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ABSTRACT 

Finding the convex hull of a finite set of points is 
important not only for practical applications but also for 
theoretical reasons: a number of geometrical problems, such as 
constructing Voronoi diagrams or intersecting hyperspheres, can 
be reduced to the convex hull problem, and a fast convex hull 
algorithm yields fast algorithms for these other problems. 

This thesis deals with the problem oa constructing the 
convex hull of a finite point set in R. Mathematical 
properties of convex hulls are developed, in particular, their 
facial structure, their representation, bounds on the number of 
faces, and the concept of dualit~J The main result of this 
thesis is an O(nlogn + nl(d+l}/ } algoriahm for the 
construction of the convex hull of n points in R. It is shown 
that this algorithm is worst case optimal for even d~2. 

Based upon a thesis submitted to the Department of Computer 
Science, Universtiy of British Columbia, in partial fulfillment 
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I. Introduction 

In the young field of computational geometry the convex 

hull problem has been one of the most studied problems. Simply 

stated, the issue is to find the smallest convex set containing 

a given point set. The importance of the convex hull problem is 

twofold. First, it has numerous applications in engineering, 

pattern recognition, and other fields. Second, it plays a 

central role in computational geometry, as a number of other 

geometric problems, such as the construction of Voronoi 

diagrams, the construction of the union or intersection of 

spheres, and other problems, can be transformed or reduced to 

the convex hull problem. 

As early 

hull algorithm 

as 1972 Graham [SJ presented an O(nlogn) convex 

for planar point sets. Subsequently several 

papers have been published addressing different variants of the 

problem. Jarvis [8] developed an algorithm whose running time 

depends linearly on the product of the number of input points 

and the number of points found on the convex hull, Preparata 

[12] designed an O(nlogn} real time algorithm, and Bentley and 

Shamos [1] presented a linear expected time algorithm for sets 

of n points drawn from a distribution for which the expected 

number of points on the hull is O(nP), p<l. Yao [15] tackled 

the complexity of the problem from the other side and proved 

that 0(nlogn) time is necessary to identify the vertices of the 

convex hull even if tests involving quadratic functions of the 
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inputs are allowed. Thus the algorithms of Graham and Preparata 

are worst case optimal. 

For point sets in 3-space Preparata and Hong [13] developed 

an O(nlogn) algorithm which is based on the divide a~d conquer 

paradigm. This algorithm is of course optimal by Yao's result. 

Whereas the convex hull problem in 2 and 3-space seems to 

be fairly well understood, the situation is quite different for 

convex hulls of point sets ind-space, d>3. The only general 

algorithm published is the one by Chand and Kapur (4]. It 

relies on the so called gift wrapping principle and uses linear 

time to determine each facet of the convex hull. As the convex 

hull of n points in Rd can have 8(nld/2j) facets [10], this 

implies that worst case time complexity of this algorithm is not 

better than O(nl(d+2 >l2J). 

In this thesis an incremental algorithm for the 

construction of the convex hull of n points in a-space is 

presented which improves on the algorithm of Chand and Kapur. 

It is shown that it has worst case time complexity 

O(nlogn + nl(o+l)/2J> and that this is optimal for even a. 

Section 2 of this thesis deals with the basic mathematical 

properties of polytopes. There is a rich theory dealing with 

polytopes, but unfortunately it seems to have been ignored by 

computer scientists. In Section 3 a method for the intersection 
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of a polytope and a halfspace is developed on which the convex 

hull algorithm presented in Section 4 is based. In the last 

section the results are discussed and some open problems are 

presented. In particular, it is noted that the convex hull 

algorithm of this thesis yields an algorithm for the 

construction of Voronoi diagrams which is optimal for point sets 

in odd dimensions. 

• 
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II. Convex Polytopes 

This section covers the basic definitions and properties of 

multi-dimensional convex polytopes. There is an extensive 

theory and literature about these objects. The definitions and 

properties given in this section represent a bare minimum of 

facts pertinent to the content of the subsequent sections. For 

a more complete treatment of polytopes and related subjects the 

reader is referred to Gruenbaum's book [6]. 

In the following we will deal with the a-dimensional 

Euclidean space Ra, where dis an arbitrary positive integer. 

It is assumed that the reader is familiar with basic notions of 

linear algebra such as subspace, dimension of a subspace, scalar 

product, orthogonality, etc. Familiarity with basic topological 

notions such as open and closed sets is also assumed. 

y, 

For x,y e: Rd, <x,y> will denote the scalar product of x and 

and d for a set S c R , int S will denote the interior of S 

under the topology induced by the Euclidean metric. 

Definition 2.1: 

Let d a e: R = ( a/0) , and C E: R. 

The set {x e: Rd I <x,a> = C } is called a h:t:eeq~lane. 

The set {x e: Rd I <x,a> ~ C } is called a closed halfseace. 

It should be clear that closed halfspace could also be 
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defined using "2" instead of "s", and that it is a closed set in 

the topological sense. 

Definition 2.2: 

Let a €Rd, let X be a linear • subspace of Rd, and let k, 

-l~k~d, be the dimension of X. (By convention, let the 

empty set be a subspace of dimension -1.) 

H = a+X = {a+x Ix E x} c Rd is called a flat. The dimension of 

H, dim(H), is k. A flat of dimension k is also called a 

k-flat. 

Examples of flats are points (0-flat), lines (1-flat), and 

hyperplanes ( (d-1)-flat ). 

Definition 2.3: 

Let S c Rd. The affine hull of .§,, aff S, is the intersection 

of all flats containing S. 

It easy to prove that the intersection of a family of flats is 

itself a flat. Thus the affine hull of any subset of Rd is a 

flat. For S c Rd let dim S = dim (aff S) • 

Definition 2.4: 

A set Sc Rd is called convex iff for any x,y € s, 

seg(x.y) = {Cl-r)x+ry!0srsl}c S. 

