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ON FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 

ABSTRACT 

This paper is concerned with the problem of fitting discrete data, 

or a continuous function, by least squares using exponential functions. 

We examine the questions of uniqueness and sensitivity of the best least 

squares solution, and provide analytic and numerical examples showing the 

possible non-uniqueness, and extreme sensitivity of these solutions. 





l . INTRODUCTION 

The problem (D) of numerically fitting given discrete data (ti,yi)' 
m b ·t 

i = 1, ... ,n, by a sum of exponentials y( t ) = L a .e J in th e best leas t 
n j =l J 

squares sense, so that we minimize I = .L ty( t ;)-yi) 2 ov er all po ssible ~ 
l =l 

and~, is well known to be fraught with peril. Various algorithms have been 

proposed for this special nonlinear least squares problem (see e.g. Evans 

et al (1980), Osborne (1975), and Ruhe (1980)), and examples of this type 

have been used to test more general nonlinear least squares algorithms 

(Golub and Pereyra (1973), Kaufman (1978)). Lanczos (1956, pg. 279) was 

the first to point out the extreme sensitivity or ill-condition of determining 

the exponential coefficients, and showed that various parameter values (~,Q) 

can give near-optimal residuals. In Section 2, we shall discuss this example 

and others, with a view to characterizing when such problems are ill-conditioned, 

and even when the solutions are not unique. This problem (D) is also of interest 

because of its relationship to the general problem of estimating parameters in 

differential equations; indeed it is essentially equivalent to the (simplest) 

case of parameters appearing linearly in the differential equation system (see 

Varah (1982)). 

This problem (D) is closely related to the continuous problem (C) of 
m b-t 

fitting an exponential sum y(t) = .L aje J to a given function flt) so as to 
, oo J=l 

minimize I(~,~) =~J(y(t)-f(t)) 2dt. This problem is more amenable to analysis 
0 

than (D), and in Section 3 we examine the question of uniqueness, and give 

some examples of non-unique solutions, extending work of Kammler ("1979). 

Finally in Section 4, we treat the special case where f(t) is itself an expo

nential sum; in this case one can be more explicit about non-uniqueness, and 

we give several examples . 
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2. THE DISCRETE PROBLEM 

We specialize at once to the case of two exponentials, for two reasons: 

first of all, the necessary extensions to three or more exponentials are easily 

seen, and more importantly, as we shall see, numerical results with two expo

nentials are dubious enough; those with three or more are almost certainly 

meaningless. 

Thus the problem can be stated easily enough: we have a least squares 

function 

( 2. 1 ) 

with first order minimum conditions 

-1.l.. = 
bl t. a I b1ti 

2Lr.e 1 = 0 -= 2Lr.t.a
1
e = 0 aa 1 

, ' a b1 i i , , 

(2.2) 
al b2t. a I b2 t. -= 2Lr.e 1 = 0, -= 2Lr.t.a2e 1 = 0 aa 2 ; 

, ab2 
, , 

or JT.!:_ = 0, where J is the Jacobian matrix J .. 
lJ 

The -a I -- O t · b d t 1 f equa ions can e use o so ve or aa. 
J 

these substituted to give I as a function of b1 ,b2 only, but this is messy. 

Some idea of the nature ofthecritica1 point(s) arrived at by solving 

(2.2) can be obtained by evaluating the 4x4 Hessian matrix H, 

(2.3) 
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(. k)T 
where G. = v J, r. In fact, most of G is zero at a solution of (2.2), Jk - -

the only nonzero terms being 

We should mention here that we assume b1 ~ b2; if b1 = b2 (the confluent case) 

we must adjust I accordingly. We will consider this more explicitly when 

dealing with the continuous problem in Sections 3 and 4. 

