
A REGRESSION MODEL OF A SWAPPING SYSTEM

by

Samuel T. Chanson

Technical Report 82-5

July 1982

Department of Computer Science,
University of British Columbia,

Vancouver, B.C., V6T 1W5.

Abstract

This paper describes a measurement experiment performed on
a PDP 11/45 system running under UNIX (version six) which
employs swapping rather than paging in managing memory.
Regression equations relating the system's responsiveness to
certain system and workload parameters are obtained. Sample
applications such as predicting the system's performance due to
workload and system changes, load control as well as
representing the swapping behaviour in simulation and analytic
models are presented. The similarities between the paging and
swapping dynamics are discussed. The paper also includes a
brief discussion of the accuracy of the model as well as the
advantages and disadvantages of the regression technique.

2

1. Introduction

Paging dynamics have been studied extensively and various

models (most noteably the lifetime functiort) exist which

describe the relationships between program behaviour, system

parameters and the paging rate [1 ,5,13). By contrast,

swapping, 1 commonly used in operating systems running on micro

and minicomputers (such as UNIX) has not received much

attention. As the interest in micro and minicomputers grows,

the need to better understand the behaviour of swapping systems

becomes apparent.

A project was undertaken on a PDP 11/45 running under UNIX

(version six). The basic goal is to discover the major

influences in the system and their relationships, and to try to

find if there is a parallel between the paging and the swapping

dynamics.

The approach chosen is, first of all, to determine probable

workload parameters and pertinent hardware and internal system

parameters and to develop a suitable performance parameter.

Then a controlled measurement experiment, using a synthetic

workload, is to be conducted varying the parameters and

recording the values of the performance index. The results will

then be analyzed using regression to try and establish some

1 In this paper, swapping means that the entire program cpde of
the process is moved in and out of main storage as a unit.

3

strong relationships among the parameters.

2. Setup £f the experiment

A. The hardware

The host machine for this project was a PDP 11/45. It had

112K bytes of main storage, of which about 48K bytes were used

by the operating system. On-line secondary storage consisted of

two RK05 disk cartridges. These are small capacity (2.4 Mega

bytes each) disks with slow transfer time (180,000 bytes/sec.).

They operated under the same controller and did not have the

capability to overlap seeks. There were also several tape

drives, a printer, a plotter, a card reader as well as a few

terminals. It was suspected that the system was

disk-constrained.

B. Choice of performance index

A performance index should be sensitive to workload and

system variations and _provide

performance for a given system

Since the primary concern from

responsiveness of the system, it

should reflect this. Because

a good measure of the level of

configuration and workload.

the user's viewpoint is the

was decided that the index

of the lack of an external

4

hardware driver to simulate terminal inputs, the response time

was not ah appropriate parameter. It was eventually decided to

use a type of reaction time which we labelled "priority based

reaction time". The event which is timed is the period from

when a process wakes up until it is selected as the next process

to run. A process sleeps or is suspended in UNIX when for

instance it must wait for some I/0 to finish. The reaction time

is not measured for all processes however, but only for those

whose priority is that of terminal input or lower (which

includes terminal output). (UNIX has a complex way of updating

the priority of a process depending on its past and current

activities).

The choice was made after initial experiments showed that

it is more sensitive to workload variation than other

definitions of reaction time. {For example, the same definition

but measured for all processes, or, 'the popular definition of

the time from the input of a command until the CPU starts to act

on that command).

C. Other parameters

The workload parameters used in the experiments were:

1. The number of processes (PN),

2. Mean process size (in units of 64-byte blocks) (PS),

5

3. File system requirements of a process, and,

4. CPU requirements of a process.

Items 3. and 4. are related and a single parameter PC (=

mean CPU time between successive disk I/O's) is used to

characterize them.

The system hardware parameters studied were:

1. Main memory capacity (in units of 64-byte blocks),

and,

2. Disk configuration.

(Note that tapes were not considered as they were not involved

in swapping and were not frequently used by the typical user).

The internal system parameters (i.e., those quantities derived

from the internal structure of the operating system) were:

1 • Swap rate,

2. Swap wait,

3. Disk queue length,

4 • Disk waits, and,

5. CPU intervals.

Swap wait includes the waiting time in the queue as well as

the actual I/0 times. It is included along with the swap rate

since the swap rate does not differentiate between the size of

6

swaps, which for a slow disk, could have a substantial effect on

responsiveness. The swap wait does capture this effect.