Examples of convex sets are flats and halfspaces. Observe that 
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the intersection of a family of convex sets is a convex set. 

Furthermore the following holds: 

Lemma 2.1: 

A closed convex set K c Rd is the intersection of all closed 

halfspaces containing K. 

Proof : [ 6] 2 • 2 • 3 • 

Definition 2.5: 

Let K c Rd be a convex set and 

hyperplane. 

H is called a supporting hyperplane of K 

inf{ <x,a> Ix EK} = c or sup{ <x,a> Ix EK} = c. 

Q.E.D. 

a 

if either 

We say, a supporting hyperplane Hof K separates K and a 

point p E: Rd-K if p is not contained in the same halfspace 

determined by Has K. 

Definition 2.6: 

Let K be a convex subset of Rd and k=dim K. 

1) F c K is called a face of ,! if either F=K or F=~ or there 

exists a hyperplane H supporting K, such that Kn H=F. 

2) A face F with dim F =mis call an m-face of K. 

3) A (k-1)-face of K is called a facet of K, a 0-face is 

called a vertex, and a 1-face is called an edge of K. 

4) If F is an m-face of K, G an (m+l)-face, and F c G, then 

we call Fa subface of G and Ga superface of F. 

5) A face F of K is called proper, if F~~ and F~K. 
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Clearly, every face of a convex set is convex. Furthermore the 

following holds: 

Lemma 2.2: 

The intersection of a family of faces of a closed convex set K 

is a face of K. 

Proof : [ 6] 2 • 4 • 10 • Q.E.D. 

Definition 2.7: 

The d 
convex hull of a ~et Ac~, conv A, is the intersection 

of all closed convex sets containing A. 

In view of Lemma 2.1 an alternative definition of conv A is the 

intersection of all closed halfspaces containing A. For every 

A conv A is closed and convex. The following lemma gives 

another equivalent definition for the convex hull. 

Lemma 2.3: 

Let P be the convex hull of a set A in Ra. 

1) P comprises exactly all x E: Rd which are expressible in the 

d d 
form X = }: c.x. , where x

1
.EA, c

1
.~0, and }: c. = 1. 

i=O 
1 1 

i=O 
1 

2) If A is finite, A= {x 1 , ... ,xn}, then the relative interior 

of P comprises exactly all x ERd which are expressible in the 

n n 
form X = }: c.x. , where c.>O, and }: c. = 1. 

·111 1 ·11 1= 1= 



8 

Proof: 

1) [6] 2.3.3, 2.3.5. 

2) [11] page 11. 

Q.E.D. 

Definition 2.8: 

A polytope is the convex hull of a finite set of points. A 

polytope Pis called a d-polytope iff dim P = d. 

Lemma 2.4: 

Every face of a polytope is a polytope. 

Proof: Consequence of [6) 3.1.4. 

Lemma 2.5: 

Let P be a polytope in Rd and dim P = d. 

1) The number of distinct faces of Pis finite. 

Q.E.D. 

2) Every (d-2)-face of Pis the intersection of exactly two 

facets. 

3) Every k-face of Pis the intersection of at least d-k facets 

of P. 

Proof: [6] 2.6.3, 2.6.4, 3.1.6, 3.1.8. Q.E.D. 

For a polytope P with dim P = d, we denote the number of i-faces 

(which is finite) by f. (P). 
l. 

f,(P)=O for i<-1 and i>d. 
l. 

By convention f_ 1 (P)=faCP)=l, and 
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Lemma 2.6: 

If F is a face of a polytope P and G is a face of the polytope 

F, then G is also a face of P. 

Proof : [ 6 ] 3 • 1 • 5 • Q.E.D. 

Definition 2.9: 

Let P be a polytope. The k-skeleton of P, skelk P, is the 

set of all i-faces of P, 0~i~k. 

Observe that the 1-skeleton of a polytope can be interpreted as 

a graph, where the 0-faces are the vertices and the 1-faces are 

the edges of the graph. Of some importance is the following: 

Lemma 2.7: 

The graph representing the 1-skeleton of a d-polytope is 

d-connected. 

Proof: [6] 11.3.2. Q.E.D. 

Definition 2.10: 

The facial graph of a polytope P, FG(P), is a directed graph 

whose nodes correspond to the faces of P. FG(P) has an arc 
I 

from the node corresponding to the face F1 of P to the node 

corresponding to face F 2 iff F1 is a subface of F2 . 

Definition 2.11: 

Two polytopes are said to be combinatorially equivalent iff 

their facial graphs are isomorphic. 
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Clearly the facial graph of a d-polytope P, FG(P), is an acyclic 

graph with one source and one sink which has d+2 levels, i.e. 

all directed paths from source to sink are of length d+l. 

Furthermore, as it is shown below, the converse of FG(P) (i.e. 

FG(P) with the direction of all arcs reversed) is realizable as 

* the facial graph of some d-polytope P. 

Definition 2.12: 

The polar set A* of A c Rd is defined by 

A* = {y £ Rd! <x,y> ~ 1 for all x £A}. 

Lemma 2.8: 

Let P be a d-polytope and O £ int P. 

* * * * 1) P is a d-polytope with O £ int P and (P) = P. 

2) If Fis a k-face of P then 

* F' = { y £ P I <x, y> = 1 for all x £ F} 

* is a (d-k-1)-face of P. 

3) The mapping ~ defined by ~(F) = F' is a 1-1 inclusion 

reversing correspondence between the set of faces of P and 

* the set of faces of P. 

Proof : [ 6] 3 • 4 • 

Definition 2.13: 

Let P be a d-polytope and O £int P. 

* P is called the dual of P. 

