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Abstract 

A multi-class macro-scheduler is described in this 

paper. The scheduler periodically determines the number of 

jobs from each class that should be activated to minimize a 

weighted sum of the mean 

saturating the system. 

system residence time without 

The computati~n is based on the 

estimated system workload in the next interval. Thus it is 

adaptive to workload variation. The service provided to 

each class (specifically, the mean response time) may be 

adjusted by changing the weight associated with the job 

class. 

The scheme is based on mathematical modelling. The 

solution is obtained through the use of operational 

analysis method and optimization theory. Exponential 

smoothing technique is employed to reduce the error of 

estimating the value of the model parameters. From our 

simulation results, the scheme appears to be both stable 

and robust. Performance improvement over some of the 

existing schemes (the 50%, L=S and the Knee criteria) is 

significant under some workloads. The overhead involved in 

its implementalior is acceptable and the error due to some 

of the assumptions used in the formulation and solution of 

the model are discussed. 
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1. Introduction 

One of the principle ideas behind multiprogramming is 

to make more effective use of the system resources, many of 

which can be simultaneously utilized. However, in order to 

avoid excessive interactions among the competing jobs, 

which will result in general degradation of system 

performance, the number and composition of jobs in the 

multiprogramming set should be carefully controlled. This 

is the function of the load control policy. 

Load control policies are typically built around 

maintaining two sets of queues, often called the eligible 

queues and the multiprogramming queues. Jobs in the 

eligible queues must wait until the control policy decides 

(depending upon the system state or some other criteria) to 

move them to the multiprogramming queues. Only jobs in the 

multiprogramming queues are allowed to actively share the 

system's resources. 

The term macro-scheduling as used in this paper refers 

to the policy that determines which jobs may migrate from 

the eligible queues to the multiprogramming queues. The 

sequencing of jobs in the multiprogramming set to be 

allocated the CPU is often called micro-scheduling. The 

former scheduling policy has far greater effect on global 

system performance and is the subject of discussion in this 
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pap~r. 

There are two parts to macro-scheduling which are 

mutually dependent on one another: 

i) the determination of the optimal number of jobs 

in the multiprogramming set (optimal degree of 

multiprogramming) and, 

ii) the composition of the jobs in the set to 

optimize some performance criteria. 

It has been shown that for paged virtual memory 

system~, an optimal degree of multiprogramming exists which 

maximizes the system throughput rate (see for example [3]). 

This point is often reached just before the system 

saturates. Hence 

macro-schedulers is to 

point [1 ,15). 

an integral 

estimate the 

function 

system's 

of many 

saturation 

Considerable amount of work has been done on 

macro-scheduling (see for example [1-13]). Most of these, 

however, deal with part i) above only. Typically they work 

by regulating the load to keep some measures related to 

program behaviour (usually the paging behaviour) to within 

some predetermined bounds. Generally the bounds are set 

according to some heuristics to hopefully allow the highest 

possible load without saturating the system. The 50% 
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criterion [ 4 ] for example, aims at maintaining the 

utilization of the paging device to around 0.5. The L=S 

criterion [13] proposes to keep the system li f e-time to 

approximately that of the page swap time. The Knee 

criterion ([4],[9]) suggests that the mean resident set of 

each process should be maintained at the value associated 

with the primary knee 1 of its life-time function, where 

life-time is defined to be the virtual time between two 

successive page faults [4]. 

Queueing theory is the most prevalent mathematical 

tool used in the analysis of computer systems. It 

basically gives steady-state results. Thus queueing theory 

may be useful in system design (see for example [25]) and 

other problems but is not directly suitable to the dynamic 

control of computer systems. As a result, most work in the 

past resorted to heuristic applications of 

control-theoretics. There are a few exceptions. 

Chanson and Lo [16] for example, describes a load 

control policy using stochastic control theory. The policy 

is shown to give optimal results. The main weakness of the 

scheme is that its implementation requires the job 

parameter values to be known. It also makes the usual 

queueing theory assumptions, such as exponential 

1 The point where the curve between the system life-time and the 
number of active jobs has maximum slope. 
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interarrival and service time distributions which may not 

be satisfied in practice. 

Schonbach [17] too describes a macro scheduler based 

on mathematical modelling for high productivity. It is 

assumed that the "system balance" point is already 

specified. Here, system balance is a state in which the 

various processor utilizations are at some prespecified 

levels. The macro-scheduler then chooses, among the 

waiting jobs, a job-mix which maintains system balance. 

The scheme does not include external priorities and is 

applicable only to non-paged systems. 

Most large scale virtual memory systems nowadays 

support both batch and interactive jobs. For such systems, 

one is interested not only to maximize the system 

throughput rate but also to guarantee good response times 

to the interactive users (possibly at the expense of the 

batch turnaround times). Landwehr [5] proposed a scheme to 

activate batch jobs based on the terminal load. The aim 

was to maintain good response to interactve requests by 

activating less batch jobs when the terminal load is heavy 

while ensuring a minimal level of batch throughput. There 

was, however, no attempt to prevent the system from 

becoming saturated or to optimize performance. Hine et al. 

