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We present a new planar convex bull algorithm with wont case time complexity O(nlogH) 
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terms or input as well as output size. The algorithm relies on a variation of the divide-and
conquer paradigm which we call the "marriage-before-conquest" principle and which appears to be 
interesting in its own right. 
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I. Introduction 
The ,;onv,.x hJill or a finite point set S in the plane is the smallest convex polygon contain

ing the set. The vertices (corners) or this polygon must be points of S. Thus in order to compute 
the convex bull of a set S it is necessary to find tho!!e points of S which are vertices of the hull. 
For the purposes or constructing upper bounds we define the conux ),uLIJ problem, a., the problem 
or constructing the ordered sequence of point:: of S which constitute the sequenc~ of vertices 
around the hull. 

The convex hull problem was one of the first problems in the 8eld or computational 
geometry to have been studied from the point of view of computational complexity . In fact, 
efficient algorithmic solutions were proposed even before the term "computational geometry" wa.s 
coined. This, along with its very extensive analysis in recent years, re8ects both the theoretical 
and practical importance of the problem. 

or the convex hull algorithms proposed so far several have O ( n logn) wont case time 
bounds [4.8,14.15.171, where n is the size or the input point set. Shamos 1171 even argued that 
O ( n log n) time bound is worst c3!e optimal. He observed that a set S ol n real numbers could be 
sorted by finding the convex hull of the planar set S' - { (z ,z2) I z E S }. But sorting, or 
cour.ie, ba.<3 an O(nlogn) lower bound on a wide range of computatioo:u model5. Yao 1191 and on 
weaker computational models Avis l2J, van Emde Bou 171, and Preparata and Hong 15 proved 
the 0( n logn) bound for a less demanding version of the convex hull problem: just the vertices or 
the convex bull are to be identified, irrespective of their sequence. 

In contra.st to the results above, it is interesting to observe that algorithms exist which solve 
the planar convex hull problem in O(nH) time, where H is the number of vertices found ta be on 
the bu II (6,9j. For small II, these algorithms seem to be superior to the 0( n logu) methods. 
(This, of course, doe! not contradict the previously cited lower bound results, as H could be a.s 
large 3.9 n ). It is notable, however, that aU of the lower bound arguments mentioned above are 
insen!itive to H in that they assume that some fixed fraction of the data points are nrtices or the 
convex hull. 

In this paper we present a convex hull algorithm witb worst case time complexity 
0 ( n logH ). Thus its running time is not only sensitive to both n and H, but it is aoo worst case 
optimal in the traditional sense when the running time is measured a.s a runction of n only. How
ever, we abo show that our algorithm is asymptotically wont ca.se optimal even ii the complexity 
or the problem is mea.sured 3S a function of both n and H. 

Our algorithm is based oa a variation of the divide-and-conquer paradigm that appears to 
be interesting in its own right. Traditional divide-and-conquer algorithms adhere to the roUow
ing strategy: First break the problem into subproblems (divide), theo recursively M>lve the sub
problems (conquer), and 8nally combine the subsolutiou to form the global M>lution ( marri ). 
Our algorithm reverses the last two steps. Alter dividing the problem it 8rst determines bow the 
solutions or the subproblems will combine (without actually computing them!) and then proceeds 
to !olve the subproblems recursively. We thus call this approach the "marriage-before-conquest" 
principle. Its advantage lies in the fact that it allows to remove parts of the subproblems that 
upon merging (or marrying) turn out to be redundant. Thus it reduces the sizes of the subprob
lems that are to be solved recursively. We have recently been able to apply the marriage-berore
conquest principle also successfully to the maximal Tector problem llOj. It remains to be seen 
whether this principle has other applicatiou. 

Section 2 and 3 of this paper describe our new algorithm. In section 4 we show how our 
algorithm can be randomized, and section 5 deab with the lower bound upects of the convex bull 
problem. Throughout the paper, unless stated otherwise, we deal with sets of points in the plane. 
For a point p, z(p) and 11(p) denote its standard cartesiaa coordinates. We will feel rree to ase 
loose but descriptive geometric terminology such u •-.enical line", • a point lies above a line", 
etc. 



