
OPTIMAL MACRO-SCHEDULING

by

Samuel T. Chanson and Prem S. Sinha

Index Terms:

TECHNICAL REPORT 81-11

Department of Computer Science,
University of British Columbia,

Vancouver, B.C., Canada V6T-1WS.

August 1981.

Load control, system saturation, degree of
multiprogramming, operational analysis, queueing network
models, workload, optimization theory.

2

Abstract

A multi-class macro-scheduler is described in this

paper. The scheduler periodically determines the number of

jobs from each class that should be activated to minimize a

weighted sum of the mean

saturating the system.

system residence time without

The computati~n is based on the

estimated system workload in the next interval. Thus it is

adaptive to workload variation. The service provided to

each class (specifically, the mean response time) may be

adjusted by changing the weight associated with the job

class.

The scheme is based on mathematical modelling. The

solution is obtained through the use of operational

analysis method and optimization theory. Exponential

smoothing technique is employed to reduce the error of

estimating the value of the model parameters. From our

simulation results, the scheme appears to be both stable

and robust. Performance improvement over some of the

existing schemes (the 50%, L=S and the Knee criteria) is

significant under some workloads. The overhead involved in

its implementalior is acceptable and the error due to some

of the assumptions used in the formulation and solution of

the model are discussed.

3

1. Introduction

One of the principle ideas behind multiprogramming is

to make more effective use of the system resources, many of

which can be simultaneously utilized. However, in order to

avoid excessive interactions among the competing jobs,

which will result in general degradation of system

performance, the number and composition of jobs in the

multiprogramming set should be carefully controlled. This

is the function of the load control policy.

Load control policies are typically built around

maintaining two sets of queues, often called the eligible

queues and the multiprogramming queues. Jobs in the

eligible queues must wait until the control policy decides

(depending upon the system state or some other criteria) to

move them to the multiprogramming queues. Only jobs in the

multiprogramming queues are allowed to actively share the

system's resources.

The term macro-scheduling as used in this paper refers

to the policy that determines which jobs may migrate from

the eligible queues to the multiprogramming queues. The

sequencing of jobs in the multiprogramming set to be

allocated the CPU is often called micro-scheduling. The

former scheduling policy has far greater effect on global

system performance and is the subject of discussion in this

4

pap~r.

There are two parts to macro-scheduling which are

mutually dependent on one another:

i) the determination of the optimal number of jobs

in the multiprogramming set (optimal degree of

multiprogramming) and,

ii) the composition of the jobs in the set to

optimize some performance criteria.

It has been shown that for paged virtual memory

system~, an optimal degree of multiprogramming exists which

maximizes the system throughput rate (see for example [3]).

This point is often reached just before the system

saturates. Hence

macro-schedulers is to

point [1 ,15).

an integral

estimate the

function

system's

of many

saturation

Considerable amount of work has been done on

macro-scheduling (see for example [1-13]). Most of these,

however, deal with part i) above only. Typically they work

by regulating the load to keep some measures related to

program behaviour (usually the paging behaviour) to within

some predetermined bounds. Generally the bounds are set

according to some heuristics to hopefully allow the highest

possible load without saturating the system. The 50%

5

criterion [4] for example, aims at maintaining the

utilization of the paging device to around 0.5. The L=S

criterion [13] proposes to keep the system li f e-time to

approximately that of the page swap time. The Knee

criterion ([4],[9]) suggests that the mean resident set of

each process should be maintained at the value associated

with the primary knee 1 of its life-time function, where

life-time is defined to be the virtual time between two

successive page faults [4].

Queueing theory is the most prevalent mathematical

tool used in the analysis of computer systems. It

basically gives steady-state results. Thus queueing theory

may be useful in system design (see for example [25]) and

other problems but is not directly suitable to the dynamic

control of computer systems. As a result, most work in the

past resorted to heuristic applications of

control-theoretics. There are a few exceptions.

Chanson and Lo [16] for example, describes a load

control policy using stochastic control theory. The policy

is shown to give optimal results. The main weakness of the

scheme is that its implementation requires the job

parameter values to be known. It also makes the usual

queueing theory assumptions, such as exponential

1 The point where the curve between the system life-time and the
number of active jobs has maximum slope.

6

interarrival and service time distributions which may not

be satisfied in practice.

Schonbach [17] too describes a macro scheduler based

on mathematical modelling for high productivity. It is

assumed that the "system balance" point is already

specified. Here, system balance is a state in which the

various processor utilizations are at some prespecified

levels. The macro-scheduler then chooses, among the

waiting jobs, a job-mix which maintains system balance.

The scheme does not include external priorities and is

applicable only to non-paged systems.

Most large scale virtual memory systems nowadays

support both batch and interactive jobs. For such systems,

one is interested not only to maximize the system

throughput rate but also to guarantee good response times

to the interactive users (possibly at the expense of the

batch turnaround times). Landwehr [5] proposed a scheme to

activate batch jobs based on the terminal load. The aim

was to maintain good response to interactve requests by

activating less batch jobs when the terminal load is heavy

while ensuring a minimal level of batch throughput. There

was, however, no attempt to prevent the system from

becoming saturated or to optimize performance. Hine et al.