Q.E.D. 
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Lemma 2.8 implies that the facial graphs of a polytope and its 

dual are anti-isomorphic. Observe that if vis a vertex of P, 

with O £ int P, then {x £Rdl<x,v> = 1} is a supporting hyperplane 

• of P and contains the facet v' dual to v. In other words, if 

0 £ int P, and V = {vl, ••• ,vn} is the set of vertices of P, then 

* n {Hi I l~i~n}, {x £ Rdl<x,v.> ~ 1} p = where Hi = and each of the 
1 

* { x £ Rd I <x, v . > 1} n hyperplanes = 1 
contains a facet of p . 

In the following we introduce some special polytopes and 

state some of their properties. 

Definition 2.14: 

1) A k-simplex is a k-polytope which is the convex hull of 

k+l points in Ra, d~k. 

2) P is called a simplicial polytope, iff all its proper 

faces are simplices. 

h ld b d h k ' 1 h ' 1 (k+l) · f Its ou e note tat a -s1mp ex as precise y i+l 1- aces, 

and that each i-face is an i-simplex itself. Futhermore, a 

simplex is combinatorially equivalent to its own dual. 

Definition 2.15: 

Let B be a (d-1)-polytope. 

If c is a point in Rd-aff B, then P = conv(B u {c}) is called 

a a-pyramid with basis B. 
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The faces of P satisfy the following relationship with the faces 

of B. 

Lemma 2.9: 

Let P be ad-pyramid with basis Band ·apex c, and let F be an 

i-face of B. 

1) F is also an i-face of P and conv(F u{c}) is an (i+l}-face 

of P. 

2) Every i-face of Pis either also an i-face of B or it is of 

the form conv(G u{c}), where G is an (i-1)-face of B. 

Proof : [ 6 ] 4 . 2 . 0 . E • D • 

Using Lemma 2.9, it easy to see how the facial graph of a 

pyramid P with basis Band apex c can be expressed in terms of 

the facial graph of B. FG(P) consists of two copies of FG(B}. 

The nodes in one copy correspond to the faces of P which are 

also faces of B, the nodes in the other copy correspond to the 

faces of P of the form conv(G u{c}), where G is a face of B. 

Each node in the first copy corresponding to a face F of B has 

an arc to the node in the second copy corresponding to the face 

conv(F u{c}). Thus in graph theoretic terms, the underlying 

graph of FG(P) is the product graph K2 x FG(B). 

Observe, that a a-simplex is ad-pyramid whose basis is a 

(d-1)-simplex. Thus the underlying graph of the facial graph of 

a a-simplex is a (d+l)-cube. (For the graph theoretic terms see 

[ 71 • ) 



13 

Of considerable interest is the family of cyclic polytopes. 

Definition 1.16: 

Let Md be the moment curve defined by 2 d Md(t) := (t,t , ••• t ), 

t £ R. The d-polytope formed by the convex hull of any n>d 

distinct points on the moment curve Ma is called a cyclic 

polytope C(n,d). 

Cyclic polytopes are simplicial ( [6] 4.7 ), and the 

combinatorial type of C(n,d) is independent of the choice of the 

n points on Md. That is, any two d-dimensional cyclic polytopes 

on n vertices are combinatorially equivalent. The importance of 

cyclic polytopes lies in their extremal nature. 

Lemma 2.10: 

1) If Pis a d-polytope on n vertices, then fk(P) ~ fk(C(n,d)) 

for all k. 

2) The number of k-faces of a cyclic polytope C(n,d) is 

O(nla/2J). More specifically, for 0~k<d 

f n n-i-1 i 
l -r-( ' 1 ) (k '+l) i=l l 1- -1 

For k=d-1 these expressions evaluate to 

fd_ 1 cccn,d)) 

fd-l cc (n ,d)) 

Proof: 1) [10] , 2) [6] 9.6.1. 

for d=2s 

for d=2s+l. 

for d=2s 

for d=2s+l. 

Q.E.D. 
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The lemma above gives a bound on the number of faces of a 

d-polytope on n vertices. It should be noted that, by duality, 

the same bounds hold for the number of vertices of polytopes 

with n facets. However, for the sake of representation of 

polytopes, the set of faces is rather uninteresting because it 

does not explic~tly express any of the geometric or 

combinatorial structure of a polytope. The facial graph of a 

polytope carries such information. Thus a bound on the size of 

a facial graph, i.e. the number of its nodes and arcs, is of 

interest. 

Let N(P) denote the number of nodes in the facial graph of 

a polytope P (i.e. N(P) is the number of faces of P), let A(P) 

denote the number of arcs in FG(P) (i.e. the number of 

face - subface pairs in P), and let D(P) = A(P) + N(P). 

We will give a bound on D(P) in terms of the number of 

vertices of Pin two steps. First it will be argued that it 

suffices to consider only simplicial polytopes. Second, we will 

derive a bound for D(P), where Pis a simplicial polytope. 

Lemma 2.11: 

Let P be a d-polytope, V the set of vertices of P, and V€ v. 
By a process called pulling, vertex v can be perturbed slightly 

to v', such that the d-polytope P' = conv( (V-{v}) u {v•} ) has 

exactly the following k-faces for Osk<d: 
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(i) the k-faces of P which do not contain v; 

(ii) the convex hulls of the type conv({v•} uGk-l), where Gk-l 

is a (k-1)-face not containing v of a facet of P which does 

contain v. 

Proof: [6] 5.2.2. Q.E.D. 

Lemma 2.12: 

* If P is obtained from d-polytope P by successively pulling each 

* of the vertices of P, 

satisfying 

then P is a simplicial d-polytope 

1) 

2) 

* f
0

(P ) = f(P) 

* A (P ) ~ A(P) • 

Proof: 

1) [6] 5.2.4 

* and N(P) ~ N(P), 

2) We only need to show that pulling a vertex v of polytope P 

to v' to yield polytope P' does not decrease the number of 

face - subface pairs. 

Let F beak-face of P and Ga subface of F for l~k<d. We will 

show that there is a corresponding pair of faces F' and G' of 

P', such that G' is a subface of F'. 

