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Abstract 

Data types in programming have been mathematically studied 

from two different viewpoints, namely data types as (initial) 

algebras and data types as complete partial orders. In this 

paper, we explore a possibility of finitaristic approach. For 

finitarists, the only sets accepted are "recursively defined" 

sets. We observe that recursive definition not only defines a 

set of terms but also basic operations over them, thus it induces 

an algebra of terms. We compare this approach to the existing 

two approaches. Using our approach 

classification of data types. 

i_!. Term Algebras vs. Initial Algebras 

we present finer 

A view of data types as initial algebras, developed by ADJ 

group [1,2], has been widely accepted and some programming 

systems based on this idea have been developed (see Goguen [3]). 

In this approach, we specify a data type as a collection� of 

many sorted operation symbols (called signature) and a collection 

E of equational axioms which operations in,%. have to satisfy. To 
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guarantee the uniqueness of the specification (�,E), we choose 

the initial algebra I (f',E) which satisfies E as the specified

data type. How to construct I (I',E) from (%,E), can be found in

ADJ [ 1, 2] •

A good example of initial algebra specification method is as 

follows: 

Z = {zero:->int, suc:int->int, pred:int->in�} 

E = {suc(pred(x)) = x, pred(suc(x)) = x}. 

The data type specified is an initial algebra I (1',E) which

interprets.las follows: 

int 1--> the set Z of all integers 

zero 1--> the constant O e z 

sue 1--> �x.x+l:Z->Z 

pred 1--> �x.x-1:Z->Z. 

This specification method is based on 

philosophy: 

the following 

"Carrier sets (sets obtained as the interpretation of sorts) 

of a data type should be induced from the equational 

property of operations." 

In this paper, we agree that data types are algebras but we 

present an alternative specification method based on the 

following alternative philosophy of finitarists: 

"Recursive structure of carrier sets of a data type should 

induce basic operations and the property of them." 

In order to explain this approach, we present some examples of 

data type specifications. 
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Data type of natural numbers 

--we start with "recursive definition" of natural numbers: 

(Base): 0 is a natural number. 

(Step): if n is a natural number then so is s(n) 

(Closure}: nothing is a natural number unless it is proved to be 

a natural number using (Base) and (Step). 

This definition gives us a set of terms (over {o,s,C,)}). 

--Now we induce operations of natural numbers from the "recursive 

definition" given above. 

Notice that (Closure) ensures: 

"if n is a natural number then 

either it is 0 

or it is s(m) for some unique natural number m." 

This property gives us a predicate is-zero on terms s.t. 

is-zero(n) = true if n=O 

false otherwise. 

(Step) shows how to compose and decompose on terms. 

rise to the following two operations on terms: 

suc(n) = s(n) 

pred(n) = m if n = s(m) 

undefined otherwise. 

This gives 

Thus we obtained an algebra over the terms of natural numbers. 

Generally speaking, all term algebras derived from 

"recursive definition" of carrier sets contain predicates like 

"is-zero". Even though we do not make explicit reference, we 

assume term algebras have Boolean sort {true, false} as one of 

their carriers. Also notice that we are bound to obtain 
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"partial" operations like "pred", thus partial algebras. 

Conceptually, this causes no problem as long as we agree that 

undefinedness propagates throughout expressions, for then we know 

exactly when an expression is undefined. we can make all 

operations of term algebras total by throwing in "undefined" 

value to each sort and making undefinedness propagation explicit. 

Then the data type of natural numbers will be "totalized" as 

follows: 

is-zero(n) = true if n = 0 

suc(n) 

pred(n) 

undefined if n = undefined 

false otherwise 

= s(n) if n � undefined 

undefined otherwise 

= m if n = s(m) 

undefined otherwise. 

Term algebras canonically obtained from "recursive definition", 

as above, is called a recursive term algebra. 

Let us compare this specification with the initial algebra 

specification. It is quite obvious that the process of 

generating the set of natural numbers from the recursive 

definition is the same as generating a free algebra from a 

constant O and a unary function s. In fact the initial algebra 

I (I,E) where

I= {0:->nat, s:nat->nat} 

E = the empty set 

gives us the set of natural numbers {O,s(O),s(s(O)), ••• } and the 

successor function sue as the interpretation of nat and s 
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respectively. But 1(�,E) will not give us any extra operation

which is not in �, therefore we can not obtain predecessor 

function, which is associated with the free generation of the set 

of natural numbers. 

