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ABSTRACT

Models of A-calculus have been studied by Church [?] and Scott [7].
In these studies, finding solutions to the isomorphic equations S = [S~»S]
where [S+S] is a certain set of functions from S to S is the main issue.
In this paper, we present an example of such solutions which fails to be a
model of A-calculus. This example indicates the necessity of careful con-
sideration of the syntax of A-calculus, especially for the study of
constructive models of r-calculus. Taking this into account, we axiomati-
cally show when a numeration of Ersov [3] forms a model of r-calculus.
This serves as a general framework for countable models of A-calculus.
Various examples of such numerations are studied. An algebraic character-

jzation of this class of numerations is also given.
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A-calculus

The A-calculus developed by Church [2] is a formal system designed to
study equivalence of functions composed from other functions in certain
primitive ways. In this section, we briefly overview this calculus. As
mentioned in the abstract, since the syntax of A-calculus plays an impor-
tant role in the construction of numeration models, we present the syntax
in quite a detailed manner.

We start with assuming a countable set V of variables.

Definition 1.1 (A-terms)

1. If x is a variable in V, then x is a A-term.
1. If Mand N are A-terms then so is (MN).
3. If x is a variable and M is a A-term then so is (Ax.M) 0

Definition 1.2 (Occurrence)

We define a binary relation occurs over A-terms as follows:
1. X occurs in X.
2. If X occurs in M or in N, then X occurs in (MN).
3. If X occurs in M, then for every variable y, X occurs in (iy.M). 0
We write X <Y for "X occurs in Y".

Definition 1.3 (Free and bound variables)

An occurrence of a variable x in M is bound if it is inside a part of
M of the form Ax.M, otherwise it is free. We say x is free in Y if it has
a free occurrence in Y, 0

Definition 1.4 (Substitution)

For any terms M, N and any variable x, the result M[x:=N] of substituting
N for each free occurrence of x in M (and changing bound variables to avoid

clashes) is defined as follows:
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1. x[x:=N] = N

2. Z[x:=N] = Z for all variables Z # x
3. (M{My)[x:=N] = ((M;[x:=N])(M,[x:=N]))
4. (Ax.Y)[x:=N] = (ax.Y)

5. (Ay.Y)[x:=N]

(Ay.Y[x:=N]) if y=x and y4N or x¢N
(Az.(Y[z:=y])[x:=N]) if yix and y<N and xe<Y. 0

In A-calculus, each A-term is considered to be a representation for a
function and the following three reduction rules are to establish equivalence
of functions:

Reduction Rules

(@):(Ax.M) + (Ay.M[x:=y]) x is not bound in M and y4M
(8):((Ax.M)N) + M[x:=N]
(n):(Ax.Mx) » M x¢M 0

Reflexive sets and models of x-calculus

A reflexive set is a set which is a solution of the following isomorphic

equation: Sz[5$*S] where [S$+S] is a set of functions from S to S.
Given a reflexive set S with an isomorphism pair (¢:S+[S+S], ¥:[$>S] + S),
we build a model of A-calculus as follows:
--An environment is a function p:V>S. We denote the set of all environments
by Env. Updating an environment is an operation Upd : Env x V x S -+ Env
such that:
Upd{p,x,s)(v):= if x = v then s else o(v).
We write p[x:=s] for Upd(p,x,s). |

--An interpretation is a function £:T x Env > S defined by:

E(X,P) = p(x)



E((MN),p) = o(e(Msp))(E(Nsp))

E((Ax.M),p) = ¥(AseS.E(M,p[x:=5])))
It is important to notice that £ is well-defined only when
AseS.E(M,p[x:=s]) e [$»S]. If this condition is satisfied we say S is

an admissible reflexive set.

--Now we can establish the following theorem which states that every

admissible reflexive set forms a model of Aa-calculus.

Theorem 2.1

(1) £((xx.M),p) = £{(ry.M[x:=y]),p) provided that x is not bound in M
and yM.

(2) g(((ax.MN),p) = £(M[x:=N],p)

(3) £((ax.Mx),p) = £(M,p) provided x<M.