Even this simple problem (2.l) is very ill-conditioned. We give some 

indication of this using two well-known examples, that of Lanczos mentioned 

earlier, and that of Osborne (1972). The Osborne data, after subtracting out 

the asymptotic constant 0.3754, are given in Table l. The Lanczos data (see 

Lanczos (1956), pg. 273) are generated from three exponentials, 

.095le-t + .8607e- 3t + l .5576e-St (2.4) 

using 6t = .5. Unfortunately this gives the additional problem of decaying 

to zero too fast; there are simply not enough nontrivial data values. We 

generate data using the same three exponential sum, but using tt = 0.1 instead 

and n = 33, the same as the Osborne data; this is given in Table l as well. 
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TABLE l 

t 0.0 0 .1 0.2 0.3 0.4 0.5 0.6 0.7 

y{0s) .4686 .5326 .5566 .5606 .5496 .5326 .5056 .4746 

y(La) 2.5134 l .6684 1.1232 0.7679 .5338 .3776 .2720 .1997 

0.8 0.9 1.0 1 . 1 1 . 2 1 . 3 1.4 1 . 5 1.6 1. 7 

.4426 .4086 .3756 .3426 .3096 .2826 .2526 .2276 .2046 .1826 

.1493 . 1138 .0883 .0697 .0560 .0459 .0378 .0316 .0268 .0229 

1.8 1. 9 2.0 2. l 2.2 2.3 2.4 2.5 2.6 2.7 

.1626 . 1466 .1306 .1146 .1036 .0916 .0816 .0726 .0626 .0556 

.0198 .0172 . 0151 .0133 . 0117 .0104 .0093 .0083 .0074 .0067 

2.8 2.9 3.0 3 .1 3.2 

.0486 .0446 .0336 .0356 .0306 

.0060 .0054 .0048 .0044 .0039 
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Both sets of data appear to have unique minima, as in Table 2. 

Osborne 

Lanczos 

Table 2 

1.93 -1 .46 _, .29 -2.22 

.29 2.22 _, .52 -4.47 

I 

-4 .55xl0 .00011 
-4 . 78xl O . 0010 

.06 

.03 

Some idea of the ill-conditioned of these problems can be seen from the size 

of the Hessian eigenvalues, although this is only very local information, and 

really a more global view is appropriate. Thus we give as well in Figures 1 

and 2 a geometrical picture with a 3-dimensional plot of the function 

[I(b1 ,b2)J112 , for each b1 ,b2 using the appropriate linear parameters a1 ,a 2. 

Ranges were -0.4 ~ b1 ,b2 ~ -7.0 for both. Of course the plots are symmetric 

about the line b1 = b2. Notice that the Osborne data gives rise to a rather 

narrow valley to the minimum and beyond - this results from the fact that one 

explonential fits the data surprisingly well. The Lanczos data plot is 

rather different: the valley is broader, in a different direction, and not 

so easily distinguished. Both surfaces appear to be convex in the region 

b1 > b2, with unique minima, although verifying convexity appears to be very 

difficult, and we have not been able to characterize those data which lead to 

convex surfaces, or even give sufficient conditions. We shall return to this 

problem in the continuous case. 

To appreciate the ill-condition involved here, we can try to measure 

the sensitivity of the parameters to changes in the data. For example, suppose 

the data values are in error by no more than c lindeed, the Osborne data is 
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only given to 3 decimal places). Then we can tolerate a change in If of 

£ = ov'N. Following Bard (1974), pg. 171, this gives rise to an uncertainty 

region about the minimum which, assuming I is locally quadratic, is the 

ellipse (ob)TH(ob) ~ 2£ 2, where His the 2x2 Hessian using only b1 ,b2 as 

variables (not the 4x4 Hessian used earlier). Thus llobll can be as large as 

£/ ✓A 1 (H). With o = .001 in the above cases, this uncertainty region is quite 

large; we have not computed it precisely but we know it contains the points 

in Table 3: 