To include predecessor operation in the initial algebra 

specification, we have to start with a signature �• = {0:->nat, 

s:nat->nat, p:nat->nat} which includes a symbol p for the 

predecessor operation, then we take the initial algebra l(I.',¢)
which is the free algebra generated from%.'. But this algebra is 

no good because we have too many terms representing the same 

natural number. For example all of s(0), s(p(s(0))), p(s(s(0))) 

denote 1. Therefore we need a set of equational axioms which 

enforces different terms denoting the same object to be equal. 

Since initial algebra method works only for "total algebras", we 

have to totalize the predecessor operation with the aid of 

undefined elements. This makes the set of axioms quite 

elaborate. In fact the following set E' of axioms works: 

p(0) = undefined 

0K(0) = true 

0K(s(n)) = OK(n) 

0K(undefined) = false 

p(undefined) = undefined 

s(undefined) = undefined 

IFE(true,n,m) = n 

IFE(false,n,m) = m 

IFE(undefined,n,m) = undefined 

IFE(0K(n),P(s(n)),undefined)=IFE(0K(n),n, undefined) 
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IFE (OK (n) ,s (P (s (n))) ,undefined)=IFE (OK (n) ,s (n) ,undefined) 

For the detailed explanation of how this works, readers can 

safely be referred to ADJ [2]. But we can conclude that the 

initial algebra which satisfies E' interprets nat,p,s to be the 

set of natural numbers, predecessor function, successor function 

respectively. 

It should be noticed that E' 

characterization of the following properties: 

(1) pred{O) is undefined.

(2) undefinedness propagates

(3) pred(suc{n)) = n

(4) if n, 0 theri suc(pred(n)) = n.

is an equational 

In fact when we define the data type of natural numbers using 

term algebra method, all of these properties can be proved by the 

structural induction on the structure of natural numbers, which 

is due to the recursive definition. For example (4) can be 

proved as follows: 

(Induction Base) n = 0 implies n r O is false. 

holds. 

Thus (4) 

(Induction Step) Assume n, O implies suc(pred(n)) = n 

suc(pred(suc(n))) = suc(n) for suc(n) , O. 

Thus for all natural number n, n r O implies suc(pred(n)) = n. 

In general, axiomatic specification is not straightforward. 

In history, quite a number of axiomatic systems proposed turned 

out to be inconsistent. As ADJ [2] pointed out, even equational 

theories are not exceptions. Quite often, avoiding inconsistency 

would lead us to somewhat unnatural specification, like E'. 
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In initial algebra specification, one ought to make sure not 

only the consistency but also if what he specified is what he 

wanted. For this purpose, he has to know the construction of the 

initial algebra I
(Z',E) from (� 1 E). This is not very easy for

non-mathematicians. In case E+¢, I
(l,E) is the quotient of the

free algebra generated from l, by the minimal congruence relation 

containing E. Therefore we have to work on an algebra over 

equivalence classes. Goguen et al. [2] showed how to obtain an 

algebra of representatives from the quotient algebra. But this 

choice of representatives is not quite natural. 

In initial algebra specification, a set of specification 

axioms gives us a ground for reasoning about the data type 

specified. Also initiality gives us an induction method for 

reasoning, as shown in Goguen & Meseguer [4]. In our approach, 

we reason about data types using structural induction on the 

well-founded structure of terms. 

These observations indicate that term algebra method is 

worth pursuing. 

algebra method. 

It looks conceptually easier than initial 

Especially treatment of undefinedness seems 

simpler in term algebra method than in initial algebra method. 

The next thing to question is how far can we go with this 

approach. Can we specify all data types which initial algebra 

method can? In the rest of this paper, we will examine this 

question. To begin with, we present a recursive term algebra 

specification of the data type of integers. 

Data Type of Integers 

--"Recursive definition" of integers: 
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5. 
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s(O) is a positive number. 

If n is a positive number then 

0 is an integer. 

if n is a positive integer then 

n and -n 

are integers. 

nothing is an integer unless it 

so is s (n) • 

both 

is proved to be so from 

1 to 4. 

