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Abstract 

This paper describes a measurement experiment performed on 
a PDP 11/45 system running under UNIX (version six) which 
employs swapping rather than paging in managing memory. 
Regression equations relating the system's responsiveness to 
certain system and workload parameters are obtained. Sample 
applications such as predicting the system's performance due to 
workload and system changes, load control as well as 
representing the swapping behaviour in simulation and analytic 
models are presented. The similarities between the paging and 
swapping dynamics are discussed. The paper also includes a 
brief discussion of the accuracy of the model as well as the 
advantages and disadvantages of the regression technique. 
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1. Introduction 

Paging dynamics have been studied extensively and various 

models (most noteably the lifetime functiort) exist which 

describe the relationships between program behaviour, system 

parameters and the paging rate [1 ,5,13). By contrast, 

swapping, 1 commonly used in operating systems running on micro 

and minicomputers (such as UNIX) has not received much 

attention. As the interest in micro and minicomputers grows, 

the need to better understand the behaviour of swapping systems 

becomes apparent. 

A project was undertaken on a PDP 11/45 running under UNIX 

(version six). The basic goal is to discover the major 

influences in the system and their relationships, and to try to 

find if there is a parallel between the paging and the swapping 

dynamics. 

The approach chosen is, first of all, to determine probable 

workload parameters and pertinent hardware and internal system 

parameters and to develop a suitable performance parameter. 

Then a controlled measurement experiment, using a synthetic 

workload, is to be conducted varying the parameters and 

recording the values of the performance index. The results will 

then be analyzed using regression to try and establish some 

1 In this paper, swapping means that the entire program cpde of 
the process is moved in and out of main storage as a unit. 
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strong relationships among the parameters. 

2. Setup £f the experiment 

A. The hardware 

The host machine for this project was a PDP 11/45. It had 

112K bytes of main storage, of which about 48K bytes were used 

by the operating system. On-line secondary storage consisted of 

two RK05 disk cartridges. These are small capacity (2.4 Mega 

bytes each) disks with slow transfer time (180,000 bytes/sec.). 

They operated under the same controller and did not have the 

capability to overlap seeks. There were also several tape 

drives, a printer, a plotter, a card reader as well as a few 

terminals. It was suspected that the system was 

disk-constrained. 

B. Choice of performance index 

A performance index should be sensitive to workload and 

system variations and _provide 

performance for a given system 

Since the primary concern from 

responsiveness of the system, it 

should reflect this. Because 

a good measure of the level of 

configuration and workload. 

the user's viewpoint is the 

was decided that the index 

of the lack of an external 
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hardware driver to simulate terminal inputs, the response time 

was not ah appropriate parameter. It was eventually decided to 

use a type of reaction time which we labelled "priority based 

reaction time". The event which is timed is the period from 

when a process wakes up until it is selected as the next process 

to run. A process sleeps or is suspended in UNIX when for 

instance it must wait for some I/0 to finish. The reaction time 

is not measured for all processes however, but only for those 

whose priority is that of terminal input or lower (which 

includes terminal output). (UNIX has a complex way of updating 

the priority of a process depending on its past and current 

activities). 

The choice was made after initial experiments showed that 

it is more sensitive to workload variation than other 

definitions of reaction time. {For example, the same definition 

but measured for all processes, or, 'the popular definition of 

the time from the input of a command until the CPU starts to act 

on that command). 

C. Other parameters 

The workload parameters used in the experiments were: 

1. The number of processes (PN), 

2. Mean process size (in units of 64-byte blocks) (PS), 
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3. File system requirements of a process, and, 

4. CPU requirements of a process. 

Items 3. and 4. are related and a single parameter PC (= 

mean CPU time between successive disk I/O's) is used to 

characterize them. 

The system hardware parameters studied were: 

1. Main memory capacity (in units of 64-byte blocks), 

and, 

2. Disk configuration. 

(Note that tapes were not considered as they were not involved 

in swapping and were not frequently used by the typical user). 

The internal system parameters (i.e., those quantities derived 

from the internal structure of the operating system) were: 

1 • Swap rate, 

2. Swap wait, 

3. Disk queue length, 

4 • Disk waits, and, 

5. CPU intervals. 

Swap wait includes the waiting time in the queue as well as 

the actual I/0 times. It is included along with the swap rate 

since the swap rate does not differentiate between the size of 



6 

swaps, which for a slow disk, could have a substantial effect on 

responsiveness. The swap wait does capture this effect. 

As with disk queue length, disk waits indicate the number 

of file system accesses. However, it is much more heavily 

influenced by the swap I/0 (which is queued onto the same disk 

queue). This is because all file system I/0 consists of a block 

of 512 bytes, whereas the size of swap I/0 blocks often is 

several Kbytes. The swap rate, however is at least an order of 

magnitude less than the disk I/0 rate in our system. 