[ 1 4 ] studied the problem from a slightly different 

viewpoint. Their goal was to provide different response 

I 

l 

I 

! 
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times to each class of jobs (batch and interactive} while 

maximizing the CPU utilization. They employed a 

mathematical model but optimization was achieved using an 

exhaustive search technique. A heuristic was also given 

which gives good but not necessarily optimal results. 

In this paper, we describe an adaptive macro-scheduler 

which is based on the application of optimization theory on 

a multi-job-class model of multiprogrammed computer 

systems. The system model is solved using operational 

analysis [ 1 8] • The scheduler computes the optimal number 

of jobs from each class that should be activated to 

minimize a weighted sum of the mean system residence time 

(including the wait time in the eligible queues} without 

saturating the system. The weights can be adjusted to 

favour some classes of jobs (whose mean response times will 

decrease} at the expense of the jobs in the other classes. 

The scheme is applicable to pure interactive, combined 

batch/interactive systems as well as non-virtual memory 

systems. Its performance is compared to some existing 

schemes. 

2. The Model and Notations 

The model used is giv~n in Figure with the 

multiprogramming subsystem being represented by the popular 

central-server model [19]. 
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Figure 1. System Model 
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In this analysis, it is assumed that the jobs do not 

change class during their stay in the system. Mor?.over, it 

is assumed that when a job arrives at the system it is 

possible to classify it into one of the job classes. An 

g 
1 

Y.IT 
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exa~ple of a primitive method of job classification is to 

compute the job class based on the job card parameters for 

batch jobs (e.g., CPU time limit, user given job priority, 

user IDs etc.) and on the command type for terminal jobs 

(e.g., edit, compile, copy, etc.,). However, it is not 

assumed that the resource demands of a job in a particular 

class are known. The resource demands of various classes 

of jobs are continuously being measured, thereby preserving 

the dynamic nature of the control. The error introduced by 

job classification is discussed in the next section. 

The following notations are used: 

K 

M 

s ( j ) 

s*(j) 

N 

n(i,j,N) 

. . 

total number of job classes, 

total number of service centres, 

number of class j jobs in the 

multiprogramming subsystem, 

optimal number of class j jobs in the 

multiprogramming subsystem (to be 

computed), 

the system state vector 

(s(l}, s(2), ••• , s(K)), 

number of class j jobs at the 

centre i for a given system state~, 

total number of jobs at the centre i 

for a given system state~, 



A ( j ) 

w(i,j) 

R ( j) 

d(i,j) 

s ( j) 

" 1 

q(i,j) 

qi (N) 

C(j) 

throughput rate of class j jobs from 

the multiprogramming subsystem, 

: mean time a class j job spends at 

service centre i during its stay in the 

multiprogramming subsystem (including 

queue wait and service times), 

mean time spent in the multiprogramming 

subsystem by class j jobs, 

mean total service demand of class j 

jobs at service centre i, 

mean total number of class j jobs in 

the system, 

mean service rate of service centre i, 

normalized frequency of requests for 

centre i by class j jobs (i.e., the 

ratio of class j jobs joining the centre 

i after being serviced by the CPU to 

the total number of class j job 

completions at the CPU), 

normalized frequency of requests for 

centre i (i.e., the ratio of jobs 

joining centre i after being serviced 

by the CPU to the total number of 

completions at the CPU), 

weight for class j jobs. 

It can be easly shown that g 1(~) is given by : 

1 0 

I· 
I 



clearly 

K 
qi (N) = r n(1,j,!) q(i,j) / n 1 (!). 

j=1 

M 
t q;(N) = 

i=1 

M 
r q(i,j) = 1 and 

i=1 

R 
r n(1,j,N) = n,(!) 

j=1 -

1 1 

( 2. 1 ) 

We shall follow Reiser and Lavenberg's method (see 

[20) for details) to compute n(i,j,!) by solving the 

following set of non-linear equations iteratively until the 

error is acceptably small: 

R 
w(i,j) = d(i,j) (1 + n; - r E(r,j,i,!)) 

R 
= s(j) / r w(i,j) 

i=l 

n(i,j) = >..(j) w(i,j) 

r=l 

where E(r,j,i,N) is a correction term given by 

,(r,j,i,!) = n'(i,j,!) - n'(i,j,!'), 

= 0, otherwise. 

r = i 

(2.2) 

( 2 . 3 ) 

( 2 • 4 ) 

n' (i,j,!) has the same definition as n(i,j,!) except that 

the system has modified parameters for the traffic 

intensities (see equation (4.8) in [20)) and N' is the same 

as N except that the number of class j jobs in the system 
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is one less than that in N. 

Once the n(i,j,~)'s are known for a given~, one can 

compute q;(N) from equation (2.1). 

We first compute the saturation load of the system. 