Proof
(1) e{(ry.M[x:=y]).p)
y(AseS.£(M[x:=y],p[y:=s]))

¥ (AseS.E(M,p [y:=s] [x:=E(y,p [y:=51)1))

¥(As S.£(M,p[y:=s][x:=s]))
v(As S.E(M,p[x:=5])) (. y¢M)
£((Ax.M),p)
(2) e(((xx.M)N),p)

= o(e((xx.M)sp))(E(Nsp))
o(¥(rs 5. (Myp [x:=51))) (£(Nsp))
(xs S.£ (Mo [x:=5])) (g (Nsp))
E(Myp[x:=£(Nyp)])
£(M[x:=N],p)



(3) £((Ax.Mx),p)
¥(xseS.E(Mx,p[x:=5]))

= ¥(xseS.o (£ (Mo [x:=5])) (E(x,0 [x:=5])))
= ¥(xseS.e(g(M,p [x:=5]))(s))

= ¥(AseS.0(E(Myp))(s)) (7. xdM)

= ¥(e(e(Myp))

= £E(M,p) 0

Term model of Church and lattice theoretic model of Scott are
examples of admissible reflexive sets. Admissibility is an important
part of building models of A-calculus, which takes care of the inter-
relation between syntax and semantics of A-calculus. In fact, we can
easily show examples of reflexive sets which are not models of A-calculus.

Let [N>NJ be the set of all total recursive functions from N to N.
Then we have an isomorphism

N [N>N]
for we know that [N>N] is a countable set. It is well-known that this
isomorphism can never be "effective". Due to this non-constructiveness,
AneN.g (Mo [x:=n])
fails to be in [N>N]. Thus the reflexive set Nz [N>N] does not form a model
of a-calculus.

This example indicates that finding reflexive sets is not difficult
but what is not easy is finding reflexive sets which are admissible. Also
this indicates that careful treatment of syntax of A-calculus is important
in building models of A-calculus, especially when it comes to constructive
models of A-calculus.

It ought to be stressed that, in this section, we have established a

general result that every admissible reflexive set forms a model of
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a-calculus. Thus building a model of A-calculus now amounts to building
an admissible reflexive set.
In the rest of the paper, we develop a general framework for building

models of A-calculus with effectiveness constraint.

Godelized A-calculus

By GOdel numbering variables and A-terms, we can realize constructions
of a-calculus as recursive functions. It is easy to establish computable
bijections v:N>V and t:N>T where T is the set of all A-terms. The
syntactic constructions of A-calculus corresponds to the following system
of recursive functions:

is-var(n) = true if t(n)eV

false otherwise

is-apply(n) = true if 1(n) = (MN) for some M,NeT

false otherwise

js-abstract(n) = true if t(n) = (Ax.M) for some xeV and MeT

false

v(n)

(n) if is-var(n)

t(inc(n))

v(var(n))

is-apply(n) => t(apply(rator(n),rand(n)) = t(n)

js-abst(n) ® t(abst(bound(n),body(n))) = t(n)

By taking advantage of constructive bijections v, T we can identify
variables and A-terms with uniquely corresponding natural numbers. Thus
we can abstractly define syntax of A-terms as the system of recursive

functions satisfying:



is-apply(n) => apply(rator(n),rand(n)) = n
is-abstract(n) => abst(bound(n),body(n)) = n
is-var(n) => inc(var(n)) = n
var(in((n)) = n

without referring to v and .

Proposition 3.1

There are recursive functions occur, free, bound, and subst
satisfying:
occur(n,m) = true if v(n)et(m)

false otherwise

free(n,m) = true if v(n) occurs free in < (m)
false otherwise

bound(n,m) = true if v(n) occurs bound in t(m)
false otherwise

t(subst(m,x,n)) = t(m)lv(x):=1(n)] u]

Conversion rules of A-calculus are realizable in the following
sense:

Proposition 3.2

There are recursive functions a,8.n S-t.

(1) o(n,m)

true if <z (n) EN t(m)
false otherwise

true if (n) & (m)

(2) 8(n,m)
false otherwise
(3) n(n,m) = true if t(n) 2 «(m)
false otherwise d
This almost tedious section is needed to study how constructive syntax
of A-calculus interacts with a constructive reflexive set to form a

constructive model of A-calculus.
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Numerated Reflexive Sets

In §2, we generalized (abstracted) various mathematical structures
which satisfy the equation Ss[S+S] as reflexive sets and studied how
reflexive sets form models of a-calculus. In this section we make abstrac-
tion of constructive sets which satisfy Sz=[S$+S] as numerated reflexive sets
and in the next section, we study how a numerated reflexive set forms a
model of r-calculus.