The CPU interval is the time between context switches (not 

to be confused with the time between I/O's). 

These parameters are included for the possible insights 

they may give in interpreting the results of the experiment. 

There are basically two views that can be taken towards these 

quantities. One can view them as indicators of how well the 

system is handling the workload, that is, as a reaction of the 

system to the workload. In this project, the internal system 

parameters are viewed as variables that can be related to the 

performance parameter. 

D. Workload used for the experiment 

Since we need a controlled environment to establish the 



relationships of the 

workload [2] was used. 
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parameters mentioned above, a synthetic 

The composition of the prototype program 

is an infinite loop consisting of: 

a) compute loops, 

b) disk I/0 operations, 

c) sleep calls, (there is a system call in UNIX which 

allows a process to suspend itself for the number of 

seconds passed as a parameter), and, 

d) terminal I/O's , (terminal outputs only, as terminal 

inputs were difficult to produce for lack of hardware 

and manpower). 

Each parameter is driven by a different distribution which 

is adjustable. There is also a dummy array in the prototype 

program which can be statically varied to give us the desired 

program size. 

The experiment performed was a factorial experiment [3] 

involing 83 twenty-minute runs. Some of the runs were used in 

validating the model. The length of the sessions was determined 

experimentally. It is assumed that the series of reaction times 

are ergodic, that is, the accuracy of the mean reaction time 

increases as the number of observations in the series is 

increased. On this basis a sample workload was run several 

times increasing the time length until the variation over 

several runs of the same time length was acceptably small. The 

20-minute runs were found to produce differences of 5% or less 



8 

in the values of the pe~formance parameter. (There are 

statistical methods to determine the session length, see for 

example Chapter 2 of [6)}. 

3. Results and interpretation 

Perhaps the most striking result is the dominant factor of 

a quantity which we call the percentage of remaining main memory 

(denoted hereafter by PCTRMM} on reaction time. 

PCTRMM = 100 * (swappable main memory capacity - total 

memory requirements of swappable active processes) 

/(swappable main memory capacity) 

= (MM -PN * PS) /MM* 100 

This quantity, which can be either positive or negative 

depending on whether all the processes can fit into main memory 

or not, can account for over 80% of the variation in reaction 

time. 

Note 

swapping. 

swapping 

that PCTRMM is a good indicator 

A brief description of the UNIX 

policy is included in the Appendix. 

of the rate of 

(version six) 

It is apparent 

that as the number of processes that cannot be fitted into main 

storage increases (and hence the negative value of PCTRMM 

increases) swapping activity will intensify. The measured real 



9 

time intervals between successive system swaps plotted against 

-PCTRMM support this (Figure 1). 

time between 
successive swaps (ms) 

500 

0 100 200 

Figure l. -PCTffi1M vs real time between successive system swaps 

Note the similarity between PCTRMM and the resident set 

size in a paging system. Both indicate the portion of the 

current information that is contained in main storage. However, 

the resident set size and the lifetime are usually defined for 

each process whereas PCTRMM is a per system quantity. This 

difference comes about because in our definition of a swapping 

system, the entire process must be in main storage before it can 

start execution. Thus the 'resident set' of a process is not 

under system control and it is meaningless to talk about per 

process behaviour with respect to different 'resident set' size. 

A direct consequence is that whereas lifetime is normally 

measured in terms of virtual time (i.e., CPU time), we measure 

the interval between successive system swaps in real 

(wall-clock) time. 
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3.1 Complexity of the PC factor. 

the PC factor appears to be quite The nature of 

complicated. On an independent basis, an increase in the CPU 

requirements would tend to increase reaction time since, as in 

this experiment, for all CPU requests under one second, the CPU 

will not do a context switch. Thus any other process competing 

for the CPU will have to wait longer. With the file system 

access rate however, things are not so simple and cannot even be 

considered independent of the CPU requests in the context of 

this experiment. For in the prototype process, increasing the 

rate of file system accesses is always accompanied by a decrease 

in the CPU requirements between accesses. 

Generally when a file system access occurs a context switch 

will be made while that process waits for its I/0 to complete. 

Thus any process waiting for the CPU will have a greater chance 

of getting its request serviced and thus the reaction time will 

generally be less. This trend would start to reverse however if 

most of the processes were doing a large amount of disk I/0, 

since disk congestion would start to take its toll by increasing 

the time to complete any individual request. As well, there are 

other things to consider. If user processes are trying to 

access the disk then they will be interfering with the swapping 

if there is any. This will tend to increase the reaction time. 

Furthermore, processes which have just completed doing a file 

system access retain for a short period in this UNIX version, 
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the priority of a disk request (which is much higher than the 

normal user priority). In this case then, as the number of file 

system accesses increases, there is an increasing chance of such 

processes getting the CPU before a process, which because it is 

at a lower priority and thus will produce a reaction time, will 

obtain the CPU. This would tend to increase reaction time 

values • . Regardless, there will generally be a longer wait, 

since the CPU must attend to disk I/0 first, which will add 

slightly to overhead. 