There are three cases to consider: 

(i) F and G do not contain v: 

then F and Gare also faces of P' and G is a subface of F; 

(ii) F contains v, G does not contain v: 

Fis not a face of P'; but G is a face of P' and by 
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Lemma 2.11 induces a face F' = conv(G u {v'}), and G is a 

subface of F'; 

(iii) both F and G contain v: 

F and G must have respective subfaces F and G-, such that 

G- is a subface of F- and both F- and G- do not contain v. 

By Lemma 2 .11 F- and G- induce faces F' = conv (F- u { v'}) 

and G' = conv(G-u {v'}) of P' such that G' is a subface of 

F'. 

Q.E.D. 

Lemma 2.13: 

For any d-polytope Pon n vertices D(P) = O(nld/2J). 

Proof: 

Let P be a d-polytope on n vertices. 

* 

* By Lemma 2.12 D(P) .s: D(P) 

for some sirnplicial d-polytope P on n vertices. As every facet 

* * * of p is a (d-1)-simplex, clearly D(P) < fa_ 1 (P )*D(Sa_1), 

where Sk denotes a k-simplex. As it was mentioned after 

Lemma 2.9, 

therefore 

the 

has 

underlying graph of 

2k vertices and 

* 

FG(Sk_1) is a k-cube and 

k*2k-l edges. Thus 

Furthermore, by Lemma 2.10 fa_ 1 (P) .s: fd_ 1 (C(n,d)). 
s 

d 2 f (C( d)) =· -~(n-s) .s: !:_. For even = s, d-l n, n-s s s! 

By a routine application of Stirling's approximation formula one 

can show that D(Sa-i> = (s+l)*2
2s = O(s!). Hence 

D(P) .s: D(P*) < fa-1<C(n,d))*D(Sa-1> = O(n6
). 
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Using the same method, one can show that D(P) = O(ns) for odd 

d=2s+l. 

Thus D(P) = O(nld/2J) for any d-polytope on n vertices. 

Q.E.D. 
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III. The Intersection of a Polytope and a Halfspace 

In this section we consider in some detail the problem of 

intersecting a polytope and a halfspace. The efficient 

construction of such an intersection will be the main tool of 

the convex hull algorithm presented in the next section. We 

formally state the problem as follows: 

Given the facial graph of a polytope P, a halfspace H, and 

a vertex v of P not contain~d in H, construct the facial 

graph of the polytope P' = P n H. 

The main result of this section asserts that this problem can be 

solved in time proportional to the amount of change from the 

facial graph of P to the facial graph of P'. 

Throughout this section H denotes a closed halfspace in Rd 

defined by the hyperplane I, H- denotes the other closed 

halfspace defined by I, i.e. H- = (Rd - H) u I, and Pis a 

• d-polytope. 

Definition 3.1: 

A face F of Pis called 

a good face with respect to !!, iff Fe H and F ¢ H-, 

a cut face with respect to H, iff Fe Hand Fe H- (i.e. Fe I), 

a bad face with respect to H, iff F c H- and F ¢ H, but no 

subface of Fis contained in I, 
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a touch face with respect to !!, iff F c H- and F ¢ H, and one 

subface of Fis contained in I, and 

a mixed face with respect to H, iff F ¢ H and F ¢ H. 

In the following, when no confusion can arise, the phrase "with 

respect to H" will be omitted, and we will just talk about good 

faces, bad faces, etc. Observe that every nonempty face of P 

falls in exactly one of the five categories implied by 

Definition 3.1. Figure 3.1 illustrates these five different 

types of faces for the case of d=2. 

good 

good vertex~ 

good edge ~ 

good vertex ~ 

vertex 

edge 

---bad vertex 

-bad vertex 

Figure 3.1: The five types of faces. 
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The following lemma gives a characterization of the type of a 

face of Pin terms of the types of its subfaces or superfaces. 

Lemma 3.1: 

A face F of Pis 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Proof: 

a good face, iff all its subfaces are good or cut faces, 

a cut face, iff a superface of Fis a touchface, 

a bad face, iff all its subfaces are bad or touch faces, 

a touch face, iff all but one subfaces are bad or touch 

faces, 

a mixed face, iff a subface of Fis mixed or, with the 

exception of at least two, some subfaces of Fare bad or 

touch faces. 

Follows straightforwardly from Definition 3.1. Q.E.D. 

The next two lemmas give a characterization of the faces of 

P' = H n Pin terms of the faces of P, and a characterization of 

the face subface pairs of P' in terms of face - subface pairs 

of P. 

Lemma 3.2: 

(i) If Fis a good face or a cut face of P, then Fis also a 

face of P'. 

(ii) If Fis a mixed k-face of P, then F n His a k-face of P' 

and F n I is a (k-1)-face of P'. 
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(iii) If Fis a bad face or a touch face of P, then Fis not a 

face of P'. 

(iv) Points (i) and (ii) yield all faces of P'. 

Proof: 

(i) and (iii) are trivial. 

(ii) If Fis a mixed k-face of P, then there is a supporting 

(iv) 

hyperplane x, such that X n P = F. Certainly, 

X n P n H = F n H, and Xis a supporting hyperplane of 

P' = P n H. 

Observe that G = P n I is a facet of P'. F n I is a 

subface of p n H and F n I = (F n H) n G. Thus by 

Lemma 2.6 F n I is a (k-1)-face of p' . 

This follows as a consequence of Lemma 2.5 and the fact 

that G = p n I is the only facet of P' which is not 

contained in a facet of P. 

Q.E.D. 

Lemma 3.3: 

Let G be a face of P and Fa subface of G. 

( i) If F is a good face or a cut face of P and G is a good 

face or cut face of P, then Fis a subface of G on the 

polytope P'. 

(ii) If Fis good and G is mixed, then Fis a subface of G n H 

on P'. 

(iii) If G is mixed, then G n I is a subface of G n Hon P'. 

(iv) If F and Gare mixed, then F n His a subface of . G n H, 
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and F n I is a subface of G n I on P'. 