Definition 4.1 (Numeration) (Ersov [3])

A numeration y is a pair (u,S) where u is a surjection from N to S.
Let Yy = (ul,Sl) and vy, = (u2,52) be numerations. A morphism from v, to v,
is a function f:SI+52 such that for some recursive function Pes f-ul = Uy Te.
Such re is called a realization of f w.r.t. Hq and Moe If re is primitive
recursive, we say the morphism f is primitive. O

Proposition 4.2 (Ersov [3])

Numerations and morphisms among them form a category.
If u(n) = u(m) we write n =;m Obviously = is an equivalence
relation on N.

Definition 4.3

Let v, = (”1’51) and vy, = (uZ,SZ) be numerations. A numeration
y = (u,Hom(yl,yz)) is admissible wrt v, and Yy iff there are recursive
functions u, realize, and numerate s.t.

w(n)(uy(m)) = uy(u(n,m))

"uln) = ®realize(n)

if ¢, is a realization of fiy v, then p(numerate(n)) = f
<¢3> is a Godel numbering of partial recursive functions. If such y exists,

we write (ypv,) = ((upup)s ($47S,)) to denote it. 0



Definition 4.4

A numerated reflexive set (in short NRS) is a numeration

Y = (U’S) s.t.

(1) An admissible numeration (y»y) exists

(2) yafy>y) in the category of numerations O

Numeration Models of A-calculus

From an NRS, we build a model of rA-calculus as follows:

Definition 5.1

Let (v,V) be the bijection discussed in §2 and let (u,S) be an NRS.
Let (v:5+(S»S), WE(S+S)+S) be an isomorphism pair. An environment is a
primitive morphism from (v,V) to (u,S). We write Env to denote the set
of all environment. O

Since every A-term has only finitely many occurrences of variables,
it is sufficient to consider only primitive morphisms from (v,V) to (u,S).

The next theorem states that updating environments has a realization:

Theorem 5.2
(1) For each peEnv, xeV and seS, p[x:=s]<Env.
(2) There is a recursive function Update:N3+N s.t. if Iy & ¥; then
1] : =r - s
Update(i,n,m) = "p[v(n):=u(m)]
where <G> is a Godel numbering of primitive recursive functions.

We introduce a numeration (o,Env) by:

As for the nonconstructive case, the interpretation function can be

defined by:



((n))

g(r(n),oi):= if is-var(n) then o

else if is-apply(n) then
o(g(r(rator(n),o,))(£(z(rand(n),0:)))
else if

w(xses.g(r(body(n)),ci[T(bound):=s]))

it-abst(n) then

The well-definedness of £ can be established as a part of the proof

of the following theorem:

Theorem 5.3
The following recursive function realizes g:
e(n,i):= if is-var(n) ghgg_wi(var(n))
else if is-apply(n) then
u(r®-e(vator(n),i), e(rand(n),i))
else if is-abst(n) then

rw(numerate'ab(n,i))
where ab is a recursive function satisfying:

¢ab(n,i)(m) = e(body(n), Update(i,bound(n),m)).

Proof
By induction on the structure of terms we will show:
u(e(n,i)) = g(r(n),0;)
(Base) is-var(n) = true:
u(e(n,i)) = u(¥.(var(n))) = o;(r(n)) = £(r(n),0;)
(Step) Case 1: is-apply(n) = true:

U(e(nsi))

u(u(r,-e(rator(n),i), e(rand(n),i)))

(w>u) (r, -e(rator(n),i))(u(e(rand(n),i)))

¢ (u(e(rator(n),i)))(u(e(rand(n),i))
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®(g(r(rator(n)),oi))(g(T(rand(n)),ci)) (Induction Hypothesis)

E(T(n)soi)
Case 2: 1is-abst(n) = true
u(e(n,i)) = u(ry(numerate(ab(n,i))))

¥ ((u>u) (numerate-ab(n,i)))

But Ases.g(r(body(n)),ci[r(bound(n)):=s]) is realized by
$ab(n i) = ameN.e(body(n), Update(i,bound(n),m)) because we have:

“(¢ab(n,i)(k))
u(e(body(n), Update(i,bound(n).k)))

g(r(body(n)),oi[bound(n):=u(k)]) (Induction Hypothesis)

(ASGS.E(T(bOdy(N)),Ci[T(bound(n):=5])(u(k)).
Thus by the admissibility of (u>u) we have:

(u>u) (numerate-ab(n,i)) =

n
(72}
—_
S~
.
]
]
1
]
!
—
—
~—

Ases.g(r(body(n)),ci[bound(n):
Thus

u(e(n,i))

