
Abetract:

ON THE COMPLEXITY OF AClllEVING

K-CONSISTENCY 1

by

Raimund Seidel

Technical Report 8~4

Department or Computer Science
Cornell University
Ithaca NY. 14853

A number of combinatorial search problems can be formulated as constraint satisfaction problems.
Typically backtrack search is used to M>lve these problems. To counteract the frequent thrashing
behaviour or backtrack search, methods have been proposed to precondition constraint satisfaction prob­
lems. These methods remove inconsistencies involving only a small number or variables from the prob­
lem. In this note we analyze the time complexity of the most general of these methods, Freuder's k­
consistency algorithm. We show that it takes wont case time O(nt), where n ill the number or variables
in the problem.

1Thi1 reaearch wu done while &he author was a nadent I& &he Department of Computer Science of &he University of British
Columbia.

I. Introduction

This note deals with the complexity analysis or Freuder's IFrll algorithm for establishing k­

consistency in a constraint satisfaction problem (CSP). Freuder defines a CSP as follows: We are given a

set or n variables X 1, ••• ,X11 and constraints on subsets or these variables limiting the values they can take

on. These constraints taken together constitute a global constraint which specifies which sets or values

41, ... ,411 for X 1, ... ,X11 can simultaneously satisfy all given constraints. In other words, the constraints

define an n-ary relation. Our problem is to synthesize this relation, i.e. to determine those sets of values

which simultaneously satisfy the set of constraints.

A number of combinatorial search problems can be modelled as CSPs. Among them are graph

colouring, graph isomorphism, the eight queens problem, labelling problems in scene analysis, and others

(see IH-SI). Typically CSPs are solved by backtrack search. However, several authors (IWal,IMonl,IMal)

have pointed out the frequent thrashing behaviour of backtrack search. To remedy the situation, notions

or local consistency were introduced .

One or the simplest notions is so-called arc consistency. It applies to all CSPs in which all con­

straints involve at most two variables. Mc consistency is violated if for some value 0 1 or some variable

X, there is a variable X1 for which no instantiation 41 is allowed by the binary constraint between

X, and X;- Clearly a, cannot appear in any 110Jution to the CSP. Thus the purpose or arc consistency

algorithms is to remove such values a, from the domain or X, in order to prevent that such an incon­

sistency will be discovered by a backtrack search repeatedly.

Waltz !Wal and Mackwortb !Ma.I gave algorithms to achieve arc consistency. The worst case run­

ning time of these algorithms was originally unknown and subject or controversy (see !Gal). However,

recently Mackwortb and Freuder IM-F) settled the question and showed that the fastest or these algo­

rithms (AC-3 in !Mal) bas a worst case running time linear in the number or constraints.

Montanari !Mon I developed a more genera.I notion or consistency called path consistency. Mack­

worth !Mal gave algorithms for achieving path consistency. Later he and Freuder IM-FI analyzed the

complexity or these algorithms and found that the fastest one has a worst case running time or O(n2).

I

The notions or arc and path consistency are subsumed by the notion or k-consistency invented by

Freuder jFrlJ. Informally, k-consistency or a CSP means that any valid instantiation or k-1 variables can

be extended for any one or the remaining variables to a valid instantiation or k variables. Freuder

presented a short and highly recursive algorithm for achieving k-consistency but did not prove any com­

plexity results about it. In jFr2J he gave conditions when k-consistency alone is sufficient to find a global

solution or a CSP quickly.

In the following we will show that, for &xed k, the running time or Freuder's k-consistency alger

rithm is bounded by a polynomial in the number or variables which has degree k.

a

JI. Anol11Bis of Freud er 's Algorithms

Let us at &rst present several definitions which will enable us to state Freuder's algorithm precisely.

These definitions follow almost verbatim the ones given in !FrIJ.