As with disk queue length, disk waits indicate the number

of file system accesses. However, it is much more heavily

influenced by the swap I/0 (which is queued onto the same disk

queue). This is because all file system I/0 consists of a block

of 512 bytes, whereas the size of swap I/0 blocks often is

several Kbytes. The swap rate, however is at least an order of

magnitude less than the disk I/0 rate in our system.

The CPU interval is the time between context switches (not

to be confused with the time between I/O's).

These parameters are included for the possible insights

they may give in interpreting the results of the experiment.

There are basically two views that can be taken towards these

quantities. One can view them as indicators of how well the

system is handling the workload, that is, as a reaction of the

system to the workload. In this project, the internal system

parameters are viewed as variables that can be related to the

performance parameter.

D. Workload used for the experiment

Since we need a controlled environment to establish the

relationships of the

workload [2] was used.

7

parameters mentioned above, a synthetic

The composition of the prototype program

is an infinite loop consisting of:

a) compute loops,

b) disk I/0 operations,

c) sleep calls, (there is a system call in UNIX which

allows a process to suspend itself for the number of

seconds passed as a parameter), and,

d) terminal I/O's , (terminal outputs only, as terminal

inputs were difficult to produce for lack of hardware

and manpower).

Each parameter is driven by a different distribution which

is adjustable. There is also a dummy array in the prototype

program which can be statically varied to give us the desired

program size.

The experiment performed was a factorial experiment [3]

involing 83 twenty-minute runs. Some of the runs were used in

validating the model. The length of the sessions was determined

experimentally. It is assumed that the series of reaction times

are ergodic, that is, the accuracy of the mean reaction time

increases as the number of observations in the series is

increased. On this basis a sample workload was run several

times increasing the time length until the variation over

several runs of the same time length was acceptably small. The

20-minute runs were found to produce differences of 5% or less

8

in the values of the pe~formance parameter. (There are

statistical methods to determine the session length, see for

example Chapter 2 of [6)}.

3. Results and interpretation

Perhaps the most striking result is the dominant factor of

a quantity which we call the percentage of remaining main memory

(denoted hereafter by PCTRMM} on reaction time.

PCTRMM = 100 * (swappable main memory capacity - total

memory requirements of swappable active processes)

/(swappable main memory capacity)

= (MM -PN * PS) /MM* 100

This quantity, which can be either positive or negative

depending on whether all the processes can fit into main memory

or not, can account for over 80% of the variation in reaction

time.

Note

swapping.

swapping

that PCTRMM is a good indicator

A brief description of the UNIX

policy is included in the Appendix.

of the rate of

(version six)

It is apparent

that as the number of processes that cannot be fitted into main

storage increases (and hence the negative value of PCTRMM

increases) swapping activity will intensify. The measured real

9

time intervals between successive system swaps plotted against

-PCTRMM support this (Figure 1).

time between
successive swaps (ms)

500

0 100 200

Figure l. -PCTffi1M vs real time between successive system swaps

Note the similarity between PCTRMM and the resident set

size in a paging system. Both indicate the portion of the

current information that is contained in main storage. However,

the resident set size and the lifetime are usually defined for

each process whereas PCTRMM is a per system quantity. This

difference comes about because in our definition of a swapping

system, the entire process must be in main storage before it can

start execution. Thus the 'resident set' of a process is not

under system control and it is meaningless to talk about per

process behaviour with respect to different 'resident set' size.

A direct consequence is that whereas lifetime is normally

measured in terms of virtual time (i.e., CPU time), we measure

the interval between successive system swaps in real

(wall-clock) time.

10

3.1 Complexity of the PC factor.

the PC factor appears to be quite The nature of

complicated. On an independent basis, an increase in the CPU

requirements would tend to increase reaction time since, as in

this experiment, for all CPU requests under one second, the CPU

will not do a context switch. Thus any other process competing

for the CPU will have to wait longer. With the file system

access rate however, things are not so simple and cannot even be

considered independent of the CPU requests in the context of

this experiment. For in the prototype process, increasing the

rate of file system accesses is always accompanied by a decrease

in the CPU requirements between accesses.