[1 4] studied the problem from a slightly different

viewpoint. Their goal was to provide different response

I

l

I

!

-,

7

times to each class of jobs (batch and interactive} while

maximizing the CPU utilization. They employed a

mathematical model but optimization was achieved using an

exhaustive search technique. A heuristic was also given

which gives good but not necessarily optimal results.

In this paper, we describe an adaptive macro-scheduler

which is based on the application of optimization theory on

a multi-job-class model of multiprogrammed computer

systems. The system model is solved using operational

analysis [1 8] • The scheduler computes the optimal number

of jobs from each class that should be activated to

minimize a weighted sum of the mean system residence time

(including the wait time in the eligible queues} without

saturating the system. The weights can be adjusted to

favour some classes of jobs (whose mean response times will

decrease} at the expense of the jobs in the other classes.

The scheme is applicable to pure interactive, combined

batch/interactive systems as well as non-virtual memory

systems. Its performance is compared to some existing

schemes.

2. The Model and Notations

The model used is giv~n in Figure with the

multiprogramming subsystem being represented by the popular

central-server model [19].

I

Class 1

Class 2

.
Class K

Control

System

Multiprogramming Subsystem

q
0

g
2

g
3

g
M

Figure 1. System Model

8

In this analysis, it is assumed that the jobs do not

change class during their stay in the system. Mor?.over, it

is assumed that when a job arrives at the system it is

possible to classify it into one of the job classes. An

g
1

Y.IT

9

exa~ple of a primitive method of job classification is to

compute the job class based on the job card parameters for

batch jobs (e.g., CPU time limit, user given job priority,

user IDs etc.) and on the command type for terminal jobs

(e.g., edit, compile, copy, etc.,). However, it is not

assumed that the resource demands of a job in a particular

class are known. The resource demands of various classes

of jobs are continuously being measured, thereby preserving

the dynamic nature of the control. The error introduced by

job classification is discussed in the next section.

The following notations are used:

K

M

s (j)

s*(j)

N

n(i,j,N)

. .

total number of job classes,

total number of service centres,

number of class j jobs in the

multiprogramming subsystem,

optimal number of class j jobs in the

multiprogramming subsystem (to be

computed),

the system state vector

(s(l}, s(2), ••• , s(K)),

number of class j jobs at the

centre i for a given system state~,

total number of jobs at the centre i

for a given system state~,

A (j)

w(i,j)

R (j)

d(i,j)

s (j)

" 1

q(i,j)

qi (N)

C(j)

throughput rate of class j jobs from

the multiprogramming subsystem,

: mean time a class j job spends at

service centre i during its stay in the

multiprogramming subsystem (including

queue wait and service times),

mean time spent in the multiprogramming

subsystem by class j jobs,

mean total service demand of class j

jobs at service centre i,

mean total number of class j jobs in

the system,

mean service rate of service centre i,

normalized frequency of requests for

centre i by class j jobs (i.e., the

ratio of class j jobs joining the centre

i after being serviced by the CPU to

the total number of class j job

completions at the CPU),

normalized frequency of requests for

centre i (i.e., the ratio of jobs

joining centre i after being serviced

by the CPU to the total number of

completions at the CPU),

weight for class j jobs.

It can be easly shown that g 1(~) is given by :

1 0

I·
I

clearly

K
qi (N) = r n(1,j,!) q(i,j) / n 1 (!).

j=1

M
t q;(N) =

i=1

M
r q(i,j) = 1 and

i=1

R
r n(1,j,N) = n,(!)

j=1 -

1 1

(2. 1)

We shall follow Reiser and Lavenberg's method (see

[20) for details) to compute n(i,j,!) by solving the

following set of non-linear equations iteratively until the

error is acceptably small:

R
w(i,j) = d(i,j) (1 + n; - r E(r,j,i,!))

R
= s(j) / r w(i,j)

i=l

n(i,j) = >..(j) w(i,j)

r=l

where E(r,j,i,N) is a correction term given by

,(r,j,i,!) = n'(i,j,!) - n'(i,j,!'),

= 0, otherwise.

r = i

(2.2)

(2 . 3)

(2 • 4)

n' (i,j,!) has the same definition as n(i,j,!) except that

the system has modified parameters for the traffic

intensities (see equation (4.8) in [20)) and N' is the same

as N except that the number of class j jobs in the system

, 2

is one less than that in N.

Once the n(i,j,~)'s are known for a given~, one can

compute q;(N) from equation (2.1).

We first compute the saturation load of the system.

3. Estimation of System Saturation

Definitions of system saturation have been proposed

[18,21]. Invariably the system is considered saturated at

the point the response time vs system load curve starts to

rise rapidly. Kleinrock [21], for example, using the

number of active terminals as the load, defined the

system's saturation point to correspond to the intersection

of the mean normalized response time curve asymptote and

the horizontal line corresponding to the minimum response

time (i.e., when there is only one active terminal). (See

Figure 2). If a system is not allowed to get saturated

according to this definition, the mean response time of the

active jobs will not exceed an acceptable level. However,

the implicit assumption is that the program population

considered is both homogeneous and stationary. Our

approach is to compute the system saturation load at small

intervals (such as a few seconds) during which the

stationary assumption is justified. The homogeneous

assumption is discussed below.

a

Mean Response Time

,
I

---------t--
1
I
I
I

1 3

Saturation Load N*

No. of Active Terminals

Figure 2. Mean Resoonse Time~- The

Number of Active Terminals.