II. The Main Algorithm 
In this section we show how the "marriage-betore-eonquest" principle can be used for ao 

improved convtx bull algorithm. We construct the convex bull in two pieces, the up~r hull and 
the lower b1ill (see Figure 2.1). It should be clear that it the two chains forming the upper and 
lower bull are given, they can be concatenated in constant time (at. most two verticaJ edges may 
need to be inserted) to yield the sequence of vertices around the bull. Aho observe that an algo
rithm for constructing the upper bull could ea.,ily be modified to construct the lower bull also. 
Therefore we concentrate at firs t on constructing an algorithm for finding the se11uence of vertice, 
on Lhe upper hull . 

I 
Figure 2.1 

-· 
upper bull 
lo\ver hull 
Tert.ical edge 

Exploiting the "marriage-before-conquest" principle, our convex bull algorithm should do 
something like the foUowing : First find a verticaJ line that divides the given point set in two 
approximately e,quaJ sized parts. Next determine the ,.bridge" crossing this line, i.e. the edge or 
the upper hull that intersects this line. Eliminate the points that lie underneath the bridge, and 
finally apply the algorithm re<:ursively to the two se~ of the remaining points on the left and 
right side of the vertical line. 

The only ditricuJt part in such an algorithm appears to be the comtraction of the bridge. 
We show 3 linear time solution to this problem in Section 3. 

Tbe following PIDGIN-ALGOL routine presents our convex hull algorithm in some detail. 
It takes as input a set S - (p 1, ••• , "•) of ,a points in the plane and prints the sequence or 
indice, of the vertice5 oo the upper bull of S . It use, the function BRIDGE speeifted in sedion 3, 
which given :i set S C R2 and r& reaJ a returns the indices of the tert and right endpoint or the 

edge or the upper bull that intersects the vertical line L - {(z,JI )I z-a }.1 

Algorithm 2.1: 

Procedure UPPER-HULL(S) 

1. Initialization 
Let min and maz be the indices of two points in S that form the left and right endpoint of 
tbe up~r buU or S respectively, i.e. 

z(p ..... ) S z(p;) S z(p-) and 
r(, •• ) ~ u(p;) ii z(p,...) - z(pi), 
r(P111u) ~ v(P;) ii z(p-) - z(pi) for i-1, ... , n. 

U min==maz then print min and stop. 

Let T :- {, ... ,, .... } u {,es I z(p ... )<z(p)<z(p,nu) }. 

2. CONNECT(min,maz,T) 
where CONNECT(k,m,S) is 

11n the eue tba& two .else- of tbe 1pper ball, (11 ,,, ) aad (1, •'• }, ia&ened L, i.e nna ,, Ii• oa L, BRIDGE will 
retana U ,i ). 

•I• 



begin 

2.1 Find a reaJ number a such that 
z(p;) s Cl for r Is I /21 points in s and 

z(p;) > ca ror l IS I /2j points in S. 
2.2 Find ~he "bridge" over the vertical line L - {(z,r)I : - 11 }, i.e 

(i,i) :== BRIDGE(S,o). 

::? .32 Let S,,,r := {Pd U {p E SI z(p )<z(p. )}. 
Let s"'" :- {p,} u {p e s I z(p )>:(pj )}, 

2.4 U i=i then print(i) 
else CONNECT(i ,i ,S ,.11). 

Ir j - m then prin t(i ) 
else CONNECT(j,m,Sn,.,). 

end. 

Theorem 2.ls 
The above algorithm correetly determines the sequence of vertices on the upper hull or S in 
0 ( n) space and O ( n lor.H.) time, where H. is tbe number or edges on the upper hull of S. 

Proof:· 
U the upper huU or S consists ii only one vertex (i.e. all of S lies on one vertical line) then the 
algorithm is trivially correct and reports that vertex ill linear time in step 1. 
Otherwise the correctness or the algorithm follows from an inductive argument. A call 
CONNECT(i,m,S) discovers a previously unknown edge (p;,P;) on the upper bull. Ir p; turns 
out to be the leftmost vertex of the upper bull its illdex will be printed, otherwise the recursive 
call CONNECT(i ,i ,S ,,,r) will cause the sequence of vertices of the upper bull from Pt up to p; to 
be printed. Similarly, it Pi is the rightmost vertex of the upper bull its index will be printed, oth
erwise the call CONNECT(j, m ,S ,,,.,) will cause the portion of the upper buU from p; up to , .. to 
be printed. 

