
DATA TYPES AS TERM ALGEBRAS

by

Akira Kanda and Karl Abrahamson

Technical Report 83-2

March 1983

Data Types as Term Algebras

Akira Kanda Karl Abrahamson
Department of Computer Science
University of British Columbia

Vancouver, B.C.
Canada

Abstract

Data types in programming have been mathematically studied

from two different viewpoints, namely data types as (initial)

algebras and data types as complete partial orders. In this

paper, we explore a possibility of finitaristic approach. For

finitarists, the only sets accepted are "recursively defined"

sets. We observe that recursive definition not only defines a

set of terms but also basic operations over them, thus it induces

an algebra of terms. We compare this approach to the existing

two approaches. Using our approach

classification of data types.

i_!. Term Algebras vs. Initial Algebras

we present finer

A view of data types as initial algebras, developed by ADJ

group [1,2], has been widely accepted and some programming

systems based on this idea have been developed (see Goguen [3]).

In this approach, we specify a data type as a collection� of

many sorted operation symbols (called signature) and a collection

E of equational axioms which operations in,%. have to satisfy. To

-2-

guarantee the uniqueness of the specification (�,E), we choose

the initial algebra I (f',E) which satisfies E as the specified

data type. How to construct I (I',E) from (%,E), can be found in

ADJ [1, 2] •

A good example of initial algebra specification method is as

follows:

Z = {zero:->int, suc:int->int, pred:int->in�}

E = {suc(pred(x)) = x, pred(suc(x)) = x}.

The data type specified is an initial algebra I (1',E) which

interprets.las follows:

int 1--> the set Z of all integers

zero 1--> the constant O e z

sue 1--> �x.x+l:Z->Z

pred 1--> �x.x-1:Z->Z.

This specification method is based on

philosophy:

the following

"Carrier sets (sets obtained as the interpretation of sorts)

of a data type should be induced from the equational

property of operations."

In this paper, we agree that data types are algebras but we

present an alternative specification method based on the

following alternative philosophy of finitarists:

"Recursive structure of carrier sets of a data type should

induce basic operations and the property of them."

In order to explain this approach, we present some examples of

data type specifications.

-3-

Data type of natural numbers

--we start with "recursive definition" of natural numbers:

(Base): 0 is a natural number.

(Step): if n is a natural number then so is s(n)

(Closure}: nothing is a natural number unless it is proved to be

a natural number using (Base) and (Step).

This definition gives us a set of terms (over {o,s,C,)}).

--Now we induce operations of natural numbers from the "recursive

definition" given above.

Notice that (Closure) ensures:

"if n is a natural number then

either it is 0

or it is s(m) for some unique natural number m."

This property gives us a predicate is-zero on terms s.t.

is-zero(n) = true if n=O

false otherwise.

(Step) shows how to compose and decompose on terms.

rise to the following two operations on terms:

suc(n) = s(n)

pred(n) = m if n = s(m)

undefined otherwise.

This gives

Thus we obtained an algebra over the terms of natural numbers.

Generally speaking, all term algebras derived from

"recursive definition" of carrier sets contain predicates like

"is-zero". Even though we do not make explicit reference, we

assume term algebras have Boolean sort {true, false} as one of

their carriers. Also notice that we are bound to obtain

-4-

"partial" operations like "pred", thus partial algebras.

Conceptually, this causes no problem as long as we agree that

undefinedness propagates throughout expressions, for then we know

exactly when an expression is undefined. we can make all

operations of term algebras total by throwing in "undefined"

value to each sort and making undefinedness propagation explicit.

Then the data type of natural numbers will be "totalized" as

follows:

is-zero(n) = true if n = 0

suc(n)

pred(n)

undefined if n = undefined

false otherwise

= s(n) if n � undefined

undefined otherwise

= m if n = s(m)

undefined otherwise.

Term algebras canonically obtained from "recursive definition",

as above, is called a recursive term algebra.

Let us compare this specification with the initial algebra

specification. It is quite obvious that the process of

generating the set of natural numbers from the recursive

definition is the same as generating a free algebra from a

constant O and a unary function s. In fact the initial algebra

I (I,E) where

I= {0:->nat, s:nat->nat}

E = the empty set

gives us the set of natural numbers {O,s(O),s(s(O)), ••• } and the

successor function sue as the interpretation of nat and s

-5-

respectively. But 1(�,E) will not give us any extra operation

which is not in �, therefore we can not obtain predecessor

function, which is associated with the free generation of the set

of natural numbers.