In a previous paper, we derived the saturation load of

uniclass model SELF (.§_aturation Estimation and

Load-control with [eed-back) [1]. Fellowing similar

arguments (see Appendix A) it can be shown that the

saturation vector N* of the multi-class model is given by

the relation

where l!i*I
K

M
I

i=2
(3. 1)

= I s(j)*, g,*(N}=l and i* is the device with
j=1

1 4

the highest utilization in the observation period.

Notice that N* is no longer a single number as in the

case of the single class model. Rather it is a vector and

there can be several vectors satisfying condition (3.1).

This is why we need to use optimization techniques to

select the optimal value of N*.

4. Optimization

The next task is to compute the number of jobs in each

class which optimizes some performance indices such that

the sum total is less than or equal to l~*I. An obvious

choice of performance index is the system throughput rate.

However, this does not allow the inclusion of job

priorities easily. Furthermore, it usually leads to a

dynamic programming problem which in turn requires high

computational overhead. Instead, we have chosen to

minimize a weighted sum of the mean time spent by the jobs

in the system (including the wait time in the eligible

queues) subject to the constraint that the system is not

saturated.

The mean system residence time of a class j job, Wj,

is the sum of the times it spends in the eligible queues

and the multiprogramming subsystem.

Wj = R(j) + (S(j)-s(j)) / (s(j)/R(j)), j=1,2, ••• ,K. (4.1)

Thus the optimization problem becomes

K
Mi n [r c (i) (w ;)]

i=1

K
subject to r s(i) s IN*I

i=1

15

Using (4.1) the above optimization problem can be shown to

be equivalent to

Min[.~ C(i) S(i) R(i)/s(i)]
l = 1

R
subject to r s(i) s IN*I

i=l
(4. 2)

Given the C(i)'s and the estimated values of S(i)'s and

R(i)'s, we wish to determine the optimal values of s(i)'s

in the next interval. We shall use the Lagrange multiplier

method to solve the problem (4.2). The lagrangian equation

of the problem is:

K K
L(~,k) = r C(i} S(i)/s(i) + k(r s(i)/IN*I - 1)

i=1 i=l
(4 • 3)

The optimal valuer of s(i)·s are given by:

s(i}* = IN*) /C(i)S(i)R(i), i = 1, 2, ••• , K. (4.4)
K
I: /C(j)S(j)R(j)

j=l

It can be shown that only (K-1} out of K relations in

, 6

(4.4) are linearly independent. However, in order not to

saturate the system, the s(i)'s must satisfy (3.1).

Therefore, there are K unknowns (s(i)'s) in K non-linear

independent equations. A unique solution therefore exists.

M
Note that R(j) = J, w(i,j) whose value is obtained in

the computation of q; (N) in equation (2.2).

As in all feed-back schemes the values of the

parameters are estimated on the basis of their past values.

In order to reduce the error in the estimation, we use a

technique from time-series analysis [23], called

exponential smoothing. The technique is described as

follows. Let Pi be the expected value of the parameter for

the time interval [i, i+1). Let x; be the observed value

of the parameter at time t. Pi can be expressed as

= (1-,i) t ,i:i x;.j
j=O

(4 . 5)

where the exponential weight factor ,i is a constant between

zero and one. Similarly

=>

Pi.,= (1-,i) t ,ij Xi.,:j. 1

j=O

(4. 6)

1 7

Now ~ let the error at time (i-1) in predicting x; be Ei,

then

Ei =Xi-Pi.1 (4.7)

Substituting in equation (4.6)

Pi = Xi - - E i

(4 . 8)

The remaining problem is to find a proper value of ,.

If the error Ei is sufficiently small, equation (4.8)

will be satisfied for almost any value of,, so that we can

use the value of, from the previous interval. If Ei is ,

large, we recompute a value for, by minimizing the sum of

square of errors given by:

(4.9)

In practice, the summation in equation(4.9) does not

have to involve many terms (say J) before,~ approaches

zero (J was found to be around 3 and never greater than 10

in our experiments). Moreover, , need not be very accurate

and standard techniques exist for its efficient

computation.

The multiclass control procedure, which we shall call

1 8

MULTI-SELF, can be summarized as follows:

Step 1.

Step 2.

Step 3.

Step 4.

During the observation period T, collect the

values of the parameters required for

computations {i.e., the branching frequencies to

different service centres for different classes

of jobs; the average service rates of different

centres and the mean number of jobs in the system

for each class).

From the measured parameter values compute their

expected values for the next interval using

exponential smoothing.

Solve the system of non-linear equations (2.1)

through {2.4), (3.1) and (4.4) simultaneously.

