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ABSTRACT 

A generalization of the convex hull of a finite set of points 
in the plane is introduced and analyzed. This generalization leads 
to a family of straight-line graphs, called "shapes", which seem to 
capture the intuitive notion of "fine shape" and "crude shape" of 
point sets. 

Additionally, close relationships with Delaunay triangulations 
are revealed and, relying on these results, an optimal algorithm 
that constructs "shapes" is developed. 
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1. Introduction 

The efficient construction of convex hulls for finite sets 

of points in the plane is one of the most exhaustively examined 

problems in the rather young field often referred to as 

"computational geometry". Part of the motivation is theoretical 

in nature. It seems to stem from the fact that the convex hull 

problem, like sorting, is easy to formulate and visualize. 

Furthermore, the convex hull problem, again like sorting, plays 

an important role as a component of a large number of more 

complex problems. Nevertheless, a lot of the work on convex 

hulls is motivated by direct applications in some of the more 

practical branches of Computer Science. 

Akl and Toussaint [1], for instance, discuss the relevance 

of the convex hull problem to Pattern Recognition. By 

identifying and ordering the extreme points of a point set, the 

convex hull serves to characterize, at least in a rough way, the 

"shape" of such a set. Jarvis [9] presents several algorithms 

based on the so called nearest neighbour logic, that compute 

what he calls the "shape" of a finite set of points. The 

"shape", in Jarvis' terminology, is a notion made concrete by 

the algorithms that he proposes for its construction. Besides 

this lack of any analytic definition, the inefficiency of 

Jarvis' algorithms to construct the "shape" is a striking 

drawback. More recently, Fairfield [6] introduced a notion of 

shape of a finite point set based on the closest point Voronoi 
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diagram of the set. He informally links his notion of shape 

with human perception but presents no concrete properties of his 

shapes, in particular no algorithmic results. 

In this article, we introduce the notion of the "a-shape" 

of a finite set of points, for arbitrary real a. This notion is 

derived from a straightforward generalization of one common 

definition of the convex hull. Optimal algorithms for the 

construction of a-shapes and certain related structures are 

described. Consideration is given to the efficient construction 

of the a-shapes of a point set for several a's. The efficiency 

of our algorithms, in addition to other nice properties of 

a-shapes, leads us to believe that the family of all a-shapes, 

which we formalize as the shape spectrum, will find applications 

in a number of fields, including Pattern Recognition and Cluster 

Analysis. 

In the next section, the notions of a-hull and a-shape are 

introduced along with a few of their basic properties. Section 

3 describes the close connection between a-shapes and Delaunay 

triangulations. This serves as a basis for efficient algorithms 

to construct a-shapes and the shape spectrum presented in 

Section 4. In Section 5 we briefly discuss the problem of 

constructing an a-hull. The final section presents some 

concluding remarks and open questions. 
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2. Basic Notions 

Given a set S of n points in the plane (n being a positive 

integer), we consider the following generalization of its convex 

hull. (The convex hull of Smay be defined as the intersection 

of all closed halfplanes that contain all points of S.) 

Definition 2.1: 

Let a be an arbitrary, sufficiently small, positive real. 

The a-hull of Sis the intersection of all closed discs with 

radius 1/a which contain all points of s. 

In order to achieve an intersection of discs, it has to be 

guaranteed that there exists at least one disc of the chosen 

size that contains all points. This implies that the smallest 

possible value for 1/a is equal to the radius of the smallest 

enclosing circle. As a matter of fact, Jung ·no] showed in 1901 

that 1/a no less than 3-l/2 times the diameter of s suffices, no 

matter how the points are distributed. 

In Figure 2.1 the a-hull for some positive, sufficiently 

small a is aepicted. 

I . 
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Figure 2.1: Positive a-hull. 

Intuitively, large a (but still sufficiently small) give rise to 

hulls that have only in some sense "essential" extreme points on 

their boundary. For a going to zero, the a-hull approximates 

the common convex hull. 

Definition 2.2: 

For arbitrary negative reals a, the a-hull is defined as the 

intersection of all closed complements of discs (where these 

discs have radii -1/a) which contain all points. 

Figure 2.2 displays such a hull for the same point set as 

used in Figure 2.1. 
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Figure 2.2:· Negative a-hull. 

For convenience let us define the 0-hull as being the common 

convex hull of the points and let us agree that the intersection 

of no discs (which may occur for large positive a) is equal to 

the entire plane. 