For the complexity bounds first observe that step 1 of the algorithm can euily be implemented to 
run in linear time. Thus it remains to show that the procedure CONNECT takes no more than 
O(nlogH.) time. Note that using the median 6ndiag algorithm or Blum et al. [l, p.901 and using 
our bridge finding algorithm or section 3 steps 2.1 to 2.3 can be imple:nented to , un in linear 
time. Th us the running time or CONNECT ii determined by / (I S l,H,) where the function / 
must satisfy the recurrence relation 

/ ( n ,la) < ( en n n 
en + max { /(-

2 
,la1) + /(-

2 
,la,)} ii A>2, .,+ •,-• 

where e is some positive constant and n ~ la > 1. 

We claim that /(n,la)- O(nlogla). To prove this we show that /(n,A)- enlogla satisfies the 
above recurrence relation. This is trivially true for tbe bue cue la -=2. For la> 2 note that 

n n 
/ ( n ,la) S en + max { c-logh1 + c-

2 
logia,} .,+ •.-• 2 

1 S ,.,, eo11taia1 ,, ud th• poi au or S &o Ille let\ ot Ike nnieal Ra, lkn1a1Ja 1 1 • M. YeQ•"• tnm McGill UaiTenit1 
Jau poi11ted out tba& S ,.,, eoald be resiri~ to coat&ia '• ,,, ud all lb• poiall ot S aboTe tla, Araicb& liae tlaroacb '• 
ud ,,. s,.,., eu be renrict.ecl 111aloeo111ly. 
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" Using elementary calculus it is ea.,y to verily that the maximum is realized when h1-h,-=-. 
2 

Thus 

/(n,A) S en+ ~ enlo1(~ r -en+ enlo1(;) 

=- en + en logh - en - en logh. 

The linear space bound is triviaJ. 
Q.E.D. 

Corollaryt 
The convex bull o( a set or n points in the plane can be round in time O(nlogH) usbg 
0 ( n) space, where H is the number or vertices round to be on the hull. 

_,_ 
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m. Finding the Brldp 

We a.re given a set S ol ,, pointa in the plane and a vertical line L wbicb has pointa or ,r; to 
its left and right. We a.re to 8nd the edge of the upper bull of S that intersect! L. U two edges 
inter!ect L, i.e. L contains a vertex v or the upper bull, we want to identify the edge (or which v 
is the left endpoint. Call this edge the bJ'.idu and its endpoints .b.ridu J2S2i1m (see Figure 3.1). 
Let us define a supportin1 lilu:. or S to be a noc-vertical straight line which contains at least one 
point or S but bas no points or S above it. Obviously the bridge must be contained in some sup
porting line. Call this line b and let •• be the slope of b. 

-?·-- -. · ~bridge --0 - 1--1:__~-- ------ ··- - . 
f • , -.....,,_ 

,L 

Fi1ure 3.1 

0 

For our purposes, 6nding the brid&e means identifying the two bridge points. On~ possible 
way of achieving this i., to successively eliminate points from S u candidates [or bridge points. 
For this purpose we pa..i.r up the points of S into ln /2j couples. The following two lemmas show 
how forming pairs or points facilitates the elimination or candidates for bridge points. 

Lemma 3.11 
Let p, q be 3 pair or points or S. 

Ir z(p)-=:(q) and r(p)>r(q) then I/ cannot be a bridge point. 

Proof : trivia.I. 

Lemma 3.2z 
Let p,q be a pair of points of S with z(p)<z(q), and let,,. be the slope of the straight line I, 
through p and q. 

(1) 

(2) 

U ,,. > '• then p cannot be a bridge point. 

U ,,. < '• then q cannot be a bridge point. 

Proof: (for case (l); the proof (or case (2) is symmetrical) 
Assume p was a bridge point. By virtue of '" > •• and z(p }< z( I/), I/ would lie above the bridge 
line 6 which would contradict the fact that 6 is a supporting line of S (see Figure 3.2). 

L ' I 

Figure 3.2 

-•-

QE.D. 