3. Estimation of System Saturation 

Definitions of system saturation have been proposed 

[18,21]. Invariably the system is considered saturated at 

the point the response time vs system load curve starts to 

rise rapidly. Kleinrock [21 ], for example, using the 

number of active terminals as the load, defined the 

system's saturation point to correspond to the intersection 

of the mean normalized response time curve asymptote and 

the horizontal line corresponding to the minimum response 

time (i.e., when there is only one active terminal). (See 

Figure 2). If a system is not allowed to get saturated 

according to this definition, the mean response time of the 

active jobs will not exceed an acceptable level. However, 

the implicit assumption is that the program population 

considered is both homogeneous and stationary. Our 

approach is to compute the system saturation load at small 

intervals (such as a few seconds) during which the 

stationary assumption is justified. The homogeneous 

assumption is discussed below. 
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No. of Active Terminals 

Figure 2. Mean Resoonse Time~- The 

Number of Active Terminals. 

In a previous paper, we derived the saturation load of 

uniclass model SELF (.§_aturation Estimation and 

Load-control with [eed-back) [1]. Fellowing similar 

arguments (see Appendix A) it can be shown that the 

saturation vector N* of the multi-class model is given by 

the relation 

where l!i*I 
K 

M 
I 

i=2 
( 3. 1 ) 

= I s(j)*, g,*(N}=l and i* is the device with 
j=1 
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the highest utilization in the observation period. 

Notice that N* is no longer a single number as in the 

case of the single class model. Rather it is a vector and 

there can be several vectors satisfying condition (3.1 ). 

This is why we need to use optimization techniques to 

select the optimal value of N*. 

4. Optimization 

The next task is to compute the number of jobs in each 

class which optimizes some performance indices such that 

the sum total is less than or equal to l~*I. An obvious 

choice of performance index is the system throughput rate. 

However, this does not allow the inclusion of job 

priorities easily. Furthermore, it usually leads to a 

dynamic programming problem which in turn requires high 

computational overhead. Instead, we have chosen to 

minimize a weighted sum of the mean time spent by the jobs 

in the system (including the wait time in the eligible 

queues) subject to the constraint that the system is not 

saturated. 

The mean system residence time of a class j job, Wj, 

is the sum of the times it spends in the eligible queues 

and the multiprogramming subsystem. 

Wj = R(j) + (S(j)-s(j)) / (s(j)/R(j)), j=1,2, ••• ,K. (4.1) 



Thus the optimization problem becomes 

K 
Mi n [ r c ( i ) ( w ;) ] 

i=1 

K 
subject to r s(i) s IN*I 

i=1 

15 

Using (4.1) the above optimization problem can be shown to 

be equivalent to 

Min[.~ C(i) S(i) R(i)/s(i)] 
l = 1 

R 
subject to r s(i) s IN*I 

i=l 
( 4. 2) 

Given the C(i)'s and the estimated values of S(i)'s and 

R(i)'s, we wish to determine the optimal values of s(i)'s 

in the next interval. We shall use the Lagrange multiplier 

method to solve the problem (4.2). The lagrangian equation 

of the problem is: 

K K 
L(~,k) = r C(i} S(i)/s(i) + k( r s(i)/IN*I - 1) 

i=1 i=l 
( 4 • 3 ) 

The optimal valuer of s(i)·s are given by: 

s(i}* = IN*) /C(i)S(i)R(i), i = 1, 2, ••• , K. (4.4) 
K 
I: /C(j)S(j)R(j) 

j=l 

It can be shown that only (K-1} out of K relations in 
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(4.4) are linearly independent. However, in order not to 

saturate the system, the s(i)'s must satisfy (3.1). 

Therefore, there are K unknowns (s(i)'s) in K non-linear 

independent equations. A unique solution therefore exists. 

M 
Note that R(j) = J, w(i,j) whose value is obtained in 

the computation of q; (N) in equation (2.2). 

As in all feed-back schemes the values of the 

parameters are estimated on the basis of their past values. 

In order to reduce the error in the estimation, we use a 

technique from time-series analysis [ 23], called 

exponential smoothing. The technique is described as 

follows. Let Pi be the expected value of the parameter for 

the time interval [i, i+1). Let x; be the observed value 

of the parameter at time t. Pi can be expressed as 

= (1-,i) t ,i:i x;.j 
j=O 

( 4 . 5 ) 

where the exponential weight factor ,i is a constant between 

zero and one. Similarly 

=> 

Pi.,= (1-,i) t ,ij Xi.,:j. 1 

j=O 

( 4. 6) 
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Now ~ let the error at time (i-1) in predicting x; be Ei, 

then 

Ei =Xi-Pi.1 (4.7) 

Substituting in equation (4.6) 

Pi = Xi - - E i 

( 4 . 8 ) 

The remaining problem is to find a proper value of ,. 

If the error Ei is sufficiently small, equation (4.8) 

will be satisfied for almost any value of,, so that we can 

use the value of, from the previous interval. If Ei is , 

large, we recompute a value for, by minimizing the sum of 

square of errors given by: 

(4.9) 

In practice, the summation in equation(4.9) does not 

have to involve many terms (say J) before,~ approaches 

zero (J was found to be around 3 and never greater than 10 

in our experiments). Moreover, , need not be very accurate 

and standard techniques exist for its efficient 

computation. 

The multiclass control procedure, which we shall call 
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MULTI-SELF, can be summarized as follows: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

During the observation period T, collect the 

values of the parameters required for 

computations {i.e., the branching frequencies to 

different service centres for different classes 

of jobs; the average service rates of different 

centres and the mean number of jobs in the system 

for each class). 