We are dealing with CSPs involving D variables X1, ••• ,X. which may take on values from the finite

domains D i, ... ,D,. respectively. It is assumed that the size or each D, is not greater than some integer

constant d. Let 1-={l, ... ,n}. Many of the definitions will be made for any non-empty subset JC/. We

denote by X 1 the indexed set or variables {X1 } 1e,, A value 0 1 in D, will be called an instantiation of X,.

An instantiation of a set of variables X,, denoted by a1 , is an indexed set or values { a;} JE 1. The indexed

set notation implies that there is a function, a, from J onto the instantiation a1, which serves to indicate

which member or a1 instantiates which variable: the value or a at j, denoted by a1 , is the instantiation or

Xr

A constraint on X 1, denoted C1, is a set or instantiations of X 1. It is also possible to represent a

constraint C1 as a set or m-tuples, where m=-IJI, and thus as an m-ary relation or predicate. We have

found it useful, however, to use set notation rather than to refer to cross products or predicatt-s in the

presentation which follows.

A constraint ezpre,sion of order k is the set of constraints C -= { C1 I IS IJ I Sk }. This repreSt>nts

the logical conjunction or the relations exprell6ed by the C1• Normally we will not be given constraints

for all JC I, I JI S k explicitly. However, we can assume that they exist, with no loss or generality, as

the "non-constraint" for X 1 can always be specified: the set of all combinations or elements from the

domains or the variables in X 1.

We say an instantiation a1 satisfie, a constraint C1 if o1EC1• The instantiation a1 ,atiefies a con­

straint C8 , HCJ, if the set {a1Ea,}1eH is a member of CH, and we say a, ,atisfie, CH, ICH, ii there is

an a8 in C8 for which {a1 Ea8 } 1er = a1 • An instantiation a, with I JI -= k, k-satiefies a constraint

expression C, if a1 satisfies all the constraints C8 EC with HCJ. Observe that an instantiation a1 which

n-satisfies a constraint expression is a solution or the CSP corresponding to the expression .

Consider two constraint expressions B -== { B 1 } and C =- { C 1 } on the same variable set. A con­

straint CI with I JI _, k is k-compatible with B, ii all members or CI k-satisry B. CI is said to be fc.

'

complete for B, ii any instantiation ol a1 which k-satis6es B is a member ol C 1. The constraint expression

C is k-compatible with B (k-complete for B), ii every c, with I JI ~ A: is k-compatible with B (k-complete

lor B).

A constraint expression ol order at least k ia k-consistent, ii, lor any set XH ol k-1 variables, any

instantiat.ion a8 ol XH which (k-1)-satisfies CH, and lor any choice ol k-th variable X,, there exists an

instantiation ol X, which combines with an to k-11atisly c,, where J ~ HLJ{i}. A constraint expression

ol order at least k is strongl11 k-consistent, ii it is j-consistent lor all j, 1:5j:5k.

In the following we state Freuder's k-consistency algorithm. Given a constraint expression C in n

variables and some integer k, 1 <A:< n, this algorithm yields a constraint expression B which is k­

compatible with and k-complete for C and which ia also strongly k-consistent. However, at first we must

explain the notion of propagation between constraints.

II C1 and Cn are two con11traints in a constraint expression C, then C, and Cn are called neigh­

bours, ii Jell and I JI ..., IHI+ l (or equivalently He J and IHI == I JI+ 1). To locall11 propagate

the constraint C1 to a neighbouring constraint C8 , remove Crom C8 all a8 which do not satisfy C1. To

globall11 propagate a constraint C1 through a neighbouring constraint CH first locally propagate C I to C8 ,

and then, ii anything was removed Crom C8 by the local propagation, globally propagate C8 through all

its neighbours except C 1. To propagate a constraint C 1, globally propag3te CI through all its neighbours.

&

Algorithm:

Given a constraint expression C in n variables or order m and an integer k ~ m, the algorithm con­
structs a constraint expression B or order k which is k-compatible with C, k-complete for C, and
which is strongly k-consistent.
(For proof or correctness or the algorithm see !Frll).