These two lemmas can be used to eliminate a bridgepoint candidate from every one or the 
l n / 2 J p:1irs. However, it is not clear at first how a condition like ,,. > '• can be tested without 
explicitly knowing '•, the slope of 6, and hence knowing the bridge, which a.Cter all is the entity 
that we want to compute. The solution to this problem is suue,ted by the following lemma: 

Lemma 3.31 
Let h be the supporting line of S with slope ,, . 

(I) s, < s1 ifl' h contains only points of S that are strictly to the right ot L. 
(2) s.-~. iff b contains a point or S that is strictly to the right of L and a point or S that is to 

the left or or OD L. 

(3) ,, > '• i.lf h contains only points or S that are to the left of or on L . 
Proof: trivial. 

Thus to test whether s,. > ,1 it suffices to ftnd the supporting line Ii o( S with slope ,,. and 
to determine whether h contains points or S to the right or to the left or L. or course, finding 
this supporting line h require! Ii.near time which is clearly too expensive to be done for every one 
or the l.1/2J pairs individually . However, this problem can be overcome by judiciously choosing a 
slope , 11 with the property that ii ,, > '• then '•• > ,, (and hence ,,. > ,1) for a large number or 
pairs p ,q and, if a11 <a1 then,,.<,, (and hence '"<•i) for a large number or pain p,q. A 
natural choice ror an ,, with this property is the median or the slopes ot the lines defined by the 
l n /2J pairs of points. · 

Now we are rudy to give a more detailed PIDGIN-ALGOL description of our bridge finding 
algorithm . Tbe runctioo BRIDGE(S,a) take:, as parameters a set S - {p 1, ... ,p.} of n>l points 
and a real number a repre,enting the vertical ·line L - {(z ,i) I z=a }. It is a.,sumed that the 
point p,,.,. in S with minimum .z-coordinate is unique and that .z(p.;. )<a. Similarly, the point 
Pmu in S with maximum z-coordinate is assumed to be unique and with z(p,,.u )>a. 
BRIDGE( S, a) returns as its value a pair ( i ,j), where Pi and pi are the lett and right bridge point 
respectively. 

Algorithm 3.1 

Function BRIDGE ( S, a) 

0. CA ND/DA TES :as f 
1. Ir 1S1==2 then return( (i,j) ), where S {p;,P;} and z(p;)<z(p;). 

2. Choose l IS I /2j disjoint sets or size 2 rrom S . 
Ir a point of S remains , then insert it into CANDIDATES. 
Arrange each subset to be an ordered pair (P;,P;), sacb th:lt z(p;)~z(pi). 
Let PAIRS be tbe set of these ordered pairs. 

3. Detcrmi.ne the slopes of t.be straight lines defined by tbe pairs. In case the slope doe!! not 
exist for some pair, apply Lemma 3.1, i.e: 
For all (p,,p ·) ia PAIRS do 

ii z(p1)=::(p1) then delete (p;,P(·) rrom PAIRS 
ii "(pi)> 11 P;) then insert P; into CANDIDATES 

else insert P; into CA.ND/DATES 
"(P; )-"(Pj) 

else let k(p;,P;) :- z(p; )-z(p;). 

4. Determine K, the median or { k(p;,P;) I (p,,,,) E PAIRS }. 

5. Let SMALL :- { (Pi,P;) E PAIRS I k(p,,pi) < K }. 
~t EQUAL :- { (Pi,P;) E PAIRS I k(pi,PJ) - K }. 
~t LARGE : { (p;,P;) E PAIRS I k(p,,p;) > K }. 

_,_ 



6. Find the set ol points of S which lie on the supporting line /a with slope K, i.e.: 

Let MAX be the set or points PiES, s.t. u(p1}-K-:(pd is maximum. 
Let Pt be the point in MAX with minimum z~oordinate. 
Let p,,. be the point in MAX with maximum z~oordinate. 

7. Determine ii la contains the bridge, i.e.: 
if z(pt) :Sa and z(p 111 ) > a then return( (t,m) ). 

8. h contains only points to the left of or OD L: 
it z(p,,.) S a then 

for all (pi,P,) E LARGE U EQUAL i.Dsert P; into CANDIDATES. 
tor all (pi,P;) E SMALL insert Pi and P; into CANDIDATES. 

9. h contains only points to the right or L : 
it z(pt) > o then 

tor all (Pi,Pi) E SMALL U EQUAL insert Pi into CANDIDATES. 
ror all (pi,P,) E LARGE insert Pi and Pi iDto CANDIDATES. 

