
OPTIMAL SEARCH IN PLANAR SUBDIVISIONS* 

David Kirkpatrick 
Department of Computer Science 
University of British Columbia 

Vancouver, B.C., Canada 

TECHNICAL REPORT 81-13 

/ 

* This work was supported in part by the National Sciences and Engineering 
Research Council of Canada, grant A3593. 



r 
t 



ABSTRACT 

A planar subdivision is any partition of the plane into (possibly 
unbounded) polygonal regions. The subdivision search problem is the 
following: given a subdivision S with n line segments and a query point 
p, determine which region of S contains p. We present a practical algorithm 
for subdivision sea rch that achieves the same (optimal) worst case complexity 
bounds as the significantly more complex algorithm of Lipton and Tarjan, 
namely O(log n) search time with O(n) storage. Our subdivision search 
structure can be constructed in linear time from the subdivision represen­
tation used in many applications. 

Key words: computational geometry, analysis of algorithms, point location, 
planar graphs, hierarchical search. 





l . INTRODUCTION 

Any finite collection of finite, semi-infinite or infinite line 

segments induces a partition of the plane into polygonal regions. We will 

restrict our attention, for the present, to collections of line segments 

whose pairwise intersections are restricted to segment endpoints. We call 

such a collection (or the finite set of polygonal regions induced by the 

collection) as (planar) subdivision. 

We define the subdivision search problem to be the following: given 

a subdivision S with n line segments and an arbitrary query point P, determine 

which region of S contains P. Our subdivision search problem is equivalent 

to the 11 region-searching 11 problem of Dobkin and Lipton [6]. It is a slight 

(but, as we shall see, inconsequential) generalization of both the 11 point­

location11 problem studied by Lee and Preparata [14] and the "triangle" 

problem of Lipton and Tarjan L18J. The "point-in-polygon" problem Ll,3,24] 

(given a simple polygon, does it contain a specified query point?), the 

"rectangle searching" problem [27] (given a set of non-overlapping rectangles, 

which, if any, contains a specified query point?), and the "line-searching" 

problem [6] (given a set of lines in the plane, which, if any, containing a 

specified query point?), can all be formulated as instances of our subdivision 

search problem. 

Dobkin and Lipton [6] were the first to cast Knuth's [12] 11 post-office 11 

problem (given a set of points in the plane, which is closest to a specified 

query point?) as a subdivision search problem. Shamos [25] (and independently 

Dewdney [4]) refined this formulation by introducing the Voronoi diagram of a 

point set, a planar subdivision of remarkable utility in connection with 

nearest-neighbour and other related problems. 
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In many applications, a planar subdivision is the object of numerous 

location queries. For this reason, algorithms for point location are generally 

characterized by three attributes: i) preprocessing time - the time required 

to construct a search structure from a standard representation of S; ii) space -

the storage used in the construction and representation of the search structures; 

and iii) search time - the time required to locate a specified query point, 

given the search structure. We restrict our attention here to the worst-case 

behaviour of these attributes. 

Dobkin and Lipton [6] employ a projective technique to reduce subdivision 

search to linear search. The resulting algorithm is asymptotically optimal 

(among comparison-based algorithms) in terms of search time but may be quite 

expensive in terms of both preprocessing time and storage. Specifically, Dobkin 

and Lipton provide an O(lg n)t search-time, O(n2) space, and O(n2lg n) prepro­

cessing-time algorithm for subdivision searching. Dobkin and Lipton were also 

the first to raise the question: can subdivision searching be done with O(lg n) 

search-time and O(n) (or even O(n lg n)) space? 

Shamas [25) introduces an O((lg n) 2) search-time, O(n) space, and O(n lg n) 

preprocessing-time algorithm suitable for searching a class of subdivisions that 

includes Voronoi diagrams. Employing an O(n lg n) algorithm for constructing a 

Voronoi diagram on n points [28), this leads to an O((lg n) 2) search-time, O(n) 

space, and O(n lg n) preprocessing-time solution of the "post-office" problem. 

Shamas' algorithm is generalized by Lee and Preparata [15) to an O((lg n) 2) 

search-time, O(n) space, and O(n lg n) preprocessing-time algorithm for the 

location in arbitrary subdivisions. Lee and Preparata's approach is divide­

and-conquer; each reduction of the subdivision is achieved by discrimination 

t lg denotes log2. 
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of the query point with respect to a monotone chain of edges that splits the 

subdivision {at a cost of O{lg n) comparisons, in the worst case). 