(v) If G is mixed and Fis a touch face, then F n I is a 

subface of G n I on P'. 

(vi) Points (i) to (v) yield all face - subface pairs on P'. 

Proof: 

(i) to (v) follow straightforwardly from Definition 3.1 and 

Lemma 3.2. 

(vi) follows from Lemma 3.2 and the fact that all possible types 

of face - subface pairs are considered. 

Q.E.D. 

The preceding lemmas justify the following algorithm, which 

constructs the facial graph of P' from the facial graph of P. 

We assume that we are dealing with a version of the facial graph 

in which every node corresponding to a vertex has associated 

with it the coordinates of the vertex. 

Algorithm l•.!= 
Intersection of a d-polytope Panda halfspace H. 

The algorithm takes as input the facial graph of Pin which all 

nodes corresponding to vertices not in H (i.e. bad vertices) 

and their incident arcs have been removed. Furthermore, the set 

of bad eges of P, BAD1 , the set of touch edges of P, TOUCH1 , and 

the set of mixed edges of P, MIXED1 , are assumed to be known. 
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For k=l, ••• ,d BADk, TOUCHk, and MIXEDk stand for the set of bad, 

touch, and mixed edges of P respectively. At the beginning of 

the algorithm BADk = TOUCHk = MIXEDk =~for all k>l. 

For a face F of P, sub(F) denotes the set of subfaces of F (i.e. 

the arcs of the facial graph pointing to the node corresponding 

to F), super(F) denotes the set of superfaces of F (i.e. the 

arcs of FG(P) leaving the node corresponding to F), T-sub(F) 

stands for the set of subfaces of F which are touch faces, and 

M-sub(F) stands for the set of subfaces which are mixed faces. 

For a mixed face F of P, induced(F) denotes F •n I, the "new" 

face of P' induced by F. 

It is assumed that at the beginning of the algorithm 

T-sub(F) := M-sub(F) := induced(F) := ~ for all k-faces with 

k>l. 

For each edge F e. MIXED1 , it is assumed that a node corresponding 

to the vertex vF = F n I of P' has been created, that the 

coordinates of vF have been computed, and that induced(F) = vF, 

VF£ sub (F)' super (VF) = {F}' sub (VF) = {E}, and VF£ super (E), 

where E denotes the node corresponding to the empty face. 
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begin 
L := 9J 
fork= 2 to d do 

begin 
1. 
for 

Determine all bad, touch, and mixed k-faces 
all Fin BADk-l do 
for each Gin super(F) do delete 

insert 
delete 

F from sub(G) 
Gin L 
F from the 

facial graph 

for all Fin TOUCHk- do 
for each Gin suPer(F) do delete F from sub(G) 

insert Fin T-sub(G) 
insert Gin L 

for all Fin MIXEDk-l do 
for each Gin super(F) do insert Gin MIXED 

insert Fin M-sub~G) 

for all Fin L do 
If cardinality( sub(F) ) = 0 then insert Fin BAD 
If cardinality( sub(F) ) = 1 then insert Fin TOU~Hk 
If cardinality( sub(F) ) > 1 then insert Fin MIXEDk 
delete F from L 

2. Establish the new face= subfaoe relationships 
create the ~ faces formed E_Y the intersection 
mixed face and I. 
for each Fin MIXEDk do 

create a (k-1)-face G 
induced(F) := G 
insert Gin sub(F) 
super (G) := {F} 

3. 
for 

for 

end (of 

for all X in M-sub(F) do 
insert induced(X) in sub(G) 
insert Gin super(induced(X)) 

for all X in T-sub(F) do 
Let Y be the only element in sub(X) 
(Y is a cut face) 
insert Yin sub(G) 
insert Gin super(Y) 

Cleanup 
each Fin MIXEDk-1 do 
induced(F) := M-sub(F) := T-sub(F) := 9J 
each Fin TOUCHk l do 
Let Y be the only element in sub(F) 
delete F from super(Y) 
delete F from the facial graph 

the k-loop) 

and 
ofa 



4. Final Cleanup 
if MIXEDa ~¢then 

(P n His a d-polytope) 
MIXEDrl contains exactly 
corresponding to P. 

one element, 
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the node 

induced(P) := M-sub(P) := T-sub(P) := ~ 
if TOUCHd ~~then 

(P n His a (d-1)-polytope) 
TOUCHa contains exactly one element, the node 
corresponding to P. P has exactly one facet left: the 
face F = P n I. 
delete P from super(F) 
delete P from the facial graph 

end (of Algorithm 3.1). 

For a polytope Panda halfspace H, let D(P,H) denote the 

number of bad faces and touch faces of P with respect to H plus 

the number of arcs of the facial graph incident to nodes 

corresponding to such faces. Furthermore, let M(P,H) denote the 

number of mixed faces of P plus the number of arcs between nodes 

corresponding to such faces. Observe, that D(P,H) is the number 

of nodes and arcs deleted from the facial graph of P. Also 

note, the M(P,H) = O(N), where N is the size of the facial graph 

of the facet P n I of P'. The following holds: 

Lemma 3.4: 

Algorithm 3.1 correctly determines the facial graph of 

P' = P n Hin time 0( D(P,H) + M(P,H) ). 

Proof: 

Correctness follows from Lemmas 3.1 to 3.3. With respect to the 

time bounds observe the following. The algorithm considers only 

nodes and arcs which are either deleted from the facial graph or 



26 

are related to the insertion of a new node or arc. Only a 

constant amount of time needs to be spent on each of these nodes 

and arcs if appropriate pointer structures to manipulate the 

various sets are used. 

Q.E.D. 