Generally when a file system access occurs a context switch

will be made while that process waits for its I/0 to complete.

Thus any process waiting for the CPU will have a greater chance

of getting its request serviced and thus the reaction time will

generally be less. This trend would start to reverse however if

most of the processes were doing a large amount of disk I/0,

since disk congestion would start to take its toll by increasing

the time to complete any individual request. As well, there are

other things to consider. If user processes are trying to

access the disk then they will be interfering with the swapping

if there is any. This will tend to increase the reaction time.

Furthermore, processes which have just completed doing a file

system access retain for a short period in this UNIX version,

1 1

the priority of a disk request (which is much higher than the

normal user priority). In this case then, as the number of file

system accesses increases, there is an increasing chance of such

processes getting the CPU before a process, which because it is

at a lower priority and thus will produce a reaction time, will

obtain the CPU. This would tend to increase reaction time

values • . Regardless, there will generally be a longer wait,

since the CPU must attend to disk I/0 first, which will add

slightly to overhead.

Finally, the swapping algorithm needs to be examined for

its indirect contribution in this matter. It should be noted

that when swapping must occur, the swapper initially looks for

blocked processes to swap out. Hence whenever a process does

I/0, it is quite likely that it will get swapped out before the

I/0 is completed. This probability increases with the number of

processes and with shorter CPU requests. The result is that as

the PC factor decreases, less and less work is getting done by a

process before being swapped out. This will be reflected in

significantly larger reaction times and is due to the simplistic

nature of the swapping algorithm.

In summary, it is sufficient to say that a change in the

value of the PC factor may have a significant and complex effect

on the reaction time. Examining the data, it appears that the

overriding effect is that as the PC value is increases, the mean

reaction time drops, indicating the file system access rate has

12

the dominant influence in our system. This holds true for most,

but not all, of the cases in this experiment. The complexity of

the issue, though, helps explain the difficulty in developing a

good regression equation.

A hypothesis can be made that in the general case the PC

factor affects the size of the CPU and disk queues. For small

PC values it is felt that the length of the disk queue on the

average will be longer than that of the CPU queue but that this

will reverse as PC increases. When the disk queue is

substantially longer, the file access rate will increase the

value of the mean reaction time. As PC increases, however, this

influence will drop and eventually when the CPU queue becomes

substantially larger than the disk queue, the mean reaction time

will again be increased except that this time it will be due to

the longer CPU waits. Clearly if this is the case, then it

would be desirable to find the transition point, where neither

influence has much effect.

A separate simulation experiment was carried out using a

general purpose computer system simulator [4]. The mean

reaction time was measured for different values of PC (the only

variable in the experiment). It was observed that the mean

reaction time was always close to the minimal value when the

mean CPU and the disk queue wait times were approximately equal.

Though this situation does not necessarily imply a "balanced"

system [7], it is generally true that no serious bottleneqk is

13

likely to occur either. Thus balancing the CPU and the disk

loads in a swapping system appears to be desirable.

3.2 The regression equation.

A regression equation of reaction time for our system was

obtained. The equation expresses reaction time as a function of

only PCTRMM, PN, PS and PC. However the equation is not a very

well-fitted one as its r**2 value (the square of the correlation

coefficient) is only about 0.9. The equation that resulted was:

RT= 703 - 15 * PCTRMM + 2.3 * PC

- .004 * PC *PN *PS

This seems to support the idea of the dual nature of the PC

factor, with the positive contribution of the PC term and the

negative contribution of the PC*PN*PS term. The latter quantity

will have a more influential contribution when PN or PS is

large, specifically when PN*PS > 575.

By removing the factor PC (i.e., keeping it constant), it

is possible to obtain a regression equation with much higher

r**2 value.

PC level

12

186

354

r**2 value

1 4

Equation

RT= 588 - 16.9 * PCTRMM ••••..• (1)
RT= 595 - 8.9 * PCTRMM

P.T = -241 -4.5 * PCTRMM + 204 * PN

From a 90-minute measurement of the production workload,

the mean value of PC was found to be 12 ms. for conversational

type workload.