TABLE 3 

bl b2 bl b2 

Osborne -1.2 -2.5 - 1 . 4 -1. 9 

Lanczos -1 .27 -4.33 - 1.8 -4.6 

Yet these data sets are not in the least pathological; other data sets 

give comparable results. Indeed, one can devise data sets where the situation 

is much worse, i.e. with a flatter, yet non-convex surface, merely by forming 

a different exponential sum in (2.4). We consider one specific example 

briefly here, and return to it in Section 4 where we discuss the continuous 

approximation problem. We use the general sum 

(2.5) 

choosing the special case a= (.1 ,.4,-.3). 
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The difference in the nature of the surface I(b1 ,b2) can be seen by 

examining the confluent case b1 = b2 . Along this line the Osborne and 

Lanczos data appear to give rise to a convex function I(b
1 

,b
1
), with a 

unique minimum at some finite (negative) value of b1 . This point is in fact 

a saddle point of the surface, with the surface decreasing in value away 

from b1 = b2 until the (apparent) global minimum is reached (see Figures l 

and 2). However the new example is not convex along b1 = b2. 

Algebraically, the confluent case has the form (c + dt.)ebti, with 
l 

N bt. 2 Itb) = L[(c+dt.)e l - y.] . 
l l l 

The first order conditions for a critical point are 

N bt. k L[(c+dt.)e l - y. Jt. = 0' k = 0,1,2. 
l l l l 

k 2bt. 
sk = Lt .e 1 k = 0,1,2,3 

l 

If we define 
k bti 

k 0, 1 , 2 zk = Ly . t . e = 
l l 

and solve for the linear parameters c and d, we get a single equation for b: 

This equation is rather nasty, and it appears very difficult in general to 

give criteria for a unique solution, so as to make I(b) convex. We conjecture 

that this will imply a unique global minimum for b1 :5.. b2, much as in Figures l 

and 2. 
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~ow consider the special case mentioned earlier. For a= (.1 ,.4,-.3), 

we generate 33 data points as with the Lanczos data. Examination of the 

confluent case reveals 3 critical points, as shown in Table 4. 

TABLE 4 

a= .1, .4, -.3 

b I -.98 -1 . 34 -2.38 

I ( b) 
I -3 -3 -3 l . 68x l 0 1 .85xl0 0.78x10 

nature min saddle saddle 

This case has two distinct minima; one as above at b1 = b2 = -.98, and the 

other (global) minimum at b1 = -1.55, b2 = -10.5 with I(b1,b2) = .15xlo-3. 

The I-function is very flat near both minima, with the 4x4 Hessian having 
-5 an eigenvalue of .33xl0 in the latter case. The 3-D plot of tne surface 

LI(b1 ,b2)J 112 , for -.4 ~ b1b2 ~ -10.0 is given in Figure 3. In the neigh

bourhood of the local minimum (-.98,-.98), I is very flat: for , 

-3 -3 -.9 ~ b1b2 ~ -1 .5, 1 .68x10 ~I~ 2.02xl0 Moreover, near the global 

minimum (-1 .55,-10.5), it is also; if we again allow .001 error in each data 

point, we find the uncertainty region contains (-1.45,-20) and (-1.7,-5.7). 

A similar situation occurs for very many data sets; because of this 

we feel that the fitting of exponentials must be attempted with great care. 

Moreover, there seems to be little correlation between this sensitivity and 

monotonicity of the data. In the following sections, we shall discuss the 

continuous problem in greater analytic detail. 









- 12 -

3. THE CONTINUOUS PROBLEM 

Here we are given a function f(t), O .::_ t < 00 , and wish to approximate 
m b·t 

it by an exponential sum y(t) = ~ a.e J so as to minimize 
j=l J 

1 
00 

2 I(a,b) = 2 J (y(t)-f(t)) dt. {3.1) 
0 

We assume the exponentials are decaying, i.e. b. < 0, j = l , ... ,m. The 
J 

first-order conditions for a minimum (or more generally for any critical 

point) are, for j = 1 , .•. ,m, 

and 

ell -= aa. 
J 

00 b.t 
f (y-f)e J dt = 0 
0 

aI oo b.t 
- a. J (y-f)te J dt = 0. 