If we define a generalized disc of radius 1/a as a disc of 

radius 1/a if a>O, the complement of a disc of radius -1/a if 

a<o, ~nd a halfplane if a=O, then the pr~ceding definitions 

could be combined by saying: For an arbitrary real a and a set S 

of points in the plane, the a-hull of Sis the intersection of 

all closed generalized discs of radius 1/a which contain all 

points of s. , 
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Thus we have a family of a-hulls for a ranging 

from-~ to ~. Sample members of this family are the entire 

plane (for a sufficiently large), the smallest enclosing circle 

of s, the convex hull of S (for a=O), and S itself (for a 

sufficiently small). All the members of this family satisfy the 

following simple relationship. 

Observation 2.1: 

· The a 1-hull of a set of points is contained in the a 2-hull 

if a 
1 

~ a 
2

• 

Of central interest in this paper, however, will not be the 

continuous family of a-hulls, but the discrete family of what we 

Qall "a-shapes". 

additional notions. 

Definition 2.3: 

Before defining a-shapes we need some 

A point pin a set Sis termed a-extreme in S if there exists 

a closed generalized disc of radius 1/a, such that plies on 

its boundary and it contains all points of S. If for two 

extreme points p and q there exists a closed generalized disc 

of radius 1/a with both points on its boundary and containing 

all other points, then p and q are said to be a-neighbours. 

For convenience we assume that no four points in Sare 

co-circular and no three points co-linear. The minor 

difficulties that arise in such cases can by treated by more 
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elaborate definitions and considerations, which only tend to 

detract from our presentation. 
I 

Definition 2.4: 

Given a set S of points in the plane and an arbitrary real a, 

the a-shape of Sis the straight line graph whose vertices 

are the a-extreme points and whose edges connect the 

respective a-neighbours. 

In Figure 2.3 the a-shape of the same set of points and the 

same reals a as used in Figure 2.1 and Figure 2.2 are displayed. 

Figure 2.3~ Positive and Negative a-shape. 

The following corresponds directly with Observation 2.1: 
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Observation 2.2: 

The set of a 1-extreme points in S is a subset of the 

o 2-extreme points if a1 > a 2 . 

The a-hull was defined to be a straight line graph. 

However, in certain applications the intuitive notion of the 

"shape" of a set of points in the plane is not as well expressed 

by a set of straight line segments and points as by an area · of 

"foreground" juxtaposed against a complementary "background". 

These two-dimensional notions can be captured by the a-shape by 

classifying some of its faces - it is a planar graph after all -

as "interior" faces, that is "foreground", or as "exterior" 

faces, that is "background". 

Definition 2.5: 

Let S be a set of points in the plane and ai0. Let F be a 

face of the a-shape of Sande an edge incident to F. 

For a>0 e is called a positive edge of~ if the closed disc 

of radius 1/a, with the endpoints of eon its boundary, and 

its center strictly on the same side of e as F, contains all 

points of s. Otherwise e is called a negative edge of~-

For a<0 e is called a positive edge of F if the open disc of 

radius 1/a, with the endpoints of eon its boundary, and its 

center strictly on the same side of e as F, contains at least 

one point of s. Otherwise e is called a negative edge of~-
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Definition 2.6: 

For a#O a face F of the a-shape of a planar point set Sis 

called interior if one of its incident edges is a positive 

edge of F, and Fis called exterior if one of its incident 

edges if a negative edge of F. 

For a=O the bounded face of the 0-shape (i.e the convex hull) 

of sis the (only) interior face and the unbounded face is 

the (only) exterior face. 

Figure 2.4 snows the a-shapes displayed in Figure 2.3 with their 

interior faces shaded. The observant reader will notice the 

similarity between interior faces of the a-shapes in Figure 2.4 

and the a-hulls in Figure 2.1 and 2.2. In some sense the 

interior faces of an a-shape can be viewed as an a-hull with 

straight line segments as boundaries instead of circular arcs. 

Figure 2.4: Interior Faces of a-shapes. 



11 

Intuici~~ly, ~relatively large" a t2nd to produce a rather 

crude shape of the points (the extreme being a chord or an 

inscribed triangle of the smallest enclosing circle), whereas 

smaller a reveal more and more details, until, as a approaches 

-... , all points are isolated extreme points of the shap~. Thus 

a-neighbourliness is not monotonic with decreasing a like 

a-extremeness. However, as we shall see in the next section, 

two points can be a-neighbours for only some finite interval of 

a values. This, along with a characterization of exactly which 

pairs can be a-neighbours, is what makes possible the efficient 

construction of a-shapes. 