Algorithm 3.1 assumes that the nodes corresponding to bad 

vertices of P and their incident arcs have been removed from the 

facial graph. It also assumes that the sets of bad edges, touch 

edges, and mixed edges are known. The next lemma shows that the 

subgraph of skel1 P induced by these vertices and edges is 

connected. This implies that if only one bad vertex of Pis 

known, all the vertices and edges mentioned above can be found 

by a depth first search, which traverses only bad, touch, and 

mixed edges of P. Thus this search can be performed in time 

proportional to the number of these edges plus the number of bad 

vertices. 

Lemma 3.5: 

Let P be a d-polytope and Ha halfspace as specified at the 

beginning of this section. 

The graph formed by the edges and vertices of P which are not 

contained in His connected. 

Proof: 

- a Let H be (R -H) u I. 

Clearly P = P n H is a d-polytope and F = P n I is a facet of 

P-. The bad, touch, and mixed edges of P correspond to the 
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edges of P which are not contained in F. Similarly, the bad 

vertices of Pare the vertices of P- not contained in F. Thus 

we only need to show that the graph formed by the vertices and 

edges of the polytope P- which are not contained in the facet F 

is connected. But this is implied by the following Lemma 3.6. 

Q.E.D. 

Lemma 3.6: 

Let P be a d-polytope, d>l, and let F be a facet of P. 

The graph formed by the vertices and edges of P which are not 

contained in Fis connected. 

Proof: 

we have to show that for each pair v,w of vertices of P not 

contained in F there is a path from v to w containing no 

vertices or edges of F. 

Induction on the dimension d: 

(i) The statement is obviously true for d=2. The removal of an 

edge from a polygon leaves a chain of edges. 

(i) Assume the statement is true for every (d-1)-polytope. 

We consider three cases: 

a) v and w lie both on a facet G does not intersect F: 

There must be a path from v tow on G because by Lemma 2.7 

the graph formed by skel1 G is (d-1)-connected. 

b) v and w lie both on a facet G which intersects F: 

The intersection of Gan F must be contained in a facet of 

G. Hence there is a path from v tow containing no edges 
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or vertices of F by the inductive assumption. 

c) v and w lie on different facets G and G' of P: 

Because the dual of .Pis a d-polytope the graph formed by 

its i-skeleton is a-connected. Therefore there is a 

sequence of facets of P, G
0

,~ •• ,Gk' such that G=G 0 , G'=Gk' 

F is not contained in the sequence, and for 0<i~k, Gi and 

G. 1 share vertices. 
1-

Thus, by virtue of a) and b) one can compose a path from v 

tow containing only vertices and edges of the facets Gi 

and not containing any vertex or edge of F. 

Q.E.D. 

Theorem 3.1: 

Given the facial graph of a d-polytope P, a closed halfspace H 

defined by the hyperplane I, and a vertex v of P not contained 

in H, the facial graph of the polytope P' = PnH can be 

constructed in time O(D(P,H) + M(P,H)), where D(P,H) denotes the 

number of nodes and edges deleted from FG(P), and M(P,H) denotes 

the size of the facial graph of the facet of P' which is 

contained in I. 

Proof: 

As a consequence of Lemma 3.5, a depth first search starting at 

vertex v through the graph formed by skel1 P can be used to 

condition the facial graph of P to serve as an appropriate input 

for Algorithm 3.1. Furthermore, the depth first search also 

yields the sets of bad, touch, and mixed edges of P, so that 

Algorithm 3.1 can be applied to render the facial graph of P'. 
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The time necessary to perform the depth first search is 

proportional to the number of bad, touch, and mixed edges of P. 

This number is certainly less than D(P,H) + M(P,H). 

Algorithm 3.1 takes time O(D(P,H) + M(P,H)) by Lemma 3.4. 

Q.E.D. 
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IV. The Convex Hull Algorithm 

This section contains the main result of this thesis: a 

general convex hull algorithm which is worst case optimal for 

point sets in even dimensions. The main idea of the algorithm 

is to construct the convex hull of a point set incrementally 

after the set has been presorted. 

Before we can describe any details of the algorithm, we 

have to settle the issue of representation. By definition the 

convex hull of a finite point set is a polytope. We will 

represent a polytope P by an augmented version of its facial 

graph FG(P). The modifications of FG(P) are as follows: 

1) Each node of FG(P) which corresponds to a vertex of P has 

associated with it the coordinates of the vertex. 

2) Each node of FG(P) which corresponds to a facet F of P 

has associated with it a vector uF which is orthogonal to 

F. 

As shown in Lemma 2.13, the size of the augmented facial graph 

of a d-polytope P = conv S, where S contains n points, is 

O(nld/2J). 

Let us now turn our attention to the concept of duality. 

Recall, that if the direction of all arcs of a facial graph 

FG(P) are reversed, the resulting graph is the facial graph of 

* some polytope P, the dual of P. We argue that under certain 

conditions this is even true for an augmented facial graph. 
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Assume that the interior of a polytope P contains the 

origin, and let F be a facet of P. By Lemma 2.8, the vertex F' 

* * of P dual to F is the set { y E P I <x, y> = 1 for all x E F } 

which contains just one element, the vector uF normal to F which 

is scaled and oriented in such a way that <x,uF> = 1 for all x 

in F, and <x,uF> ~ 1 for all x in P. We call such a uF the 

normalized complement of F. If in the augmented facial graph of 

a polytope P with O E int P the vector associated with each node 

corresponding to a facet Fis the normalized complement of F, 

then FG(P) with its arcs reversed is the augmented facial graph 

* of P. In other words, such a graph can be interpreted in two 

ways: as the augmented facial graph of P, or as the augmented 

* facial graph of P. 

How can we make use of this duality in a convex hull 

algorithm? We exploit duality by reducing the convex hull 

problem to an intersection problem. Recall, that by the 

definition of polarity and Lemma 2.8, if P = conv V and 

* OE int P, then P = n{Hvlv in v}, where Hv = {x ERdl<x,v> ~ 1}. 