W(Ases.g(r(body(n)),ci[bound(n):=s]))
E(T(n)sci)- 0

It is important to notice that (I) establishes

As€S.a(r(body(n)),oi[bound(n):=s]) € ($+9).
Therefore the interpretation function £ is well-defined. This implies
that the admissibility of NRS coincides with the admissibility of
reflexive sets discussed in §2.
Exactly the same proof as that of theorem 2.1 establishes the
following theorem which states that every NRS forms a model of

A-calculus under the interpretation ¢:
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Theorem 5.4

(1) If a(m,n) = true then
£(x(n)s0;) = Elr(m)oy)

(2) If g(m,n) = true then
£(x(n),0;) = Elx(m)yoy)

(3) If n(m,n) = true then

g(r(n),0;) = £(t(m),0;) 0

In a-calculus, we have a fixed-point combinator Y given by:
Y = af. ((ax.F(xx)) (ax. F(xx))).
By B-reduction we have:
Y(f) 4 (ax.F(xx)) (ax.f(xx)) L4 f(ax. f(xx)) (ax.f(xx)).
Thus E(§F),p) = £((F(Yf)).p)
o (E(F,p))(E(YF),p)) for all peEnv.

This indicates the following fixed-point theorem of NRS.

Theorem 5.5 (The Fixed-point Theorem)

If vy = (u,S) is a numerated reflexive set then there is a recursive

function fix s.t.

() (n) (u(fix(n))) = u(fix(n)).

Proof

It can readily be seen that the following predicates hold in
intuitionistic sense:

annxaix[x=(u+u)r¢(e(nx,ix))]

Vx]nxlix[x=ue(nx,ix)].

Tet Y = t(k). Then we have:
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<T2%

() (x) (u(e(apply(k,ny),i,)))
= ul(e(apply(k,ny),i,)
because Y is a closed A-term. Let fix:N+N be defined by:
fix(x):= e(app]y(k,nx),ix).
Then (u>u) (x) (u(fix(x))) = u(fix(x)).

Obviously fix is a recursive function. 0

Remark  We have established that in order to show a numeration forms a
model of A-calculus, it is sufficient to show that the numeration is an
NRS. It is important to notice that characterization of NRS does not

explicitly refer to the syntax of rA-calculus at all.

Examples of Numerated Reflexive Sets

In this section, we study a few examples of NRS's to make sure that
what we studied in the previous section is not vacuous.

(example 1) Our first example is Church's term model. We present a
numeration of term models and show it is an NRS.

We start with defining an equivalence relation ~ over T. The reduction
rules a,8,n can be considered as binary relations over T. We define - as
the smallest equivalence relation containing «ugun. The domain of inter-
pretation of term model is TM defined by:

T™ = {[t]|teT)
where [t] is the eaquivalence class of t with respect to ~. A x-term feT
defines a function f from TM to TM as follows:

f([t]) = [(ft))
Let (TM>TM) be the following set of functions from TM to TM:

(TMTM) = {F|feT).
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Then & :TM>(TM>TM) and ¥:(TM>TM)>TM given by:
o([t]) = t
¥(f) = [f]
establishes an isomorphism:
TM= (TM>TM).
The function ¢ is well-defined because if t"t, then
t1([t]) = [(£,8)] = [(t,t)] = tp([t]).

It can readily be seen that TM is admissible.

Now we study a numerated version of term model. Let y =

the following numeration of TM:

p(n) = [t(n)].

Theorem 6.1

ge(TM>TM) iff g is a morphism from y to v.

Proof
If ge(TM>TM) then g = f for some feT. Let f = t(k).
g(u(n)) = F([x(n)1)
= [(t(k)t(n))]
= u(apply(k,n))

(u,TM) be

Then

Let yg(n) = apply(k,n). Then ' is recursive and it realizes g. There-

fore gcHom(y+y). Now assume geHom(y,y). Then for some recursive function

Yg

:N>N, g(u(n)) = u(rg(n)). By the A-definability theorem of Church,

there is a A-term (i) such that (t(i)r(n)) » r(yg(n)). Therefore

g=-1(i). Thus fe(TM>TM). 0
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This theorem establishes the equality Hom(y,y) = (TM>TM).

Now we introduce a numeration (u»u):N+Hom(y.,y) s.t.

(psu) (m) = < (m).