Finally, the swapping algorithm needs to be examined for 

its indirect contribution in this matter. It should be noted 

that when swapping must occur, the swapper initially looks for 

blocked processes to swap out. Hence whenever a process does 

I/0, it is quite likely that it will get swapped out before the 

I/0 is completed. This probability increases with the number of 

processes and with shorter CPU requests. The result is that as 

the PC factor decreases, less and less work is getting done by a 

process before being swapped out. This will be reflected in 

significantly larger reaction times and is due to the simplistic 

nature of the swapping algorithm. 

In summary, it is sufficient to say that a change in the 

value of the PC factor may have a significant and complex effect 

on the reaction time. Examining the data, it appears that the 

overriding effect is that as the PC value is increases, the mean 

reaction time drops, indicating the file system access rate has 
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the dominant influence in our system. This holds true for most, 

but not all, of the cases in this experiment. The complexity of 

the issue, though, helps explain the difficulty in developing a 

good regression equation. 

A hypothesis can be made that in the general case the PC 

factor affects the size of the CPU and disk queues. For small 

PC values it is felt that the length of the disk queue on the 

average will be longer than that of the CPU queue but that this 

will reverse as PC increases. When the disk queue is 

substantially longer, the file access rate will increase the 

value of the mean reaction time. As PC increases, however, this 

influence will drop and eventually when the CPU queue becomes 

substantially larger than the disk queue, the mean reaction time 

will again be increased except that this time it will be due to 

the longer CPU waits. Clearly if this is the case, then it 

would be desirable to find the transition point, where neither 

influence has much effect. 

A separate simulation experiment was carried out using a 

general purpose computer system simulator [4]. The mean 

reaction time was measured for different values of PC (the only 

variable in the experiment). It was observed that the mean 

reaction time was always close to the minimal value when the 

mean CPU and the disk queue wait times were approximately equal. 

Though this situation does not necessarily imply a "balanced" 

system [7], it is generally true that no serious bottleneqk is 



13 

likely to occur either. Thus balancing the CPU and the disk 

loads in a swapping system appears to be desirable. 

3.2 The regression equation. 

A regression equation of reaction time for our system was 

obtained. The equation expresses reaction time as a function of 

only PCTRMM, PN, PS and PC. However the equation is not a very 

well-fitted one as its r**2 value (the square of the correlation 

coefficient) is only about 0.9. The equation that resulted was: 

RT= 703 - 15 * PCTRMM + 2.3 * PC 

- .004 * PC *PN *PS 

This seems to support the idea of the dual nature of the PC 

factor, with the positive contribution of the PC term and the 

negative contribution of the PC*PN*PS term. The latter quantity 

will have a more influential contribution when PN or PS is 

large, specifically when PN*PS > 575. 

By removing the factor PC (i.e., keeping it constant), it 

is possible to obtain a regression equation with much higher 

r**2 value. 
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Equation 

RT= 588 - 16.9 * PCTRMM ••••..• (1) 
RT= 595 - 8.9 * PCTRMM 

P.T = -241 -4.5 * PCTRMM + 204 * PN 

From a 90-minute measurement of the production workload, 

the mean value of PC was found to be 12 ms. for conversational 

type workload. 

Validation of the model consisted of comparing predicted 

performance to that obtained by measurement. The mean absolute 

error is about 20%. Thus its use lies mainly in the trends it 

demonstrates and the rough approximations it gives to 

predictions, rather than in an ability to give exact results. 

4. Sample applications 

1. Prediction of the effect of the size of main memory on 

performance. 

Note that because memory is a passive device, it is 

difficult to model it explicitly in the traditional queueing 

model. 

2. Prediction of load increase on performance. 
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The following example will illustrate the above two 

applications. 

Suppose there was a UNIX installation which had 700 'blocks 

of main memory available for users and that they were concerned 

about their heavy demand periods when there are an average of 

eight user processes with an average size of 200 blocks each. 

To find their current reaction time we use equation 1: 

RT= 588 - 16,9 * (700 - 6 * 200) * 100 
700 

This gives a reaction time of around 2.8 seconds which is, 

indeed a sluggish system. 

(a) One situation might be that they had the option of buying 

16K bytes (256 blocks) of main memory but were unsure of the 

effect it would have. Using equation 1, it could easily be 

determined that it would reduce reaction time to a little 

over 1.7 seconds. While it is a definite improvement, the 

responsiveness is still not that good. 