Validation of the model consisted of comparing predicted

performance to that obtained by measurement. The mean absolute

error is about 20%. Thus its use lies mainly in the trends it

demonstrates and the rough approximations it gives to

predictions, rather than in an ability to give exact results.

4. Sample applications

1. Prediction of the effect of the size of main memory on

performance.

Note that because memory is a passive device, it is

difficult to model it explicitly in the traditional queueing

model.

2. Prediction of load increase on performance.

1 5

The following example will illustrate the above two

applications.

Suppose there was a UNIX installation which had 700 'blocks

of main memory available for users and that they were concerned

about their heavy demand periods when there are an average of

eight user processes with an average size of 200 blocks each.

To find their current reaction time we use equation 1:

RT= 588 - 16,9 * (700 - 6 * 200) * 100
700

This gives a reaction time of around 2.8 seconds which is,

indeed a sluggish system.

(a) One situation might be that they had the option of buying

16K bytes (256 blocks) of main memory but were unsure of the

effect it would have. Using equation 1, it could easily be

determined that it would reduce reaction time to a little

over 1.7 seconds. While it is a definite improvement, the

responsiveness is still not that good.

(b) Suppose instead that they wanted to know how much more main

memory they would need to reduce the reaction time to

second. To find this, let X represents the amount of

additional memory needed, then it becomes a simple matter of

solving the following equation:

1000 = 588 - 1690 * ((700 + X) - 1600)
(700 + X)

16

This yields a value for X of 587 blocks for a little over

36K bytes.

(c) Let us assume that the installation was able to purchase the

extra 587 blocks of memory and thus reduce their reaction

time to under one second. According to the natural laws of

increased capacity, let us presume that soon after the

purchase, management wished to add more terminal lines into

the system and wanted to know what effect it would have. If

the computing centre staff could estimate on average how

many extra processes it would introduce into the system, say

for example three with the same average size of 200 blocks,

then it can easily be calculated that the reaction time

would increase to 1.8 seconds.

3. Load control.

Version six UNIX has no explicit load control mechanism.

If an installation wanted to guarantee its users a certain

response level, then a valuable and easy step would be to change

the routine which logs users onto the system ("/etc/init") such

that it first examines the current responsiveness of the system.

If it exceeds a given threshold, then the user would be denied

access.

Load control has been extensively studied (see for example

(8-12)). However, with the exception of (8), most adaptive

schemes (i.e., those that will adjust to changing workload

I ,

17

condition) are applicable only to paging systems. The static

ones, on the other hand, are less efficient. The proposed

method is adaptive to workload variation but has the advantage

of being very simple and requires very little overhead.

4. The swapping lifetime function may be used in simulation or

analytic models of swapping systems in much the same way the

paging lifetime functions are being used.

5. Conclusions.

A regression model of the reaction time of a PDP 11/45 system

running under UNIX (version six) was derived and sample

applications given. It must be remembered, however, that the

reaction time values calculated from the model are simply rough

estimates. As well, they will generally form upper bounds since

the synthetic workload did not take advantage of the UNIX

concept of 'text' which would reduce the swapping load somewhat

in real systems. From validation, it was seen that the model

tends to overestimate the actual values.

Another important point to realize is

models based on measurement are generally not

should be used only for the system from

that regression

portable. They

which data were

gathered. This is because a regression model does not attempt

to explain why the system behaves in a particular way. They

18

reflect all the pecularities of the given system as well as the

usage pattern . of the given user community. The advantage is

that it is possible to model any system, however complex, by

simple equations to obtain some quick but rough indications of

performance. Furthermore, the modelling procedure is

straightforward and a result (though not necessarily very

accurate) is guaranteed. This may be useful in case the system

cannot be adequately modelled by the traditional queueing model.

It is also usually much less costly than simulation,

particularly when the system under study is complex.

Acknowledgement

I would like to thank Rod Downing

programming help. This work

for useful

was supported

discussions and

in part by the

Natural Sciences and Engineering Research Council of Canada

under grant A3554.

1 9

References

[1] Chamberl(n, D., Fuller, S., Liu, L., "An analysis of page

allocation strategies for virtual memory systems", IBM

Journal of Research and Development, Vol.17, No.5,

1973,404-412.