Theorem 6.2

(1)
(2)

The numeration (y+v) = ((wsu), (TMTM)) is admissible.

v2(y*>y) in the category of numerations

Proof

(1)

(2)

(u>u)(m) (u(n)) = =(m)([x(n)])

[t (apply(m,n))]

u(apply(m,n))
Thus apply is such U.
P () (m) (X) = app1y(m,x)
- ¢’re:ah‘ze(m)(x)
where realize is a primitive recursive function due to the S-m-n
theorem.
In the proof of theorem 6.1, the construction of (i) from
rg is uniform. Thus a recursive function numerate satisfying:
if ¢, realizes geHom(y,y) then (u>u)(numerate(n)) = g exists.
Thus (y>y) is admissible
¢(u(n)) = o(fr’n)1) = x(n) = (wu)(n)
¥(u)(m) = ¥(x(m)) = [x(m)] = u(m)
Thus identity function NN realizes both & and v.
Thus ¢ and ¥ are morphisms.

Thus yz(y»>y) in the category of numerations. 0

This theorem establishes that the numeration vy is an NRS.



-15-

(example 2) Now we show an order theoretic NRS. We form an effective
ref]exivg set and directed indexing as an NRS.. For details see Kanda
(4], [5)-
A domain is a partially ordered set (X,<) such that
(1) For every subset ZcX, if Z has an upper bound then the Teast
upper bound (1ist)|]Z exists
(2) The set By of compact elements of X is countable

(3) For every element xeX, B, = {beB[b<x} is directed and x = Ll B,-

Let e:N»BD be a numeration. (X,e) is an effectively given domain if
there is a pair (b,2) of recursive predicates satisfying:

b(x) < e(fp(x)) has upper bound

2(x,k) < (k) = Lie(f(x))
where fp is the standard enumeration of finite subsets of N. An element
xeX is computable w.r.t. e if for some recursively enumerable set W, e(W)
is directed and x =|]e(¥). Comp(x,e) denotes the set of all computable
elements of (X,e).

For every effectively given domain (X,e) there is a recursive
function d_:N-N s.t. for every jeN, E(wd.(j)) is directed and if e(wi) is
directed then Lle(wi) = Lje(wd (i))' Th?s function gives us a numeration
6€:N+Comp(X,e) defined by: )

6J1)=[JeﬂhJiﬂ.

Given effectively given domains (X,e) and (X',e'), let [X+X'] be the
set of all functions called continuous functions f:X+X' which preserve
the 1ub of directed subsets, (i.e. if DcX is directed then
£(D) = {f(x)|xeD} is directed and f([JD) = || f(D).) with the following
partial ordering: for f,ge[XX'],

f<g iff f(x)<g(x) for all xeX.
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It is well-known that [X+X'] is a domain where
B[X+X] = the set of all possible finite joins of the step functions
[b,b'}:X+X" s.t. beBx, b'eBX' and
[B,b'1(x):= if b<x then b' else 1
where | =]ys.
Let (€+E'):N+B[X+X'] be the following numeration:
(e>e')(n):= if o(n) has a Tub then || o(n) else
o(n) = {[e(i),e'(3)1](,3)Pr(n)}
Pristandard enumeration of finite subsets of NxN.
It is known that if (X,e) and (X',e') are effectively given domains
then ([X+X'],[e+e']) is also an effectively given domain.
fiX>X' is computable wrt (e,e') iff feComp([¥>X'],[ere']).
Proposition 6.3 (Weihranch & Schafer [81)

Let (X,e) and (X',e') be effectively given domains. f:¥+X' is computable
wrt (e,e') iff frComp(X',e') is a morphism from (GE,Comp(X,E))
to (Ge.,Comp(X',E')). ]

This theorem is a generalization of Myhill-Scheferdason theorem.