(b) Suppose instead that they wanted to know how much more main 

memory they would need to reduce the reaction time to 

second. To find this, let X represents the amount of 

additional memory needed, then it becomes a simple matter of 

solving the following equation: 

1000 = 588 - 1690 * ((700 + X) - 1600) 
(700 + X) 
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This yields a value for X of 587 blocks for a little over 

36K bytes. 

(c) Let us assume that the installation was able to purchase the 

extra 587 blocks of memory and thus reduce their reaction 

time to under one second. According to the natural laws of 

increased capacity, let us presume that soon after the 

purchase, management wished to add more terminal lines into 

the system and wanted to know what effect it would have. If 

the computing centre staff could estimate on average how 

many extra processes it would introduce into the system, say 

for example three with the same average size of 200 blocks, 

then it can easily be calculated that the reaction time 

would increase to 1.8 seconds. 

3. Load control. 

Version six UNIX has no explicit load control mechanism. 

If an installation wanted to guarantee its users a certain 

response level, then a valuable and easy step would be to change 

the routine which logs users onto the system ("/etc/init") such 

that it first examines the current responsiveness of the system. 

If it exceeds a given threshold, then the user would be denied 

access. 

Load control has been extensively studied (see for example 

(8-12)). However, with the exception of (8), most adaptive 

schemes (i.e., those that will adjust to changing workload 

I , 
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condition) are applicable only to paging systems. The static 

ones, on the other hand, are less efficient. The proposed 

method is adaptive to workload variation but has the advantage 

of being very simple and requires very little overhead. 

4. The swapping lifetime function may be used in simulation or 

analytic models of swapping systems in much the same way the 

paging lifetime functions are being used. 

5. Conclusions. 

A regression model of the reaction time of a PDP 11/45 system 

running under UNIX (version six) was derived and sample 

applications given. It must be remembered, however, that the 

reaction time values calculated from the model are simply rough 

estimates. As well, they will generally form upper bounds since 

the synthetic workload did not take advantage of the UNIX 

concept of 'text' which would reduce the swapping load somewhat 

in real systems. From validation, it was seen that the model 

tends to overestimate the actual values. 

Another important point to realize is 

models based on measurement are generally not 

should be used only for the system from 

that regression 

portable. They 

which data were 

gathered. This is because a regression model does not attempt 

to explain why the system behaves in a particular way. They 
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reflect all the pecularities of the given system as well as the 

usage pattern . of the given user community. The advantage is 

that it is possible to model any system, however complex, by 

simple equations to obtain some quick but rough indications of 

performance. Furthermore, the modelling procedure is 

straightforward and a result (though not necessarily very 

accurate) is guaranteed. This may be useful in case the system 

cannot be adequately modelled by the traditional queueing model. 

It is also usually much less costly than simulation, 

particularly when the system under study is complex. 
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APPENDIX. Swapping Policy in UNIX (Version Six) 

1. Routine and variables used: 

sched 

runout -

routine. 

routine called to swap in all processes that it can 

from disk. 

a global flag which is set and slept on by sched when 

there are no more READY processes out on disk. Thus 

other routines can test runout and if appropriate, 

wakeup the runin - a global flag which is set and 

slept on by sched when it was unable to swap in all the 

READY processes. As well as being accessible to other 

routines, runin is tested every second by the clock 

2. Swapping-in policy. 

i) when: sched is only called when a READY process is out on 

disk, and thus wants into main memory. This can occur due 

to two situations: 

1) In the previous execution of sched, it was unable to 

load all the READY process out on disk. Thus it set and 

slept on runin. In this case, sched will be awakened 

every second by the clock routine until there are no 

more READY processes left on disk. 
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2) In the previous execution of sched, it did load all the 

READY processes into core (and thus set and slept on 

runout). Later, a process (which was not READY, 

e.g·.~sleeping due to I/0 wait) out on disk became READY 

(i.e., was awakened). In this case, sched will be 

executed whenever such a situation arises. 

ii) who: The policy is based solely on the length of time a 

process has been out on disk. Sched starts with the READY 

process out the longest and tries to load all of them into 

core. If it fills all of main memory and there are still 

READY processes on disk, it will still try and load them in 

as long as (1) there are processes in core which are not 

READY (e.g., sleeping on low priority), - they will be 

successively swapped out to make room; or failing that, (2) 

the READY process(es) on disk has been there for more than 2 

seconds and there is an in-core process (which is READY or 

sleeping on high priority) which has been in core for more 

than 1 second. 

3. Swapping out policy. 

i ) when: only when necessary 

algorithm, 1.e., not all 

will fit into core, etc •• 

as determined by the swap-in 

the READY processes out on disk 

ii) who: any process sleeping on low priority or being traced, 

and failing that, if the process on disk has been out there 

for more than 2 seconds, then any process (READY or sleeping 
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on high priority) that has been in-core for more than 

second (starting with the one who's been in the longest, 

i.e., based solely on elapsed time in core). 