To include predecessor operation in the initial algebra

specification, we have to start with a signature �• = {0:->nat,

s:nat->nat, p:nat->nat} which includes a symbol p for the

predecessor operation, then we take the initial algebra l(I.',¢)
which is the free algebra generated from%.'. But this algebra is

no good because we have too many terms representing the same

natural number. For example all of s(0), s(p(s(0))), p(s(s(0)))

denote 1. Therefore we need a set of equational axioms which

enforces different terms denoting the same object to be equal.

Since initial algebra method works only for "total algebras", we

have to totalize the predecessor operation with the aid of

undefined elements. This makes the set of axioms quite

elaborate. In fact the following set E' of axioms works:

p(0) = undefined

0K(0) = true

0K(s(n)) = OK(n)

0K(undefined) = false

p(undefined) = undefined

s(undefined) = undefined

IFE(true,n,m) = n

IFE(false,n,m) = m

IFE(undefined,n,m) = undefined

IFE(0K(n),P(s(n)),undefined)=IFE(0K(n),n, undefined)

-6-

IFE (OK (n) ,s (P (s (n))) ,undefined)=IFE (OK (n) ,s (n) ,undefined)

For the detailed explanation of how this works, readers can

safely be referred to ADJ [2]. But we can conclude that the

initial algebra which satisfies E' interprets nat,p,s to be the

set of natural numbers, predecessor function, successor function

respectively.

It should be noticed that E'

characterization of the following properties:

(1) pred{O) is undefined.

(2) undefinedness propagates

(3) pred(suc{n)) = n

(4) if n, 0 theri suc(pred(n)) = n.

is an equational

In fact when we define the data type of natural numbers using

term algebra method, all of these properties can be proved by the

structural induction on the structure of natural numbers, which

is due to the recursive definition. For example (4) can be

proved as follows:

(Induction Base) n = 0 implies n r O is false.

holds.

Thus (4)

(Induction Step) Assume n, O implies suc(pred(n)) = n

suc(pred(suc(n))) = suc(n) for suc(n) , O.

Thus for all natural number n, n r O implies suc(pred(n)) = n.

In general, axiomatic specification is not straightforward.

In history, quite a number of axiomatic systems proposed turned

out to be inconsistent. As ADJ [2] pointed out, even equational

theories are not exceptions. Quite often, avoiding inconsistency

would lead us to somewhat unnatural specification, like E'.

-7-

In initial algebra specification, one ought to make sure not

only the consistency but also if what he specified is what he

wanted. For this purpose, he has to know the construction of the

initial algebra I
(Z',E) from (� 1 E). This is not very easy for

non-mathematicians. In case E+¢, I
(l,E) is the quotient of the

free algebra generated from l, by the minimal congruence relation

containing E. Therefore we have to work on an algebra over

equivalence classes. Goguen et al. [2] showed how to obtain an

algebra of representatives from the quotient algebra. But this

choice of representatives is not quite natural.

In initial algebra specification, a set of specification

axioms gives us a ground for reasoning about the data type

specified. Also initiality gives us an induction method for

reasoning, as shown in Goguen & Meseguer [4]. In our approach,

we reason about data types using structural induction on the

well-founded structure of terms.

These observations indicate that term algebra method is

worth pursuing.

algebra method.

It looks conceptually easier than initial

Especially treatment of undefinedness seems

simpler in term algebra method than in initial algebra method.

The next thing to question is how far can we go with this

approach. Can we specify all data types which initial algebra

method can? In the rest of this paper, we will examine this

question. To begin with, we present a recursive term algebra

specification of the data type of integers.

Data Type of Integers

--"Recursive definition" of integers:

1.

2.

3.

4.

5.

-8-

s(O) is a positive number.

If n is a positive number then

0 is an integer.

if n is a positive integer then

n and -n

are integers.

nothing is an integer unless it

so is s (n) •

both

is proved to be so from

1 to 4.

From

This

5,

II if

we

X

can conclude:

is an integer

X = o,

or X = s (0) ,

or X = s(n) for

then either

some positive number

or X = -n for some positive number n.

gives us the following predicates:

is-zero(x) = true if X = 0

false otherwise

is-one(x) = true if x = s(O)

false otherwise

n,

n

is-greater-than-one(x) = true if x = s(n) for some

positive n

false otherwise

is-negative(x) = true if x s -n for some positive n

false otherwise

From 1, 2 and 4, as composition and decomposition operators, we

have the following basic operations:

s uc' (n) = s (n) if n = 0

-9-

undefined otherwise

sue" (n) = s(n) if n is a positive number

undefined otherwise

pred' (n) = 0 if n = s(O)

undefined otherwise

pred" (n) = m if n = s (m) for some positive m

undefined otherwise

neg' (n) = -n if n is a positive number

undefined otherwise

neg" (m) = n if m = -n

undefined otherwise

Even though we do not make it explicit, we can make the term

algebra "total", as we did for natural numbers.

