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Abstract 

The separation of two convex polyhedra is defined to be 
the minimum distance from a point (not necessarily an extreme 
point) of one to a point of the other. We present a linear 
algorithm for constructing a pair of points that realize the 
separation of two convex polyhedra in three dimensions. Our 
algorithm is based on a simple hierarchical description of 
polyhedra that is of interest in its own right. 

Our result provides a linear algorithm for detecting the 
intersection of convex polyhedra. Separation and intersectipn 
detection algorithms have applications in clustering, the 
intersection of half-spaces, linear programming, and robotics. 
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1. Introduction 

Let P and Q denote two convex polyhedra in Rk (real 

k-dimensional space). The separation of P and Q, denoted o(P,Q), 

is given by 

o(P,Q) = min{ Ip-qi lpe:P and q e: o}/l/ 

A pair of points (p,q) where pe:P and qe:Q is said to realize the 

separation of P and Q if Ip-qi = cr(P,Q). It is clear that the 

separation of convex polyhedra is realized only by facial points 

(i.e. points on the surface) of P and Q, but it is not always 

realized by the extreme points (or vertices) of P and Q. Even in 

three dimensions there exist convex polyhedra whose separation is 

uniquely realized by a pair of non-extreme points. 

The problem of determining the separation of two convex 

polyhedra in Rk (hereafter the k-d separation problem) is a clear 

generalization of the problem of detecting the intersection of 

two convex polyhedra (the k-d intersection detection problem). 

The latter asks only for a witness - a point in common if the 

intersection is non-empty, or a separating hyperplane otherwise. 

This, of course, is a very special case of the problem of 

explicitly constructing the intersection (the k-d intersection 

construction problem). Intuitively, a pair of points that 

realizes the separation of two polyhedra encodes what could be 

considered the "best" separating hyperplane (i.e. the thickest 
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separating "hyperslab". 

The 2-d intersection construction problem is one of a 

number of geometric problems discussed by Shamos [15). He 

presents an O(n) algorithm for constructing the intersection of 

arbitrary convex n-gons in the plane. Shamos notes that this can 

be used to answer the question of (linear) separability, but he 

does not address the question of finding the separation (or 

"h~st" linear separators). 

Muller and Preparata [11) address the 3-d intersection 

construction problem. Their O(n log n) algorithm has two phases 

both of which are.Jt(n log n) in the worst case. The first phase 

is what we have called 3-d intersection detection. The second 

phase works with a witness to the intersection and proceeds to 

construct the intersection by geometric dualization. Muller and 

Preparata note that their algorithm can be applied to the three 

dimensional linear separability problem. Their construction, 

however, does not lend itself to the determination of the 

(non-zero) separation of two polyhedra. 

We have recently become aware of the work of M. Dyer (5,6) 

on the 3-d intersection detection problem. A new O(n log n) 

algorithm for intersection detection is presented in (5) ~ the 

bound is reduced to O(n) by a subsequent algorithm presented in 

(6]. Dyer, like Muller and Preparata, shows how to minimize the 

"vertical distance" between two given polyhedra. Unfortunately, 

i 
I • 



- 4 -

this provides only the "vertical" separation and hence only an 

upper bound on the true separation. In this paper, we present an 

O(n) algorithm for the 3-d separation problem. An O(n) algorithm 

for the 3-d intersection detection problem/2/ is an immediate 

corollary. 

It is natural to consider the effect of preprocessing on 

intersection detection and related problems. This issue was 

first raised by Shamos [15,16) and was studied in detail by 

Chazelle and Dobkin who present sublinear (in fact, 

polylogarithmic) 2-d and 3-d intersection detection algorithms 

[2]. Dobkin and Kirkpatrick [3] employ a projective technique to 

extend and unify the results of Chazelle and Dobkin [2]. 