3. a-Shapes and Delaunay Triangulations 

In this section we make precise the rather close 

relationship that exists between a-shapes and Delaunay 

triangulations. Specifically we shall show that any a-shape of 

a sets of points is a subgraph of either the closest point or 

the furthest point Delaunay triangulation (whose definitions and 

properties are presented below}. Other subgraphs of the closest 

point Delaunay triangulation have been studied, including the 

minimum spanning tree [16], the· Gabriel graph [121, and the 

relative neighbourhood graph [18] ,(17]. However in general none 

of these graphs is a member of the family of a-shapes of s. 

First we give a few facts about Voronoi diagrams and 

Delaunay triangulations. Given a set S of n points in the plane 
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the closest point Voronoi diagram of S VDc(S) is a partition of 

the plane into n regions V ,pc s, where p 

VP= {x!d(p,x) < d(q,x), pfq cs} . 

Similarly the furthest point voronoi diagram of s VDf(S) is 

defined by the regions 

WP= {xld(p,x) > d(q,x), pfq cs}, p £ s. 

We will need the following properties of these diagrams: 

Fact 3.1: 

The regions VP and WP are convex and bounded by straight line 

segments, called voronoi edges, for all p £ s. 

Fact 3.2: 

Each region VP of VDc(S) contains p. 

region WP of VDf(S) does not contain p. 

Fact 3.3: 

The regions VP and WP are unbounded 

Provided n>l, each 

iff pis a convex hull 

point of S. Otherwise VP is a non empty convex polygon and 

WP is empty. 

Two points p and q of Sare said to be closest (respectively 

furthest) point voronoi neighbours if the boundaries of VP and 

,_,q (rE"sp. WP and Wq) have a common poinc. 

Fact 3.4: ---
Two points p and q of s are closest and furthest point 

Voronoi neighbours iff (p,q) is a convex hull edge of s. 



13 

The closest (resp. furthest) point Delaunay trianqulation of~, 

DTc(S) (resp. DTfffi ), is defined as the straight line dual of 

VDc(S) (resp. VDf(S) )-; i.e. there is a straight line edge 

between p and q iff they are closest (resp. furthest) point 

voronoi neighbours. 

Fact 3.5: 

Both the closest and furthest point Voronoi diagram (as well 

as the respective Delaunay triangulations) of n points can be 

constructed in O(nlogn) time and O(n) space. Furthermore the 

closest or furthest point Voronoi diagram can be constructed 

from the respective Delaunay triangulation in O(n) time, and 

vice versa. 

For proofs leading to facts 3.1 to 3.5 and other properties of 

these constructs consult [15]. An algorithm which unifies the 

closest and furthest point case is given by Brown [2]. 

In the following we assume that our point set Sis fixed. 

The relationship between the Delaunay 

a-shapes is given by the following lemma. 

Lemma 3.1: 

triangulations and 

The a-shape of S is a subgraph of DTf(S) if a~O and a 

subgraph of DTc (S) if a .SO. 
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Proof: 

Trivially each vertex of an a-shape is also a vertex of the 

respective Delaunay triangulation. Next, we need to show that, 

if p and q are a-neighbours, then they are adjacent in the 

respective Delaunay triangulation. We consider three cases: 

(i) a=O: 

(ii) a >O: 

The convex hull is a subgraph of both DT c (S) and 

DTf(S) by Fact 3.4. 

Let p and q be a -neighbours and let c be the center 

of the disc of radius 1/a which touches p and q and 

contains all other points X £ S. Clearly 

d(c,p) 2 d(c,x) and d(c,q) 2 d(c,x) for all x £ s, 

p#x#q. As d(c,p) = d(c,q) both p and q are furthest 

neighbours of c. Hence p and q must be furthest 

point Voronoi neighbours and therefore p and q must 

be adjacent in DTf(S). 

(iii) a<O:The proof is essentially the same as in (ii) replacing 

"furthest" by "closest", "contains all" by "contains 

no", "2" by "s", and "DTf(S)" by "DTC(S)". 

Q.E.D. 

The following two lemmas are important for the construction 

of an a-shape. They tell for which a£ Ra vertex or an edge of 

a Delaunay triangulation is also a vertex or edge of the 

a-shape. 