10. return( BRIDGE(CANDIDATES,a) ). 

Theorem a.11 
The (unction BRIDGE outlined above conectly determines the left and right bridge point 
in O ( n) worst case time and space. 

Proof: 
The algorithm is trivially correct ii S contains only two points. ~ long as S contains more than 
two points, BRIDGE either 8nds the bridge in step 7 or discards redundant points or S applying 
the rule! or Lemma 3.1 and 3.2 (steps 3,8,9) and calls itsell recursively with a smaller pointset. 
Using the linear time median algorithm or Blum et al. 11, p.991, the body or BRIDGE without the 
recursive call can be executed in linear time and space. Furthermore, at least one quarter or the 
points or S are eliminated and not contained in CANDIDATES. Thus the worst case time and 
space requirement.! for the algorithm are bounded by 

f(n) -= 3n 
{

0(1) n-2 

/ ( 7) + 0 ( n ) n > 2. 

But it is well known that such a recursive function is O(n) ll,p.64j. 
Q.E.D. 

At this point we want to mention that oar bridge 8nding algorithm was inspired by the 
linear time two variable linear programming algorithms of M. Dyer ISi and N. Megiddo 1131. A 
closer look even shows that the bridge problem can be formulated as a linear programming prob
lem. However, for the sake or simplicity and completeness it seems worthwhile to spell out th~ 
bridge finding algorithm explicitly. 

. ,, . 



IV. The ~pected TJme Cue 
The divide-and-<:onquer algorithms in tbe two preceding sections are not terribly compl_i. 

cated . At first sight it even sttms ~sible to actually implement the,e algorithms in some high 
lnel programming language in an hour 's time, or 90, However, one quickly discovers that the 
major obstacle to doing so is the median find algorithm. Thus quite naturally the que,tion arises 
whether it is possible to do without it. 

The median find algorithm is used in our algorithms to find a vertical line that divides a 
giv en point set evenly . What happens ii we follow the example of Quick.sort and choose a 
separating line at randomr Ample experimental re,ults have shown that Quicksort i! one or the 
r3.!test !orting algorithms and these results have been supported by a careful theoretical ·analysis 
o( the algorithm [ 11 , 16] . A! it turns out the method of choosing a separator at random can also 
b~ successfully applied to our algorithms, thus changing the worst case time complexity to O ( n 2) 

but retaining the O ( n logH) expected ca.w time complexity. 

Theorem t.11 
Ir step 2.1 in Algorithm 2.1 is replaced by 

"2.1 Let a - z(p; ), where p; is randomly cbO!en from S-{p,,.} such that the choice or every 
point in S-{p,,.} is equally likely." 

then the :1:odified algorithm bas O ( n logH.) expected case time complexity. 

Proof: 
The expeeted cue running time of the modified algorithm can be bounded by the function I that 
must satisfy the following recurrence relation: 

g(n,h)S{
6
" 1 

6n + -
1 

E max { 1(i,A1) + 1(n-i,A,)} if n~i\>2, 
n- l~i<•A,+ A,•A 

where 6 is some positive constant. 

We claim that g(n,h) - O(nlogA), i.e. there is positive real coutant e, such that for all 
n ~h >2, g(n,A) S cnlogh 3

• We prove our claim by induction. 

The claim ill trivially true ror a.1l n if A-2 and for all n S 5 otherwise. Now we want to show tbe 
claim ror some n > 5 and la < n on the usumption that , ( n' ,A') S en I logh' for all n' < n a.ad 
la 1 < la • By definition or g and our inductive assumption we thus have 

g(n ,h) S 6n + _Ll E max { eilogA1 + e(n-i)logA, }. 
n- I~ i < .. ,+ A, •I 

Using elementary calculus it is easy to show that for every i the maximum is realized when 

h1 - i.!. and A, -= (n - i).!.. Therefore 
n n 

g(n ,h) S 6n + _!_I E (ilogi.!. + (n-i)los(n-i)~) 
n- l~i<• n 

_, 6n + C ~ ilogi.!. 
::?( n -1) 1 ~"t.c: • n 

11a thi, proor •• 11N w.J.o~. U11 aai11nJ lopriihm. 

