
* *
* Unification-based Conditional Binding *
* Constructs *
* *
* by *
* *
* Harvey Abramson *
* *
* TR 82-7 *
* Proceedings *
* of the *
* First International Logic Programming *
* Conference *
* Marseille - Sept. 14-17, 1982 *
* *

August 1982

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia V6T 1W5

Abstract

The unification algorithm, heretofore used primarily in the
mechanization of logic, can be used in applicative programming
languages as a pattern matching tool. Using SASL (St. Andrews
Static Language) as a typical applicative programming language,
we introduceseveral unification based conditional binding (ie,
pattern matching) constructs and show how these can promote
clarity and conciseness of expression in applicative languages,
and we also indicate some applications of these constructs. In
particular, we present an interpreter for SASL functions defined
by recursion equations.

This work was supported by the National Science and Engineering
Research Council of Canada.

..
 -

-
.

0 Conditional Binding Expressions

Unification-based Conditional Binding Constructs

Pattern matching should not be considered an "exotic
extra" when designing a programming language. It is
the preferable method for specifying operations on
structured data, from both the user's and the
implementor's point of view. This is especially so
where many user-defined record types are allowed.
[Warren,1977).

Most untyped applicative languages (such as "pure LISP"
[McCarthy,1965), Lispkit LISP [Henderson,1980], or Scheme
[Sussman & Steele,1975]), although they permit the construction
of complex data structures, do not have built-in pattern
matching. SASL [Turner,1976,1979, & 1981] does not lack pattern
matching, but it is constrained so that the pattern matching
machinery goes into operation only in a where definition, or
when it must be decided which of a set of recursion equations
defining a function f is appropriate in an application (f x).
Failure of this constrained pattern matching, corresponding-to a
"definition error", or to applying a function to an
inappropriate value, respectively, effectively halts the
computation.

What seems desireable rather, is a means whereby one could,
without introducing a. special function to invoke the pattern
matching, match a SASL value against a pattern so that if the
pattern match succeeded, one could proceed with the computation
(with some information, ie, name bindings, extracted from the
pattern match), and if the pattern match failed, one could
proceed with some other appropriate computation.

Robinson's unification algorithm, heretofore used primarily
in the mechanization of logic, can be adapted for pattern
matching in applicative languages. Note that although we shall
be using SASL for demonstration, the results hold for, and can
be adapted to, any applicative language.

We assume enough familiarity with SASL (which can be
characterized by the phrases: applicative language; definition
by recursion equations; non-strict functions; lazy evaluation),
so that the reader can follow with ease the following
specification of the unification algorithm, adapted from the
formulation given in [Robinson & Sibert,1980a, 1980b].

I !data structure for applications
applicative_pair (a,b) = true
applicative pair x = false

Conditional Binding Expressions

I !what is an environment?
environment () = true
environment ((a,b):e) = environment e &

name a &
~(defined a e)

environment x = false

I ln~me ~ y;elds true.for some suitable
linguistic convention

I lis ~ name a defined
environment e?

defined a () = false
defined a ((a,b):e) =
defined a ((c,b):e) =

in the

true
defined a e

I lwhat is_immed~ately bound to the
name a in environment e?

immediate a ((a,b):e) = b
immediate a ((c,b):e) = immediate a e

I lwhat is_ultim~tely bound to the
name a in environment e?

ultimate a e = defined a e ->
ultimate (immediate a e) eia

substitute in the expression x
the values ultimately bound to
any name occuring in x and defined
in the environment e
"recreal" abbreviates
"recursive realization"

recreal x 'impossible"= 'impossible"
recreal (x,y) e =

(recreal x e, recreal ye)
recreal x e = defined x e ->
recreal (ultimate x e) e; x

if there exists an environment e'
such that

recreal a e' = recreal be'
then e' = unify ab e

unify ab 'impossible"= 'impossible"
unify ab e =

(function a) & (function b) ->
'impossible";
equate (ultimate a e) (ultimate be) e

2 Conditional Binding Expressions

equate a a e = e
equate ab e = name a-> (a, b): e;

name b -> (b, a): e;
~ applicative pair a-> 'impossible";
~ applicative-pair b -> 'impossible";
(unify X y (unify UV e)

WHERE (u,x),(v,y) = a,b)

For finite objects a, £, and any environment e, the
unification algorithm always terminates, either indicating
unification of~ and£ is impossible, or finding an environment
extension e' in which a and£ can be recursively realized as
identical expressions. We force a return of impossible when
both a and b are functions, and note that unify does not
terminate If both~ and£ are infinite objects. If just one of
~ and £ is an infinite object, the unification algorithm
terminates. An "occurs" check is not included in this
specification of unification.

In adapting the unification algorithm to pattern matching
in applicative languages, we first make a slight change to it by
deleting the phrase

name b -> (b, a): e

from the, definition of equate. This restricts unification so
that names to be bound may only occur in the first argument of
unifv. Unless we say otherwise, when we use "unification" we
now mean this restricted version. Later we shall suggest how
unrestricted unification can be used in applicative languages.