abj - J 0 

If we define what are essentially the Laplace transforms of y and f, 

and 

00 

z(b) = f y(t)ebtdy 
0 

00 

g{b) = f f(t)ebtdt, 
0 

then these first-order conditions are equivalent (assuming no aj = 0) to the 
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functions z(b), z'(b) interpolating g(b), g'(b) at the solution points 

{b.}; j = l, ... ,m; 
J 

z ( b.) - -
J 

z' lbj) = 

k 
L 

; =l 

k 
L 

i =l 

a; 00 

b.+b. = J 
1 J u 

a. 
1 

2 lb. +b.) 
1 J 

b.t 
f(t)e J dt = g ( bj) 

( 3. 2) 
m b. t 

= f tf(t)e J dt = g'lbj). 
0 

These equations are sometimes called the Aigrain/Williams equations (see 
b.t 

Kammler (1979)) and of course make the error (y-f) orthogonal toe J and 
b.t 

te J over [0, 00 ). They are linear in the {aj}, but nonlinear in the {bj}, 

so the existence and uniqueness of solutions is not clear, and may vary with 

the function f(t). 

It is of interest to compute the Hessian matrix Hof second partial 

derivatives of I; we get 

2 00 b.t b t 
a I = f e J e k dt = 

aa/ak 0 

. a2I 00 b.t oo Zb.t 
----,-- = f ly-f)te J dt +a. f te J dt 
aaj abj O J 0 

a. 
= 0 + J 

( 2b.) 2 
J 

(at a critical point) 

a2
1 

00 b.t b t ak 
= ak f te J e k dt = 

aa/3 bk 2 
0 (bj +b k) 

a21 oo 2 b.t bkt -2a .ak 
= ajak J t e J e dt = J 

ab j abk 3 
lbfbkJ 

a2I 2 00 2 2b.t 00 2 b.t 
-,,, = a. ft e J dt + a. J (y-f)t e J dt 
ab~ J 6 J 0 

J 

-2l 
= J 

( 2b.) 3 
J 

+ g. 
J . 
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Thus, as in the discrete case, the Hessian consists of two parts, 

H = H0 + G, 

with H0 depending explicitly on the {aj,bj} and G explicitly on f(t). If 

we order the variables a1 , ... ,am,bl , ... ,bm' then H0 has the form 

- 1 ak 

b/bk t b j+bk) 
2 

HO = j,k = 1 , ... ,m. t3.3) 

a . -2a .ak 
J 

(bj+bk) 
2 

(bj+bk) 
3 

If we factor out the {aj} by a diagonal congruency transformation, the 
b.t b.t 

remaining matrix is the Gram matrix for the functions e J te J j = l , ... ,m. 

Thus H0 is positive definite and the nature of a particular critical point 

depends on G. If the solution y(t) is a good fit, so that the terms gj are 

small, H will be very close to H0, and in this case the sensitivity of the 

solution parameters will depend effectively on the eigenvalues of H0. 

However, H0 is very ill-conditioned: for bj = j, the top left block 

is the Hilbert matrix of order m, and H0 is in fact much more ill-conditioned 

than this. Even form= 2, >. 1(H) < ,o-4; form= 3, >. 1(H) < ,o-7, and for 

) -10 · m = 4, >- 1(H < 10 . In practice, we have found that the Hessian eigenvalues 

are indeed very close to those of H0 (at the minimum point), so that the 

problem is intrinsically very ill-conditioned. 

Moreover, the situation is really much worse than this: there is the 

strong possibility of multiple solutions of (3.2) for a given function f(t), 
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even in very simple cases. We illustrate this by extending an example of 

Kammler (1979), fitting two exponentials by one, i.e. 

f(t) -t 8t = e + ae , y(t) = aebt 

We assume a 18 are given, a,b are to be found, and that b,8 are negative. 