From 

This 

5, 

II if 

we 

X 

can conclude: 

is an integer 

X = o, 

or X = s (0) ,

or X = s(n) for 

then either 

some positive number 

or X = -n for some positive number n.

gives us the following predicates: 

is-zero(x) = true if X = 0 

false otherwise 

is-one(x) = true if x = s(O) 

false otherwise 

n, 

n 

is-greater-than-one(x) = true if x = s(n) for some 

positive n 

false otherwise 

is-negative(x) = true if x s -n for some positive n 

false otherwise 

From 1, 2 and 4, as composition and decomposition operators, we 

have the following basic operations: 

s uc' ( n) = s ( n) if n = 0 
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undefined otherwise 

sue" (n) = s(n) if n is a positive number 

undefined otherwise 

pred' (n) = 0 if n = s(O) 

undefined otherwise 

pred" (n) = m if n = s (m) for some positive m 

undefined otherwise 

neg' (n) = -n if n is a positive number 

undefined otherwise 

neg" (m) = n if m = -n 

undefined otherwise 

Even though we do not make it explicit, we can make the term 

algebra "total", as we did for natural numbers. 

This finitarist version of integers can very, easily be 

related to algebraist version of them as follows: 

--From the basic predicates, we can define usual predicates: 

is-zero = is-zero 

is-negative = is-negative 

is-positive(n) = is-one(n) v is-greater-than-one(n) 

--From basic operations, we can define usual operations: 

suc(n) = sue' (n) if n = 0 

suc"(n) if n is a positive number 

0 if n = -s(O) 

neg"(pred"(m)) if n = -m and m + s(O) 

neg(n) = neg' (n) if n is a positive number 

0 if n = 0 

neg"(m) if n = -m 
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pred (n) = pred' (n) if n = s (0) 

pred"(n) if n = s(m) for some positive m 

-s(0) if n = 0 

neg' (suc"(m)) if n = -m 

Furthermore, by structural induction, we can easily prove: 

pred(suc(x)) = x 

suc(pred(x)) = x. 

In term algebra specification, we have to make sure that a 

"recursive definition" of terms provide a unique representation 

for each element of the intended set. Then we automatically get 

sufficient collection of operations. On the contrary, in initial 

algebra specification, we have to make sure that we have chosen 

enough operations for the data type to be specified. Then by 

eguational axioms, we enforce different terms denoting the same 

object to form an equivalence class. We think, even though it 

sometimes gets a bit tricky as above, providing unique 

representation via "recursive definition" is not conceptually 

difficult. 

It is well known that there are some 

element of which it is impossible 

structures 

to provide 

representation. Finite power set is such an example. 

handle them will be discussed later. 

for each 

a unique 

How to 

In summary, our motto is "data types as recursive term 

algebras." In the following, we will examine the relevance of 

this motto and propose a notion of data types based on this 

motto. 
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�- Definable Operations (Computability)

One of the advantages of recursive term algebras is that 

they have "computational completeness". More specifically, from 

basic operations of term algebras, by iterative use of: 

- function composition

- conditional definition (definition by cases)

- general recursive definition,

we can recursively define all partial computable functions over 

the terms recursively defined. For this reason we call term 

algebras complete data types. For example, it is well-known that 

partial recursive functions are exactly recursively definable 

functions of the data type of natural numbers. 

Recursive term algebras provide an interesting sub-class of 

definable operations. We say an operation of a recursive term 

algebra is structurally recursive if it can be defined from basic 

operations by iterative use of: 

- functional composition

- conditional definition

- structural recursion,

For example, all primitive recursive functions are structurally 

recursive functions over the data type of natural numbers. 

Conceptually they are the same except undefined value. In 

recursive function theory pred(0) = 0. Thus those structurally 

recursive functions which have undefined in their ranges are not 

primitive recursive functions. But all structurally recursive 

functions terminate and we can prove properties of them by 
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structural induction. It should be noted that Klaeren (5] 

observed the importance of decomposition of objects in algebras. 

He discussed structural recursion and structural induction on 

decomposable algebras, i.e. algebras which permit unique 

well-founded decomposition of each element. It is obvious that 

structural recursion on recursive term algebras is a special case 

of Klaeren's general argument. The point we are making here is 

that from a computational point of view we might not need to get 

into the full generality of Klaeren. It seems as though 

structural recursion makes computational sense only when applied 

to recursive term algebras. At least it is nicer to be able to 

talk about structurally recursive functions within the theory of 

partial computable functions. 