Our first unification-based binding construct is given by
the syntax:

a {- b => c; d

Here a is a pattern and£,£ and dare SASL expressions. The
symbol-{- is called the "left crossbow". A pattern is an
arbitrarily complex list structure containing only names
(identifiers) and constants. Evaluation of this expression
takes place in an implicit environment p. If the SASL object
denoted by b can be unified (in the restricted sense!) to the
pattern a,- then the value of this binding construct is£
evaluated- in the environment extension p' containing the
bindings of names in a derived by unification; otherwise, it is
£, evaluated in the unextended environment p.

Example 1. Refer to the definition of equate given above. In
an untyped applicative language such as SASL, one tends to
introduce structure checking functions such as applicative pair
in order to prevent unify from being applied to inappropriate

Conditional Binding Expressions 3

arguments. It is much more concise to invoke pattern matching
explicitly by rewriting eguate as:

equate a a e = e
equate ab e = name a-> (a, b): e

name b -> (b, a): e
(u,x),(v,y) {- a,b =>
unify x y (unify u v e)
'impossible"

The idea is that if a and b both have the structure of
applicative pairs, ~, y, ~ and y get bound to the appropriate
parts of~ and Q, and are subsequently used in the recursive
call of unify: otherwise, the failure environment 'impossible"
is the value of eguate. The function applicative pair can,
using this construct, be dispensed with.

For symmetry, we introduce the right crossbow symbol -},
and another conditional binding expression

a-} b => c; d

defined by

b {-a=> c; d

Analogous to case expressions, we introduce the
notation to express, on the left hand side, trying
sequence of SASL objects bl, ... ,bn against a pattern
the right hand side, try'Tng tomatch a SASL object
sequence of patterns .£.1., ••• ,bn.

{-BIND a AND BIND-} a AND
bl => C 1 bl => C 1 ...
bn => en bn => en
default default

defined by

a {- bl => c1 a -} bl => cl ...
a {- bn => en a -} bn => en
default default

following
to match a

a, and on a against a

where "{-BIND", "BIND-}" and "AND" are new reserved symbols, and
£1., .•. ,£.!l and default are expressions.

4 Conditional Bin~ing Expressions

Example 2. A SASL function~ defined in the environment p by
the recursion equations

~ tr1,1

~ 11n, 1

. . .

. . .
tr1,i1 = ,1

trn,in = 1n

where the trj,k's are patterns, and the ,j's are expressions,
could be represented by the SASL list structure

'E",clause list,p,(),p
WHERE clause list=
(• • • f ((ffj f 1 I i'j f 2 I••• I ffj f i j) f ,j) f • • •)

The third component p of the representation is the environment
in which E is defined, implementing SASL's static naming
convention. See Note 6 below for an explanation of the empty
list as the fourth component, and the copy of pas the fifth
component of the function representation. A somewhat simplified
and idealized SASL interpreter for the application of a function
!.!l, represented using the structure just defined, to a list of
arguments arglist, is shown in Figure 1 at the end of the
report.

Note 1. There are no more clauses to try, so fname is undefined
for the original argument list given by matched++arglist. See
also Note 6.

Note 2. The representation of the function should have this
structure. If not, there is a "compiler" or "representation
error" in fname.

Note 3. What are the possible structures for patlist and
arglist?

Note 4. All arguments have been matched to patterns, so
evaluate the bo9y of the appropriate clause of the definition of
the function t 1n the environment extension env'. Evaluation is
carried out by a function eval which directly interprets
expressions involving the basI'i: operators of SASL, bµt which
recursively calls apply for the interpretation of user-defined
functions.

Note 5. There are still patterns to be matched, ie, we have a
higher order function, and it is represented by fn.

Note 6. If patlist and arglist do not have the appropriate list
structure, there is a "compiler" or "representation error".
Otherwise, try to match an~ to a pattern in the environment
env': if the match succeeds, recurs i ve l y apply the interpreter
to try and continue matching args and patterns, recording that
~ has been attached to the end of the list of arguments
already matched, and also recording the bindings induced by the
match as env 1

', an environment extension of env' as the fifth

Conditional Binding Expressions 5

component of the function representation; if the match fails,
recursively apply the interpreter to the remaining clauses,
recording for this recursive application that no arguments have
been matched, replacing any environment extension env' by the
original environment env, copied from the third component, as
the fifth component of the representation, and that the argument
list to which the function is to be applied is matched++arglist.
Previous matches have to be undone largely because there is no
discipline imposed by SASL on the use of recursion equations in
definitions. It is possible, for example, to use different
variables in each recursion equation, different numbers of
arguments, and, there can be curious dependencies between
recursion equations (see [Campbell,1979],[Turner,1981]). The
fourth component (initially the empty list) of the
representation of a function defined by recursion equations is
used by the interpreter to record partial matches of arglist and
patlist. Note that in a higher order function (Note 5), the
fourth component of the representation is not the empty list.