This finitarist version of integers can very, easily be

related to algebraist version of them as follows:

--From the basic predicates, we can define usual predicates:

is-zero = is-zero

is-negative = is-negative

is-positive(n) = is-one(n) v is-greater-than-one(n)

--From basic operations, we can define usual operations:

suc(n) = sue' (n) if n = 0

suc"(n) if n is a positive number

0 if n = -s(O)

neg"(pred"(m)) if n = -m and m + s(O)

neg(n) = neg' (n) if n is a positive number

0 if n = 0

neg"(m) if n = -m

-10-

pred (n) = pred' (n) if n = s (0)

pred"(n) if n = s(m) for some positive m

-s(0) if n = 0

neg' (suc"(m)) if n = -m

Furthermore, by structural induction, we can easily prove:

pred(suc(x)) = x

suc(pred(x)) = x.

In term algebra specification, we have to make sure that a

"recursive definition" of terms provide a unique representation

for each element of the intended set. Then we automatically get

sufficient collection of operations. On the contrary, in initial

algebra specification, we have to make sure that we have chosen

enough operations for the data type to be specified. Then by

eguational axioms, we enforce different terms denoting the same

object to form an equivalence class. We think, even though it

sometimes gets a bit tricky as above, providing unique

representation via "recursive definition" is not conceptually

difficult.

It is well known that there are some

element of which it is impossible

structures

to provide

representation. Finite power set is such an example.

handle them will be discussed later.

for each

a unique

How to

In summary, our motto is "data types as recursive term

algebras." In the following, we will examine the relevance of

this motto and propose a notion of data types based on this

motto.

-11-

�- Definable Operations (Computability)

One of the advantages of recursive term algebras is that

they have "computational completeness". More specifically, from

basic operations of term algebras, by iterative use of:

- function composition

- conditional definition (definition by cases)

- general recursive definition,

we can recursively define all partial computable functions over

the terms recursively defined. For this reason we call term

algebras complete data types. For example, it is well-known that

partial recursive functions are exactly recursively definable

functions of the data type of natural numbers.

Recursive term algebras provide an interesting sub-class of

definable operations. We say an operation of a recursive term

algebra is structurally recursive if it can be defined from basic

operations by iterative use of:

- functional composition

- conditional definition

- structural recursion,

For example, all primitive recursive functions are structurally

recursive functions over the data type of natural numbers.

Conceptually they are the same except undefined value. In

recursive function theory pred(0) = 0. Thus those structurally

recursive functions which have undefined in their ranges are not

primitive recursive functions. But all structurally recursive

functions terminate and we can prove properties of them by

-12-

structural induction. It should be noted that Klaeren (5]

observed the importance of decomposition of objects in algebras.

He discussed structural recursion and structural induction on

decomposable algebras, i.e. algebras which permit unique

well-founded decomposition of each element. It is obvious that

structural recursion on recursive term algebras is a special case

of Klaeren's general argument. The point we are making here is

that from a computational point of view we might not need to get

into the full generality of Klaeren. It seems as though

structural recursion makes computational sense only when applied

to recursive term algebras. At least it is nicer to be able to

talk about structurally recursive functions within the theory of

partial computable functions.

Even a smaller subclass of definable operations is

interesting. We say an operation of a recursive term algebra is

primitively definable if it is defined from basic operations

using

- functional composition

definition by cases.

Obviously all primitively definable operations are structurally

definable and all structurally definable operations are

recursively definable.

In summary, we observe that a recursive term algebra

provides a basis for the computability over them.

�- Functional Data Types (Do we miss them?l

•I

-13-

It is well known among finitarists that whenever we define a

set "recursively" we can decide if two elements of the set are

equal or not. This fact is algebraically realized by the fact

that we can define a total computable (in fact structually

recursive) predicate is-equal which satisfies the following

property:

is-equal(x,y) = true if x = y

false otherwise.

This indicates that we can not define functional data types by

term algebra specification method.