From the measured parameter values compute their 

expected values for the next interval using 

exponential smoothing. 

Solve the system of non-linear equations (2.1) 

through {2.4), (3.1) and (4.4) simultaneously. 

For each class i, maintain the number of jobs in 

the subsystem to be s(i)* (if possible) during 

the next observation period. 

5. Simulation Results 

To compare the performance of the proposed 

macro-scheduler with some of the existing schemes 

(specifically the 50%, L=S and Knee criteria) and to see 

how it works when some of the assumptions used in its 
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derjvation are not satisfied, a simulator was built. For 

example the jobs that drive the simulator are not 

identical, and their characteristics may change from time 

to time. Also it may not be possible to maintain the 

computed degree of multiprogramming during every 

observation interval and the job flow balance might not be 

satisfied during every observation interval. 

of the simulator see [24). 

Our previous single-class (though batch 

jobs are treated differently, the model 

characteristics to be identical) model 

For details 

and terminal 

assumes their 

(SELF [1 ]) 

represents the worst case performance of MULTI-SELF. It 

can be considered as the case when job classification is 

completely random. We first compare SELF with the three 

above mentioned load control criteria and then SELF is 

compared with MULTI-SELF. The overhead involved and the 

error introduced by the assumptions used in the formulation 

and solution of the model are briefly discussed. 

Since simulation runs are expensive, the runs were 

made as short as possible. Runs of 120 simulated seconds 

were made. It was found that the mean response time 

stabilized around 120 seconds and approximately 200 jobs 

were processed in that interval. A control decision is 

made every 3 seconds. 
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The performance of the 50% criterion and the L=S 

criterion depends upon certain parameter values which are 

functions of the system load. For example, in the L=S 

criterion, we must find a constant~ and use L=~S. The 

best value of ~ depends upon the job characteristics. In 

our experiments, a best value of~ was obtained for each 

different workload that was run. Some of the results 

obtained are presented in Tables 5.1 through 5.3. The 

parameters for the workload corresponding to these results 

are given in Appendix B. 

SELF 50% %IMP .z. L=S %IMP 
RESP. RESP. OVER RESP. OVER 
TIME TIME 50% TIME L=S 
(SEC) (SEC) (SEC) 

TERMINAL 0.5409 0.5531 2.25 0.5444 0.64 

BATCH 0.8901 0.9600 7.85 0.9574 7.56 

SYSTEM 0.6552 0.6785 3.58 0.6724 2.62 

Table 5.1 Comparison of the performance of SELF, 

:. 1i 1mpr. 

Wand L=S criteria in terms of mean response 
time. The workload is defined in Table !•l 

= (50%Resp. time - SELF Resp. time) * 100 
SELF Resp. Time 



SELF 50% %IMP .2 L=S %IMP 
RESP. RESP. OVER RESP. OVER 
TIME TIME 50% TIME L=S 
(SEC) (SEC) (SEC) 

TERMINAL 0.6111 0.8262 35.19 0.8404 37.52 

BATCH 1.5418 2.2729 47.41 2.0050 30.04 

SYSTEM 0.9531 1.3586 42.54 1.2684 33.08 

Table 5.2 Comparison of~ ~erformance of SELF, 
Wand L=S criteria in terms£!_ ™!l response 
time. The workload is defined in Table~-£· 

SELF 50% %IMP.~ L=S %IMP. 
RESP. RESP. OVER RESP. OVER 
TIME TIME 50% TIME L=S 
(SEC) (SEC) (SEC) 

TERMINAL 1. 9096 2.7638 44.73 2.6061 36.47 

BATCH 3.8750 4.9179 26.91 4.4218 1 4 • 1 1 

SYSTEM 2.5218 3.4243 35.78 3.1707 25.73 

Table 5.3 Comparison of the ~erformance of SELF, 
50% and L=S criteria in terms£! mean response 
time. The workload is defined in Table B.3 

21 

It is observed that the larger the workload variation, 

the better is the performance of SELF relative to the other 

two schemes. This demonstrates the robustness and adaptive 

nature of SELF under varying workload. Under light 

~vrkload all the schemes give approximately the same 

-esults as no control is required (see for example Table 
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5 • 1 } • 

Although the Knee criterion is better than the 50% and 

the L=S criteria, it is expensive to be implemented in 

practice [9]. However, since the workload of the simulator 

is distribution-driven and the life-time function is given 

by equation (5.1) [22] (where band care constants and p 

is the average number of page allocated to each job), it is 

possible to simulate the Knee criterion without excessive 

overhead. 

L = 2b ( 5 • , ) 
+ (c/p)2 

The Knee criterion requires each job to run at the knee of 

its life-time function, i.e., the point where the curve 

between the mean life-time of a process and its memory 

allocation has maximum slope. It can be shown that if the 

life-time function is simulated using equation (5.1) then 

this maximum slope is attained when p = 2c which is 

independent of the parameter b. Therefore if equation 

(5.1) is used to simulate the life-time, by suitably 

choosing the value of band cone can create a best or 

worst case workload for the Knee criterion without 

' significantly affecting the performance of the other 

criteria. After selecting a combination of parameters to 

favour the Knee criterion, the results shown in Table (5.4) 

were obtained. 
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SELF 50% %IMP. L=S %IMP. KNEE 
RESP. RESP. OVER RESP. OVER RESP. 
TIME TIME 50% TIME L=S TIME 
(SEC) (SEC) (SEC) (SEC) 

TERMINAL 2.2405 3.2066 4 3. 1 1 3.1424 40.25 2.8461 

BATCH 4.2405 5.0555 18.29 4.6618 9.94 4.3399 

SYSTEM 2.8448 3.7727 32.62 3.6112 26.94 3.3070 

. 