Even a smaller subclass of definable operations is 

interesting. We say an operation of a recursive term algebra is 

primitively definable if it is defined from basic operations 

using 

- functional composition

definition by cases.

Obviously all primitively definable operations are structurally 

definable and all structurally definable operations are 

recursively definable. 

In summary, we observe that a recursive term algebra 

provides a basis for the computability over them. 

�- Functional Data Types (Do we miss them?l 
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It is well known among finitarists that whenever we define a 

set "recursively" we can decide if two elements of the set are 

equal or not. This fact is algebraically realized by the fact 

that we can define a total computable (in fact structually 

recursive) predicate is-equal which satisfies the following 

property: 

is-equal(x,y) = true if x = y 

false otherwise. 

This indicates that we can not define functional data types by 

term algebra specification method. 

We observe that even though functionality of functions is 

important for compile time type checking and efficient code 

generation, data types of functions are not useful for 

programming. In PASCAL [6], we specify functionality of each 

function, but functions of the same functionality do not form a 

data type. Functionality is used mainly for compile time type 

checking and efficient code generation. In ALGOL 68[7], we can 

define a mode of functions with the same functionality, but these 

modes are under much stronger constraint than non-functional 

modes. For example, recursive mode specification using 

functional mode is not allowed in ALGOL 68 (see Peck [8]). It 

seems that we can not make much use of function types except 

providing functionality information to compilers to assist 

compile time type checking. 

The following observation on "qualitive" difference between 

the role in computing of non-functional data object and that of 
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functional data object will explain why functional data should be 

treated differently from non-functional data. 

the following computation of LISP: 

Let us consider 

rev(x):= if atom(x) then x else cons(rev(cdr(x)),rev(car(x )). 

A LISP data object x (which is a binary tree) is decomposed into 

cdr(x) and car(x) to split the computation rev(x) into 

subcomputations rev(cdr(x)) and rev(car(x)). Also think of the 

following computation of natural numbers: 

f(x):= if x = 0 then 1 else x*f(x-1). 

A natural number x is decomposed into x-1 to 

subcomputation f(x-1). In the following computation: 

)'(X) := f (0) 

f(y):= if R(y) then y else f(y+l) 

obtain a

we start with O and keep composing by y+l until R{y) becomes 

true. This function is known as)'-y.R(y) in recursive function

theory. In fact, iteratively decomposing and composing data 

object is the heart of computation on non-functional data object. 

When it comes to functions, there is no obvious way of 

structuring them to allow composition and decomposition. Scott 

[9] proposed structuring them by extensional ordering and 

decompose a function f into a chain f0�f£f� ••• s.t. the least

upper bound Ufi of it is f. Given a computable function f, there

is no canonical method of decomposing f, but given a procedure to 

compute f we can canonically decompose f. For example 

f{n):= if n = 0 then l else n*f(n-1) 

can be decomposed as follows: 

Let F =�f.in. if n c O then 1 else n*f(n-1) and 
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J = everywhere undefined procedure. 

Then: 

fo = 1

fi+1: = F(fi ) = 1n. if n = 0 then 1 

else if n = 1 then 1 

else if n = 2 then 1*1*2 

else if n = i then 1*1*2*--*i 

else l 

form a chain f0;tJE_ •.. s.t. f = LJfi. This idea of structuring

computable functions of the same functionality provides an 

excellent ground for understanding and reasoning functional 

computation mathematically. But this is not a common way how 

programmers understand functional computation. For example, when 

we write a program to functionally compose two functions f and g, 

we do not decompose f and g as {fi} and {gi} and then form a

chain {q f } i. i and take the limit LJgi.ti to get g.f. Most

programmers will write the following function declaration for 

this: 

Compose(f,g,x):= g(f(x)) 

When we pass functions f' and g' to Compose, they are substituted 

for f and g in g(f(x)). This indicates that, in real life 

programming, functions are just texts and operation over them is 

just substitution. This is also the view of logicians over 

functions. Church [10] called this a view of functions as 

intensions. For example, in _!l-calculus, syntactic substitution 

is what,B-reduction rule is all about. Also Godel [11) took the 
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same view in his theory of primitive recursive functionals of 

finite types. The understanding of functions which Scott took is 

what logicians call functions as extensions. 