* d * It follows, that for any q£R, (conv(Pu{q})) = (conv(Vu{q})) = 

As representation of polytopes does 

not distinguish 

our 

between duals, this implies that the 

problem of finding the convex hull of Pu {q} can be reduced to 

* the problem of intersecting P with the halfspace Hg. 

In the previous section we presented an algorithm which 

constructs such an intersection. However, this algorithm makes 
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* * * the assumptions, that p n Hg r p , and that a bad vertex of p , 
* * i.e. a vertex of p which is not a vertex of P n Hg, is known. 

In the following we show how these assumptions can be met in an 

incremental convex hull algorithm. 

Definition 4.1: 

d 
Let p,g E: R , p=(p1 , ..• pd), g=(gl'"""gd) • 

pis said to be lexicographically smaller than g, p <Lg, if 

pl< g 1 , or if Pi= gland (p2 , ••• pd) <L (g 2 , ••• gd). 

Observe, that a set of n points in Rd can be sorted into 

lexicographical order in time 8(nlogn). The next lemma draws a 

fundamental connection between lexicographical order and convex 

hulls. 

Lemma 4.1: 

Let S cRd be a finite set of distinct points, let P = conv S, 

and let p be the maximum element of Sunder the lexicographical 

ordering. th 1 t b ' t ' Rd ' h d Fur ermore, e g ea po1n 1n wit p <Lg, an 

let Q = conv(S u{g}). 

1) p is a vertex of P and g i P. 

2) There is a facet of P which contains p and which is not a 

facet of Q. 

Proof: 

First note that it is always possible to rotate the coordinate 

system such that the lexicographical ordering of S u{q} is 
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preserved but all the points in s u {q} differ in their first 

coordinate. 

We assume that such a rotation has been applied. We want to make 

it clear however, that this assumption is made only for the sake 

of simplicity of the proof. In the algorithm to be presented 

such a rotation never need be performed. 

1) Let u = (1,0, ••• ,0). By our assumption all elements of S 

different from p have a strictly smaller first coordinate. 

Hence <x-p, u> < 0 for all x e S, x;lp, and as a consequence of 

Lemma 2.3, <x-p,u> < 0 for all x e P, x;lp. As <p-p,u> = 0, 

H = {x e Rdl<x-p,u> = O} is a supporting hyperplane of P, 

P n H = { p}, and p is a vertex of P. 

By assumption q has a strictly greater first coordinate than 

p. Thus <q-p,u> > 0 and therefore H separates q from P, and 

qt. P. 

2) Let A= {F1 , ••• ,Fk} be the set of facets of P which contain 

p. By Lemma 2.5 k~d. For i=l, ••• ,k let a. be a vector 
1 

orthogonal to Fi' oriented such that <x-p,ai> ~ 0 for all x 
k 

in P. Note, that by duality and Lemma 2.3 u = l c.a., where 
i=l 1 1 

ci~0 for all i. 

As p <L q and as their first coordinate are assumed to be 

different, 

<q-p,u> = 

negative, 

Fj cannot 

<q-p,u> 
k 

<q-p, l c . a . > 
. 1 l. 1 1= 

<q-p,aj> > 0 

> o. 
k 

But 

= l c . <q-p, a . > • 
i=l 1 1 

for some j, l~j~k. 

be a facet of Q = conv(P u ;{q}). 

As all c. are non 
l. 

But then clearly 

Q.E.D. 
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The following corollary is the dual formulation of Lemma 4.1. 

Corollary _!.l: 

Let S c Rd be a finite set of distinct points, let P = conv S, 

and 1 et O E int P. Let p be the maximal element of Sunder the 

lexicographical ordering and let g be a point in Rd with p <Lg. 

1) The hyperplane {x E Rd I <x,p> = 1} contains a facet p' of p*, 

* * d and P n Hg 'F P , where Hg = { x E R I <x ,q> ~ 1}. 

* 2) There is a vertex of P contained in the facet p' which is 

* not a vertex of P n Hg. 

Proof: 

Follows immediately from Lemma 4.1 and duality. Q.E.D. 

we now have all the tools needed to specify the algorithm for 

the construction of the convex hull of a finite point set. 

Algorithm _!.l: Construction of ad-dimensional convex hull. 

The algorithm takes as input a set S c Rd of n distinct points. 

It outputs the augmented facial graph of conv S as it is 

specified at the beginning of this section. 

1. Sort S into lexicographical order. 

Having sorted S, we can write S = {s1 , .•• ,sn}, where for 

l~i<n, Si <L si+l" 

For l~j~n let sj = {s ES!s <L sj}, let Pj = conv sj, and let 

Pn+l = conv S = P. 

2. Construction of an initial (d-1)-polytope. 

Let k, d~k<n, be such that dim Sk = d-1, but dim 
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Sk+l = d. 

Embed aff skin Rd-land inductively construct the facial 

graph of the (d-1)-polytope Pk= conv sk. 

(By convention let the facial graph of the (-1)-polytope 

(the empty set) be a graph consisting of one node.) 

By Definition 2.15 Pk+l = conv(Pk u {sk}) is ad-pyramid 

with basis Pk and apex sk. Construct the facial graph of 

Pk+l from FG(P~) as specified after Lemma 2.9. 

Translate all points of S, such that the origin is 

contained in the interior of (Lemma 2.3 

characterizes the interior points of a polytope.) 

Associate with each node of FG(Pk+l> corresponding to a 

vertex of Pk+l the coordinates of this vertex, and 

associate with each node of FG(Pk+l> corresponding to a 

facet Pk+l the the normalized complement of this facet. 

3. Insert the remaining points. 

For i=k+l to n+l do 

Construct Pi+l = conv(Pi u {si}). 

As the origin is contained in the interior 

can be done by intersecting 

Hi= {x €Rdl<x,si> ~ 1}. 