The first affirmative answer to the question of Dobkin and Lipton was 

provided by Lipton and Tarjan [18]. Lipton and Tarjan's O(lg n) search-time, 

O(n) space, and O(n lg n) preprocessing-time algorithm for search in arbitrary 

triangular subdivisions (each interior region of the subdivision is bounded 

by exactly three line segments) is one of many important applications of their 

planar separator theorem [18,19J. That general subdivision search can be 

efficiently reduced to triangular subdivision search follows from the O(n lg n) 

polygon triangulation algorithm of Garey et al [8]; the details of this 

reduction are discussed in Section 4. Unfortunately Lipton and Tarjan 1 s 

algorithm is of primarily theoretical interest; to quote Lipton and Tarjan 

[19], "We do not advocate this algorithm as a practical one, but its existence 

suggests that there may be a practical algorithm with an O(lg n) time bound 

and O(n) space bound". 

A recent result of Preparata [21] claims to come "very close to 

providing a complete substantiation" of Lipton and Tarjan's conjecture. 

Preparata's algorithm, which he describes as an evolution of the approach of 

Dobkin and Lipton [6], uses O(lg n) search-time, O(n lg n) space, and O(n lg n) 

preprocessing-time. 

The purpose of this paper is to affirm Lipton and Tarjan's conjecture; 

we present a new subdivision search algorithm with exactly the same asymptotic 

bounds as Lipton and Tarjan's algorithm. The simplicity of our approach (and 

the existence of an implementation) suggests that it may also deserve to be 

called practical. A discussion of the implementation and more detailed 

evaluation of our algorithm will be presented elsewhere. 
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In the next section we present some preliminary definitions and comments 

on the data-structures used by our algorithm. Sections 3, 4 and 5 describe 

our algorithm and a number of its applications. Section 6 concludes the paper' 

with a discussion of some related open problems. 
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2. DEFINITIONS AND PRELIMINARIES 

A finite planar subdivision is a planar subdivision each of whose line 

segments is finite. Such a subdivision is undistinguishable from a straight­

line embedding of a planar graph. Thus we can refer without confusion not 

only to the vertices, edges, and regions (or faces) of a finite planar 

subdivision but also to such graph-theoretic notions as degree, incidence, 

and independence [10]. It is an immediate consequence of Euler's formula 

(cf. [10]) that the number of vertices and edges of a finite planar subdivision 

are linearly related and hence either serves to characterize the size of such 

a subdivision. Hereafter, ISi will denote the number of vertices of the 

finite subdivision S. 

Let S be a finite planar subdivision. We take as starting point for 

our algorithm what we call an edge-ordered representation of S. Specifically, 

(a) if xis a line segment joining vertex v to vertex w, then xis repre­

sented by the pair of directed edges {(v,w),(w,v)}; 

(b) each vertex v has associated with it not only its co-ordinates but also 

a list, in counterclockwise order, of all directed edges whose source 

is v; and 

(c) each directed edge (v,w) has associated with it a pointer to the edge 

(w,v), as well as the name of the region lying immediately to the right 

of (v,w). 

An edge-ordered representation is provided either implicitly or explicitly 

by the representations taken as standard in a number of earlier papers [20,23]. 

It differs from the basic (unordered) list of adjacencies chosen by Lee and 
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Preparata LlSJ as their initial representation. However, it should be clear 

that 

i) it occupies O(!SI) space; 

ii) it can be constructed in O(ISI lg ISi) time from a list of adjacencies 

or other standard representations of planar graphs; 

iii) it can be constructed in 0( ISi) time if the underlying planar graph has 

bounded degree; and 

iv) it can be constructed in O(ISIJ time from the natural graph represen­

tation provided in certain applications (cf. Section 5). 

Thus our choice of representation for subdivisions is intended to allow a 

realistic estimate of actual preprocessing costs. 

The obvious redundancy in an edge ordered representation can be neatly 

exploited in the development of our hierarchical search structure. A detailed 

description of the data structures used in one efficient implementation of our 

algorithm will be presented elsewhere. 

A finite planar subdivision S has exactly one unbounded region, called 

the external region of S. Its complement is called the interior of S. The 

edges bounding the external region define what we call the boundary of S. 