Table 5.4 Comparison of the performance of SELF, 
50%, L=S and Knee criteria in terms of mean 
response time-:---ifhe workloadis descrfbecf7:"n 
Table B.4. 

We observe that the knee criterion is better than the 50% 

and L=S criteria but not as good as SELF under the 

considered workload. 

The overhead involved in the implementation of SELF 

consist of two different components. 

(a) Overhead involved in collecting the data during 

the observation intervals. 

(b) Overhead involved in the computation of the 

control number. 

The overhead (a) depends upon the system configuration 

(e.g., number of I/0 units etc.,) and job characteristics 

(e.g., total CPU requirement, number of I/0 requests 

%IMP. 
OVER 
KNEE 

27.02 

2.34 

16.24 



24 

etc~,). The overhead in (b) depends only upon the system 

configuration. The overhead (a) for the system and the 

workload considered in the above examples is estimated to 

be approximately 0.125% of CPU time on an Amdhal 470 V/8 

system. The percentage is computed as follows: 

% CPU Time= Computation Time * 100 
Interval Length 

The overhead (b) is estimated to be approximately 0.04% of 

CPU time. Therefore, the total overhead for SELF is 

approximately 0.165%. This level is acceptable. 

We now compare SELF with MULTI-SELF. We use 

multi-class control to handle four different classes of 

jobs in our next examples. The small number is chosen in 

order to keep the simulation cost reasonable. MULTI-SELF 

can theoretically handle any number of classes. The jobs 

in the first two classes are short jobs with high 

priorities and can be considered as terminal jobs. The 

jobs in the other two classes are longer jobs with low 

priorities and can be considered as batch jobs. 

The mean response times of the four different classes 

of jobs under SELF and MULTI-SELF is shown in Table 5.5. 



SELF MULTI %IMP 
RESP. SELF OVER 

CLASS WEIGHT TIME RESP. SELF 
TIME 

(SEC) (SEC) 

1 2.5 0.4329 0.3000 30.70 

2 2.0 0.4483 0.3191 28.82 

3 1 • 5 2.0155 1.9418 3.66 

4 1. 0 4.4868 4.2737 4.75 

Table 5.5 Comparison of the performance of SELF 

and MULTI - SELF with static beta in terms -- ------ --- ---- --- --
of ™.!2 response time. The workload is 

defined in Table B.5. 
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It is observed that there is a considerable 

improvement in the response times of short jobs with high 

priorities, whereas only marginal improvement is observed 

for longer jobs with low priorities. This improvement is 

achieved at the expense of additional overhead. The total 

overhead of MULTI-SELF for this configuration of the system 

and the selected workload is approximately 4.32% of CPU 

time compared to 0.165% for SELF. 

In the implementation of SELF and MULTI-SELF in the 

above example, the values of J (in equation (4.5)) are 
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computed only once for each parameter and then these 

constant values are used throughout the experiment. One 

can improve the performance of these schemes by dynamically 

computing the values of - at each interval using equation 

(4.9), thus reducing the error in the estimation of the 

values of the workload parameters. 

STATIC DYM. %IMP. 
CLASS WEIGHT BETA BETA OVER 

RESP. RESP. STATIC 
TIME TIME BETA 
(SEC) (SEC) 

1 2.5 0.4329 0.3564 21.44 

2 2.0 0.4483 0.3057 46.64 

3 ,. 5 2.0155 1. 8350 09.83 

4 ,. 0 4.4868 4.1917 07.04 

Table 5.6 Mean response time of jobs under 

SELF with static and dynamic beta. 

The workload is defined in Table B.5. 



STATIC DYM. %IMP. 
CLASS WEIGHT BETA BETA OVER 

RESP. RESP. STATIC 
TIME TIME BETA 
(SEC) (SEC) 

1 2.5 0.3000 0.2875 4. 1 7 

2 2.0 0.3191 0.2998 6.05 

3 ,. 5 1.9418 1 • 8029 7. 1 5 

4 1.0 4.2737 4.1322 3.31 

Table 5.7 Mean response times of jobs under 

MULTI-SELF with static and dynamic beta. 

The workload is defined in Table B.5. 

From Tables 5.6 and 5.7, it is observed 

dynamically varying II is more beneficial to SELF 

MULTI-SELF. This is probably due to the fact 

variation of job characteristics within a class is 

compared to that of the total workload and far 

predictable. Thus static II is often adequate in 
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that 

than 

that 

small 

more 

the 

multiclass case. As a result, the improvement in 

performance of MULTI-SELF over SELF in the case of dynamic 

11 is small, averaging only 9% using workload B.5. 