For each class i, maintain the number of jobs in

the subsystem to be s(i)* (if possible) during

the next observation period.

5. Simulation Results

To compare the performance of the proposed

macro-scheduler with some of the existing schemes

(specifically the 50%, L=S and Knee criteria) and to see

how it works when some of the assumptions used in its

1 9

derjvation are not satisfied, a simulator was built. For

example the jobs that drive the simulator are not

identical, and their characteristics may change from time

to time. Also it may not be possible to maintain the

computed degree of multiprogramming during every

observation interval and the job flow balance might not be

satisfied during every observation interval.

of the simulator see [24).

Our previous single-class (though batch

jobs are treated differently, the model

characteristics to be identical) model

For details

and terminal

assumes their

(SELF [1])

represents the worst case performance of MULTI-SELF. It

can be considered as the case when job classification is

completely random. We first compare SELF with the three

above mentioned load control criteria and then SELF is

compared with MULTI-SELF. The overhead involved and the

error introduced by the assumptions used in the formulation

and solution of the model are briefly discussed.

Since simulation runs are expensive, the runs were

made as short as possible. Runs of 120 simulated seconds

were made. It was found that the mean response time

stabilized around 120 seconds and approximately 200 jobs

were processed in that interval. A control decision is

made every 3 seconds.

20

The performance of the 50% criterion and the L=S

criterion depends upon certain parameter values which are

functions of the system load. For example, in the L=S

criterion, we must find a constant~ and use L=~S. The

best value of ~ depends upon the job characteristics. In

our experiments, a best value of~ was obtained for each

different workload that was run. Some of the results

obtained are presented in Tables 5.1 through 5.3. The

parameters for the workload corresponding to these results

are given in Appendix B.

SELF 50% %IMP .z. L=S %IMP
RESP. RESP. OVER RESP. OVER
TIME TIME 50% TIME L=S
(SEC) (SEC) (SEC)

TERMINAL 0.5409 0.5531 2.25 0.5444 0.64

BATCH 0.8901 0.9600 7.85 0.9574 7.56

SYSTEM 0.6552 0.6785 3.58 0.6724 2.62

Table 5.1 Comparison of the performance of SELF,

:. 1i 1mpr.

Wand L=S criteria in terms of mean response
time. The workload is defined in Table !•l

= (50%Resp. time - SELF Resp. time) * 100
SELF Resp. Time

SELF 50% %IMP .2 L=S %IMP
RESP. RESP. OVER RESP. OVER
TIME TIME 50% TIME L=S
(SEC) (SEC) (SEC)

TERMINAL 0.6111 0.8262 35.19 0.8404 37.52

BATCH 1.5418 2.2729 47.41 2.0050 30.04

SYSTEM 0.9531 1.3586 42.54 1.2684 33.08

Table 5.2 Comparison of~ ~erformance of SELF,
Wand L=S criteria in terms£!_ ™!l response
time. The workload is defined in Table~-£·

SELF 50% %IMP.~ L=S %IMP.
RESP. RESP. OVER RESP. OVER
TIME TIME 50% TIME L=S
(SEC) (SEC) (SEC)

TERMINAL 1. 9096 2.7638 44.73 2.6061 36.47

BATCH 3.8750 4.9179 26.91 4.4218 1 4 • 1 1

SYSTEM 2.5218 3.4243 35.78 3.1707 25.73

Table 5.3 Comparison of the ~erformance of SELF,
50% and L=S criteria in terms£! mean response
time. The workload is defined in Table B.3

21

It is observed that the larger the workload variation,

the better is the performance of SELF relative to the other

two schemes. This demonstrates the robustness and adaptive

nature of SELF under varying workload. Under light

~vrkload all the schemes give approximately the same

-esults as no control is required (see for example Table

22

5 • 1 } •

Although the Knee criterion is better than the 50% and

the L=S criteria, it is expensive to be implemented in

practice [9]. However, since the workload of the simulator

is distribution-driven and the life-time function is given

by equation (5.1) [22] (where band care constants and p

is the average number of page allocated to each job), it is

possible to simulate the Knee criterion without excessive

overhead.

L = 2b (5 • ,)
+ (c/p)2

The Knee criterion requires each job to run at the knee of

its life-time function, i.e., the point where the curve

between the mean life-time of a process and its memory

allocation has maximum slope. It can be shown that if the

life-time function is simulated using equation (5.1) then

this maximum slope is attained when p = 2c which is

independent of the parameter b. Therefore if equation

(5.1) is used to simulate the life-time, by suitably

choosing the value of band cone can create a best or

worst case workload for the Knee criterion without

' significantly affecting the performance of the other

criteria. After selecting a combination of parameters to

favour the Knee criterion, the results shown in Table (5.4)

were obtained.

23

SELF 50% %IMP. L=S %IMP. KNEE
RESP. RESP. OVER RESP. OVER RESP.
TIME TIME 50% TIME L=S TIME
(SEC) (SEC) (SEC) (SEC)

TERMINAL 2.2405 3.2066 4 3. 1 1 3.1424 40.25 2.8461

BATCH 4.2405 5.0555 18.29 4.6618 9.94 4.3399

SYSTEM 2.8448 3.7727 32.62 3.6112 26.94 3.3070

.

