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Abstract 

The unification algorithm, heretofore used primarily in the 
mechanization of logic, can be used in applicative programming 
languages as a pattern matching tool. Using SASL (St. Andrews 
Static Language) as a typical applicative programming language, 
we introduceseveral unification based conditional binding (ie, 
pattern matching) constructs and show how these can promote 
clarity and conciseness of expression in applicative languages, 
and we also indicate some applications of these constructs. In 
particular, we present an interpreter for SASL functions defined 
by recursion equations. 

This work was supported by the National Science and Engineering 
Research Council of Canada. 
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0 Conditional Binding Expressions 

Unification-based Conditional Binding Constructs 

Pattern matching should not be considered an "exotic 
extra" when designing a programming language. It is 
the preferable method for specifying operations on 
structured data, from both the user's and the 
implementor's point of view. This is especially so 
where many user-defined record types are allowed. 
[Warren,1977). 

Most untyped applicative languages (such as "pure LISP" 
[McCarthy,1965), Lispkit LISP [Henderson,1980], or Scheme 
[Sussman & Steele,1975]), although they permit the construction 
of complex data structures, do not have built-in pattern 
matching. SASL [Turner,1976,1979, & 1981] does not lack pattern 
matching, but it is constrained so that the pattern matching 
machinery goes into operation only in a where definition, or 
when it must be decided which of a set of recursion equations 
defining a function f is appropriate in an application (f x). 
Failure of this constrained pattern matching, corresponding-to a 
"definition error", or to applying a function to an 
inappropriate value, respectively, effectively halts the 
computation. 

What seems desireable rather, is a means whereby one could, 
without introducing a. special function to invoke the pattern 
matching, match a SASL value against a pattern so that if the 
pattern match succeeded, one could proceed with the computation 
(with some information, ie, name bindings, extracted from the 
pattern match), and if the pattern match failed, one could 
proceed with some other appropriate computation. 

Robinson's unification algorithm, heretofore used primarily 
in the mechanization of logic, can be adapted for pattern 
matching in applicative languages. Note that although we shall 
be using SASL for demonstration, the results hold for, and can 
be adapted to, any applicative language. 

We assume enough familiarity with SASL (which can be 
characterized by the phrases: applicative language; definition 
by recursion equations; non-strict functions; lazy evaluation), 
so that the reader can follow with ease the following 
specification of the unification algorithm, adapted from the 
formulation given in [Robinson & Sibert,1980a, 1980b]. 

I !data structure for applications 
applicative_pair (a,b) = true 
applicative pair x = false 
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I !what is an environment? 
environment () = true 
environment ((a,b):e) = environment e & 

name a & 
~(defined a e) 

environment x = false 

I ln~me ~ y;elds true.for some suitable 
linguistic convention 

I lis ~ name a defined 
environment e? 

defined a () = false 
defined a ((a,b):e) = 
defined a ((c,b):e) = 

in the 

true 
defined a e 

I lwhat is_immed~ately bound to the 
name a in environment e? 

immediate a ((a,b):e) = b 
immediate a ((c,b):e) = immediate a e 

I lwhat is_ultim~tely bound to the 
name a in environment e? 

ultimate a e = defined a e -> 
ultimate (immediate a e) eia 

substitute in the expression x 
the values ultimately bound to 
any name occuring in x and defined 
in the environment e 
"recreal" abbreviates 
"recursive realization" 

recreal x 'impossible"= 'impossible" 
recreal (x,y) e = 

(recreal x e, recreal ye) 
recreal x e = defined x e -> 
recreal (ultimate x e) e; x 

if there exists an environment e' 
such that 

recreal a e' = recreal be' 
then e' = unify ab e 

unify ab 'impossible"= 'impossible" 
unify ab e = 

(function a) & (function b) -> 
'impossible"; 
equate (ultimate a e) (ultimate be) e 
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equate a a e = e 
equate ab e = name a-> (a, b): e; 

name b -> (b, a): e; 
~ applicative pair a-> 'impossible"; 
~ applicative-pair b -> 'impossible"; 
(unify X y (unify UV e) 

WHERE (u,x),(v,y) = a,b) 

For finite objects a, £, and any environment e, the 
unification algorithm always terminates, either indicating 
unification of~ and£ is impossible, or finding an environment 
extension e' in which a and£ can be recursively realized as 
identical expressions. We force a return of impossible when 
both a and b are functions, and note that unify does not 
terminate If both~ and£ are infinite objects. If just one of 
~ and £ is an infinite object, the unification algorithm 
terminates. An "occurs" check is not included in this 
specification of unification. 