The equation (3.2) are as follows: 

aa 
a 1 a 

O => 2b = b-1 + b+8 (3.4) 

al _ 
ab - O => a = 0 or a l a 

4b2 = (b- 1)2 + lb+a )2 ( 3. 5) 

However, using (3.4) gives 

a2 l a 2 2a 
I = 2b + 2 - 28 - 8-1 (3 . 5 ) 

so I is always smaller if a f 0, i.e. a= 0 never gives a minimum. Using 

(3.4) to define a, and substituting in {3.5) gives 

(b+l )(b+8) 2 + a(b-8)(b-l )2 = 0 {3.7) 

which is a cubic for b = bla,B) with one or three real solutions. To see 

when three real solutions can exist, express I as a function of b alone 

(using (3.4)): 

I(b) ( 1 a ) 2 1 a 2 2a 
= 2b i:i="T + b+8 + 2 - 28 - 8-1 (3.8) 
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d! Now db= 0 gives a= O or (3.7) as above; however at solutions of (3.7) 

whose~ is completely determined by the quantity in square brackets. A 

plot of this in the b-S plane is shown in Figure 4. 

FIGURE 4 

Q 

0 

Notice that the only chance for having three real roots is for (b,s) 

to be in the 0 region (i.e. with I 11 (b) < 0) for one of the roots b, so that 

a local maximum is achieved. In particular, notice that (from (3.7)) if 

a< 0, b > S > -1 orb< S < -1 implying I 11 (b) > O so there is a unique 

minimum in this case. Also note that f(t) is only non-monotone in this case. 
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Now consider b,8 as our free parameters (not a,8) with a given by 

(3.7). We can restrict our attention to the small 0 region R near zero 

and below the b = 0 axis; the other 0 region is obtained by a simple 

transformation: b + 1/b, 8 + 1/s; a+ -a/8, the other b-roots + reciprocals, 

a+ -a/b, and I+ I. That is, for each (b,8) pair in R, there is a 

reciprocal pair(½,}) with the same solution. However in R, we have three 

b-solutions; there is one b for which I"(b} < 0, i.e. a local maximum. 

However we must have two other local minima (say x1 ,x 2) with - 00 < x1 < b < x2 < 0, 

since I 1 (b) > 0 for b + o-, b + -00 Actually, this holds for interior points 

of R only; on the boundary, we get a double root (say x1 = b) and even a 

triple root at the minimum of the b-8 curve (i.e. b = ✓8 - 3). 

Of particular interest are cases where the two local minima x1 ,x 2 have 

identical I-values, so we in fact have a non-unique global minimum. This 

occurs for a continuum of values (b,S) inside R given by S = -b2 (notice this 

curve leaves Rat the minimum b = 18 - 3). On this curve, the other b-roots 

x1,x2 are given by (for ✓8 - 3 < b < 0) 

or 

± (b+l) /b2+6b+l 
2 

At these x-values, the corresponding a-values from (3.4) are 

a{x) l b 
= 2x( x-1 - ----:--7) 

x-b 
b ) 
2 1-b /x 
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Notice that if x-+ b
2
/x, a(x)-+ a(b2/x) = 2_b(x~l - ~) = i a(x), and 

2 ) ( ( 2 ) 2 2 ) x-b 2 hence a tx = a x)a b /x = a (b /x Thus since x
2 

= b /x
1 

for the 
2x 2 2b 2 2(b2/x) . 

roots, we have a tx,) = a (x2J and thus from (3.6), l(x
1

) = I(x2). 
2x1 2x2 

two 

Thus we can have multiple solutions and non-unique minima even in this 

relatively simple case; as Kammler (1979) notes, such problems are extremely 

ill-conditioned numerically, particularly for b near the triple root. 