We observe that even though functionality of functions is

important for compile time type checking and efficient code

generation, data types of functions are not useful for

programming. In PASCAL [6], we specify functionality of each

function, but functions of the same functionality do not form a

data type. Functionality is used mainly for compile time type

checking and efficient code generation. In ALGOL 68[7], we can

define a mode of functions with the same functionality, but these

modes are under much stronger constraint than non-functional

modes. For example, recursive mode specification using

functional mode is not allowed in ALGOL 68 (see Peck [8]). It

seems that we can not make much use of function types except

providing functionality information to compilers to assist

compile time type checking.

The following observation on "qualitive" difference between

the role in computing of non-functional data object and that of

-14-

functional data object will explain why functional data should be

treated differently from non-functional data.

the following computation of LISP:

Let us consider

rev(x):= if atom(x) then x else cons(rev(cdr(x)),rev(car(x)).

A LISP data object x (which is a binary tree) is decomposed into

cdr(x) and car(x) to split the computation rev(x) into

subcomputations rev(cdr(x)) and rev(car(x)). Also think of the

following computation of natural numbers:

f(x):= if x = 0 then 1 else x*f(x-1).

A natural number x is decomposed into x-1 to

subcomputation f(x-1). In the following computation:

)'(X) := f (0)

f(y):= if R(y) then y else f(y+l)

obtain a

we start with O and keep composing by y+l until R{y) becomes

true. This function is known as)'-y.R(y) in recursive function

theory. In fact, iteratively decomposing and composing data

object is the heart of computation on non-functional data object.

When it comes to functions, there is no obvious way of

structuring them to allow composition and decomposition. Scott

[9] proposed structuring them by extensional ordering and

decompose a function f into a chain f0�f£f� ••• s.t. the least

upper bound Ufi of it is f. Given a computable function f, there

is no canonical method of decomposing f, but given a procedure to

compute f we can canonically decompose f. For example

f{n):= if n = 0 then l else n*f(n-1)

can be decomposed as follows:

Let F =�f.in. if n c O then 1 else n*f(n-1) and

-15-

J = everywhere undefined procedure.

Then:

fo = 1

fi+1: = F(fi) = 1n. if n = 0 then 1

else if n = 1 then 1

else if n = 2 then 1*1*2

else if n = i then 1*1*2*--*i

else l

form a chain f0;tJE_ •.. s.t. f = LJfi. This idea of structuring

computable functions of the same functionality provides an

excellent ground for understanding and reasoning functional

computation mathematically. But this is not a common way how

programmers understand functional computation. For example, when

we write a program to functionally compose two functions f and g,

we do not decompose f and g as {fi} and {gi} and then form a

chain {q f } i. i and take the limit LJgi.ti to get g.f. Most

programmers will write the following function declaration for

this:

Compose(f,g,x):= g(f(x))

When we pass functions f' and g' to Compose, they are substituted

for f and g in g(f(x)). This indicates that, in real life

programming, functions are just texts and operation over them is

just substitution. This is also the view of logicians over

functions. Church [10] called this a view of functions as

intensions. For example, in _!l-calculus, syntactic substitution

is what,B-reduction rule is all about. Also Godel [11) took the

-16-

same view in his theory of primitive recursive functionals of

finite types. The understanding of functions which Scott took is

what logicians call functions as extensions.

Anyway the role of functions as data under the intensional

view (which is also commonly accepted view in programming) is not

quite active compared with non-functional �ata. This suggests

that we would not get very much from including function spaces in

"user definable" data types as programming facility. We claim

that the function spaces are for reasoning about programs

extensionally rather than for programming feature. We have to

notice that using function space is not the only way to reason

about programs. There are quite a few ways

intentionally (see Gilmore [12] for example).

statement will explain our viewpoint very clearly:

to do it

The following

"Functions of the same functionality form not a data type

but a type".

[!. Finite Data Ti:pes

"Recursive definition" of sets allows us to define finite

sets of terms. For example:

1. tl is foo

2. t2 is foo
3. t3 is foo

4. nothing is a foo unless it is proved to be foo from 1, 2,
3.

is a "recursive definition" and the set of foos defined is

Basic operations associated with this "recursive

-17-

definition" are:

is-t, (x) = true if x = t • (l<i<3).
1 1 - -

It is easy to observe that all computable functions over a

finite set of terms are primitively definable from basic

operations is-ti. It is needless to say that equality check is a

computable function.

�- Hidden Functions

Returning back to the specification of integers, for

algebraists it is enough to have only is-zero, is-positive,

is-negative, sue, pred, neg as basic operations of integers.