Schwartz [14] and more recently Edelsbrunner [7] and Chen and 

Wang [l] have studied the preprocessed version of the separation 

problem in 2-d. In a companion paper [4), we show how the 

hierarchical representation introduced in this paper can be 

employed in this related context, extending and unifying the 

results of [3] and the present paper. (In particular, we present 

an O(log n) solution to the 2-d separation problem and an 

O(log 2n) solution to the 3-d separation problem both of which use 

only O(n) preprocessing.) 

In the next two sections we discuss the representation of 

convex polyhedra in two and three dimensions. In particular, 

Section 3 describes a new hierarchical representation of 

polyhedra, and sets out some of its important properties. Our 
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separation algorithm is developed in Section 4. 

presents a brief summary and discussion. 

Section 5 
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2. Definitions and Representations 

2.1 Basic definitions 

We now set out definitions of polyhedra and some of their 

important properties. See, for example, (8] for a more detailed 

treatment. 

A (convex) polyhedron in Rk is defin~d to be the 

intersection of some finite number of half-spaces in Rk. Bounded 

polyhedra are called polytopes. (A polytope can be defined 

equivalently as the convex hull of a finite point set in Rk). 

The dimension of a polyhedron P, denoted dim~, is the dimension 

of the smallest flat (affine subspace) containing the polyhedron. 

A polyhedron (respectively polytope), Pis called a a-polyhedron 

(respectively d-polytope) if dim P=d. 

then the 

called a hyperplane 

hyperplane H(a,c) defines two closed half-spaces 

H+(a,c) = {x€Rdl<x,a>~c} and H-(a,c) = {x&Rdl<x,a><c}. We say 

that a hyperplane H(a,c) supports a polyhedron P if H(a,c)np ~ ~ 

If H(a,c) is any hyperplane supporting P then 

PnH(a,c) is said to be a face of P. The faces of dimension (dim 

P)-1 are called facets~ those of dimension 1 (respectively 0) are 

called edges (respectively vertices) of P. 
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The 1-skeleton (hereafter simply skeleton) of a polytope P 

is the graph whose vertices (respectively edges) are the vertices 

(respectively edges) of P under the obvious incidence relation. 

Hereafter, we will often not distinguish between P and its 

skeleton referring, for example, to the degree of a vertex v in P 

(denoted deg(v,P)) rather than in the skeleton of P. 

We find it convenient to refer to polytopes with fewer 

than some fixed constant number of vertices as elementary 

polytopes. For the purposes of this paper the fixed constant can 

be taken as 11 (see lemma 3.1). 

The extreme points of a polytope P constitute the smallest 

set of points whose convex hull is P. A d-polytope which is the 

convex hull of precisely d+l points is called a a-simplex (a 

2-simplex is a triangle and a 3-simplex is a tetrahedron). If B 

is a (d-1)-polytope and c is a point (not on the (d-1)-flat of B) 

then the convex hull of Bu{c} is called a a-pyramid with basis B 

and apex c. 

2.2 Initial Representations of 2- and 3-polytopes 

Convex polytopes admit numerous different representations 

not all of which are necessarily equivalent in the sense that 

they can be transformed from one to the other in time linear in 

the size of the representation. (For example, the extreme points 

uniquely characterize a polytope but super-linear time may be 
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required to construct the full facial graph/4/ of a polytope from 

its extreme points. In fact, in dimensions higher than three the 

facial graph may demand a non-linear description [8]). Thus, in 

discussing algorithms, especially linear algorithms, for the 

manipulation of polytopes, we are obliged to present and defend a 

choice of a standard (initial) representation. 

The standard representation for convex polygons in 2-space 

seems to be so obvious as to hardly deserve mention. An ordered 

ring of vertices (or edges) is clearly linear in the number of 

vertices and is the usual endproduct of conventional convex hulls 

algorithms. The efficient dynamic maintenance of convex hulls 

(12] seems to require additional structure, tailored to this 

particular application. 