A convex subdivision is any finite planar subdivision whose interior 

is convex and whose interior regions are all convex. A triangular subdivision 

is a spec;al casf Jf a convex subdivision in which each region (including the 

exterior region) i5 bounded by three line segments. It is easily confirmed 

that a triangular subdivision on n > 3 vertices has exactly 3n - 6 edges and 

2n - 4 regions (including the external region). 

In Section 3, we give a new constructive proof of the following: 
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Theorem 3.1. There is an O(lg n) search-time, O(n) space, and O(n) preprocessing­

time algorithm for the triangular subdivision search problem. 

This result is extended to arbitrary planar subdivisions in Section 4. 
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3. FAST SEARCH IN TRIANGULAR SUBDIVISIONS 

Let S be an arbitrary triangular subdivision with n vertices. A 

subdivision hierarchy associated with Sis a sequence s1 ,s2, ... ,Sh(n) of 

triangular subdivisions, where s1 =Sand each region R of Si+l is linked to 

each region R' of Si for which R' nR ~¢(the so-called parents of R in Si)' 

for 1 < i < h(n). We call h(n) the height of the subdivision hierarchy. 

Obviously the space required for a subdivision hierarchy is just the space 
h(n) 

required for the individual subdivisions (0( l js. j)) plus the space used by 
i =l l 

the inter-subdivision links. 

Our basic point location algorithm involves a single pass through the 

subdivision hierarchy, locating the test point at each level. Let p denote 

an arbitrary test point. 

HIERARCHICAL SUBDIVISION SEARCH ALGORITHM 

CANDIDATESh(n) + regions of Sh(n) 

R + region in CANDIDATESh(n) containing p 

i + h(n) - l 

while i >Odo 

CANDIDATES;+ parents(R) 

R + rPgion in CANDIDATES; containing p 

i + i - l 

report (region R) 
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Since membership in any triangular region can be tested in constant time, 
h(n) 

the complexity of this search procedure is 0( l I CANDIDATES. j). Obviously 
. l l 1= 

we are motivated to construct subdivision hierarchies in which both the height 

and the size of all CANDIDATE sets are minimized. 

We start by constructing a subdivision hierarchy of height two. 

Lemma 3.1. There exist positive constants c and d such that for any triangular 

subdivision S with ISi > 3 a triangular subdivision T can be constructed in 

O(ISI) time, satisfying: 

i ) IT I ~ ( l - l / c) IS I ; and 

ii) each region of T has at most d parents in S. 

Proof. Let v be any internal (non-boundary) vertex of S, and let deg(v) denote 

its degree. Then, exactly deg(v) regions of Sare incident with v. The union 

of these regions, which we call the neighbourhood of v, forms a star-shaped 

polygonal region with deg(v) bounding edges. Now, if v and its deg(v) incident 

edges are removed from Sand the neighbourhood of vis re-triangulated 

(introducing _deg(v) - 3 new edges) what results is a new triangular subdivision 

with ISi - l vertices. It should be clear that, regardless of how the neigh­

bourhood of vis re-triangulated, each new region intersects at most deg(v) 

regions of S. Of course, the simplificat·,on achieved by this vertex removal 

and re-triangulation is minimal. However, if w is any vertex which is 

independent of (i.e. non-adjacent to) v in S, then the neighbourhoods of v 

and w do ~ot intersect except possibly along one or more edges of S. Hence, 

such a pair of vertices can be removed in parallel and the triangular sub­

division that is created by re-triangulating their vacated neighbourhoods has 
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the property that each of its regions intersects at most max { deg(v),deg(w)} 

regions of S. By identical reasoning, if v1, ... ,vt form an independent set 

of vertices in S, then the ISi - t vertex triangular subdivision T formed 

by removing v1 , ... ,vt and re-triangulating all t vacated neighbourhoods has 

the property that each of its regions intersects at most max{deg(vj), 1 2 j 2 t} 

regions of S. To complete the proof it suffices to show that if c and dare 

sufficiently large then an independent set v1 , ... ,vt with deg(v;) 2 d, 

1 2 i 2 t, and t ~ ISl/c can always be identified in 0( ISi) time. This is 

immediate consequence of the following lemma. □ 

Lemma 3.2. There exist positive constants c and d such that every planar 

graph on n vertices has at least n/c independent vertices of degree at most 

d. Furthermore at least n/c of these can be identified in O(n} time. 