Lemma 3.2: 

For each point p £ S there exists a real number a-rnax(p) such 

that pis a-extreme in S if and only if a~ a-max(p). 
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Proof: 

For the proof of the lemma we have two cases to consider: 

(i} plies on the convex hull of S: 

Recall the definition of a-extremeness for positive a: p 

must lie on the boundary of a disc of radius 1/a 

containing all remaining points of s. The center of such 

a disc has to lie in the furthest point Voronoi region WP 

of p. It is not difficult to see that WP actually 

comprises exactly all possible centers of discs touching p 

and containing s. WP is an unbounded convex region which 

does not contain p (if one disregards the trivial case of 

lsl=l). Therefore there are discs of radius r touching p 

and containing s exactly for all r ~ d(W ,p). p Thus p is 

a-extreme for O <a~ 1/d(W ,p}. A convex hull point. is p 

trivially a-extreme for non-positive a, hence p is 

a-extreme for all a~ 1/d(Wp,p) =: a-max(p). 

(ii) pis not a convex hull point of S: 

It is easy to see that p cannot be a-extreme for a~O. For 

p to be a-extreme for negative a, p has to lie on the 

boundary of a disc of radius -1/a containing none of the 

remaining points of S. The set of centers of such discs 

is exactly the closest point Voronoi region V of p. By p 

Facts 3.2 and 3.3 VP is a convex polygon containing p. 

Therefore there are discs of radius r touching p and not 

containing s exactly for all r .s; dp := max{d{p,x}lx£ VP}. 

This implies that 

a .s; -1/d =: a -max (p). p 

p is a -extreme for all 

Q.E.D. 



16 

Note that if DT c(S) and DTf(S) are given, the set 

{a-max{p)1P £ s} can be computed in linear time by testing for 

each point of s the distances to the centers of the 

circumscribed circles of the incident triangles. 

Lemma 3.3: 

For every edge e belonging to either DTc(S) or DTf(S) there 

are real numbers a-min(e) and a-max(e), a-min(e) ~ a-max(e), 

such that e is an edge of the a-shape of s if and only if 

a-min(e)~a~a-max(e). 

Proof: 

First we state without proof the following two facts: 

a) Given a point p and a semi-infinite line segments there 

exists a positive real number a=a(p,s) such that 

{d(p,x) Ix £ s} = [a,.., ) • 

b) Given a point panda closed line segment s there positive 

real number a=a(p,s) and b=b(p,s)such that 

{d{p,x) Ix £ s} = [a,b]. 

Now, let p and q be the two points incident to an edge e. We 

have to consider three cases: 

(i) e is a non convex hull edge of DTc(S): 

The center of a disc touching p and q and not containing 

other points of S must lie on the bisector between p and 

q, and must be closer top and q than to any other point 

of s. The locus of points having exactly this property is 
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the straight line segment separating the voronoi regions 

VP and Vq (i.e. the Voronoi edge dual to e). Thus by 

Fact b) there are discs of radius r touching p and q and 

not containing other points of S exactly for all r, 

a(p,s) s rs b(p,s). It is easy to see that as a 

consequence of Fact 3.4 there are no discs touching p and 

q and containing the remaining points of s. Thus . e is an 

edge of the a-shape exactly for all 

-1/a(p,s) =: a-min(e) ~a~ a-max(e) := -1/b(p,s). 

(ii) e is a non convex hull edge of DTf(S): 

The proof is essentially the same as in (i) replacing 

"furthest" by "closest", "contains all" by "contains no", 

etc. 

(iii) e is a convex hull edge: 

First note that p and q are trivially a-neighbours for 

a=O. The locus of all centers of discs touching p and q 

and containing all other points of Sis exactly the closed 

semi-infinite line segment w separating the furthest point 

Voronoi regions WP and Wq. Thus by fact- b) there are 

discs of radius r touching p and q and containing all 

other points of S exactly for all r ~ a(p,w). 

By the same argument there are discs of radius r touching 

p and q and containing none of the other points of S 

exactly for r ~ a(p,v), where vis the semi-infinite line 

segment separating VP and Vq. 

Thus p and q are a-neighbours, i.e. e is an edge of the 

a-shape, for all a, 

-1/a(p,v) =: a-min(e) Sa S a-max(e) := 1/a(p,w). 
Q.E.D. 
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Again, note that if DTc(S) and DTf(S) are given, a-min(e) and 

a-max(e) can be computed in constant time for each edge e 

considering the centers of the circumscribed circles of the two 

incident triangles only. 

4. Construction of a-Shapes and the Shape Spectrum 

4.1 a-Shapes 

Together, lemmas 3.1, 3.2, and 3.3 give rise to the 

following algorithm to determine the a-shape of a sets. 