I. Let B be the empty set.

II. For all JC/ with IJl=l let B, := C1 and B := BLJ{B1 }.

III. For i=2 to k do
For each JC/ with IJl=i do

B1 := C1
insert B I in B
locally propagate to B1 from all its neighbours in B
propagate B,

Theorem:

Proof:

Let d and k be integer constants.

For any order k constraint expression C in n ~ k variables each or which can take on at most d

values the above algorithm has worst case time complexity O(nk).

The basic idea or the analysis is to calculate how often a constraint Ba can be locally propagated to a

neighbouring constraint B1. We claim that this can happen at most ,• times, where h=IHI.

For a proof recall when local propagation from Ba to B1 is triggered .

(i) It is triggered by the algorithm exactly once when Ba is added to the constraint expre68ion (if

IHl=IJI+ 1) or when B1 is added to the expression (it IHl=IJl-1).

(ii) It is triggered by the removal of one (or several) instantiations from Ba which leaves at least one

instantiation in Ba. (Observe that ii Ba becomes empty, the CSP represented by the constraint expres­

sion must be unsatisfiable.) As Ba can contain at most d~ instantiations this can happen at most d~-1

times.

From (i) and (ii) one can conclude that Ba can be locally propagated to B1 at most d~ times.

8

Now it just remains to determine

a) the cost or locally propagating BH to a neighboring B1, and

b) how many neighbour pairs BH , B1 there are.

For a) one needs to consider two cases:

(i) IJI = IHI-I By a straightforward brute force method BH can be propagated to B1 in time

(ii) IJI - IHI+ 1 By the same brute force method propagation can be performed in, time

b) There are clearly CONSTR(h) == (~) subsets or I of cardinality b, and each of these sets bas

NEIJ.h) = h subsets or cardinality h-1 and NEI+(h) = n-la supersets of cardinality h+ 1. Note that for

the purposes or this algorithm there are no neighbour pairs BH, B1 with IHl=k and IJl=k+ 1. Thus

Ir we let NO_OF J,PS(b) denote the maximum number or local propagations from a constraint BH with

IHl=h to a neighbouring constraint, then we get the following expression for the worst case time complex­

ity of the algorithm:

t
L CONSTR(h),, NO_OF~PS(h),, (NEI..(h)•PROP..(h} + NEI+(h)•PROP+(h))
A-1

Using the values derived above we get

This is bounded from above by

& dis assumed to be constant this is O(nt).

Q.E.D.

7

Acknowledgemrnta

I would like to thank Alan Mackworth and Gene Freuder for useful discussions on this topic .

8

References

[FrlJ Freuder, E.C.,
Synthesizing Constraint Expressions.
CACM 21, 11 (Nov. 1078), pp.058-006.

[Fr2J Freuder, E.C.,
A Sufficient Condition for Backtrack-free Search.
JACM 29, 1 (Jan. IQ82), pp.24-32.

(Ga.c;J Gaschnig, J.,
Performance Measurement and Analysis or Certain Search
Algorithms.
CMU-CS-6~124 Tech. Report, Carnegie-Mellon Univ., IQ79.

[H-SJ Haralick, R.M. and Shapiro, L.G.,
The Consistent Labeling Problem: Part I.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. PAMl-1, no.2 (1979), pp .173-184.

[MacJ Mackwortb, A.K.,
Consistency in Networks of Relations.
Artificial Intelligence 8, 19771, pp.9~118.

[M-FJ Mackworth, A.K. and Freuder, E .C.,
The Complexity or some Polynomial Network Consistency Algorithms
for Constraint Satisfaction Problems.
Univ. of British Columbia, Comp.Sci.Dept. Tech. Report 82-6,
1982.

[MonJ Montanari, U.,
Networks or Constraints: Fundamental Properties and Applications
in Picture Processing.
Information Science 7, 1974, pp.9~132.

[WalJ Waltz, D.E.,
Generating Semantic Descriptions or Scenes with Shadows.
Tech. Report MAC AI-TR-271, MIT, Cambridge, MA, 1972.