In adapting the unification algorithm to pattern matching 
in applicative languages, we first make a slight change to it by 
deleting the phrase 

name b -> (b, a): e 

from the, definition of equate. This restricts unification so 
that names to be bound may only occur in the first argument of 
unifv. Unless we say otherwise, when we use "unification" we 
now mean this restricted version. Later we shall suggest how 
unrestricted unification can be used in applicative languages. 

Our first unification-based binding construct is given by 
the syntax: 

a {- b => c; d 

Here a is a pattern and£,£ and dare SASL expressions. The 
symbol-{- is called the "left crossbow". A pattern is an 
arbitrarily complex list structure containing only names 
(identifiers) and constants. Evaluation of this expression 
takes place in an implicit environment p. If the SASL object 
denoted by b can be unified (in the restricted sense!) to the 
pattern a,- then the value of this binding construct is£ 
evaluated- in the environment extension p' containing the 
bindings of names in a derived by unification; otherwise, it is 
£, evaluated in the unextended environment p. 

Example 1. Refer to the definition of equate given above. In 
an untyped applicative language such as SASL, one tends to 
introduce structure checking functions such as applicative pair 
in order to prevent unify from being applied to inappropriate 
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arguments. It is much more concise to invoke pattern matching 
explicitly by rewriting eguate as: 

equate a a e = e 
equate ab e = name a-> (a, b): e 

name b -> (b, a): e 
(u,x),(v,y) {- a,b => 
unify x y (unify u v e) 
'impossible" 

The idea is that if a and b both have the structure of 
applicative pairs, ~, y, ~ and y get bound to the appropriate 
parts of~ and Q, and are subsequently used in the recursive 
call of unify: otherwise, the failure environment 'impossible" 
is the value of eguate. The function applicative pair can, 
using this construct, be dispensed with. 

For symmetry, we introduce the right crossbow symbol -}, 
and another conditional binding expression 

a-} b => c; d 

defined by 

b {-a=> c; d 

Analogous to case expressions, we introduce the 
notation to express, on the left hand side, trying 
sequence of SASL objects bl, ... ,bn against a pattern 
the right hand side, try'Tng tomatch a SASL object 
sequence of patterns .£.1., ••• ,bn. 

{-BIND a AND BIND-} a AND 
bl => C 1 bl => C 1 ... 
bn => en bn => en 
default default 

defined by 

a {- bl => c1 a -} bl => cl ... 
a {- bn => en a -} bn => en 
default default 

following 
to match a 

a, and on a against a 

where "{-BIND", "BIND-}" and "AND" are new reserved symbols, and 
£1., .•. ,£.!l and default are expressions. 
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Example 2. A SASL function~ defined in the environment p by 
the recursion equations 

~ tr1,1 

~ 11n, 1 

. . . 

. . . 
tr1,i1 = ,1 

trn,in = 1n 

where the trj,k's are patterns, and the ,j's are expressions, 
could be represented by the SASL list structure 

'E",clause list,p,(),p 
WHERE clause list= 
( • • • f ( ( ffj f 1 I i'j f 2 I••• I ffj f i j) f ,j) f • • •) 

The third component p of the representation is the environment 
in which E is defined, implementing SASL's static naming 
convention. See Note 6 below for an explanation of the empty 
list as the fourth component, and the copy of pas the fifth 
component of the function representation. A somewhat simplified 
and idealized SASL interpreter for the application of a function 
!.!l, represented using the structure just defined, to a list of 
arguments arglist, is shown in Figure 1 at the end of the 
report. 

Note 1. There are no more clauses to try, so fname is undefined 
for the original argument list given by matched++arglist. See 
also Note 6. 