Algorithm !-1 (Construction of the a-shape of S) 

(1) Construct a triangulation DT: 
\ 

if a~ O , construct DTf(S) 

if a< 0 , construct DTc(S) 

(2) Determine the a-extreme points of S 

The information provided by DT suffices for this task, 

see also Lemma 3.1 and 3.2. 

(3) Determine the a-neighbours of S 

Again, OT contains all the information necessary to 

perform this task, see also Lemma 3.1 and 3.3. 

(4) Output the a-shape 

Output the graph on the a-extreme points with all 

a-neighbour connections. 
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The correctness of Algorithm 4.1 follows immediately from 

Lemmas 3.1, 3.2, and 3.3. A straightforward analysis of 

Algorithm 4.1 gives rise to the following: 

Theorem 4.1: 

The a-shape of n points in the plane can be determined for an 

arbitrary real a in time O(nlogn) and space O(n). 

Proof: 

It suffices to show that the stated bounds hold for 

Algorithm 4.1. 

Step (1) can be done in O(nlogn) time and O(n) space by Fact 

3.5. Once the appropriate Delaunay triangulation has been 

constructed steps (2),(3), and (4) can be done (see the notes 

following Lemmas 3.2 and 3.3) in O(n) time and O(n) space. 

Whenever in step (2) or (3) the actual value of a-max(p), or 

a-min(e), or a-max(e) cannot be computed (because pis a convex 

hull point, ore is a convex hull edge) the value O can be used 

as an appropriate substitute. 

Q.E.D. 

4.2 Interior and Exterior Faces 

It should be clear that Algorithm 4.1 can be generalized 

quite easily to yield, in addition to the a-shape, its interior 

and exterior faces. However, a few remarks about the properties 

of interior and exterior faces seem to be appropriate at this 
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point. 

omitted. 

Their rather straightforward but lengthy proofs are 

1. A face F of an a-shape of a point set s is either an 

interior face, that is all its bounding edges are positive edges 

of F, or it is an exterior face, that is all its incident edges 

are negative edges of F. The only minor exception (i.e. faces 

that are both interior and exterior) are faces which are 

triangles with circumscribed circle of radius exactly 1/lal and 

with center outside the triangle. This situation reflects a 

non-continuous change in the a-hull for varying a at such 

values. 

2. Interior faces do not properly contain a-extreme points. 

3. For negative a, any closed disc of radius -1/a with center 

in an interior face of an a-shape of a set S contains a point of 

s. This means that interior faces represent clusters of s. 

4. For a~O (resp. a~O) the interior faces of the a-shape of S 

are exactly the union of the triangles in DTf(S) (resp. 

DT (S) ) whose circumscribed circles have radius not greater 
C 

than 1/lal. Thus the interior faces of an a-shape can be 

trivially computed from the appropriate Delaunay triangulation 

in linear time without constructing the a-shape itself. 
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4.3 The Shape Spectru~ 

It is easy to envision applications in which the a-shape of 

a point set is desired for a number of different a's. As the 

analysis of Algorithm 4.1 makes clear, it is possible to 

construct a-shapes, following an initial expenditure of O(nlogn) 

to contruct both Delaunay triangulaions, at a cost of O(n) per 

shape. In fact, as we shall see, a slightly ~ighter bound is 

possible by a careful choice of data structures. As an 

intermediate step in this construction, and because it is an 

interesting entity in its own right, we consider first what we 

call the shape spectrum of a point set S. 

Definition 4.1: The shape spectrum SP(S) of a point set S is 

defined to be the set of intervals int(p) = (-m ,a-max(p)] 

and int(e) = (a-min(e) ,a-max(e)J, p £ S, and e an edge of 

DTf(S) or DTC(S) of s. 

The shape spectrum of a point set can be seen as an 

encoding of all possible a-shapes of that set. As the following 

lemma shows it also has the nice property that it is no more 

difficult to coustruct than the a-shape for a single ~ixed a. 

Lemma 4.1: 

The shape spectrum SP(S) of a set S of n points can be 

constructed in time O{nlogn) and space O(n). 

Proof: Immediate generalization of Algorithm 4.1. Q.E.D. 
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Given the spectrum SP(S) of a sets, a number of problems 

concerning 

efficiency. 

a-shapes 

1. The most prominent, 

find the a
0
-shape of S. 

of S can be solved with surprising 

of course, is, given SP(S) and some a , 
0 

This trivially can be done in linear 

time by determining all points p and edges e such that 

a
0 

£ int(p) and a
0 

£ int{e). However, by using a more advanced 

data structure to store the intervals of SP{S), such as 

Edelsbrunner•s interval tree (SJ, called tile tree in the 

independent paper of Mccreight· (13] , the a -shape of Scan 
0 

actually be constructed in time O(logn + t), where t is the 

number of points and edges in the a
0
-shape. 