-•-



b e I h ~ . e ~ ·1 . == n + og- ~ 1 + ., ~ 1 oga. 
::?(n-1) n lSi< ■ .. (n-1) lSi< ■ 

As E ilogi S .ln21ogn - .ln2 (see ll,p.941) and E i =-= .ln(n-1) we have 
lS•<• 2 4 lSi<• 2 

e e c n e n2 
g(n,h) S bn + -nlogh - -nlogn + --

1 
nlogn - -

8
-

4 4 4 n- n-1 

c e loir n e < bn - -n + -n~ + -nlogh. 
- 8 4 n-1 4 

As ~ < .l for all integers n >5, there exists a real constant c >O such that 
rz - 1 2 

bn - .£n + !.n~ < 0 tor all n >5 and hence 
8 4 n-1 

C 
g(n,h) S 4nlogh<cnlogh. 

Q.E.D. 

The median find algorithm is used on one more occasion in our algorithms: in the bridge 
findiDg procedure. Again we can dispense with the median Bnd algorithm and use random choice 
instead. It turns out that in that case the worst case complexity or our bridge finding procedure 
is O ( n 2), however the expected case running rime is still O ( n ). 

Theorem 4.31 If step 4 or Algorithm 3.1 is replaced by 

"4. Randomly choose an element (p;,P,) rrom PAIRS such that the choice or every element is 
equally libly, and let K :- k(p;,p1)," 

then the modified algorithm baa exl)f'Cted case time complexity O ( n ). 

Proof: 
The expected case running time or the modified algorithm is pessimistically described by the (unc
tion /, where for some positive constant 6 

/(n) < ( bn 4 4 
bn + - E /(n-i) + - E /(n-(i-:)) ii n>2. 

n lSi< ■ /4 n •/4SiS ■ /2 

ii nS2 

It is an e3!y exercise in induction to show that / ( n) - 0 ( n ). 
Q.E.D. 

-•-



V. LoweJ' Bound■ 

The result:, of this !~r.tion demonstrate that our O ( n logH) upper bound for the convex hull 
problem is the best possible on a quite general model or computation. Specifically, we prove an 
n( n logH) lower bound ror this problem on d-tb order algebraic deci.,ion tr~, for any fixed d. 

There exist at lea.st rour variants of the convex hu.U problem cbaracteri1ed by more or le!s 
stringent conditions on the form of the output. Let S - {p 1, .• • , p.} ~ a set of pomts in R2, 

and let el't ( S) denote the set of vertices of the convex bull of S . The cpnvex luill :wuen,e IW2.b::, 
lem a5ks for the elements of e:t ( S) in consecutive cyclic order. The convex JwJl m problem as.ks 
for the elements of e:.t(S} in arbitrary order. The s:anxex lwJ.l mnltj:,et problem ll!ks ror a listing, 
in arbitrary order, or element! or S that coincide with elements of e:-t ( S ). (This differ, rrom the 
set problem only if S is a multiset ). Finally, the convex Jwll w.r problem a.ab for the cardinality 
or ezt(S) (i.e. H). 

It should be clear that the aJgorithm outlined in section 3 can be adapted to !Olve a.lJ or 
tbeee problem varia.Dts in worst ca.,e time O(nlogH). Furthermore, since the sequence variant is 
at le3.!t as bard a., the set variant, which in turn is at lea.st as bard aa the size variant, it will 
suffice to demonstrate a lower bound on the convex hull size problem, preferably using input 
point sets with no multiplicities. ID fact we establish a lower bound on the even weaker CPDYCI 
h.ull :ill verifiqtjon problem: given S and H, confirm that I e:t(S) I - H. We show that any 
d-tb order algebraic deci!ion tree algorithm ror this veriflcation problem must take 0( n logH) 
steps in the wor.it case , even if it can be assumed that all input points are di5tinct. 

We follow Steele and Yao 1181 and Ben-Or 131 in adopting al~ebraic decision trees as our 
model or computation. A .d::J.h Q1du alschrajc dci:j:,jon it= alaorithm (hereafter a~ algorithm) 
T ro, te!ting membenhip in a set W C a• is a rooted tree whose internal nodes are labelled by 
multivariate polynomials of degree at most d a11d whose leaves are Labelled either YES or NO. 
Each internal node bas out-degree three; the edges are labelled <,-, and > reffecting possible 
outcomes on comparison with 0. Every input. 7 E a• determines a unique root to leaf path in T 
in the obvious way . We say that T decides membership in lV it, ror every 1 E R •, 1 leads to a 
YES leaf or T if and only if ? E W . 