Now we are ready to build a constructive reflexive set. Let (Xo,eo) be
any effectively given domain. Define effectively given domain (Xn,en)

recursively by:

Xpe1 = XX ]

sn+1 [en+€n]

Between (Xn,en) and (Xn+1’€n+1) there is an obvious projection pair
R,
n:
folx) = ay.x, f(x) = x(1)

—-— . R R B Rl .
fn+1(x) = fn-x fn fn+1(x) = fn X fn

(fn:Xd+Xn+1, f Xn+I+xn) defined by:

It is obvious that both fn and fs are computable. It is not difficult to
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observe that for each neN, we can uniformly generate a pair (b _,£ ) of

n’m
recursive predicates which makes €n effectively given, and nqyshy s.t.

f ]("2) This makes ((Xn,en),(fn,fs)) an

R
(ny) f. =6
n+1] 1 n [en+1 "
effective sequence of embedding of effectively given domains as in [4,5].

n - 6[en+e

The inverse limit (X_,e_) is defined by:
X, = L(XgsXpaXpse-s) | xpeX X R(xn+1)}

(XO’Xl’XZ"") < (yo,yl,...) iff x;<y; for all i.
e_((n,m)) = fnm(en(m))

where (fn XX R X +Xn) js a projection pair defined by:
n (x) = ( g T e 'f&_l(x)s"',fﬁ_l(x)ax,fl(x)sfz'fl(x)s"')
R -
fn ((xoaxls---)) = Xn.

As shown in [4], (Xm,em) is an effectively given domain and there is a

computable isomorphism due to Scott [7]:

®
X_ 3 X %]
y
2(x) = ayeX_. [l (x4 (y,)
¥(9) = <9(0ys9(1)e++->
where Xy = R (x)

9(0) fo,,(g( 1))

R
I(n+1) © fre 9" oo
Think of the following numerations:

= (GE ,Comp(xm’em))
(v»v) = (s e _e_] 2Comp([X +X_1s[e e .1)).
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Theorem 6.4
(1) The numeration (y»y) is admissible
(2) vya(y»>y) in the category of numerations.

Therefore vy is an NRS.

Proof
(1) It can readily be seen that ap:[X>X]x¥+X s.t. ap(f,x) = f(x) is
computable. Thus there is a recursive function U s.t.

p(n)(s_(m))

i [e+e]xe (n,m)

5_(U(n,m)).

The existence of recursive functions realize, numerate as in 4.3

i [e~e

is due to the constructiveness of the proof of 6.3 which appeared in [8].
(2) (8:X>[X>X_T, ¥:[X »X _1+X_) is a computable isomorphism pair. Thus

vz(y>y) in the category of numerations. 0

An Algebraic Characterization of Numerated Reflexive Sets

A countable applicative system is an algebra (X,) where - is a

binary operation over a countable set X. The set T(X) of terms (using
countably many variables xo,xl,...) over (X,*) is inductively defined as
follows:

X3 eT(X)

aeX—> acT(X)

A,BeT(X)— (A*B)T(X).
We assume that - associates to fhe left, also we will drop * if it does
not cause much difficulty to read. Thus A1A2...An denotes (--—(AIAZ)---An).
To denote that AeT(X) has variables Xgs XQs-++sX,» We write A(xo,xl,...,xn).

We can Godel number terms. Let o:NoT(X) be a Godel numbering of terms.
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Let v = (u:N>X,X) be a numeration. We define yxy to be a numeration
(uxu :N=XxX,XxX) s.t.
pxu(<n,m>) = (u(n),u(m))
where <-,-> is a pairing function.

Definition 7.1

A realizably extensional combinatory algebra (RECA) is a 4-tuple

Xs"sys0) S.t.
(X,-) is a countable applicative system

y = (u:N>X,X) is a numeration

™ —

+ +XxX+X is a morphism from yxy to y; realized by a recursive function
op.
(4) There is a recursive function A s.t. if o(n) = A(Xl""xn)
then u(r(n)) = f is a unique element of X satisfying:
fyg oo ¥, = A(x1:=y1,...,xn:=yn)
=yn) is the result of substituting y, for x,

where A(x1:=y1,...,xn:

in A (1sisn). 0

Note that (4) is a realization of extensional combinatory completeness
of Church [1]. Thus an RECA is a countable applicative system (X,°) where *
is realizable and the extensional combinatory completeness is also
realizable.

Definition 7.2

An RECA (X,*,y,o) is computationally complete iff there is a recursive

function alg s.t. if ¢ realizes f:X>X then o(alg(n)) is a term with a

free variable, say x and

f(2) = (c(alg(n)))(x:=2). 0
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Lemma 7.3
If (X,*,y,0) is a computationally complete RECA then Hom(y,y) = &(X)
where ¢ maps elements of X to functions ¥+X defined by:

o(x)(x') = x°x'.