2. It may be useful in certain applications to find an a-shape 

satisfying certain properties. For example, suppose, one wants 

to find an a
0 

such that the a
0
-shape of S contains exactly k 

points. If the endpoints of the intervals int(p), p £ S, are 

stored in a sorted array, a
0 

can clearly be found in O(logn) 

time. 

3. A similar problem addresses the fine tuning of a-shapes: 

given the a
0
-shape of S for some a , find the largest a 

1 
< a 

0 0 

(or the smallest a 1 > a 
0
), such that the a 

1
-shape is different 

from the a -shape 
0 

of s. By maintaining a pointer into the 

sorted list of the endpoints of the intervals in SP(S), this 

question can be answered in constant time. 
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4. An inverse problem to the construction of a-shapes asks for 

a given graph G on a subset of S, whether G is an a-shape of S 

for some a. The answer to this question can be found in linear 

time by the following procedure which uses a sorted list L of 

the endpoints of the intervals in SP(S). First confirm that 

each edge e of G is a Delaunay edge, that is, int(e) is defined. 

Initialize three counters i,j, and k to zero and scan Lin 

decreasing order. If at any point during this scan i equals the 

number of vertices in G, j equals the number of edges of G, and 

k equals zero, then G is an a-shape of s. If an element of L 

being scanned is the right endpoint of an interval 

int(x) E SP(S), increment i if xis a vertex of G, increment j 

if xis an edge in G, and increment k otherwise. If an element 

of L being scanned is the left endpoint of an interval 

int(x) E SP{S), decrement kif xis an edge not in G, and stop 

otherwise, because in this case G cannot be an a-shape of s. 

5. Constructing the a-Hull 

In the preceding section we presented an O{nlogn) algorithm 

for the construction of an a-shape of a set S of n points in the 

plane. We went on to define the spectrum SP{S). As SP{S) 

contains only linearly many elements we can argue that for a 

given set S there are at most linearly many distinct a-shapes. 

If we turn our attention to a-hulls the situation becomes quite 
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different. The number of distinct a-hulls is uncountable 

because for every two distinct a 1 ,a 2 £ (-1/a,l/b], where a is 

the radius of the smallest circle defined by three points in s, 

and b is the radius of the smallest enclosing circle of s, the 

a 1-hull is different from the a 2-hull of s. So it is quite 

surprising that a-hulls can be constructed efficiently for any 

real a. Specifically we·shall show that for any real a the 

a-hull of S has a linear description and can be constructed in 

O(nlogn) time. As these facts seem to be quite obvious for a~O, 

we will concern ourselves only with the case of negative a. 

At first let us recall the definition of the a-hull of S 

for negative a: it is defined as the intersection of all 

complements of open discs of radius -1/a which contain no point 

of s. By DeMorgan's law an equivalent definition is that the 

a-hull is the complement of the union of all open discs of 

radius -1/a which contain no point of s. Because of the fact 

that a disc of radius R can be represented as the union of open 

discs of radius r~R, there is another equivalent definition for 

the a-hull which we find more convenient to work with: 

The a-hull (a<O) of Sis the complement of the union of all 

open discs of radius not less than -1/a which contain no 

point of S. 

Our main problem now is to determine the union of all these 

discs. The set of all open discs of radius not less than -1/a 

is still rather unwieldy, but fortunately, as the next lemma 

shows, we can restrict our attention to a much smaller set of 
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open discs. 

In the following let S(x,r) denote the open disc of radius r 

centered at x. 

Lemma 5.1: 

Let D be an open disc which does not contain any points of s. 

Either D lies entirely outside the convex hull of Sor 

there is an open disc o
1 

which contains D but no points of S 

and which has its center on an edge of VDc(S). 

Proof: 

Let D = S(c,r) be a disc which does not contain any points of s. 

Let p ES be the point, such that d(c,p) = min{d(c,x)lx Es}. 

Clearly the disc D' = S{c,d(c,p)) touches p but does not contain 

any point of s. Furthermore De D'. Leth be the straight line 

through C and p and let t be the intersection of h with the 

bounding edge of VP such that c lies on the closed line segment 

between p and t. (If such a t does not exist, D' and D lie 

entirely outside the convex hull of S.) Clearly the open disc 

o
1 

= S(t,d(t,p)} has the desired properties; i.e. o1 contains 

no point of Sand has its center on an edge of VDc{S), and 

De D'c o
1

• 

Q.E.D. 