This standard algebra of integers can be obtained from the

recursive term algebra of integers by adding standard operations

is-zero, is-positive, is-negative, sue, pred, neg as definable

operations and forgetting about basic operations of the recursive

term algebra of integers. This process is a special case of the

following general construction called hidden function

construction (hfc) of an algebra of terms from a recursive term

algebra:

--add some structurally recursive operations to a recursive term

algebra

--hide some operations of the enriched algebra.

The reason why we allow only structurally recursive operations to

be added is because it is not a nice thing to have

non-terminating operations as operations of algebras. We also

assume that after applying hfc to a recursive term algebra, the

resulting algebra of terms still enables us to define the

-18-

equality check as a structurally recursive operation. This is

because algebras without equality check are not interesting. We

cannot compute much with it. In case we do not hide any

operation in hfc, we call such construction enrichment.

Now we propose the following definition of data types:

Definition of Data Types

Data types are either recursive term algebras or algebras of

terms obtained by hfc.

Note that after applying hfc, we may lose "computability

completeness". Thus we have two kinds of data types. A data

type which has "computability completeness" is called a complete

data type. A data type which does not possess this property is

called a non-complete data type. Obviously all recursive term

algebras are complete data types. Curiously the standard algebra

of integers is also complete. This completeness is due to the

fact that from the standard operations of the standard algebra of

integers, by primitive definition, i.e.

functional composition

definition by cases,

we can define all basic operations of the recursive term algebra

of integers. This suggests that both the standard algebra of

integers and the recursive term algebra of integers provide

equivalent (in fact primitively equivalent) computation basis

over the terms of integers. This notion of primitive equivalence

of data types has not been studied in the previous theories of

abstract data types. We claim that from a computability point of

-19-

view, this equivalence of data types is important. A technical

problem here is that this equivalence is an equivalence between

two algebras with different signature.

Even though we may lose "computability completeness" by

applying hfc to recursive term algebras, all operations of our

data types are still computable, in the sense that we know how to

compute them with the aid of "hidden" functions. Therefore all

of our data types are computable.

i6. Parameterized Data types

A parameterization of data types can be considered as a

"uniform" way of constructing a data type from an argument data

type. We treat this concept as recursive definition of terms

over the argument data type.

Assume A is an arbitrary data type. We can define a data

types-expression of A as follows:

s-expression of A

(Base of Parameterization)

If a is a term of A then a is ans-expression of A.

(Step of Parameterization)

If S1 and s 2 ares-expressions of A then so is (S1.s2)

(Closure of Parameterization)

Nothing is an S-expression of A unless its being so follows

from (Base of Parameterization) and (Step of Parameterization).

Then from the closure, we have:

ifs is ans-expression of A then either

s is a term of A or

-20-

S = (S1.s2) for some s-expressions s1 and s2.

This gives rise to a basic predicate atom such that:

atom (S) = true if s is a term of A

false otherwise.

Step gives us decomposition operators car, cdr and a composition

operator cons such that:

car(s) = s1 if s = (s1.s2) for some s1 and s2

undefined otherwise

cdr(s) = s2 if s = (s1.s2) for some s1 and s2

undefined otherwise

cons(s1,s2) = (s1.s2)

We also inherit all operations of A. Since equality check in A

is a definable operator of A, this operator eq is also a

definable operator of s-expression of A.

By structural induction, we can prove

properties of s-expressions of A.

car(cons(x,y)) = x

cdr(cons(x,y}} = y

cons (car (x}, cdr (x)) = x -if 1atom (x).

the following

We have observed an �xample of how a parameterization can be

done by recursively defining terms over argument data types. We

call this kind of parameterization recursive term

parameterization. We allow hfc to be applied to recursive term

parameterizations to produce another parameterizations, as we

allow hfc to be applied to'recursive term algebras to produce a

new algebra of terms.

We will explain how this works to specify identifiers over

-21-

argument data type. Let A be an arbitrary data type. we first

define a recursive term parameterization Words of A.

Words of A

(Base of Parameterization)

If a is a term of A then it is a word of A

(Step of Parameterization)

If x is a word of A and a is a term of A, then a.xis a word

of A.

(Closure of Parameterization)

Nothing is a word of A unless its being so follows from (Base

of Parameterization) and (Step of Parameterization).

Canonically obtained basic operations of words of A allows

us to structurally define a predicate is-eq which satisfies:

is-eq(x,y) = true if x and y are the same words

= false otherwise.

Since in the data type of identifiers, we are interested

only in the equality check of identifiers, we can apply the

following hfc to obtain a parameterization identifiers over A.