In three dimensions, one exploits the fact that the 

surface of a 3-polytope is topologically equivalent to a bounded 

planar subdivision. Though many different choices of 

representation are possible, the most natural choices, including 

those produced by the most efficient convex hull algorithms (13], 

are all linearly equivalent. Muller and Preparata (11] make 

precisely this point in proposing their doubly connected edge 

list, DCEL, representation for planar subdivisions (equivalently, 

3-polyhedra). A key assumption in the DCEL and related 

representations is that the adjacency or incidence information is 

ordered - that is each vertex has associated with it an ordered 

(say clockwise) list of incident edges and each face has 
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associated with it an ordered list of bounding edges. We will 

adopt the DCEL representation as the standard initial 

representation for 3-polytopes. However, since the conversion to 

an alternate representation is central to our algorithm, we 

should note that the only assumption that we make of our initial 

representation R is that it be possible to convert R into a 

representation of a triangulation (i.e. triangular refinement} of 

the associated planar subdivision, in linear time. 

having an ordered list of boundary edges for each 

Obviously, 

facet makes 

this possible, since each facet (a convex polygon} can be easily 

triangulated in linear time. 

The representation of (potentially unbounded} 3-polyhedra 

presents only minor technical difficulties. 

the non-uniformity imposed by the presence of · 

The problem lies in 

both bounded and 

unbounded faces. It is possible to enforce uniformity by either 

taking a suitable projection (e.g. to a sphere} or by introducing 

pseudo-vertices at infinity. These techniques serve only to 

cloud the essential ideas in both our representations and 

algorithm. Hence, we will proceed under the general assumption 

that the polyhedra that we encounter are bounded, reserving only 

the occasional remark for the most general case. 
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3. Hierarchical Representations - Definition, Construction and 

Properties 

Our algorithm is based on a hierarchical representation of 

polytopes. Informally, our hierarchical representation of a 

polytope P may be viewed as a finite sequence of progressively 

finer polytopal approximations to P, each approximation 

containing its predecessor. Obviously, if such approximations of 

two polytopes intersect then the polytopes must themselves 

intersect. While the converse is not true, we are able to 

exploit information on the non-intersection of two polytopal 

approximations to test more rapidly for the intersection of their 

successors in the approximation hierarchies. 

In the remainder of this section, we describe our 

hierarchical representation more formally. We discuss the 

efficient construction of hierarchical representations in two and 

three dimensions and present properties of the representations 

that will be exploited in the separation algorithms that follow. 

3.1 Hierarchical representations of a-polytopes 

Let P be a d-polytope with vertex set V(P). A sequence of 

polytopes, H(P) = P1 , ... ,Pk, is said to be a 

representation of P if 

i) 

ii) 

P1 = P and Pk is a a-simplex: 

P.+l c P., for l<i<k: 
l l -

hierarchical 
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iii) V(Pi+l) c: V(Pi); and 

iv) the vertices of V(Pi)-V(Pi+l) form an independent set (i.e. 

are non-adjacent) in Pi. 

We call k the height of H(P). The size of H(P), denoted 

IH (P) I, is given by 

k 
1 H (P) I = r 

i=l 
JP. I 

1 

where IPil, the size of the polytope Pi' is defined in general to 

be the number of faces of Pi, of dimensions 0 through d-1. Size 

is meant to be a measure of the storage requirements of both 

polytopes and our polytopal hierarchies. In dimensions two and 

three it is equivalent, up to constant factors, to define the 

size of P. to be the number of vertices of Pi. 1 

The degree of H(P) is given by 

max max deg(v,Pi) 
i v~V(Pi)-V(Pi+l) 

This reflects the maximum local change that takes place in moving 

from some element of H(P) to its successor. 

3.2 Construction of 2-d and 3-d hierarchies 

The definition of hierarchical representation suggests an 

approach to its construction, namely at each phase identify and 

remove an independent set of vertices, and let the next 
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approximation be the convex hull of the remaining vertices. 