Note 2. The representation of the function should have this 
structure. If not, there is a "compiler" or "representation 
error" in fname. 

Note 3. What are the possible structures for patlist and 
arglist? 

Note 4. All arguments have been matched to patterns, so 
evaluate the bo9y of the appropriate clause of the definition of 
the function t 1n the environment extension env'. Evaluation is 
carried out by a function eval which directly interprets 
expressions involving the basI'i: operators of SASL, bµt which 
recursively calls apply for the interpretation of user-defined 
functions. 

Note 5. There are still patterns to be matched, ie, we have a 
higher order function, and it is represented by fn. 

Note 6. If patlist and arglist do not have the appropriate list 
structure, there is a "compiler" or "representation error". 
Otherwise, try to match an~ to a pattern in the environment 
env': if the match succeeds, recurs i ve l y apply the interpreter 
to try and continue matching args and patterns, recording that 
~ has been attached to the end of the list of arguments 
already matched, and also recording the bindings induced by the 
match as env 1

', an environment extension of env' as the fifth 
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component of the function representation; if the match fails, 
recursively apply the interpreter to the remaining clauses, 
recording for this recursive application that no arguments have 
been matched, replacing any environment extension env' by the 
original environment env, copied from the third component, as 
the fifth component of the representation, and that the argument 
list to which the function is to be applied is matched++arglist. 
Previous matches have to be undone largely because there is no 
discipline imposed by SASL on the use of recursion equations in 
definitions. It is possible, for example, to use different 
variables in each recursion equation, different numbers of 
arguments, and, there can be curious dependencies between 
recursion equations (see [Campbell,1979],[Turner,1981]). The 
fourth component (initially the empty list) of the 
representation of a function defined by recursion equations is 
used by the interpreter to record partial matches of arglist and 
patlist. Note that in a higher order function (Note 5), the 
fourth component of the representation is not the empty list. 

Full unification can be introduced to applicative languages 
in more than one way, ie, over different domains for the 
arguments ! and£ of unify. One could, · for example, introduce 
the double crossbow symbol {-} and . the conditional binding 
construct 

a {-} b => c; d 

where a and bare patterns to be unified. Here names may occur 
in a and also- in b. Such a construct would find use in 
implementing a resolution theorem prover ([Robinson,1979]) to 
provide SASL with a logic programming facility. 

Alternatively, we could introduce the construct 

a {-} b => c; d {-x,y,z, ... -} 

where a and£ are SASL expressions, !,Y,!,··· are free names 
which -may occur in a and b, and which may be bound by 
unification of a and b.- (The specification of free names is 
somewhat unpalateable, but apparently necessary if! and bare 
to be any SASL expressions.) 

The denotational semantics for all these 
been defined and are to be presented in 
[Abramson,1982]. 

constructs have 
a separate paper 

We have shown how Robinson's unification algorithm can be 
adapted to define conditional binding expressions which give 
untyped applicative languages a convenient and useful notation 
for pattern matching. These constructs will be added to our 
implementation of SASL to test 



6 Conditional Binding Expressions 

1. the author's contention that just as the use of 
patterns in recursion equations allows the SASL 
programmer to eliminate most explicit uses of hd and 
ll (LISP's CAR ·and CDR), the conditional binding 
constructs will allow the SASL programmer to eliminate 
most explicit uses of type checking (or structure 
checking) functions like applicative pair, and 

2. the feasibility of adding a logic programming 
capability to SASL. 

A few details of our implementation of SASL may be of 
interest. It is implemented in Prolog [Roussel,1975], using the 
Definite Clause Grammar formalism of [Colmerauer,1978] and 
[Pereira & Warren,1980]. (See also [Warren,1977' ]). The 
Definite Clause Grammar formalism and a few associated Prolog 
predicates are used, following Turner, to "compile" SASL 
expressions to a string of combinators and global names. This 
string is evaluated, however, by a normal order reduction 
machine (also implemented in Prolog), rather than by Turner's 
normal graph reduction machine: a normal graph reduction machine 
is feasible in Prolog, but apparently only at the cost of 
modifying the Prolog data base once for each cycle of the 
reduction machine. 
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