Identifiers over A

add is-eq to words of A.

forget all basic operations of Words of A.

It is obvious that recursive term parameterizations preserve

"computability completeness". For this reason, we call them

complete parameterization. Usually application of hfc results in

the loss of this property. For example, even though Words of A

is complete, Identifiers of A is not complete.

-22-

j7. Data Types with Congruence Relation

As pointed out in the end of the first section, there are

some structures for each element of which it is impossible or

very difficult to provide a unique representation. To cope with

this situation, what we have to do is to introduce a congruence

relation which identifies different representations of the same

object. In initial algebra approach, this relation is specified

by equational axioms and this congruence relation is used

meta-theoretically to form quotient algebra so that the class of

representations denoting the same object forms an equivalence

class.

We observe that, the congruence relation must be a total

computable (decidable) one to make computational sense.

Furthermore, preferably it should be a structurally recursive

relation. It is easier to define such relation as a

(structurally) definable operation than to define it through

equational axioms and make sure they are totally computable (or

structurally recursive). In fact the latter is the approach

taken by Bergstra & Tucker (13) when they introduced

computability to initial algebraic specification method.

Furthermore, once we obtain the congruence relation as a

definable operation, by enriching the term algebra with this

congruence relation as an operation, we get the same effect as

taking quotient by the congruence relation, thus we do not need

to form quotient algebra. We "inte�nalize" the congruence

relation rather than bringing it up to the meta-theoretical level

and take quotient as in the initial algebra approach.

-23-

Since we know that the data type of finite power set is an

example which requires congruence relation, let us examine how

term algebra specification method can specify this data type.

Basic strategy is to represent a set {a1,a2, ••• ,an} by lists

<a1,a2, ••• ,an>, <a
2
,a

3
, .•. ,a

n
,a

1
> • • • , or <an,an_1, ••• ,a1>. Then

we identify all of these representations by a congruence

relation, which is the permutation relation. Therefore we start

with specifying a parameterized data type List(A) by a recursive

term parameterization. Using basic operations of this

parameterized data type, we define basic set operations in terms

of list representations.

equalset satisfying:

Then we define an extra operation

equalset (11,12) =�if 11 is a permutation of 12
= false otherwise.

It is easy to check that this relation is a congruence relation

to basic set operations. After enriching List(A), with these

defined operations, we forget all basic operations of List(A).

Then we get a parameterized data type Set(A). In fact this is

how LISP (14] treats sets.

This kind of "internalization" of meta-theoretic concept is

quite a common exercise in mathematics. For example, in

recursive function theory we treat number theoretic functions

without embedding it into logic. Thus we can not inherit

predicates from logic. To cope with this lack of predicates,

which is a meta-theoretical concept to recursive function theory,

recursive function theorists "internalize" predicates by

considering computable predicates to be computable functions

-24-

which ranges over {0,l}CN.

ta. Abstractness of Specification

One may criticize our approach for being dependent on term

representations, thus lucking in "abstractness" of the

specification. The issue of "abstractness" is quite a

controversial philosophical issue and we are quite reluctant to

take sides. Anyway, for finitarists, "abstractness" is finitely

establishable properties of finitely decidable collection of

finitely examinable (thus concrete) objects. In this sense, our

term algebra specification method is abstract enough already.

But from more conventional view of "abstractness", we agree that

our approach as it is now lacks in "abstractness". Our answer to

this question is the following general definition of abstract

data types:

Definition of Abstract Data Types

An abstract data type is a class of algebras which are

"constructively" isomorphic to a data type.

Constructive isomorphism plays an essential role here. For

example, let A be a finite data type and Ident(A) be the data

type of identifiers of A defined as in 16. Then this data type

is isomorphic to the algebra PRF of all primitive recursive

functions with the extensional equality of functions as its

operation. Thus Ident(A) is the same as PRF in non-constructive

algebraic sense. But we can not use PRF as a substitute for

Ident(A), because in PRF, we can not compute the equality of

- 25-

elements. Unfortunately PRF does not serve as a data type of

identifier.

isomorphic.

In fact PRF and Ident(A) are not constructively

§9. Sub-Data Types

Formally speaking, "recursive definition" of sets is an

unambiguous context free grammar. This has the following two

important implications:

First, our data types are algebras over context free

languages. This restriction is practically reasonable, for even

programming languages are context free. Theoretically, an

ambiguous context free grammar is important because it provides a

computationally complete set of basic operations over the

language it generates. If a decidable set is non-context free,

there is no obvious way· of providing computational basis from a

grammar of the set.