[2] Ferrari, D.,"Workload characterization and selection in

computer performance measurement", Computer, Vol.5, No.4,

1972, 717-721.

[3] Tsao, R. and Margo 1 i n , R . , "A multi-factor paging

experiment - II. Statistical methodology", in: Freiberger,

1972, 135-158.

[4] Chanson, s. and Bishop, C., "A simulation study of

adaptive scheduling policies in interactive computer

systems", Proceedings of Winter Simulation Conference,

Gaithersburg, Maryland, 1977, 634-641.

[5] Belady,L.

computer

282-288.

and Kuehner,

system", Comm.

C. ,

of

"Dynamic space

ACM, Vol.12,

[6] Ferrari, D., Computer Systems Performance

Prentice Hall, New Jersey, 1978.

sharing in

No.5, 1969,

Evaluation,

[7] Buzen, J., "Analysis of system bottlenecks using a queueing

network model", Proc., Workshop on System Performance

Evaluation, Harvard University, April 1971, 82-103.

[8] Chanson, S. and Sinha, P., "Adaptive load control in

batch-interactive computer systems", Proc. of 16th

Computer Performance Users Group, Oct. 1980, 207-213.

20

[9] Badel, M., Gelenbe, E., Leroudier, J. and Potier, D.,

"Adaptive optimization of a time-sharing system's

performance", IEEE Proc., Vol.63, 1975, 958-965.

[10) Badel, M. and Leroudier, J., "Adaptive multiprogramming

systems can exist,", Performance of Computer Installations,

D. Ferrari (ed.), North-Holland, 1978, 115-135.

[11) Denning, P., Kahn, K., Leroudier, J., Potier, D. and Suri,

R., "Optimal multiprogramming", Acta Informatica, Vol.7,

No.2, 1976, 197-216.

[12) Gelenbe, E. and Kurinckx, A., "Random injection control of

multiprogramming in virtual memory", IEEE Trans. on

Software Engineering, Vol.4, No.1, 1978, 2-17.

[13] Denning, P. and Kahn , K., "A study of program locality

and lifetime functions", Proc. Fifth SIGOPS, Nov. 1975,

207-216.

21

APPENDIX. Swapping Policy in UNIX (Version Six)

1. Routine and variables used:

sched

runout -

routine.

routine called to swap in all processes that it can

from disk.

a global flag which is set and slept on by sched when

there are no more READY processes out on disk. Thus

other routines can test runout and if appropriate,

wakeup the runin - a global flag which is set and

slept on by sched when it was unable to swap in all the

READY processes. As well as being accessible to other

routines, runin is tested every second by the clock

2. Swapping-in policy.

i) when: sched is only called when a READY process is out on

disk, and thus wants into main memory. This can occur due

to two situations:

1) In the previous execution of sched, it was unable to

load all the READY process out on disk. Thus it set and

slept on runin. In this case, sched will be awakened

every second by the clock routine until there are no

more READY processes left on disk.

22

2) In the previous execution of sched, it did load all the

READY processes into core (and thus set and slept on

runout). Later, a process (which was not READY,

e.g·.~sleeping due to I/0 wait) out on disk became READY

(i.e., was awakened). In this case, sched will be

executed whenever such a situation arises.

ii) who: The policy is based solely on the length of time a

process has been out on disk. Sched starts with the READY

process out the longest and tries to load all of them into

core. If it fills all of main memory and there are still

READY processes on disk, it will still try and load them in

as long as (1) there are processes in core which are not

READY (e.g., sleeping on low priority), - they will be

successively swapped out to make room; or failing that, (2)

the READY process(es) on disk has been there for more than 2

seconds and there is an in-core process (which is READY or

sleeping on high priority) which has been in core for more

than 1 second.

3. Swapping out policy.

i) when: only when necessary

algorithm, 1.e., not all

will fit into core, etc ••

as determined by the swap-in

the READY processes out on disk

ii) who: any process sleeping on low priority or being traced,

and failing that, if the process on disk has been out there

for more than 2 seconds, then any process (READY or sleeping

23

on high priority) that has been in-core for more than

second (starting with the one who's been in the longest,

i.e., based solely on elapsed time in core).