Table 5.4 Comparison of the performance of SELF,
50%, L=S and Knee criteria in terms of mean
response time-:---ifhe workloadis descrfbecf7:"n
Table B.4.

We observe that the knee criterion is better than the 50%

and L=S criteria but not as good as SELF under the

considered workload.

The overhead involved in the implementation of SELF

consist of two different components.

(a) Overhead involved in collecting the data during

the observation intervals.

(b) Overhead involved in the computation of the

control number.

The overhead (a) depends upon the system configuration

(e.g., number of I/0 units etc.,) and job characteristics

(e.g., total CPU requirement, number of I/0 requests

%IMP.
OVER
KNEE

27.02

2.34

16.24

24

etc~,). The overhead in (b) depends only upon the system

configuration. The overhead (a) for the system and the

workload considered in the above examples is estimated to

be approximately 0.125% of CPU time on an Amdhal 470 V/8

system. The percentage is computed as follows:

% CPU Time= Computation Time * 100
Interval Length

The overhead (b) is estimated to be approximately 0.04% of

CPU time. Therefore, the total overhead for SELF is

approximately 0.165%. This level is acceptable.

We now compare SELF with MULTI-SELF. We use

multi-class control to handle four different classes of

jobs in our next examples. The small number is chosen in

order to keep the simulation cost reasonable. MULTI-SELF

can theoretically handle any number of classes. The jobs

in the first two classes are short jobs with high

priorities and can be considered as terminal jobs. The

jobs in the other two classes are longer jobs with low

priorities and can be considered as batch jobs.

The mean response times of the four different classes

of jobs under SELF and MULTI-SELF is shown in Table 5.5.

SELF MULTI %IMP
RESP. SELF OVER

CLASS WEIGHT TIME RESP. SELF
TIME

(SEC) (SEC)

1 2.5 0.4329 0.3000 30.70

2 2.0 0.4483 0.3191 28.82

3 1 • 5 2.0155 1.9418 3.66

4 1. 0 4.4868 4.2737 4.75

Table 5.5 Comparison of the performance of SELF

and MULTI - SELF with static beta in terms -- ------ --- ---- --- --
of ™.!2 response time. The workload is

defined in Table B.5.

25

It is observed that there is a considerable

improvement in the response times of short jobs with high

priorities, whereas only marginal improvement is observed

for longer jobs with low priorities. This improvement is

achieved at the expense of additional overhead. The total

overhead of MULTI-SELF for this configuration of the system

and the selected workload is approximately 4.32% of CPU

time compared to 0.165% for SELF.

In the implementation of SELF and MULTI-SELF in the

above example, the values of J (in equation (4.5)) are

26

computed only once for each parameter and then these

constant values are used throughout the experiment. One

can improve the performance of these schemes by dynamically

computing the values of - at each interval using equation

(4.9), thus reducing the error in the estimation of the

values of the workload parameters.

STATIC DYM. %IMP.
CLASS WEIGHT BETA BETA OVER

RESP. RESP. STATIC
TIME TIME BETA
(SEC) (SEC)

1 2.5 0.4329 0.3564 21.44

2 2.0 0.4483 0.3057 46.64

3 ,. 5 2.0155 1. 8350 09.83

4 ,. 0 4.4868 4.1917 07.04

Table 5.6 Mean response time of jobs under

SELF with static and dynamic beta.

The workload is defined in Table B.5.

STATIC DYM. %IMP.
CLASS WEIGHT BETA BETA OVER

RESP. RESP. STATIC
TIME TIME BETA
(SEC) (SEC)

1 2.5 0.3000 0.2875 4. 1 7

2 2.0 0.3191 0.2998 6.05

3 ,. 5 1.9418 1 • 8029 7. 1 5

4 1.0 4.2737 4.1322 3.31

Table 5.7 Mean response times of jobs under

MULTI-SELF with static and dynamic beta.

The workload is defined in Table B.5.

From Tables 5.6 and 5.7, it is observed

dynamically varying II is more beneficial to SELF

MULTI-SELF. This is probably due to the fact

variation of job characteristics within a class is

compared to that of the total workload and far

predictable. Thus static II is often adequate in

27

that

than

that

small

more

the

multiclass case. As a result, the improvement in

performance of MULTI-SELF over SELF in the case of dynamic

11 is small, averaging only 9% using workload B.5.

The overhead involved in the case of SELF with dynamic

computation of the values of II is approximately 12.40% of

CPU time whereas in the case of MULTI-SELF it is

28

approximately 45.69%. Therefore we can conclude that it is

not worthwhile to dynamically compute the values of ,, at

least in the case of MULTI-SELF. In the case of SELF, it

seems better to implement MULTI-SELF with constant value of

, rather than SELF with dynamic values of,.

The above observations were made on the basis of a few

experiments. This is due to the high cost of simulation.

However, the workload was carefully selected to reflect the

worst case for MULTI-SELF. It is expected that the

performance of the scheme will vary with different

workloads but the order of magnitude will not differ

significantly.