Anyway the role of functions as data under the intensional 

view (which is also commonly accepted view in programming) is not 

quite active compared with non-functional �ata. This suggests 

that we would not get very much from including function spaces in 

"user definable" data types as programming facility. We claim 

that the function spaces are for reasoning about programs 

extensionally rather than for programming feature. We have to 

notice that using function space is not the only way to reason 

about programs. There are quite a few ways 

intentionally (see Gilmore [12] for example). 

statement will explain our viewpoint very clearly: 

to do it 

The following 

"Functions of the same functionality form not a data type 

but a type". 

[!. Finite Data Ti:pes 

"Recursive definition" of sets allows us to define finite 

sets of terms. For example: 

1. tl is foo

2. t2 is foo
3. t3 is foo

4. nothing is a foo unless it is proved to be foo from 1, 2,
3.

is a "recursive definition" and the set of foos defined is 

Basic operations associated with this "recursive 
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definition" are: 

is-t, (x) = true if x = t • (l<i<3). 
1 1 - -

It is easy to observe that all computable functions over a 

finite set of terms are primitively definable from basic 

operations is-ti. It is needless to say that equality check is a

computable function. 

�- Hidden Functions 

Returning back to the specification of integers, for 

algebraists it is enough to have only is-zero, is-positive, 

is-negative, sue, pred, neg as basic operations of integers. 

This standard algebra of integers can be obtained from the 

recursive term algebra of integers by adding standard operations 

is-zero, is-positive, is-negative, sue, pred, neg as definable 

operations and forgetting about basic operations of the recursive 

term algebra of integers. This process is a special case of the 

following general construction called hidden function 

construction (hfc) of an algebra of terms from a recursive term 

algebra: 

--add some structurally recursive operations to a recursive term 

algebra 

--hide some operations of the enriched algebra. 

The reason why we allow only structurally recursive operations to 

be added is because it is not a nice thing to have 

non-terminating operations as operations of algebras. We also 

assume that after applying hfc to a recursive term algebra, the 

resulting algebra of terms still enables us to define the 
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equality check as a structurally recursive operation. This is 

because algebras without equality check are not interesting. We 

cannot compute much with it. In case we do not hide any 

operation in hfc, we call such construction enrichment. 

Now we propose the following definition of data types: 

Definition of Data Types 

Data types are either recursive term algebras or algebras of 

terms obtained by hfc. 

Note that after applying hfc, we may lose "computability 

completeness". Thus we have two kinds of data types. A data 

type which has "computability completeness" is called a complete 

data type. A data type which does not possess this property is 

called a non-complete data type. Obviously all recursive term 

algebras are complete data types. Curiously the standard algebra 

of integers is also complete. This completeness is due to the 

fact that from the standard operations of the standard algebra of 

integers, by primitive definition, i.e. 

functional composition 

definition by cases, 

we can define all basic operations of the recursive term algebra 

of integers. This suggests that both the standard algebra of 

integers and the recursive term algebra of integers provide 

equivalent (in fact primitively equivalent) computation basis 

over the terms of integers. This notion of primitive equivalence 

of data types has not been studied in the previous theories of 

abstract data types. We claim that from a computability point of 
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view, this equivalence of data types is important. A technical 

problem here is that this equivalence is an equivalence between 

two algebras with different signature. 

Even though we may lose "computability completeness" by 

applying hfc to recursive term algebras, all operations of our 

data types are still computable, in the sense that we know how to 

compute them with the aid of "hidden" functions. Therefore all 

of our data types are computable. 

i6. Parameterized Data types 

A parameterization of data types can be considered as a 

"uniform" way of constructing a data type from an argument data 

type. We treat this concept as recursive definition of terms 

over the argument data type. 

Assume A is an arbitrary data type. We can define a data 

types-expression of A as follows: 

s-expression of A

(Base of Parameterization) 

If a is a term of A then a is ans-expression of A. 

(Step of Parameterization) 

If S1 and s 2 ares-expressions of A then so is (S1.s2)

(Closure of Parameterization) 

Nothing is an S-expression of A unless its being so follows 

from (Base of Parameterization) and (Step of Parameterization). 