Proof
feHom(y,y) implies some recursive function 9n realizes f. Thus
o(alg(n)) is a term with a variable, say x s.t.:
f(z) = o(alg(n))(x:=2).
By realizable extensional completeness,
o(alg(n))(x:=z) = u(x-alg(n))-z.
Thus ¢(u(r-alg(n))) = f. Thus Hom(y,y)<s(X). The converse is due to the

realizability of the operation. 0

(u>u,Hom(y,y)) be the following numeration:

o (u(n)).

Now let (y-+y)

(p>u)(n)

Lerma 7.4

(y>vy) is admissible

Proof

((uru)(n)) (u(m))

% (u(n)) (u(m))

u(n)-u{m)

u(op(n,m)) -
Thus op serves as , of definition 4.3 Let r(u+u)(n) be a recursive function

s.t.
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" (o) (m) (M) = 0P (o).

By S-m-n theorem, there is a recursive function realize s.t.
reatlize(n) = "(wu)(n)’

But ((wu)(n))(u(m)) = wlop(n,m)) = ulre yip)(m).

By the proof of 7.3, if on realizes f:X>X,
f = ¢(u(r-alg(n))) = (wu)(r-alg(n)).

Thus A-alg serves as numerate of 4.3. u

Theorem 7.5

If (X,*,y,c) is a computationally complete RECA, then y is a NRS.

Proof
It is sufficient to show yz(y+y) in the category of numerations.
Define v :Hom(y,y)+X by:
v(e(x)) = x.
Then &(¥(¢(x))) = &(x). Thus (e,¥) is an isomorphism. Both ¢ and ¥ are
realized by the identity function M>N. Thus yz(y>y) in the category of

numerations. O

Before we prove the converse of 7.5, notice that we did not include
constants in our language of a-calculus. By trivial modification of 1.1
and definition of £, we can include constants. Under this modification,
obviously 5.3, 5.4, 5.5 still hold.

Now let y = (u,X) be a NRS with an isomorphism pair (#,¥). Define an
operation °:XxX+X by:

x'y = o(x)(y).
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Theorem 7.6

If vy = (u,X) is a NRS then (X,",y,0) is a computationally complete
RECA.
Proof
(1) Since ¢ and ¢(x) are morphisms, * is a morphism from yxy to vy.
(2) Let o(n) = A(xl,...,xk). Then g(xxl..Axk.A(xl,...xk),p) = f is the
unique elememt of X s.t. fyl..yk = A(x1:=y1,..,xk:=yk). By 5.3 a recursive
function A s.t. u(a(n)) = f exists.
(3) Assume a recursive function ¢, realizes f:X>X. Then for some recursive

function a, v(f) = u(g(n)). Let x be a variable and uf(a(n))'x = o(alq(n)).

Then ala is a recursive function and f(z) = (o(alg(n))(x:=z). n

Concludina Remarks

It is possible to think of some interesting sub-cateagory of numerations.
For example, we can define a category of continuous numerations.

A continuous numeration is a numeration v= (u,X) s.t. X is a partially

ordered set and there is a recursive function 1im s.t. for each keN, if u(wk)
is directed then | ju(W ) exists and Lu(H,) =n(1im(k)). Let y = (u,X) and
y' = (u',X') be continuous numerations. A continuous morphism from y to y'
is a morphism fiy+y' s.t. for every r.e. set W with u(W) directed, f(|ju(W)) =
Ll Flu(w)).

It can readily be seen that continuous numerations and continuous
morphisms form a category.

Same definitions as 4.3 and 4.4 applied for the category of continuous

numerations give us a notion of continuous numerated reflexive set (CNRS).
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The interpretation function £ defined in §5 interprets all A-terms into
CNRS. Well definedness of £ is checked by observing that
xSeS.g(r(body(n)),ci[r(bound(n):=s])
is a continuous morphism form (u,S) to itself.
Theorem 5.4 holds also for continuous case thus we can conclude that
every CNRS forms a model of r-calculus under the interpretation £. We call

such models continuous numeration models of A-calculus.

In fact (6e ,Comp(Xw,em)) js an example of CNRS. In case theorem 6.3

=]

did not hold, we could still show (6E ,Comp(X_,e_)) was a model of r-calculus
as a continuous numeration model. )

It is an interesting open question if there is any continuous numeration
model which is not a numeration model.

Barendregt [ 11 showed that extensional combinatory systems serve as
models of r-calculus. 7.5 is a numeration version of his result. Meyer [63]
characterized models of non-extensional a-calculus as combinatory systems.

It should be a routine modification of our development to obtain numeration

version of Meyer's result.
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