* * 

of p., 
1 

* P. 
1 

this 

and 

By Corollary 4 .1 Pi n Hi ':/ Pi, and one of the vertices of 

* * Pi contained in the facet si-l of Pi dual to the vertex 

* si-l of Pi is a bad vertex of Pi with respect to 

Interpret FG(Pi) as the facial graph of * P. 
1 

and 

* 

H .• 
]. 

find a 

vertex contained 

contained in Hi. 

in the facets! 1 of P. which is not 
1- 1 
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Apply Theorem 3.1 to construct the augmented facial graph 

* * of P.+l = P. nH .• By duality this graph can also be 
1 1 1 

interpreted as the facial graph of Pi+l" 

4. Cleanup 

Undo the translation of step 2 applied to the points of s. 

Theorem 4.1: 

Let S c Rd be a set of n distinct points with dim S = d > 1. 

Algorithm 4.1 correctly determines the augmented facial graph of 

conv Sin time O(nl(d+l)/2J). This is worst case optimal for 

even d. 

Proof: 

The correctness of the algorithm follows from Theorem 3.1, 

duality, and Corollary 4.1. 

For the time bound consider the following: 

The sort in step 1 clearly requires time O(nlogn). 

Step 2: 

The k can be found in O(k) time. 

By induction, the facial graph of Pk can be constructed in 

time O(kld/2J). The augmented facial graph of the pyramid 

Pk+l can then clearly also be constructed in time O(kld/2J). 
Using Lemma 2.3, the translation required can be determined 

in O(k) time, and it can be applied to all points of S in 

linear time. Furthermore, the appropriate new values can be 

associated with the nodes of FG(Pk+l> corresponding to 

vertices and facets of Pk+l in time O(kld/2J). 
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Step 3: 

* By Lemma 2.10 and duality, the facets! 1 of P. can contain 
1- 1 

at most O(il(d-l)/2 ]) vertices. Using the facial graph of 

* P., all these vertices, and in particular a bad vertex with 
1 

respect to H., can be found in time O(il(d-l)/2J). 
1 

Applying Theorem 3.1, * * it takes time O(M(P.,H.) + D(P.,H.)) 
l. l. 1 1 

* to intersect P. 
1 

and H. • 
1 

As remarked before Lemma 3.4, 

* M(P.,H.) is proportional to the size of the facial graph of 
1 1 

* the newly created facet si of Pi+l· Thus by Lemma 2.13 

M(P~,B.} is O(il{d-l)/2J). 
1 1 

* Observe, that D(P.,H.) is 
l. 1 

nodes and arcs deleted 

proportional to the 

* * from FG(P.) wnen P. is 
1 1 

with Hi. As only o(M(P~,H.)) = o(ilca-1 >12J> 
l. 1 

created for every i>k, 

number of 

intersected 

faces are 

= O(nl(d+l)/2J) is the total 

As step 4 can clearly be performed in linear time, the total 

worst case time complexity of the entire algorithm is 

O(nlogn + nl(d+l}/2J). 
For even d > 2 this is optimal because by Lemma 2.13 the size of 

the description of the facial graph of conv Scan be O(nld/2J). 
For d = 2 this is optimal because there is an n(nlogn) lower 

bound for the construction of the convex hull of a planar point 

set (15]. Q.E.D. 
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V. Conclusion 

The main result of this thesis is a convex hull algorithm 

with O(nlogn + nl(d+l)/2J) worst case time complexity. In the 

formulation of the algorithm the concept of duality is used 

extensively. It should be noted however, that it seems possible 

to reformulate this convex hull algorithm without the use of 

dualization. Gruenbaum's ([6], p.78) characterization of the 

faces of the polytope conv(Pu{v}) in terms of the faces of the 

polytope P could be used for this purpose. 

In Theorem 4.1 it is claimed that the convex hull algorithm 

presented in this thesis is worst case optimal for point sets in 

even dimensions. But the convex hull problem could also be 

formulated in a totally different way: given a set s c Rd of n 

points, identify the points of S which are vertices of conv s. 

In this case the size of the facial graph of conv Sis not a 

lower bound for this problem any more. Therefore it is possible 

that there is a solution for this problem whose worst case time 

complexity is better than O(nlogn + nl(d+l)/2J). For the planar 

case however, Yao [15] proved that this variant of the problem 

has still a lower bo11nd of n(nlogn}. 

Finding an optimal convex hull algorithm for point sets was 

one of the major open problems stated in the work of Brown [3]. 

He showed that a number of geometrical problems could be reduced 

to the convex hull problem by the use of geometric 

transformation. In particular, he showed that constructing the 
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Voronoi diagram of a set S cRd is equivalent to contructing the 

convex hull of a set S' cRd+l, where all points of S' lie on a 

hypersphere. As Klee [9] showed, that the description of a 

Voronoi diagram in Rd can be of size O(nl_(d+l)/2J), the convex 

hull algorithm presented in this thesis also yields a Voronoi 

diagram algorithm which is optimal for point sets in odd 

dimension. Rather recently, two algorithms for Voronoi diagrams 

in arbitrary dimensions ([2],[14]), were published, which are 

based on a similar incremental approach as the convex hull 

algorithm of this thesis. However, the subquadratic time bounds 

claimed in these papers seem to be based on assumptions about 

the distribution of the input points and clearly cannot be worst 

case bounds by Klee's lower bound result. 

A very striking point of the main result in this thesis is 

the fact that the convex hull algorithm is optimal for even 

dimensions, whereas this cannot be shown for odd dimensions. 

Naturally the question arises whether there is a convex hull 

algorithm for point sets in odd dimensions greater than three 

with worst case time complexity O(nld/2J), which is a trivial 

lower bound of the problem, as the facial graph of the convex 

hull of n points can have this size. It is interesting to note 

that even for the three dimensional case no incremental 

algorithm with optimal, i.e. O(nlogn), worst case time 

complexity is known even if a presort is allowed. This seems to 

suggest that if there is an O(nld/2J) algorithm for odd 

dimensions, it will have to use an approach entirely different 

from the one taken by the algo~ithm presented in this thesis. 
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