The overhead involved in the case of SELF with dynamic 

computation of the values of II is approximately 12.40% of 

CPU time whereas in the case of MULTI-SELF it is 
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approximately 45.69%. Therefore we can conclude that it is 

not worthwhile to dynamically compute the values of ,, at 

least in the case of MULTI-SELF. In the case of SELF, it 

seems better to implement MULTI-SELF with constant value of 

, rather than SELF with dynamic values of,. 

The above observations were made on the basis of a few 

experiments. This is due to the high cost of simulation. 

However, the workload was carefully selected to reflect the 

worst case for MULTI-SELF. It is expected that the 

performance of the scheme will vary with different 

workloads but the order of magnitude will not differ 

significantly. 

5.4 Error analysis 

In this section we outline some of the most important 

assumptions made in order to make the models mathematically 

tractable and the control scheme practically feasible. We 

also analyze the error introduced because of these 

assumptions. 

Assumption 1. Identical jobs 

SELF assumes that all the jobs are identical in their 

resource demands, whereas MULTI-SELF assumes that the jobs 

within each class are identical. In an actual system, job 



characteristics may 

selected to drive 

vary 

the 

widely. 
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The synthetic workload 

assumption. Not only 

simulator does not make this 

do different jobs have different 

characteristics, but their characteristics also change from 

time to time. The extent of the improvement obtained by 

classifying jobs into four classes can be seen in Table 

5.5. Schonbach [17) suggested a way of reducing this error 

by creating an independent class for each job. This may 

solve the problem to a certain extent but the overhead 

involved will also increase considerably. 

Assumption 2. Estimation of Parameters 

Both SELF and MULTI-SELF estimate the values of 

parameters on the basis of their past values. In order to 

reduce the error in the estimation we have used the 

simplest method of exponential smoothing. This error can 

be further reduced by dynamically computing the values of J 

in the exponential smoothing. Although dynamic computation 

of, does not require more than a maximum of 10 previous 

values (i.e., insignificant storage requrement) the 

computation?l overhead is quite high. Moreover, it is 

observed that the improvement achieved by using dynamic J 

is marginal in the case of MULTI-SELF. A compromise is to 

recompute the value of J after large intervals of time. 

Table 5.8 shows the percentage error involved in the 

prediction of one of the system parameters without 
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smoothing, with static 

smoothing. 

smoothing and with dynamic 

% ERROR RESP. TIME %IMP. 
(SEC) 

NO SMOOTHING 50.5 6.2271 --
STATIC 12. 6 4.4868 38.78 

SMOOTHING 

DYNAMIC 04.4 4.1917 48.55 
SMOOTHING 

Table 5.8 %Error and %Improvement in mean response 

time under static, dynamic and no smoothing 

The improvements in both cases are significant over no 

smoothing. But there is not much improvement in the case 

of dynamic smoothing over static smoothing. 

Assumption 3. Constant Degree of Multiprogramming 

It may not be possible to maintain the degree of 

multiprogramming at the computed level. For example, 

during certain intervals the load could be very light 

{i.e., very few jobs) at the beginning followed by a sudden 

burst of jobs. Under such circumstances, the number of 

jobs in the system will be initially below the computed 

number and then, because of the control, it will never 
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exceed the control number. As a result, the mean number of 

jobs in the multiprogramming subsystem after the time 

interval will ·be less than the desired control number. 

This problem can be solved to a certain extent by comparing 

the control number with the mean number of current jobs in 

the system rather than the actual number of current jobs in 

the system. An improvement of approximately 12% in 

response time was observed by making this modification. 

Assumption 4. Job Flow Balance 

Operational analysis requires the job flow to be 

balanced at every service centre in the system. It is 

found that in the simulated system this is satisfied almost 

95% of the time. Whenever it is not satisfied (i.e., the 

number of arrivals at a centre in an interval is not equal 

to the number of departures) the error 3 is never more than 

2%. (3 seconds interval were used in our experiments). 

Conclusion 

We have presented a macro-scheduler which determines 

the number of jobs from each job class that should be 

activated in each interval to minimize a weighted sum of 

the mean system residence time without saturating the 

3 %Error= !no. arrival - no. departure 
no. Departure 

* 1 00 
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system. The macro-scheduler is based on mathematical 

modelling and the solution is obtained through the use of 

operational analysis and optimization theory. Exponential 

smoothing technique is employed to reduce the error of 

estimating the values of the parameters. The analyst may 

determine the service given to each class of jobs by 

adjusting their associated weights. Our simulation results 

show the scheme to be robust and its performance is 

superior to some existing schemes. The overhead involved 

is acceptable if~ is not varied dynamically. 
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Appendix~ 

Derivation of the saturation load for a single class model 

Let S 1 , S2 , ••• , SM be the M service centres as shown 

in Figure 2. S 1 is the CPU, S2 is the paging device and 

S 3 , ••• , S"' are the various I/0 units. 

The following are observed quantities from the system. 

They are mean values within an observation period and as 

such are functions of time which is omitted for clarity. 