Then from the closure, we have: 

ifs is ans-expression of A then either 

s is a term of A or 



-20-

S = (S1.s2) for some s-expressions s1 and s2.

This gives rise to a basic predicate atom such that: 

atom (S) = true if s is a term of A 

false otherwise. 

Step gives us decomposition operators car, cdr and a composition 

operator cons such that: 

car(s) = s1 if s =  (s1.s2) for some s1 and s2

undefined otherwise 

cdr(s) = s2 if s =  (s1.s2) for some s1 and s2

undefined otherwise 

cons(s1,s2) = (s1.s2)

We also inherit all operations of A. Since equality check in A 

is a definable operator of A, this operator eq is also a 

definable operator of s-expression of A. 

By structural induction, we can prove 

properties of s-expressions of A. 

car(cons(x,y)) = x 

cdr(cons(x,y}} = y 

cons (car (x}, cdr (x)) = x -if 1atom (x).

the following 

We have observed an �xample of how a parameterization can be 

done by recursively defining terms over argument data types. We 

call this kind of parameterization recursive term 

parameterization. We allow hfc to be applied to recursive term 

parameterizations to produce another parameterizations, as we 

allow hfc to be applied to'recursive term algebras to produce a 

new algebra of terms. 

We will explain how this works to specify identifiers over 
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argument data type. Let A be an arbitrary data type. we first 

define a recursive term parameterization Words of A. 

Words of A 

(Base of Parameterization) 

If a is a term of A then it is a word of A 

(Step of Parameterization) 

If x is a word of A and a is a term of A, then a.xis a word 

of A. 

(Closure of Parameterization) 

Nothing is a word of A unless its being so follows from (Base 

of Parameterization) and (Step of Parameterization). 

Canonically obtained basic operations of words of A allows 

us to structurally define a predicate is-eq which satisfies: 

is-eq(x,y) = true if x and y are the same words 

= false otherwise. 

Since in the data type of identifiers, we are interested 

only in the equality check of identifiers, we can apply the 

following hfc to obtain a parameterization identifiers over A. 

Identifiers over A 

add is-eq to words of A. 

forget all basic operations of Words of A. 

It is obvious that recursive term parameterizations preserve 

"computability completeness". For this reason, we call them 

complete parameterization. Usually application of hfc results in 

the loss of this property. For example, even though Words of A 

is complete, Identifiers of A is not complete. 
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j7. Data Types with Congruence Relation 

As pointed out in the end of the first section, there are 

some structures for each element of which it is impossible or 

very difficult to provide a unique representation. To cope with 

this situation, what we have to do is to introduce a congruence 

relation which identifies different representations of the same 

object. In initial algebra approach, this relation is specified 

by equational axioms and this congruence relation is used 

meta-theoretically to form quotient algebra so that the class of 

representations denoting the same object forms an equivalence 

class. 

We observe that, the congruence relation must be a total 

computable (decidable) one to make computational sense. 

Furthermore, preferably it should be a structurally recursive 

relation. It is easier to define such relation as a 

(structurally) definable operation than to define it through 

equational axioms and make sure they are totally computable (or 

structurally recursive). In fact the latter is the approach 

taken by Bergstra & Tucker (13) when they introduced

computability to initial algebraic specification method. 

Furthermore, once we obtain the congruence relation as a 

definable operation, by enriching the term algebra with this 

congruence relation as an operation, we get the same effect as 

taking quotient by the congruence relation, thus we do not need 

to form quotient algebra. We "inte�nalize" the congruence 

relation rather than bringing it up to the meta-theoretical level 

and take quotient as in the initial algebra approach. 
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Since we know that the data type of finite power set is an 

example which requires congruence relation, let us examine how 

term algebra specification method can specify this data type. 

Basic strategy is to represent a set {a1,a2, ••• ,an} by lists

<a1,a2, ••• ,an>, <a
2
,a

3
, .•. ,a

n
,a

1
> • • •  , or <an,an_1, ••• ,a1>. Then

we identify all of these representations by a congruence 

relation, which is the permutation relation. Therefore we start 

with specifying a parameterized data type List(A) by a recursive 

term parameterization. Using basic operations of this 

parameterized data type, we define basic set operations in terms 

of list representations. 

equalset satisfying: 

Then we define an extra operation 

equalset (11,12) =�if 11 is a permutation of 12
= false otherwise. 