Yao IHll establishes an n( n logn) worst cue lower bound ror the convex bull set problem oo 
algebraic decision trees of order two. The result is generalized by Ben-Or !31, who demonstrate:, 
the same !'l(n logn) lower bound ro, the convex hull size problem on algebraic decision t.rees or 
any fixed order d. Ben-Or's result is just. one or a number or application, of the following general 
theorem concerning trtt algorithms. 

Theorem 5.11 j3, Theorem SJ 
Let W C R • be any set and let T ~ any d-th order algebraic decision tree that solves the 
membership problem for lV. 
lf W bas N disjoint connected components, then T mast have height (and hence worst case 
complexity) n(logN-n ). 

We use the following generalization of the element di!tinctness problem j3J to establish our 
lower bound. The multj:,ct w xerifts;a.tion problem ub to confirm, given a multi.set 
Z - { z i, .•• , z. } C R and an integer k, thaL Z has ~ distinct elements. 

CorollU')' 5.11 
The muJtiset size verification problem requires O(nlogk) steps in the worst case, with any 
d-th order decision tree algorithm. 

• 10 • 



Proof: 

It suffic .. to oboerve that the ,et M, - ( (z1, ••• , ,, ) E R' I I {z1, ••• , z,) 1-k) hu at Ieut 

maz { p-t ,k!} di,joint connected components. 
Q.E.D. 

We J.re now prepared to demonstrate our lower bound. 

Theorem 5.2: 
The convex hull size verification problem requires O(nlogH) steps, in the worst case, with 
any d-th order decision tree algorithm. 

Proof: 
We reduce the multiset size verification problem to the convex bull size verification problem in 
the following obvious way: 

Let Z -= {zi, ... , z.} and k be an instance or the multiset size veri.Bcation problem. :>efine 
S-= {p 1, ••. ,Pa} C R 2 by Pi-(z;,z?). Then the set ezt(S) baa exactly t elements if and only 
it Z b:i.s ex~tly c distinct elements. 

Q.E.D. 

The proof or the above theorem is somewhat disappointing in that the convex bull problem 
formed in the reduction ha! multiplicities (in fact all of its points) on the convex bull. This 
straightforward reduction leaves open the possibility that there exists an algorithm solving the 
convex hull size verification problem (or any of the other variants) in o(nlogH) steps for point 
sets th:it are known a priori to contain no duplicates. Fortunately, we can strengthen our lower 
bound to include tree algorithms ba!ed on this rather dubious aasumption as well. We will show 
that a convex bull algorithm that is only gua.rantueed to be correct when the input points are dis
tinct could be used to solve a certain perturbed convex hull problem without input restrictions. 
An algorithm for this perturbed problem in turn yielda a solution tor the multiset size problem, 

For the sake or notation let (z,i) be shorthand tor (.1 1, •.. , ~.111, ••• , 11.) and let~ and V 
1 • l • 

denote - E z; and - E J/j respectively. Define 
n i-1 n i-1 

cH = ( (:t,V) ea•• I 

PH - ( (:f ,V) e a" I 

I .. ,(((,,,v, )I IS i Sn} ) I - H) , aad 

I ezt( {( '%;+ i(z;-!')E, II;+ i(11;-J)E) 11:Si:Sn} )I - H). 
tor all e>O sufficiently small 

Note that testing membership in CH is the convex size nriJlcation problem. The intuitive mean
ing for PH is the following: PH encodes the point sets {(z;,J;) E R 2 l 1:Si:Sn} with the property 
that ii each point p;-( zi ,lld moved radially away from 1-(:r,J) for sufficiently small but posi
tive time E at speed proportional to the index i a.ad proportional to the dis ta.ace from Pi to p, 
then the convex bull or the new point set would have H extreme points. Observe therefore, that 
if (z ,i) E CH and the encoded 2-dimensional point set bu no point on a convex hull edge, then 
('i,j') E PH, 

-11-



The following iemma shows that the convex bull size verification problem with this dubious 
distinctness restriction is no easier to solve than the general membership problem ror PH. 