Second, algebras generated by unambiguous context free

grammars are not just many sorted algebras. Each non-terminal X

of a grammar G corresponds to a sort of the algebra Alg(G)

generated by G. The carrier set Alg(G)
X of this sort in Alg(G)

is the language L(X) = {w/x-,w}. Therefore, if G has a

production rule
x1->x2

then L(X
1
)cL(X

1
). For example, A is a

subset of S-expr(A). Our algebras are order sorted algebras of

Goguen [14] or classified algebras of Wadge [15] in which a

carrier set on to a subset of others. In our data types,

polymorphic operations can very easily be introduced. For

example, due to ACS-expr(A), all operations over S-expr(A) are

I

-26-

polymorphic.

Emphasizing the importance of context free data types does

not mean neglecting the importance of non-context free decidable

data structure. In formal language theory, it is well-known that

any decidable set X is a decidable subset of some context free

set D. Also it is easy to observe that a function f:X->D is

computable iff

f :D->D. This

it is

indicates

the restriction of a computable function

that the computability over X is

inherited from that over D, thus the data structure X should be

treated within the structure of D. For example, the set Pr of

all prime numbers is a non-context free decidable subset of N.

All computable operations over Pr are restriction of number

theoretic computable operations. Since most number theoretic

operations do not preserve primeness, we have to discuss prime

numbers inside the theory of natural numbers. If we treat prime

numbers independently to natural numbers, as far as the authors

know, the only obvious operations of importance over Pr are just

the 1st prime number as a constant, the next prime number

operation, and the previous prime number operation. Thus the

algebra of prime numbers becomes just isomorphic to the algebra

of natural numbers.

These observations suggest the following notion of sub-data

types:

Definition of Sub-data Types

Let D be a data type and r=<r
8
:o ->{true,false}> be a family

s --

of definable predicates over carrier sets D
8

• A sub-data !_Xpe of

-27-

D determined by r is an algebra of terms obtained by adding

Rs={dlr
8

(d)=�} as subsorts of Ds, rs as an operation over Ds,

and the restriction to R of operations over D s s

Algebras obtained from (D,r) by forgetting some operations are

also called sub-data types of D (derived from El as operations

over Rs· We write (D,r) to denote this sub-data type. Algebras

obtainable from (D,r) by forgetting some operations are also

called sub-data types of D (derived from r).

Obviously D is a sub-data type of itself. It is possible

that operations over Rs ranges over Rs, for some sorts s'. In

this case, Rs and operations over them form a closed algebra.

Such algebra is called a decidable data type. Algebras obtained

from such algebra by forgetting some operations are also called

decidable data types. All data types are decidable data types.

Order sorted version of computable algebras of Rabin (16] and

Malchev [17] are exactly decidable data types. In fact, given

any order sorted computable algebra A, we can find a data type D

s.t. A is effectively isomorphic to a decidable data type

obtained from O and a family r of definable predicates over o.

Sub-data types are not just to introduce non-context free

decidable substructures of context free data types. There are

many important context free sub-structures of context free data

types. For example, in the data type N of natural numbers, we

can define a predicate r s.t. r(x) = true iff 10 < x < 20. Then

(N,r) is a PASCAL subrange [10 •• 20]. Even though R = {xlr(x) =

true} is a finite set, (N,r) is not a finite data type as in 4,

for the operations associated with the set R in (N,r) and in the

-28-

finite data type R are different. Finite data types corresponds

to PASCAL scalar types. It is an unfortunate confusion in PASCAL

that subranges and scalars are treated in the same category,

namely the category of "data types". In our understanding,

subranges are sub-data types and scalars are data types.

Another advantage of sub-data types is that, using the same

idea as in Goguen's order sorted algebras (14], and Wadge's

classified .algebras (15] we can totalize all operations without

introducing errors. Remember that the partiality of operations

comes from the incapability of decomposing elements which are in

the data type due to the base of the recursive definition. So if

the decomposing operations are restricted to non base elements,

all operations become error free. But the predicate is-nonbase

s.t.

is-nonbase (d) = true if d is not a base element

false if d is a base element

is a primitively definable operation. Therefore for each data

type we have an equivalent sub-data type which is error free.

For example, in the data type N of natural numbers defined in il,

we can define a predicate.

is-positive (n):= false if is-zero(n) = true

true otherwise.