From now on, we specialize to the case of two exponentials, i.e. 

y(t) 
b1t b2t 

= a1e + a2e . Then the variational equations are (see (3.2)) 

-al -a2 
g ( bl ) 

-a , - a2 
g(b2) 2b + = - 91 ; +- = 

1 b1+b2 b1+b2 2b2 

al a2 
g I ( bl ) 91 ; 

al a2 
-+ = + - = 
4b2 2 - 2 4b2 

1 (b1t b2) ( bl +b2) 2 

The first two equations define a1 ,a 2 via B~ =~.with 

-1 
2b1 

B = 
_, 

b1+b 2 

Then the remaining two are 

- l 
b1+b2 

- 1 
2b2 

9
1 

- l 

- 92 

9 I ( b2) - 92· 

(3.10) 

( 3. 9) 
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Moreover, the functional 

I(a(b),b) 
00 

2 
00 

2 l - I (y-f) dt =If dt - _g_TB- .9.. 
0 0 

which after some manipulation can be expressed as 

(3.11) 

This last form is particularly useful, as it holds in the confluent case 
bt (b1 = b2) as well if limits are used. If b1 = b2 = b, then y(t) = (ct+d)e , 

and the variational equations give 

d = -4b(g+bg') 

where g = g(b), g' = g'{b) as before. Then in terms of b only, 

00 

I = f f 2dt + 4bg2 + 8bgg 1 + 8b3(g' )2 

0 
(3.12) 

which indeed is the limit of (3.11) as b2 + b1 = b. The conditions for a 

critical point in this case boil down to one equation: 

Because of the symmetry in I(b1 ,b2) across b1 = b2, any solutions of this 

equation are critical points of I in the b1 ,b2 plane, and may be local minima, 

maxima, or saddle points. 
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In principle, for a given function f(t), equations (3.10) could be 

used to find solutions and (3.11) could be differentiated to find the 

Hessian. However this appears to be difficult in any specific practical 

case, and we prefer to try to understand the problem by plotting the surface 

I ( bl , b2) . 

As an example, consider f(t) 2 -t = t e . Then 

g(b) 2 
= ---=-

(l-b)3 ' 
g I ( b) 9 11 

( b) 

The variational equations (3.10) are difficult to analyze; however the 

confluent case b1 = b2 =bis somewhat easier: 

I(b) 3 4b 4 +8b2 12 +8b3 36 
= 4 + tl - b) 6 (l-b) 7 tl - b) 8 

and it is easy to check that l 1 (b) =Oat three points: 

b = - 5+1i2 ~ - 118· 
l 13 . ' 

(local minimum) 

(saddle point) 

(global minimum) 

There appear to be no critical points for b1 f b2, and we plot the surface 

[Itb1 ,b2)J112 in Figure 5, with -.05 ~ b1b2 ~ -2.0. 

Other choices of f(t) will give very different surfaces, of course, and 

in the next section we consider the special case where f(t) is itself an 

exponential sum. 
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4. EXPONENTIAL DATA 

Here we consider 
b
1

t b2t 
fitting two exponentials y(t) = a1e + a2e to 

n .t 
f(t) = ~ a.e J as 

j=l J 

n -a. 
we did in the discrete case in Section 2. Thus g(b) = ~ ~' 

and the variational equations (3.10) can, after some manipulation, be written 

n (b1-Bi )(b2-ei) 
~ a . 2 = 0 

j=l J (b1+Bi) (b2+B;) 
( 4. l) 

n (b1-B;)(b2-Bi) 
~ a. 2 = 0 

j=l J (bl +Bi ) { b 2 +Bi ) 

Clearly, some results about the location of roots (b1 ,b2 ) can be inferred 

from (4.1). For example, if the aj > 0 for all j, and Bn < ••. < B1 < 0, 

then at least one of (b1 ,b2) must lie inside (Bn,B 1). 

However, it is very difficult to give any more general results about 

the nature of the solutions (b1 ,b2): even it the Bj are fixed, the nature 

of the surface I(b1 ,b2) varies enormously with the choice of a= (a1 , ... ,an). 