As a consequence of Lemma 5.1 the a-hull (a<O) of S can be 

expressed as the complement of the union of open discs of radius 

not less than -1/a which do not contain any points of S and 

which have their centers of the edges of VDc(S). Next we state 
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without proof two basic geometric facts which will allow us to 

consider an even smaller set of discs. 

Fact 5.1: ----
Let p and q be two distinct points in the plane and let L be 

a closed line segment on the bisector between p and q which 

is bounded by the points a and b. Then 

U{s{x,d{x,p}) Ix£ L} = S{a,d{a,p))v S(b,d{b,p)). 

Fact 5.2: ----
Let p and q be two distinct points in the plane and let L be 

a semi-infinite closed line segment on the bisector between p 

and q which is bounded by point a. Then 

U{scx,d(x,p})lx £ L} = S(a,d(a,p))uH(p,q}, 

where H(p,q) denotes the open halfplane defined by the 

straight line through p and q which contains the infinite 

portion of L. 

Lemma 5.2: 

For negative a the a-hull of a set S of n points can be 

expressed as the complement of the union of O(n) open discs 

and halfplanes. 

Proof: 

As we remarked after Lemma 5.1 we only have to consider 

appropriate discs centered on edges of VDc(S). Let p,q £ S be 

two Voronoi neighbours and let r be the edge separating and 

Vq. Clearly for every x £ r, S(x,d(x,p}) contains no points of 

s. Now observe that the set {x £ rld(x,p) ~ -1/a} is either 
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empty or forms one or two closed line segments. (If p and q are 

convex hull points, than one line segment is semi-infinite.) 

Thus by Facts 5.1 and 5.2 the union of open discs centered on r 

and of radius not less than -1/a and which contain no points of 

S can be expressed as the union of at most 4 open discs or 

halfplanes. As the number of edges in VDc(S) is linear in n, 

one can conclude that for negative a the complement of the 

a-hull of Scan be expressed as the union of O(n) open discs and 

halfplanes. 

Q.E.D. 

With this result we can easily prove the following: 

Theorem 5.1: 

The a-hull of a set S of n points can be computed in time 

O(nlogn) using O(n) space. 

Proof: 

We consider two cases: 

(i) a<O: By Lemma 5.2 it suffices to find the union of O(n) 

discs and halfplanes which can be determined from VD (S) 
C 

in O(n) time. It is not difficult to see that the union 

of the halfplanes in question is the complement of the 

convex hull of S which can be determined from VDc(S) in 

linear time. The union of the O(n) discs can be 

constructed O(nlogn) time using a method developed by 

Brown [3]. Special care must be taken to identify 

isolated points of the a-hull. This can be done in a way 

similar to step (2) of Algorithm 4.1. 
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(ii) a~O: For non-negative a the a-hull can be derived 

directly and in linear time from the a-shape. In certain 

applications straightforward generalizations of common 

convex hull algorithms, as for instance Graham's [7], may 

be preferred. The details are left to the reader. 

Q.E.D. 

6. Conclusions 

In this paper we developed the notion of the a-hull and 

a-shape of a set of points in the plane. We presented 

efficient algorithms to construct a-shapes and a-hulls which are 

based on the intimate relation of these constructs with Delaunay 

triangulations. We introduced the notion of the shape spectrum 

and briefly discussed some of its applications. Because 

a-shapes have nice theoretical properties and can be 

constructed efficiently, and because of the fact that they seem 

to capture the intuitive notion of "finer" or "cruder shape" of 

a planar pointset, we contend that a-shapes will be of good use 

in practical applications. 

In conclusion we want to discuss a few related problems and 

point out some generalizations. 

At first we briefly address the question of dynamization: 

given the a-shape of a set S for some a, how does the insertion 

of a point into s or the deletion of a point from S affect the 
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a-shape? As Voronoi diagrams can be updated in linear time 

[7] ,[14], and a-shapes can be constructed from the voronoi 

diagrams in linear time, the update time for a-shapes is O(n). 

This is even true for the shape spectrum, as long as it is just 

treated as a set of intervals. But we have not been able to 

design a linear time update algorithm which also maintains any 

of the additional data structures on SP(S) (such as the interval 

tree or the sorted lists) which we mentioned in Section 4. 