Lemma 5.1: 
Let T be any d-th order decision tree algorithm ror deciding membership in CH, assuming 
that all or the points (zi ,v;), 1 Si Sn, are distinct. · 
Then there exists a d-th order decil!ion tree T', with heigbt(T') S (d+ l)height(T), that 
decides membership in P8 without the distinctness assumption. 

Proof: 
'.\ e define a transformation on every subtree or T. The leaves of T are not changed (i.e. they 
"tain their YES-1 ·o labels). Consider an arbitrary subtree rooted at a vertex 11; with label 
/J('i,V) (see Figu" 5.1). 

Figure 5.1 

Define the m ult iv ariate polynomials / ;,o ,/ ,,1 , .•• , / ;,, by the equality 

!)(z' ,i') - /1.o(z,i) + ,,.1(?,i)f + . ' ' + /;,,(z,7/)f', 
where 

z' -= ( z1+ (.:1-?')E , z:+ 2(zr!')E , ... , z.+ n(z.-!')E ) , and 

i' - ( vi+ (v1-J)E , v2+ 2(vrJ)E , ... , v. + n(N.-J)E ) . 

Clearly, the degree or each / ;,i is at most d. 

Let T 1 ' be the transformed versions of Ti, i-=1,2,3. The transformed version ol the run subtree 
is given by Figure 5.2. 

,,,o 

-
I 
i /,,1 

~\ /\ - /_T, /.!..Ll I 1 1 

> 

Figure 5.2 
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A !traightforward inductive argument shows that. height(T') S (d+ l}height(T). The correctness 
or T' follow! from the following observations. 

i) Ir f>O is chosen to be sufficiendy small, then the set 
{ ( z;+ i(z;-?}t:, JI;+ i(u;-U)t:), l<iSn } baa distinct elements. 

ii) The decision tree T' with input (z,i) agren with the decision tree T with input (i"' ,i' ), 
provided t:>O is chosen to be sufficiently small. 

Thus T' decides membership in PH without assuming that all of the pairs (z; ,JI;) are distinct. 
Q.E.D. 

The next lemma shows that deciding membership for PH is no easier than the multi.set size 
verification problem. 

Lemma 5.2: 
The multi.set size verific:ltion problem reduces to the membership problem for PH. 

Proof: 
It suffices to no~ that as no three distinct points on a parabola can be collinear 

(z1, ... ,z.) E MH • (z1,,,, ,z.,zl,,,, ,z;) E PH. 

Q.E.D. 

The preceding corollary and lemmas immediately yield the final theorem: 

Theorem 5.3: 
The convex hull size verification problem requires !l(nlogH) steps, · in the worst case, with 
any d-th order decision tree algorithm, even ii the input. points may be assumed to be des
tinct. 
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VI. Conclu1lon1 

We have introduced a variation ol the familiar divide-and-conquer paradigm and have illus
trated this approach in the development or a new algorithm ror the planar convex huil problem. 
Our algorithm unifies and improves the best wont case complexity bounds known Cor this pro~ 
)ems in terms or the size or input and output (i.e. number of data points and number or bull ver
tices). In (act , we demonstrate that the algorithm is worst case optimal in terms of these two 
par3meters in a very general model or computation. 

In a companion paper (IOI we apply the same strategy to the maximal vector problem. We 
are 3ble to demonetrate an O ( n log V) upper bound for the 2-dimensional maximal vector problem 
and an O ( n (log V )"-2

) upper bound for the d-dimensiona.l maximal vector problem, ror d ~ 3. 
These bounds tighten the best bounds known for the maxima.I vector problem. It remains to be 
:,een whether our "marriage-before-conquest" approach can be applied successfully to other pro~ 
lems. 

The results or this paper suggest other more specific open problems u well. In particular, it 
is natural to ask whether our results on planar convex hulls (like those for the maximal vector 
problem) extend to higher dimensions. For example, does there exist an O(nlogH) algorithm tor 
the 3-dimensional convex hull problem! 

Another practical open question is whether, like the algorithm of Bentley and Shamos l4J, 
our convex hull algorithm modified as suggested in rootnote 2 ha., linear expeeted time complexity 
for reasonable input point distributions. We suspeet that this is the ease. 
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