5.4 Error analysis

In this section we outline some of the most important

assumptions made in order to make the models mathematically

tractable and the control scheme practically feasible. We

also analyze the error introduced because of these

assumptions.

Assumption 1. Identical jobs

SELF assumes that all the jobs are identical in their

resource demands, whereas MULTI-SELF assumes that the jobs

within each class are identical. In an actual system, job

characteristics may

selected to drive

vary

the

widely.

29

The synthetic workload

assumption. Not only

simulator does not make this

do different jobs have different

characteristics, but their characteristics also change from

time to time. The extent of the improvement obtained by

classifying jobs into four classes can be seen in Table

5.5. Schonbach [17) suggested a way of reducing this error

by creating an independent class for each job. This may

solve the problem to a certain extent but the overhead

involved will also increase considerably.

Assumption 2. Estimation of Parameters

Both SELF and MULTI-SELF estimate the values of

parameters on the basis of their past values. In order to

reduce the error in the estimation we have used the

simplest method of exponential smoothing. This error can

be further reduced by dynamically computing the values of J

in the exponential smoothing. Although dynamic computation

of, does not require more than a maximum of 10 previous

values (i.e., insignificant storage requrement) the

computation?l overhead is quite high. Moreover, it is

observed that the improvement achieved by using dynamic J

is marginal in the case of MULTI-SELF. A compromise is to

recompute the value of J after large intervals of time.

Table 5.8 shows the percentage error involved in the

prediction of one of the system parameters without

30

smoothing, with static

smoothing.

smoothing and with dynamic

% ERROR RESP. TIME %IMP.
(SEC)

NO SMOOTHING 50.5 6.2271 --
STATIC 12. 6 4.4868 38.78

SMOOTHING

DYNAMIC 04.4 4.1917 48.55
SMOOTHING

Table 5.8 %Error and %Improvement in mean response

time under static, dynamic and no smoothing

The improvements in both cases are significant over no

smoothing. But there is not much improvement in the case

of dynamic smoothing over static smoothing.

Assumption 3. Constant Degree of Multiprogramming

It may not be possible to maintain the degree of

multiprogramming at the computed level. For example,

during certain intervals the load could be very light

{i.e., very few jobs) at the beginning followed by a sudden

burst of jobs. Under such circumstances, the number of

jobs in the system will be initially below the computed

number and then, because of the control, it will never

31

exceed the control number. As a result, the mean number of

jobs in the multiprogramming subsystem after the time

interval will ·be less than the desired control number.

This problem can be solved to a certain extent by comparing

the control number with the mean number of current jobs in

the system rather than the actual number of current jobs in

the system. An improvement of approximately 12% in

response time was observed by making this modification.

Assumption 4. Job Flow Balance

Operational analysis requires the job flow to be

balanced at every service centre in the system. It is

found that in the simulated system this is satisfied almost

95% of the time. Whenever it is not satisfied (i.e., the

number of arrivals at a centre in an interval is not equal

to the number of departures) the error 3 is never more than

2%. (3 seconds interval were used in our experiments).

Conclusion

We have presented a macro-scheduler which determines

the number of jobs from each job class that should be

activated in each interval to minimize a weighted sum of

the mean system residence time without saturating the

3 %Error= !no. arrival - no. departure
no. Departure

* 1 00

32

system. The macro-scheduler is based on mathematical

modelling and the solution is obtained through the use of

operational analysis and optimization theory. Exponential

smoothing technique is employed to reduce the error of

estimating the values of the parameters. The analyst may

determine the service given to each class of jobs by

adjusting their associated weights. Our simulation results

show the scheme to be robust and its performance is

superior to some existing schemes. The overhead involved

is acceptable if~ is not varied dynamically.

Acknowledgement

This work was supported in part by the National

Science and Engineering Research Council of Canada under

grant A3554.

33

REFERENCES

[1] Chanson, S. and Sinha, P.,"Adaptive load control in

batch-interactive computer systems", Proc. Of 16th

Computer Performance Evaluation Users Group, Oct. 1980,

207-213.

[2] Badel, M., Gelenbe, E., Leroudier, J., Potier, D.,"Adaptive

optimization of a time-sharing system's performance", Proc.

IEEE, Vol.63, 1975, 958-965.

[3] Badel, M., Leroudier, J., "Adaptive multiprogramming

systems can exist", Performance of Computer Installations,

D. Ferrari (ed.), North-Holland, 1978, 115-135.

[4] Denning, P., Kahn, K., Leroudier, J., Potier, D., Suri, R.,

"Optimal multiprogramming", Acta Informatica, Vol.7, No.2,

1976, 197-216.

[5] Landwehr, C.,"An endogenous priority model for load control

in a combined batch-interactive computer system", Proc.

Int'l Symp. On Comp. Perf. Modelling, Meas. and Eval.,

March 1976, 282-293.

[6] Leroudier, J. and Potier, D.,"Principles of optimality for

multiprogramming", Proc., Int'l Symp. On Comp. Perf.

Modelling, Meas. and Eval., March 1976, 211-218.