Next we want to point out that the notion of a-shapes 

generalizes nicely to point sets in 3-space or ink-space. One 

can define a-extreme points, a-neighbours and a-triples, etc., 

similarly as in the definitions of Section 2, by using balls of 

radius 1/a instead of discs. The JD-a-shape is related to 

3D-Voronoi diagrams in a similar way as 2D-a-shapes to 

2D-Voronoi diagrams. Lemmas 3.1 to 3.3 and Algorithm 4.1 carry 

over to 3D without much modification. But because voronoi 

diagrams in 3-space can be very complex and can incorporate 

O(n2 ) Voronoi neighbours ([l~J,[11], [4)), one cannot expect to 

find an algorithm which uses less than quadratic time in the 

worst case. 



REFERENCES 

[1] Akl, S.G. and Touissant, G.T. 
Efficient Convex Hull Algorithms for Pattern Recognition 
Applications. 
Proc. 4th Intern. Joint. Conf. on Pattern Recognition, Kyoto, 
pp.1-5, 1978. 

[2] Brown, K.Q. 
Voronoi Diagrams from Convex Hulls. 
Info. Proc. Letters 9, pp.223-228, 1979. 

[3] Brown, K.Q. 
Geometric Transforms for Fast Geometric Algorithms. 
Carnegie-Mellon Univ., Pittsburgh, Pennsylvania, 
Dept. of Comp. Sci., Rep. CMU-CS-80-101, 1980. 

[4] Dewdney, A.K. and Vranch, 3J.K. 
A Convex Partition of R with Applications to Crum's Problem 
and Knuth's Post Office Problem. 
Utilitas Math. 12, pp.193-199, 1977. 

[ 5] Edelsbrunner, H. 
A New Approach to Rectangle Intersections. 
Submitted to Computing. 

[6] Fairfield, J. 
Contoured Shape Generation: Forms that People see 
Dot Patterns. 
Proc. IEEE Conf. on Cybernetics and Society 1979, pp.60-64. 

[7] Gowda, I.G. and Kirkpatrick, D.G 
Exploiting Linear Merging and Extra Storage in the 
Maintainance fo Fully Dynamic Geometric Data Structures. 
Proc. 18th annual Allerton Conf on Communication, Control, 
and Computing, pp.1-10, October 1980. 

[8] Graham, R.L. 
An Efficient Algorithm for Determining the Convex Hull of a 
Finite Planar Set. 
Info. Proc. Letters 1, pp.132-133, 1972. 

[9] Jarvis, R.A. 
Computing the Shape Hull of Points in the Plane. 
Proc. of the IEEE Comp. Soc. Conf. on Pattern Recognition 
and Image Processing, pp.231-241, 1977. 

(10] Jung, H.W.E. 
Ueber die kleinste Kugel, die eine raeumlich Figur 
einschliesst. 
Journal f.d. Reine u. Angew. Math. 123, pp.241-257, 1901. 

[11] Klee, V.E. 
On the Complexity of a-dimensional Voronoi Diagrams. 
Archiv a. Math., vol. 34, pp.75-80, 1980. 



[12] Matula, D.W. and Sokal, R.R. 
Properties of Gabriel Graphs Relevant to Geographic Variation 
Research and the Clustering of Points in the Plane. 
Geog. Analysis, vol. 12, pp.205-222, July 1980. 

[13] Mccreight, E.M. 
Efficient Algorithms for Enumerating Intersecting Intervals 
and Rectangles. 
Palo Alto Res. Center, Palo Alto, California, 
Rep. CSL-80-9, 1980. 

[14] Overmars, M.H. 
Dynamization of Order Decomposable Set Problems. 
Univ. of Utrecht, Dept. of Comp. Sci., 
Tech. Rep. RUU-CS-80-9, 1980. 

[15] Preparata, F.P. 
Steps into Computational Geometry. 
Univ. of Illinois, Urbana, Illinois, Coordinated Sci. Lab., 
Rep. R-792, 1977. 

[16] Shamos, M.I. 
Geometrical Complexity. 
Proc. 7th ACM Symp. on Theory of Computing, pp.224-233, 1975. 

(17] Supovit, K.J. 
The Relative Neighbourhood Graph with an Application 
to Minimum Spanning Trees. 
Tech. Rep., Dept. of Comp. Sci., Univ. of Illinois, Urbana, 
August 1980. 

(18] Touissant, G.T. 
The Relative Neighbourhood Graph of a Finite Planar Set. 
McGill Univ., Montreal, Tech. Rep. SOCS 79.9, May 1979. 