As we shall see, in two and three dimensions we are 

guaranteed of the existence of hierarchical representations of 

low degree. Furthermore, provided each polytope in the hierarchy 

is represented with its surface fully triangulated (which is 

automatic if the vertices are in general position), then a low 

degree hierarchical representation can be constructed very 

efficiently. 

Let b be any fixed positive integer. The following 

algorithm when it terminates it guaranteed to produce a 

hierarchical representation of the polytope P with degree at most 

b. 

Algorithm~ (constructs a hierarchical representation of P) 

input P 

P <- P; i <- 1 l 

while Pi is not a simplex do begin 

S <- any maximal independent set among the 

vertices of degree at most bin P. 
1 

Pi+l <- hull(Pi\S) 

i <- i+l end 

Algorithm A clearly terminates provided every d-polytope is 

guaranteed to have at least one vertex of degree at most b. The 

reason for specializing our discussion to two and three 
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dimensions at this point should become clear with the following. 

Lemma 3.1. There exist constants b0 and c<l such that for all 

b ~ b 0 and all polytopes Pin 2 or 3 dimensions, Algorithm A 

produces a hierarchical representation 

satisfying IPi+ll < c!Pil' 1 < i < k. 

Proof. Since the skeleton of Pis planar, it is an immediate 

consequence of Euler's formula (cf. [9]) that any maximal 

independent subset S of the vertices of degree <11 in P, has size 

Isl~ IPl/24. 
C = 23/24./S/ 

The result follows by choosing b 0 = 11 and 

tl 

Corollary 1·I· For all sufficiently large b, Algorithm A 

produces a hierarchical representation of an arbitrary 2- or 

3-polytope P with degreed, height O(log(IPI)), and size O(IPI). 

Proof. The sequence of vertex removals forms a decreasing 

geometric series. ~ 

Theorem 3.3. For every 2- or 3-polytope P there exists a 

hierarchical representation of constant degree, O(log(IPI)) 

height, and O(IPI) size, that can be constructed from a standard 

representation of Pin O(IPI) time. 

Proof. By Corollary 3.2, it suffices to show that each Pi+l in 

the hierarchy constructed by Algorithm A can be formed from its 

predecessor P. 
1 

in steps. 

independent set S of vertices of bounded 

Obviously, a maximal 

degree in P. 
1 

can be 

constructed in O(IP. I> steps. 
1 

The convex hull of Pi\S can be 
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computed from P. in O(ISI) steps since each vertex in S has 
1 

degree bounded by some constant (and hence, since the p, was 
1 

assumed to be fully triangulated, its removal leaves a 

neighbourhood of constant size). t1 

3.3 Localization of change 

The attribute of hierarchical representations that 

subsequent polytopal approximations differ only on an independent 

set of vertices was certainly exploited in the design of an 

efficient algorithm for the construction of hierarchical 

representations. This attribute also gives rise to the following 

important property of hierarchical representations, that is 

exploited in our separation algorithm. 

Lemma 3.4. Let P1 , ••• ,Pk be a hierarchical representation of 

some d-polytope P and let H be any hyperplane in Rd such that 

P i+l c:H+' for some i>l. Then either 

i) + 
PiCff: or 

ii) there is a unique vertex veV(Pi) such that VEH -. 
Proof. Suppose that p i+l~·H+ and VEV (Pi) satisfies VEH . Then, 

by the definition of hierarchical representation all of the 

neighbours of V in P. 
1 

are also vertices of Pi+l and hence belong 

to H+. Hence, by the convexity of Pi, V is the unique vertex of 

in H - ti P. . 
1 

Corollary 3.5. Let p be any 2- or 3-polytope and let P1 , ••• ,Pk 
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be a hierarchical representation of P of degree at most d. Let H 

be any hyperplane such 

either, 

+ P .c: H : or 
1 

that for some i > 1. 

i) 

ii) P,nH is a pyramid whose apex has degree at most d. 
1 

Then 

Remark. In this entire section we have made no essential use of 

the boundedness of polytopes. It is a straightforward though 

detailed exercise to modify the definition of hierarchical 

representation (allowing Pk to be unbounded and generalizing the 

notion of vertex) and Algorithm A, so that all of the subsequent 

results carry over to the case of arbitrary convex polyhedra. 
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4. Determining the Separation of 3-polyhedra 

Let P and Q denote arbitrary 3-polytopes. We start by 

noting the most naive algorithm for determining the separation of 

P and Q. 