T observation period 

x; observed number of completions at centre 

s; during T 

Bi : the total amount of time during which the 

service centres; is busy during T 

c; observed number of requests for centre 

s; during T 

q; request frequency, the fraction of jobs 

proceeding to service centres; after 

completing a service request at the 

CPU(= c;/x,), i¢1. 
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We now compute the following operational quantities. 

Mean service rate of server Si = ,,, = Xi/Bi 

System throughput rate T = (X, • q,) / T 

= ( X , /B 1 ) ( B 1 /T ) 

Utilization of server Si = Pi = Bi / T 

q, 

(A. 1 ) 

= (Bi/Xi)(x;/x,)(X,/B,}(B,/T) 

Using the job flow balance assumption Xi = c; i¢1 

(i.e., the number of requests for service at centre Si 

during an interval is equal to the number of departures 

from the centre) we obtain: 

pi = p, . (,,,;,,;) q ;· ; i¢1 (A. 2) 

M M 
=> r p; = p , + r p, (,,,;,,;) q; 

i=1 i=2 

If there is one and only one job in the system it can 

be present at only one service centre. Therefore 

M 
t Pi = 

i=1 

Which implies that the CPU utilization with exactly one job 

in the system is given by: 
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(A. 3) 

Using Little's Law, the mean response time of the 

system with N jobs is given by: 

R(N) = N / T 

Using (A. 1 ) 

R(N) = N/(~,q,p,) 

= N qj/(~,p;q;) i ¢ 1 (A. 4) 

From (A. 3) 

[ 
M ,] R ( 1 ) = (1/~,q,) r <~,1~;> q; + (A. 5) 

i=1 

The equation of the asymptote (i.e., as N approaches 

infinity) is more difficult to derive. Let us first 

consider the simple case of a non-paging system. The 

asymptote occurs at the point when the utilization of a 

service centre (i* say) reaches unity (i.e., it becomes the 

first bottleneck of the system). 

From Buzen's analysis, i* is that service centre which 

has the highest utilization in the interval (note that i* 

may vary from interval to interval as the workload 

characteristics change). If the CPU is the bottleneck, the 

equation of the asymptote is simply: 
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(A.6) 

Otherwise, using equation (A.4) and noting that ~1 as well 

as the ratio (q;/g 1 ) remains unchanged as N increases, the 

equation of the asymptote is given by: 

i* ¢ 1 (A.7) 

For a paging system the eventual bottleneck as N approachs 

infinity must be the paging device. It need not however, 

be the first device to be saturated. 

Case(i) The paging device is not the first to saturate. 

In this case, as the system is saturated before the 

paging device is fully utilized, the asymptote should be 

computed based on the first device to reach saturation. 

Therefore equation (A.7) is still valid (see Figure A.1) 



Case(ii) 

R 

l 

- -, 
N* 

I 
I 

' 

, 
, , , 

->N 

Figure A.1 System Bottleneck 

The paging device is first to saturate 
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The ratio g;*/g, will continue to increase as N increases 

and will approach infinity. A realistic approach consistent 

with the one used in Case(i) is to use the values of g;*/g, 

corresponding to the point the paging device first gets fully 

utilized. However, this ratio is not easy to estimate. The 

observed values of g;*/g, can be used if the system is close to 

saturation (i.e., N* ~ N, see below). Otherwise the saturation 

load will be under-estimated. This is not a problem when the 

system is lightly loaded. As can be seen subsequently, when the 

system workload becomes heavy, the control policy will adjust 

itself- and the observed ratio will eventually reach the desired 

value. Thus the saturation load N* i.e., the point of 

intersection of equations (A.5) and (A.6} is given by: 



M 
N* = 1 + r {~,/~;) qj 

i=2 
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{A. 8) 

if the CPU is the bottleneck. Otherwise it is given by 

equation (A.9) as the point of intersection of {A.5) and 

(A.7): 

(A. 9) 

Thus we have equations (A.8) and {A.9) as estimates of 

the system saturation point under the assumptions made 

earlier. Both equations (A.8) and (A.9) can also be 

derived using classical queueing theory with exponential 

distributions of service times. 
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Appendix~ · Workload for the simulation runs 

SYSTEM/ JOB 
CHARACTERISTICS TERMINAL 

ARR. RATE(/SEC.) 3.5 
DELTA ARR. RATE*(/SEC) 0.50 
I/O REQU. RATE(/SEC.) 250 
DELTA I/O REQU. RATE** 50 
EXIT PROBABILITY 0.90 
I/O SERVICE RATE(/SEC) 30 
PAGE SERV. RATE(/SEC) 100 
QUANTUM LENGTH(SEC) 0. 0 1 
B ( EQU 5. 1 ) 0. 0 1 
C ( EQU 5. 1 ) 120 
MAIN MEMORY (PAGES) 500 
OBSERVATION INTERVAL 3 
LENGTH (SEC) 
DELTA ARR. PERIOD(SEC) , 2 
DELTA CHARACTERISTIC 3 
PERIOD++ (SEC) 