From (3.11), we can express I(b1 ,b2 ) as 

T T -1 I= a Ca - g B g, 

= aTAa, 

C •• : 
lJ 

with A= DCD, and D diagonal with di 

express the Hessian similarly: 

-1 
B .+B. , J 

( 4. 2) 

Moreover, we can 
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T a2A T /A 
Cl -2 Cl Cl a bl ab2 Cl 

a bl 
H = 

T a2A T a2A 
Cl a bl a b2 

Cl Cl -(l 

a b2 
2 

One can explicitly compute the partial derivatives; indeed, 

b2- f3 ; s .rL s .s . s. s. 
and g .. = l - 3 --½1- + --½1- (tf + f). where Dis diagonal, a. = 3 , 

1 (b2+si)(b1+si) 1 
J bl bl l l 

However, to show uniqueness of a minimum point (b1 ,b2) for example, we need 

convexity of I(b1 ,b2), i.e. H positive definite for all b1 < 0, b2 < 0, for 

some particular choice of et ands. This, seems to be very difficult: the 

matrix G is unfortunately indefinite over much of the region b1 < 0. 

Even the confluent case is intractable, although interesting: one can 

readily express the function I(b) from (4.2) and its derivatives; for example 

dI - -4a T l)GDet, db -

~ b-B ; 2 with D diagonal, d
1
. = - ------=-3 , and g .. = b - s.s .. Again, however, the 

( b+S. ) , J , J 
1 dI nature of the function varies tremendously with a. For some a, db= 0 at 

one point (a minimum), and for these it appears that I(b1 ,b2) has a unique 

minimum as well; for others however, the confluent case admits 3 or more 

only 

solutions and the full function I(b1 ,b2) can have several minima. As well, 

I(b1 ,b2) can be very flat over a large range of b1 ,b2. We can illustrate these 

different aspects with examples, all taken with n = 3 and s1 = -1, s2 =•-3, 

83 = -5. 
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Example l: (the Lanczos data} a = .0951, .8607, 1.5576 

Here the confluent case has one minimum, which is a saddle point for 

the full function I(b1 ,b2). This in turn has a unique minimum for b1 ~ b2 

at (-1.47,-4.42) with I = .85xl0- 5 and A • (H) = .0021. The surface is very 
min 

similar to that of the discrete problem, given in Figure 2. 

Ex amp 1 e 2: a = • 1 , . 4, - . 3 

Here (as in the discrete problem) the confluent case has three critical 

points, one a local minimum and the other saddle points for the full problem. 

In addition, the full problem has a minimum for b1 > b2. 

The minima are: (-1.17,-1.17), 

( - l . 54, - 11 . 2} , 

-4 I = .99xl0 

-4 I= .18xl0 , 

Again the surface is similar to that in Figure 3. 

A . (H} 
min 

-6 = .48xl0 . 

Notice also that this surface is very flat: indeed for the whole 

region -1 ~ b1,b2 ::::._ -3~ we have 

-3 -3 .06x10 -2. I(bl ,b2) < .25xl0 . 

Example 3: a= .14, -.70, .70 

Here the confluent case has 5 critical points, listed in Table 5. 
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TABLE 5 

b -0.20 -0.33 -0.73 -2.11 -7.2 

I(b) .1165xl0- 2 .1174xl0-2 .1124xl0-2 .1456xl0- 2 .078xl0 -2 

nature minimum saddle minimum maximum minimum 
I 

The surface is incredibly flat in this case; over the whole range 

-2 -2 -0.l ~ b1b2 ~ -10.0, .078xl0 2. I(b1 ,b2) ~ .146xl0 Thus if the surface 

is scaled like the others (where max I(b1 ,b2) ~ 1 .0), it would appear totally 

flat. Scaled up however, it is much more interesting: see Figure 6. The 

three local minima from the confluent case b1 = b2 appear to be the only 

minima; however almost any value of b1 and b2 will do just as well. Notice 

that here~ is very nearly the eigenvector corresponding to the smallest 

eigenvalue of A in (4.2). 
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