Lemma 4 .1. If P and Qare arbitrary 3-polytopes then o(P,Q) can 

be determined in O(IPI. IOI) time. 

Proof. Determine the separation of each face, edge and vertex of 

P with each face, edge, and vertex of Q and minimize. tl 

Corollary!-~- If Pis an elementary 3-polytope then o(P,Q) can 

be determined in O(IOI) time. 

Our algorithm for determining the separation of arbitrary 

polytopes makes use of the hierarchical representation described 

in Section 3 to reduce the complete separation problem to a 

sequence of progressively larger elementary separation problems. 

The central lemma below shows how we can step through the 

hierarchical representation exploiting the separation knowledge 

of each preceeding step. 

Let P1 , ••• ,Pr (respectively, 01 , ••• ,Qs) be a hierarchical 

representation of degree <d of the 3-polytope P (respectively Q). 

Lemma 4.3. Suppose the point 

Then a pair 

pair realizes 

realizing o(P. ,Q.) can be 
1 1 
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determined in O(IPil+loil> steps. 

Proof. If Pi+l = qi+l then it suffices to choose pi= Pi+l and 

qi= qi+l" Alternatively, let Hp be the hyperplane normal to the 

line segment supporting and let be the 

hyperplane normal to the line segment Pi+l'qi+l supporting Qj+l" 

Then 

and 

But 

u (P,nH-), 
1 p 

u (Q.nH-) 
1 q 

cr(P. ,Q.) = min 
1 1 

since Hp and Hq are parallel, cr(P.nH+, Q,nH+) is realized by 
1 p 1 q 

cr(P.,Q.) 
1 1 

= min 

I cr(Pi+l' Oi+l> 

< cr(P. nH-, Q,) 

I 
1 p 1 

cr(P., Q,nH-) 
1 1 q 

However, by Corollary 3.5, P.na and Q.na- are both elementary 
1 p 1 q 

polytopes and hence cr (Pina~, Qi) (respectively, cr(P i, Qin H~) ) can 

be determined in O(!Oil) (respectively, O(IPil» steps, by 

corollary 4.2. Thus a(P.,Q.), and its realization, can be 
1 1 

determined in O(IPil+IOil) steps in total. ~ 

Lemma 4.3 suggests the following algorithm for determining 

the separation of two polytopes P and Q. 
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Algorithm B (determine the separation a(P,Q) of polytopes 

P and Q) 

construct hierarchical representations P1 , ••• ,Pr and 

01 , ••• ,Qs, using Algorithm A 

i <- min(r,s) 

(p,q) <- closest_pair(Pi,Qi) 

while p~q and i~l do begin 

(p,q) <- closest pair(P.,Q.) 
- l. l. 

i <- i-1 end 

o(P,Q) <- Ip-qi 

Theorem 4.4. Algorithm B correctly determines o(P,Q), and its 

realization, in O(IPl+I0I> steps. 

Proof. By Theorem 3.3, the hierarchical representations of P and 

Q can be constructed in 0(IPl+I0I) steps. 

closest pair takes 0(IPml•I0ml> steps, 

Finding the initial 

where m = min(r,s). 

However since both Pr and Ps are elementary, this is just 

0(IP l+lo I>- In light of Lemma 4.3, it is clear that the loop 
m mm 

uses 0( E (IP, l+I0, I>> steps in total. Thus the entire algorithm 
l=l 1 1 r s 

uses O(IPl+I0I) + O( ! IP. I + E lo.I> steps, which, by Theorem 
i=l 1 j=l J 

3.3, is 0( IPl+lol) • t1 

Remark. In keeping with our earlier remarks, we note that 

Algorithm B and Theorem 4.4 carry over directly to unbounded 

polyhedra, using the modified representations discussed in 

Section 3. 
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5. Discussion and Summary 

To this point we have maintained the assumption that 

"distance" means "Euclidean distance". However, our results 

depend very little on this specific choice of metric. 