[7] Gelenbe, E., Kurinckx, A., Mitrani, I., "The rate control

policy for virtual memory management", Operating Systems:

Theory and Practice, D. Lanciaux (ed.), North-Holland,

1979, 247-264.

34

[8] Gelenbe, E. and Kurinckx, A., "Random injection control of

multiprogramming in virtual memory", IEEE Trans. On

Software Engineering, Vol.4, 1978,2-17.

[9] Graham, G. S., and Denning, P. J., "On the relative

controllability of memory policies", Proc. Int'l. Symp.

on Computer Performance Modeling, Measurement and

Evaluation, Aug. 1977, 411-428.

[10) Geck, A., "Performance improvement by feedback control of

the operating system", Proc. Of the 4th Int'l Symp. On

Modelling and Perf. Eval. Of Computer Systems, Vienna,

Feb. 1979, 459-471.

[11) Brandwajn, H., and Hernandez, J., "A study of a mechanism

for controlling multiprogrammed memory in an interactive

system", Perf. Of Computer Installations, D. Ferrari

(ed.), North-Holland, 1978, 487-500.

[12) Kritzinger, P., Krzesinski, A., Teunissen, P.,"Design of a

control system for a timesharing computer system", Perf.

Of Computer Installations, D. Ferrari (ed.),

North-Holland, 1978, 103-114.

[13) Denning, P. and Kahn, K., "An L=S criterion for optimal

multiprogramming", Proc. Int'l Symp. On Computer Perf.

Modelling, Meas. and Eval., Mar~h 1976, 219-229.

[14] Hine, J., Mitrani, I., Tsur, S., "The control of response

times in multi-class systems by memory allocation", Comm.

ACM, Vol.22, No.7, July 1979, 415-423.

[15] Chanson, s. T., "Saturation estimation in interactive

computer systems", Dept. of Comp. Sci., Univ. Of British

35

Columbia, TR 79-7, 1979.

[16] Chanson, S. T. and Lo, R., "The application of optimal

stochastic control theory in computer load regulation",

Technical report 81-5, Dept. Of Computer Science,

University of British Columbia, June 1981.

[17) Schonbach, A, "macro-Scheduler for high productivity",

Ph.D. Thesis, Dept. Of Comp. Sci., Univ. of Toronto,

1980.

[1 8] Denning, P. J. , and Buzen, J. p., "The operational

analysis of queuing network models", Computing Surveys,

Vol. 1 0, No. 3, Sep. 1978, 225-261.

[1 9] Buzen, J. p. , "Computational algorithms for closed queuing

networks with exponential servers", Comm. ACM, Vol. 16,

No. 9, Sep. 1973, 527-531.

[20) Reiser, M., and Lavenberg, S. S., "Mean-Value analysis of

closed multiclass queuing network", JACM, Vol. 27, No. 2,

April 1980, 313-322.

(21) Kleinrock, L., "Certain analytic results for time-shared

processor", Info. Processing, Proc. IFIP Congress 1968,

838-845.

[22] Belady, L. A., and Kuehner, C. J., "Dynamic space sharing

in computer system", Comm.

1 969, 282-288.

ACM, Vol. 12, No. 5, May

(23] Kendall, M., Time-Series, Griffin, London, 1976.

[24] Sinha, P. S., "Optimization techniques in computer system

design and load control", Ph.~. Thesis, dept. of Comp.

Sci., Univ. of British Columbia, 1981.

36

[25] Chanson, S. T. and Sinha, P. S., "Optimization of memory

hierarchies in multiprogrammed computer systems with fixed

cost constraint", IEEE Trans. on Computers, Vol. C-29,

No. 7, July 1980, 611-618.

37

Appendix~

Derivation of the saturation load for a single class model

Let S 1 , S2 , ••• , SM be the M service centres as shown

in Figure 2. S 1 is the CPU, S2 is the paging device and

S 3 , ••• , S"' are the various I/0 units.

The following are observed quantities from the system.

They are mean values within an observation period and as

such are functions of time which is omitted for clarity.

T observation period

x; observed number of completions at centre

s; during T

Bi : the total amount of time during which the

service centres; is busy during T

c; observed number of requests for centre

s; during T

q; request frequency, the fraction of jobs

proceeding to service centres; after

completing a service request at the

CPU(= c;/x,), i¢1.

38

We now compute the following operational quantities.

Mean service rate of server Si = ,,, = Xi/Bi

System throughput rate T = (X, • q,) / T

= (X , /B 1) (B 1 /T)

Utilization of server Si = Pi = Bi / T

q,

(A. 1)

= (Bi/Xi)(x;/x,)(X,/B,}(B,/T)

Using the job flow balance assumption Xi = c; i¢1

(i.e., the number of requests for service at centre Si

during an interval is equal to the number of departures

from the centre) we obtain:

pi = p, . (,,,;,,;) q ;· ; i¢1 (A. 2)

M M
=> r p; = p , + r p, (,,,;,,;) q;

i=1 i=2

If there is one and only one job in the system it can

be present at only one service centre. Therefore

M
t Pi =

i=1

Which implies that the CPU utilization with exactly one job

in the system is given by:

39

(A. 3)

Using Little's Law, the mean response time of the

system with N jobs is given by:

R(N) = N / T

Using (A. 1)

R(N) = N/(~,q,p,)

= N qj/(~,p;q;) i ¢ 1 (A. 4)

From (A. 3)

[
M ,] R (1) = (1/~,q,) r <~,1~;> q; + (A. 5)

i=1

The equation of the asymptote (i.e., as N approaches

infinity) is more difficult to derive. Let us first

consider the simple case of a non-paging system. The

asymptote occurs at the point when the utilization of a

service centre (i* say) reaches unity (i.e., it becomes the

first bottleneck of the system).