TABLE B.1 WORKLOAD FOR TABLE 5.1 

SYSTEM/ JOB 
CHARACTERISTICS TERMINAL 

ARR. RATEl/SEC.) 4.5 
DELTA ARR. RATE*(/SEC) 1. 50 
I/O REQU. RATE(/SEC.) 250 
DELTA I/O REQU. RATE** 50 
EXIT PROBABILITY 0.87 
DELTA EXIT PROB.*** 0.05 
I/O SERVICE RATE(/SEC) 30 
PAGE SERV. RATE(SEC) 100 
QUANTUM LENGTH(SEC) 0.01 
B (EQU 5. 1) 0.01 
C ( EQU 5. 1 ) 120 
MAIN MEMORY (PAGES) 500 
OBSERVATION INTERVAL 3 
LENGTH (SEC) 
DELTA ARR. PERIOD(SEC) 1 2 
DELTA CHARACTERISTIC 3 
PERIOD++ (SEC) 

TABLE B.2 WORKLOAD FOR TABLE 

* Variation in arrival rate. 
** u=!"iation in I/O request rate (in /sec). 
*** Variation in exit probability. 
+ Perod of variation in arrival rate. 
++ Period of variation in job characteristics. 

5.2 

BATCH 

1 . 5 0 
0.00 

50 
1 0 

0.90 
30 

100 
0.01 
0.01 

120 
500 

3 

1 2 
3 

BATCH 

2.50 
0.50 

50 
1 0 

0.87 
0.05 

30 
100 
0.01 
0.01 

120 
500 

3 

1 2 
3 



SYSTEM/ JOB 
CHARACTERISTICS 

ARR. RATE( / SEC.J 
DELTA ARR. RATE*(/SEC) 
I/O REQU. RATE(/SEC.) 
DELTA I/O REQU. RATE** 
EXIT PROBABILITY 
DELTA EXIT PROB.*** 
I/O SERVICE RATE(/SEC) 
PAGE SERV. RATE(/SEC} 
QUANTUM LENGTH(SEC} 
B (EQU 5.1} 
C (EQU 5.1} 
MAIN MEMORY (PAGES} 
OBSERVATION INTERVAL 
LENGTH (SEC} 
DELTA ARR. PERIOD(SEC) 
DELTA CHARACTERISTIC 
PERIOD++ (SEC) 

TERMINAL 

4.00 
1 . 50 
250 

50 
0 •• 8 7 
0.05 

30 
100 
0. 0 1 
0 • 0 1 

120 
500 

3 

1 2 
3 

TABLE B.3 WORKLOAD FOR TABLE 5.3 

SYSTEM 7 JOB 
CHARACTERISTICS TERMINAL 

ARR. RATE(/SEC.) 5.0 
DELTA ARR. RATE*(/SEC} 2.50 
I/O REQU. RATE(/SEC.) 250 
DELTA I/O REQU. RATE** 100 
EXIT PROBABILITY 0.90 
DELTA EXIT PROB.*** 0. 1 0 
I/O SERVICE RATE(/SEC) 30 
PAGE SERV. RATE(/SEC) 100 
QUANTUM LENGTH(SEC} 0.01 
B (EQU 5.1) 0 . 0 1 
C ( EQU 5. 1 ) 120 
MAIN MEMORY (PAGES) 500 
OBSERVATION INTERVAL 3 
LENGTH (SEC) 
DELTA ARR. PERIOD(SEC) 1 2 
DELTA CHARACTERISTIC 3 
PERIOD++ (SEC) 

TABLE B.4 WORKLOAD FOR TABLE 5.4 

BATCH 

2. 00 
0.50 

50 
1 0 

0.87 
0.05 

30 
100 
0 . 0 1 
0. 0 1 

120 
500 

3 

1 2 
3 

BATCH 

2.5 
1.50 

50 
20 

0.90 
0. 1 0 

30 
100 
0.01 
0.01 

120 
500 

3 

1 2 
3 
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SYSTEM / JOB 
CHARACTERISTICS CLASS 1 CLASS 2 CLASS 3 CLASS 4 

ARR, RATE{/SEC.) 2,75 2. 25 1 • 7 5 1 • 2 5 
DELTA ARR. RATE*(/SEC) 0.50 0.50 0.50 0.50 
I/0 REQU. RATE(/SEC.) 250 200 75 50 
DELTA I/0 REQU, RATE** 50 50 1 0 1 0 
EXIT PROBABILITY 0.78 0.80 0.90 0.92 
DELTA EXIT PROB.*** 0.05 0.05 0.05 0.05 
I/0 SERVICE RATE(/SEC) 30 30 30 30 
PAGE SERV, RATE(/SEC) 100 100 100 100 
QUANTUM LENGTH(SEC) 0. 0 1 0. 0 1 0. 0 1 0 • 0 1 
B ( EQU 5. 1 ) 0.01 0. 0 1 0.01 0. 0 1 

. C ( EQU 5. 1 ) 120 120 120 120 
MAIN MEMORY (PAGES) 500 500 500 500 
OBSERVATION INTERVAL 3 3 3 3 
LENGTH (SEC) 
DELTA ARR. PERIOD(SEC) 1 2 1 2 1 2 1 2 
DELTA CHARACTERISTIC 3 3 3 3 
PERIOD++ (SEC) 

TABLE B.4 WORKLOAD FOR TABLE 5.5 THROUGH TABLE 5.7 