Let d be any distance metric on Rk. We can define the 

a-separation of two polyhedra P and Q as 

aa(P,Q) = min{d(p,q) !PEP and qtQ}. 

Let lxla denote d(x,O). A distance metric d is said to be 

invariant under translation if d(x,y) = d(x+z,y+z), for all 

k x,y,z£R. For any such metric d(x,y) = lx-yld• We say that a 

metric is scale respecting if IAxl<lxl, for all A<l, A£R. For 

metrics d that are scale respecting the a-separation of two 

polyhedra is realized by facial points of the polyhedra. 

Inspection of Algorithm Band Theorem 4.4 reveals that we 

need only an analog of Lemma 4.3 to generalize our result to 

other metrics. Lemma 4.3, in turn, depends only on the property 

that any pair of points realizing the separation of two polytopes 

must admit parallel planes of support. In the Euclidean case the 

planes are normal to the vector joining the given pair, but this 

property is not exploited. 

Lemma 5.1. 
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If the distance metric d on is invariant under 

translation and is scale respecting then any pair of points 

realizing the d-separation of two polytopes P and Q admit 

parallel planes of support. 

Proof. 

Suppose that the pair p,q realizes the d-separation of P 

and Q (i.e. od(P,Q) = lp-qld). Consider the polytope Q' formed 

by translating Q by the vector p-q. The polytope P intersects 

the polytope Q' only in facial points (including P), since if 

some point xtP is interior to Q' then y = x+q-p is interior to Q 

and lx-yld = lp-qld, contradicting the scale respecting property 

of d. Thus, there exists a plane X separating P and Q' passing 

through p. This plane and its translation X-{p-q) support P and 

Q at points p and q respectively. 

By the discussion preceeding Lemma 5.1, we are now able to 

conclude the following generalization of Theorem 4.4. 

Theorem 5.2. 

Algorithm B correctly determines ad(P,Q), and its 

realization, in O(IPl+IOI) steps, for any pair of polytopes P and 

Q and any translation invariant and scale respecting metric d. 
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An immediate corollary of Theorem 4.4 is the existence of 

a linear algorithm for testing the intersection of polyhedra. It 

remains an open problem to determine if the actual construction 

of the intersection can be carried out within this same time 

bound. 

It should be noted that our algorithm provides not only a 

separating hyperplane (if one exists) for two polyhedra (that may 

arise, for example, as the convex hulls of two point sets), but 

in fact it specifies the "thickest" possible such separating 

slab. This provides an added measure of disjointness that is of 

use in pattern recognition and clustering algorithms. It should 

also be useful in determining collision-free paths in robotics 

applications. 

Our algorithm is based on a new space efficient 

representation for polyhedral objects. It should be viewed as 

yet another application of hierarchical representations in the 

context of computational geometry. The algorithm is very similar 

in spirit to the subdivision search algorithm of Kirkpatrick [10] 

and the preprocessed polyhedral intersection detection algorithms 

of Dobkin and Kirkpatrick [3]. We anticipate that this approach 

to the design of geometric algorithms will have other 

applications as well. 
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Footnotes 

/1/ Ip-qi denotes the Euclidean distance between p and q. The 
sensitivity to the distance metric is discussed in Section 
s. 

/2/ This result is of interest in its own right. The algorithm, 
which was discovered independently of that of Dyer [ ] , is 
fundamentally different to Dyers algorithm in its approach. 

/3/ <x,y> denotes the inner product of vectors x and y. 

/4/ That is, the generalized skeleton that records the incidence 
structure of faces of all dimensions. 

/5/ we make no attempt to optimize b 0 and c here. 
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