Full unification can be introduced to applicative languages
in more than one way, ie, over different domains for the
arguments ! and£ of unify. One could, · for example, introduce
the double crossbow symbol {-} and . the conditional binding
construct

a {-} b => c; d

where a and bare patterns to be unified. Here names may occur
in a and also- in b. Such a construct would find use in
implementing a resolution theorem prover ([Robinson,1979]) to
provide SASL with a logic programming facility.

Alternatively, we could introduce the construct

a {-} b => c; d {-x,y,z, ... -}

where a and£ are SASL expressions, !,Y,!,··· are free names
which -may occur in a and b, and which may be bound by
unification of a and b.- (The specification of free names is
somewhat unpalateable, but apparently necessary if! and bare
to be any SASL expressions.)

The denotational semantics for all these
been defined and are to be presented in
[Abramson,1982].

constructs have
a separate paper

We have shown how Robinson's unification algorithm can be
adapted to define conditional binding expressions which give
untyped applicative languages a convenient and useful notation
for pattern matching. These constructs will be added to our
implementation of SASL to test

6 Conditional Binding Expressions

1. the author's contention that just as the use of
patterns in recursion equations allows the SASL
programmer to eliminate most explicit uses of hd and
ll (LISP's CAR ·and CDR), the conditional binding
constructs will allow the SASL programmer to eliminate
most explicit uses of type checking (or structure
checking) functions like applicative pair, and

2. the feasibility of adding a logic programming
capability to SASL.

A few details of our implementation of SASL may be of
interest. It is implemented in Prolog [Roussel,1975], using the
Definite Clause Grammar formalism of [Colmerauer,1978] and
[Pereira & Warren,1980]. (See also [Warren,1977']). The
Definite Clause Grammar formalism and a few associated Prolog
predicates are used, following Turner, to "compile" SASL
expressions to a string of combinators and global names. This
string is evaluated, however, by a normal order reduction
machine (also implemented in Prolog), rather than by Turner's
normal graph reduction machine: a normal graph reduction machine
is feasible in Prolog, but apparently only at the cost of
modifying the Prolog data base once for each cycle of the
reduction machine.

Conditional Binding Expressions

[Abramson 1982]
Abramson, The
unification=Eased
preparation, 1982.

[Campbell 1979]

References

denotational
conditional

semantics
binding

7

of several
constructs, in

Campbell, W.R., An abstract machine for a purely functional
language, Dept. -Of Computer Science-,-unTversity of St.
Andrews, 1979.

[Colmerauer 1978]
Colmerauer, A., Metamorphosis
Communication with Computers,
63, Springer, 1978.

Grammars, in Natural Language
Lecture Notes in Computer Science

[Henderson 1980]
Henderson, P., Functional Programming, Prentice-Hall, 1980.

[McCarthy 1965]
McCarthy, J. et al, LISP 1.5 Programmer's Manual, MIT Press,
1965.

& Warren 1980] [Pereira
Pereira,
Language
231-278,

F.C.N. & Warren, D.H.D.,
Analysis, Artificial

1980.

Definite Clause Grammars
Intelligence, vol. 13

for
pp.

[Robinson 1979]
Robinson, J.A., Logic: Form and Function, North-Holland and
Edinburgh University Press"';","979.°"""""

[Robinson & Sibert 1980a]
Robinson, J.A. & Sibert, E.E., LOGLISP­
Prolog, School of Computer and Information
University, 1980.

[Robinson & Sibert 1980b]

an alternative to
Science, Syracuse

Robinson, J.A. & Sibert, E.E., Lo~ic Programming ~ ~'
School of Computer and Information Science, Syracuse University,
1980.

[Roussel 1975]
Roussel, P., Prolog:
Groupe d'Intelligence
Lum i n y , 1 9 7 5 .

[Sussman & Steele 1975]

manuel de reference et d'utilization,
Artificiel, Universite-de Marseille

Sussman, G.J. & Steele, G.L., Jr., Scheme:~ interpreter for
extended lambda calculu~, AI Memo 349, MIT AI Lab, 1975.

[Turner 1976]
Turner, D.A., SASL language manual, Dept. of Computational

8 Conditional Binding Expressions

Science, University of St. Andrews, 1976, revised 1979.

[Turner 1979]
Turner, D.A., A new implementation technique for
languages, Software-Practice and Experience vol.
1979.

applicative
9 pp. 31-49,

[Turner 1981)
Turner, D.A., Aspects of the
Languages: The CompilaITonof
Combinatory Logic, Ph.D. ThesTs,

[Warren 1977]
Warren, David H.D., Implementing
logic programs, DAI Research
Edinburgh, 1977.

[Warren 1977']

Implementation of Programming
!.!}. Applicative Language to
Oxford, 1981.

Prolog- compiling predicate
Reports 39,40, University of

Warren, David H.D., Logic programming and compiler writing, DAI
Research Report 44, University of Edinburgh, 1977.