Proof. We make no attempt to optimize c and d here. (Their optimal values 

influence the asymptotic constants for each of space, preprocessing-time, 

and search-time, and some tradeoffs can be expected). We have already noted 

that an n~vertex planar graph has at ·most 3n-6 edges. Hence the average 

vertex degree is less than 6, and so less than half of the vertices have 

degree exceeding 11. Starting with the set V of vertices of degree at most 

11 (which can be identified easily in linear time), a straightforward elimina­

tion procedure identifies an independent subset containing at least IVl/12 >n/24 

vertices. □ 

Of course, a subdivision hierarchy of height two provides no significant 

simplification over the original subdivision. However, if lemma l.l is 
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applied iteratively we are led to a subdivision hierarchy in which asympto­

tically improved (in fact, optimal) search is possible. 

Lemma 3.3. There exist positive constants c and d such that, for any 

triangular subdivision S with n vertices, an associated subdivisiort hierarchy 

s1 , •.. ,sh(n) can be constructed in O(n) time, satisfying: 

i) 1shtn)I = 3; 

ii) IS i + 1 I 2. ( 1-1 / c) IS i I ; and 

iii) each region of Si+l has at most d parents in s1 . 

Proof. Immediate from lemma 3.1. D 

Corollary 3.1. The subdivision hierarchy above has height h(n) = O(lg n) and 

uses O(n) space in total. 

Proof. It suffices to note that the sequence js1 I, js21, ... , jsh(n)I forms 

a decreasing geometric progression. D 

We now restate and prove our basic result. 

Theorem 3.1. There is an O(lg n) search-time, O{n) space, and 0(n) prepro­

cessing-time algorithm for the triangular subdivision search problem. 

Proof. We use the hierarchical subdivision search algorithm in conjunction 

with the subdivision hierarchy constructed in lemma 3.3. By lemma 3.3, the 

preprocessing time is O(n). By corollary 3.1, the total space is Otn). By 
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hln)-1 
our earlier observations, the complexity of search is 0( ISh(n)I + i~l pi) 

where pi = max ( lparents(R)I). But, by lemma 3.1 and corollary -3.l, 
ReSi+l 

Shln) and pi are 0(1), and h(n) is 0{lg n) so the search time is 0(lg n). D 
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4. FAST SEARCH IN GENERAL SUBDIVISIONS 

In this section we consider the reduction of general subdivision 

searching problems to triangular subdivision search. Let S be an arbitrary 

planar subdivision. We can reduce the question of searching in S to searching 

in a finite planar subdivision by intersecting S with a sufficiently large 

triangle chosen to contain all intersections of line segments of S. The 

interior of this triangle is clearly a finite planar subdivision. The 

exterior can be searched using a straightforward generalization of binary 

search, exploiting the fact that none of the, semi-infinite line segments 

intersect in this region. This reduction adds a factor of only 0( ISi) to 

both the preprocessing time and space and O{lgjSj) to the search time used 

in the resulting finite subdivision search problem. Hence the asymptotic 

complexities of general and finite subdivision searching are equivalent. 

It remains to reduce finite subdivision searching to triangular 

subdivision searching. Let S be a finite planar subdivision. We can assume 

from the preceding reduction that the boundary of Sis triangular. Let T 

be the subdivision formed from S by triangulating each interior region of S. 

The size of T remains proportional to the size of Sand, since Tis a 

refinement of S, the location of points in T immediately implies their location 

in S. In the general case T can be formed from Sin time O{ISllgjSI), using 

the general polygon triangulation algorithm of Garey ~t al LB]. However, i F 

the regions of Sare all convex, or even star-shaped, a straightforward linear 

algorithm exists for constructing T. Thus, we have demonstrated the following: 
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Theorem 4.1. There is an O{lg n) search-time, O{n) space, and O{n lg n) 

preprocessing-time algorithm for the general subdivision search problem. 

Theorem 4.2. There is an Ollg n) search-time, Oln) space, and O(n) prepro­

cessing-time algorithm for the convex subdivision search problem. 
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5. APPLICATIONS 

Earlier papers on subdivision search, notably [15,21], have mentioned 

a number of applications. We recall and expand on a few of these here. 

5.1. Point in polygon problem. 

A planar polygon is a special case of a finite planar subdivision. 