It is easy to check that this relation is a congruence relation 

to basic set operations. After enriching List(A), with these 

defined operations, we forget all basic operations of List(A). 

Then we get a parameterized data type Set(A). In fact this is 

how LISP (14] treats sets. 

This kind of "internalization" of meta-theoretic concept is 

quite a common exercise in mathematics. For example, in 

recursive function theory we treat number theoretic functions 

without embedding it into logic. Thus we can not inherit 

predicates from logic. To cope with this lack of predicates, 

which is a meta-theoretical concept to recursive function theory, 

recursive function theorists "internalize" predicates by 

considering computable predicates to be computable functions 
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which ranges over {0,l}CN. 

ta. Abstractness of Specification 

One may criticize our approach for being dependent on term 

representations, thus lucking in "abstractness" of the 

specification. The issue of "abstractness" is quite a 

controversial philosophical issue and we are quite reluctant to 

take sides. Anyway, for finitarists, "abstractness" is finitely 

establishable properties of finitely decidable collection of 

finitely examinable (thus concrete) objects. In this sense, our 

term algebra specification method is abstract enough already. 

But from more conventional view of "abstractness", we agree that 

our approach as it is now lacks in "abstractness". Our answer to 

this question is the following general definition of abstract 

data types: 

Definition of Abstract Data Types 

An abstract data type is a class of algebras which are 

"constructively" isomorphic to a data type. 

Constructive isomorphism plays an essential role here. For 

example, let A be a finite data type and Ident(A) be the data 

type of identifiers of A defined as in 16. Then this data type 

is isomorphic to the algebra PRF of all primitive recursive 

functions with the extensional equality of functions as its 

operation. Thus Ident(A) is the same as PRF in non-constructive 

algebraic sense. But we can not use PRF as a substitute for 

Ident(A), because in PRF, we can not compute the equality of 
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elements. Unfortunately PRF does not serve as a data type of 

identifier. 

isomorphic. 

In fact PRF and Ident(A) are not constructively 

§9. Sub-Data Types 

Formally speaking, "recursive definition" of sets is an 

unambiguous context free grammar. This has the following two 

important implications: 

First, our data types are algebras over context free 

languages. This restriction is practically reasonable, for even 

programming languages are context free. Theoretically, an 

ambiguous context free grammar is important because it provides a 

computationally complete set of basic operations over the 

language it generates. If a decidable set is non-context free, 

there is no obvious way· of providing computational basis from a 

grammar of the set. 

Second, algebras generated by unambiguous context free 

grammars are not just many sorted algebras. Each non-terminal X 

of a grammar G corresponds to a sort of the algebra Alg(G) 

generated by G. The carrier set Alg(G)
X of this sort in Alg(G)

is the language L(X) = {w/x-,w}. Therefore, if G has a 

production rule 
x1->x2 

then L(X
1
)cL(X

1
). For example, A is a 

subset of S-expr(A). Our algebras are order sorted algebras of 

Goguen [14] or classified algebras of Wadge [15] in which a 

carrier set on to a subset of others. In our data types, 

polymorphic operations can very easily be introduced. For 

example, due to ACS-expr(A), all operations over S-expr(A) are 
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polymorphic. 

Emphasizing the importance of context free data types does 

not mean neglecting the importance of non-context free decidable 

data structure. In formal language theory, it is well-known that 

any decidable set X is a decidable subset of some context free 

set D. Also it is easy to observe that a function f:X->D is 

computable iff 

f :D->D. This 

it is 

indicates 

the restriction of a computable function 

that the computability over X is 

inherited from that over D, thus the data structure X should be 

treated within the structure of D. For example, the set Pr of 

all prime numbers is a non-context free decidable subset of N. 

All computable operations over Pr are restriction of number 

theoretic computable operations. Since most number theoretic 

operations do not preserve primeness, we have to discuss prime 

numbers inside the theory of natural numbers. If we treat prime 

numbers independently to natural numbers, as far as the authors 

know, the only obvious operations of importance over Pr are just 

the 1st prime number as a constant, the next prime number 

operation, and the previous prime number operation. Thus the 

algebra of prime numbers becomes just isomorphic to the algebra 

of natural numbers. 