Then we can define a sub-data type of natural numbers defined by

is-positive. This sub-data type (N,is-positive) have the set N

of natural numbers as a sort and the set ·P of positive numbers as

a sub-sort of N. It has operations

is-zero: N->{�, false}

suc:N->N

pred:N->N

0:->N

-29-

is-positive:N->{true, false}

sucrP: P->N

predtP: P->N

is-zerotP: P->{true, false}

By forgetting pred, suctP, is-zerotP, we get a desired sub-data

type. In this sub-data type no operation is partial, thus it is

error free.

§10. Concluding Remarks

Lehman-Smyth [18] discussed an extentional analogue. It is

known that a continuous functor F:C->C where C is a complete

category yields an isomorphism:

D�F(A).

They claimed that this isomorphism yields basic operations to the

object D. Wadge [19] pointed out that it is not the isomorphism

but the intentional information of F which yields basic

operations. We agree with Wadge and think that the reason why

our approach worked out is because we added intensional

information to F and considered it as an unambiguous context free

grammar. In general, given just a continuous functor F:C-C,

there is no canonical way to associate basic operations to the

fixed point D:F(A). The other main difference between our

approach and Lehman-Smyth is that we discard infinitary data

types. This made it possible to develop a clean theory of

computability of data types. There was no theory of sub-data

types at all in Lehman-Smyth. Also our approach is based on a

-30-

lot simpler mathematics than theirs.

Mike Levy told us that Burstall et al. [20] used grammar to

generate carrier sets of data types in HOPE. They did not treat

computability and there is no automatic generation of basic

operations in HOPE.

-31-

Acknowledgement

We thank Paul Gilmore, Paul Voda, Harvey Abramson and Alan

Mackworth of U.B.C. for discussion and valuable suggestions.

Thanks are also due to Jose Meseguer, Mike Levy and David Parnas

for their interest and discussions.

[l]

References

Goguen, Thatcher, Wagner & Wright.
Initial Algebras and Correctness of
In Computer Graphics, Pattern
Structure, IEEE. 1975.

Abstract Data Types as
Data Representations.
Recognition and Data

[2] Goguen, Thatcher, Wagner & Wright. Initial Algebra Approach
to Specification, Correctness and Implementation of Abstract
Data Types. In R. Yeh (editor), Current Trends in
Programming Methodology. Prentice-Hall, 1978.

[3] Goguen & Tardo. An Introduction to OBJ: A Language for
Writing and Testing Software Specifications. In
Specification of Reliable Software, 1979.

[4] Goguen & Meseguer. An Initiality Primer. to appear

[SJ Klaeren, H. An Abstract Software Specification Technique
based on Structural Recursion. SIGPLAN Notice 15, No. 3,
1980.

[6] Wirth, N. The Programming Language PASCAL. Acta
Informatica 1, 1971.

[7] Peck et al. Revised Report on Algorithm Language ALGOL 68.
Springer-Verlag, 1976.

[8] Peck, J. Two Level Grammars in Action. In Information
Processing 74 (Stockholm) North Holland, 1974.

[9] Scott, D. Outline of a Mathematical Theory of Computation.
Proc. of the 4th Annual Princeton Conference on Information
Science and Systems, 1970.

[10] Church, A. The Calculi of Lambda-conversion. Princeton
Univ. Press, 1941.

[11] Godel, K. Uber eine bisher noch nicht benntzte Erweiterung
des finiten Standpunktes. Dialectica 12, 1958.

[12] Gilmore, P. Combining Unrestricted Abstraction with
Universal Quantification, Seldin & Hindley (editors), To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Academic Press, 1980.

[13] Bergstra & Tucker, A Characterization of Computable Data
Types by means of a Finite Equational Specification Method.
Technical Report, Mathematische Centrum, Amsterdam, Holland,
IW124/79, 1979.

..

[14] Goguen, J. Order Sorted Algebras, Semantics and Theory of
computation report No. 14, UCLA, 1978.

[15] Wadge, W. Classified Algebras. Research Report No. 46,
Dept. of Computer Science, Univ. of Warwick (1982).

[16] Rabin, M. Computable Algebras: General Theory and Theory
of Computable Fields. Transaction of the American
Mathematical Society 95, 1960.

[17] Malcev, A.I. Constructive Algebras I. Russian Mathematical
Surveys 16(3), 1961.

[18] Lehman-Smyth, Algebraic Specification
synthetic approach, Univ. of Leeds,
Studies, Report 115, 1978.

[19] w. Wadge, Private Communication, 1978.

of Data
Dept.

Types a
of Computer

[20] Burstall, MacQueen and Sannella, Hope: An Experimental
Language, Proc. of POPL, 1981.