Theorem 4.1 gives an immediate O(lg n) search-time, O(n lg n) preprocessing­

time and Otn) space algorithm for testing the inclusion of an arbitrary point 

in an n vertex planar polygon. For convex or star-shaped polygons, or any 

other family of polygons that can be triangulated in O(n) time the 

preprocessing time is linear. 

5.2. Point in convex polyhedron problem. 

Lee and Preparata Ll5J note that the problem of testing the inclusion 

of an arbitrary point in an n vertex convex polyhedron can be reduced to 

convex subdivision search with O(n) preprocessing. It follows, by Theorem 4.2, 

that an O(lg n) search-time, O(n) preprocessing time, and O(n) space algorithm 

exists for the point in convex polyhedron problem. 

By dualization, an algorithm with identical attributes can be formulated 

for the problem of testing for the intersection of an arbitrary plane and a 

polyhedron in 3-space L5]. 

5.3. Locating a set of points in a planar subdivision. 

Preparata [22] shows that a set of k points can be located on an n 

vertex planar subdivision in Otk lg k + n + k lg n) time, given Otn lg n) 
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preprocessing. This result is an immediate consequence of Theorem 4.1. 

Furthennore, by Theorem 4.2, the preprocessing can be reduced to Oln) for 

convex planar subdivisions (which arise in a principle application [20] of 

Preparata's batched point location algorithm). 

5.4. Closest point problems. 

The problem of determining which of a set of data points is closest 

to a given test point has been extensively studied. Shamos L25] (and 

independently Dewdney [4]) show how this problem can be reduced to point 

location in a particular family of planar subdivisions known as Voronoi 

diagrams. Voronoi diagrams lin any LP metric) can be constructed in 

O(n lg n) time Ll3J. While Voronoi diagrams in arbitary LP metrices may 

involve curved edges, every region is star-shaped and hence Voronoi point 

location can be solved using subdivision search followed by at most one test 

against a curved edge. Furthennore, only linear preprocessing is required 

following the construction of the Voronoi diagram. This fact can be 

exploited in the dynamic maintenance of Voronoi diagrams and dynamic solution 

of closest point problems [9]. 

By replacing Voronoi diagrams by what are called generalized Voronoi 

diagrams [ll ,14] it is possible to use an analogous approach to solve the 

closest line problem (which of a set of lines or line segments is closest 

to a given test point). 



- 17 -

6. OPEN PROBLEMS AND CONCLUSIONS 

It is tempting to extend the approach of this paper to the location 

of points in higher-dimensional subdivisions. Such an extension is by no 

means obvious. The number of vertices, edges, faces and regions of three 

dimensional subdivisions are not necessarily linearly related and the analog 

of triangulation (tetrahedralization) is not a straightforward process. A 

more detailed discussion of subdivision search in higher dimensions will be 

taken up elsewhere. 

Our algorithm seems to depend on the fact that the given subdivision 

is formed out of straight line segments. While the algorithm can be adapted 

to certain other situations (for example, when all internal regions are star­

shaped), the general problem of optimal search in subdivisions formed from 

arbitrary curve segments may require a totally new approach. As a concrete 

example of such a subdivision, consider those subdivisions which arise in 

the so-called locus approach to the fixed-radius nearest neighbour search 

problem [2]. Such subdivisions are formed by the intersection of fixed­

radius circles, and in general do not seem to admit a simple refinement using 

straight edges. Thus the fixed-radius nearest neighbour search problem still 

awaits a O(lg n) search-time, O(n 2) space and O(n2 log n) preprocessing-time 

solution. A solution using O(log n) search-time, O(n2 log n) space and 

O(n2 log n) preprocessing-time is a byproduct of Preparata's subdivision 

search algorithm [21]. Edelsbrunner and Maurer [7J present search algorithms 

for subdivisions formed by segments other than straight lines. 

We have described a new subdivision search algorithm which, as pointed 

out by Lipton and Tarjan [18], is optimal for both search time and space, 
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assuming only binary decisions are possible. Our algorithm is based on the 

hierarchical decomposition of an arbitrary subdivision. It is conjectured 

that this technique will find a number of other applications in computational 

geometry, and elsewhere. On this point we should acknowledge the fact that 

this technique does not originate with this paper; Lipton and Miller [17] 

use a very similar idea in developing a fast algorithm for colouring planar 

graphs. 
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