These observations suggest the following notion of sub-data 

types: 

Definition of Sub-data Types 

Let D be a data type and r=<r
8
:o ->{true,false}> be a family 

s --

of definable predicates over carrier sets D
8

• A sub-data !_Xpe of 
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D determined by r is an algebra of terms obtained by adding 

Rs={dlr
8

(d)=�} as subsorts of Ds, rs as an operation over Ds,

and the restriction to R of operations over D s s 

Algebras obtained from (D,r) by forgetting some operations are 

also called sub-data types of D (derived from El as operations 

over Rs· We write (D,r) to denote this sub-data type. Algebras

obtainable from (D,r) by forgetting some operations are also 

called sub-data types of D (derived from r). 

Obviously D is a sub-data type of itself. It is possible 

that operations over Rs ranges over Rs, for some sorts s'. In

this case, Rs and operations over them form a closed algebra.

Such algebra is called a decidable data type. Algebras obtained 

from such algebra by forgetting some operations are also called 

decidable data types. All data types are decidable data types. 

Order sorted version of computable algebras of Rabin (16] and 

Malchev [17] are exactly decidable data types. In fact, given 

any order sorted computable algebra A, we can find a data type D 

s.t. A is effectively isomorphic to a decidable data type 

obtained from O and a family r of definable predicates over o.

Sub-data types are not just to introduce non-context free 

decidable substructures of context free data types. There are 

many important context free sub-structures of context free data 

types. For example, in the data type N of natural numbers, we 

can define a predicate r s.t. r(x) = true iff 10 < x < 20. Then 

(N,r) is a PASCAL subrange [10 •• 20]. Even though R = {xlr(x) = 

true} is a finite set, (N,r) is not a finite data type as in 4, 

for the operations associated with the set R in (N,r) and in the 
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finite data type R are different. Finite data types corresponds 

to PASCAL scalar types. It is an unfortunate confusion in PASCAL 

that subranges and scalars are treated in the same category, 

namely the category of "data types". In our understanding, 

subranges are sub-data types and scalars are data types. 

Another advantage of sub-data types is that, using the same 

idea as in Goguen's order sorted algebras (14], and Wadge's 

classified .algebras (15] we can totalize all operations without 

introducing errors. Remember that the partiality of operations 

comes from the incapability of decomposing elements which are in 

the data type due to the base of the recursive definition. So if 

the decomposing operations are restricted to non base elements, 

all operations become error free. But the predicate is-nonbase 

s.t. 

is-nonbase (d) = true if d is not a base element 

false if d is a base element 

is a primitively definable operation. Therefore for each data 

type we have an equivalent sub-data type which is error free. 

For example, in the data type N of natural numbers defined in il, 

we can define a predicate. 

is-positive (n):= false if is-zero(n) = true 

true otherwise. 

Then we can define a sub-data type of natural numbers defined by 

is-positive. This sub-data type (N,is-positive) have the set N 

of natural numbers as a sort and the set ·P of positive numbers as 

a sub-sort of N. It has operations 

is-zero: N->{�, false} 
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is-positive:N->{true, false} 

sucrP: P->N 

predtP: P->N 

is-zerotP: P->{true, false} 

By forgetting pred, suctP, is-zerotP, we get a desired sub-data 

type. In this sub-data type no operation is partial, thus it is 

error free. 

§10. Concluding Remarks

Lehman-Smyth [18] discussed an extentional analogue. It is 

known that a continuous functor F:C->C where C is a complete 

category yields an isomorphism: 

D�F(A). 

They claimed that this isomorphism yields basic operations to the 

object D. Wadge [19] pointed out that it is not the isomorphism 

but the intentional information of F which yields basic 

operations. We agree with Wadge and think that the reason why 

our approach worked out is because we added intensional 

information to F and considered it as an unambiguous context free 

grammar. In general, given just a continuous functor F:C-C, 

there is no canonical way to associate basic operations to the 

fixed point D:F(A). The other main difference between our 

approach and Lehman-Smyth is that we discard infinitary data 

types. This made it possible to develop a clean theory of 

computability of data types. There was no theory of sub-data 

types at all in Lehman-Smyth. Also our approach is based on a 
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lot simpler mathematics than theirs. 

Mike Levy told us that Burstall et al. [20] used grammar to 

generate carrier sets of data types in HOPE. They did not treat 

computability and there is no automatic generation of basic 

operations in HOPE. 
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