Tl=>> Redtl,
Redtl > > > Ntl.

X > > > X :- write(X).

t