From Buzen's analysis, i* is that service centre which

has the highest utilization in the interval (note that i*

may vary from interval to interval as the workload

characteristics change). If the CPU is the bottleneck, the

equation of the asymptote is simply:

40

(A.6)

Otherwise, using equation (A.4) and noting that ~1 as well

as the ratio (q;/g 1) remains unchanged as N increases, the

equation of the asymptote is given by:

i* ¢ 1 (A.7)

For a paging system the eventual bottleneck as N approachs

infinity must be the paging device. It need not however,

be the first device to be saturated.

Case(i) The paging device is not the first to saturate.

In this case, as the system is saturated before the

paging device is fully utilized, the asymptote should be

computed based on the first device to reach saturation.

Therefore equation (A.7) is still valid (see Figure A.1)

Case(ii)

R

l

- -,
N*

I
I

'

,
, , ,

->N

Figure A.1 System Bottleneck

The paging device is first to saturate

41

The ratio g;*/g, will continue to increase as N increases

and will approach infinity. A realistic approach consistent

with the one used in Case(i) is to use the values of g;*/g,

corresponding to the point the paging device first gets fully

utilized. However, this ratio is not easy to estimate. The

observed values of g;*/g, can be used if the system is close to

saturation (i.e., N* ~ N, see below). Otherwise the saturation

load will be under-estimated. This is not a problem when the

system is lightly loaded. As can be seen subsequently, when the

system workload becomes heavy, the control policy will adjust

itself- and the observed ratio will eventually reach the desired

value. Thus the saturation load N* i.e., the point of

intersection of equations (A.5) and (A.6} is given by:

M
N* = 1 + r {~,/~;) qj

i=2

42

{A. 8)

if the CPU is the bottleneck. Otherwise it is given by

equation (A.9) as the point of intersection of {A.5) and

(A.7):

(A. 9)

Thus we have equations (A.8) and {A.9) as estimates of

the system saturation point under the assumptions made

earlier. Both equations (A.8) and (A.9) can also be

derived using classical queueing theory with exponential

distributions of service times.

43

Appendix~ · Workload for the simulation runs

SYSTEM/ JOB
CHARACTERISTICS TERMINAL

ARR. RATE(/SEC.) 3.5
DELTA ARR. RATE*(/SEC) 0.50
I/O REQU. RATE(/SEC.) 250
DELTA I/O REQU. RATE** 50
EXIT PROBABILITY 0.90
I/O SERVICE RATE(/SEC) 30
PAGE SERV. RATE(/SEC) 100
QUANTUM LENGTH(SEC) 0. 0 1
B (EQU 5. 1) 0. 0 1
C (EQU 5. 1) 120
MAIN MEMORY (PAGES) 500
OBSERVATION INTERVAL 3
LENGTH (SEC)
DELTA ARR. PERIOD(SEC) , 2
DELTA CHARACTERISTIC 3
PERIOD++ (SEC)

TABLE B.1 WORKLOAD FOR TABLE 5.1

SYSTEM/ JOB
CHARACTERISTICS TERMINAL

ARR. RATEl/SEC.) 4.5
DELTA ARR. RATE*(/SEC) 1. 50
I/O REQU. RATE(/SEC.) 250
DELTA I/O REQU. RATE** 50
EXIT PROBABILITY 0.87
DELTA EXIT PROB.*** 0.05
I/O SERVICE RATE(/SEC) 30
PAGE SERV. RATE(SEC) 100
QUANTUM LENGTH(SEC) 0.01
B (EQU 5. 1) 0.01
C (EQU 5. 1) 120
MAIN MEMORY (PAGES) 500
OBSERVATION INTERVAL 3
LENGTH (SEC)
DELTA ARR. PERIOD(SEC) 1 2
DELTA CHARACTERISTIC 3
PERIOD++ (SEC)

TABLE B.2 WORKLOAD FOR TABLE

* Variation in arrival rate.
** u=!"iation in I/O request rate (in /sec).
*** Variation in exit probability.
+ Perod of variation in arrival rate.
++ Period of variation in job characteristics.

5.2

BATCH

1 . 5 0
0.00

50
1 0

0.90
30

100
0.01
0.01

120
500

3

1 2
3

BATCH

2.50
0.50

50
1 0

0.87
0.05

30
100
0.01
0.01

120
500

3

1 2
3

SYSTEM/ JOB
CHARACTERISTICS

ARR. RATE(/ SEC.J
DELTA ARR. RATE*(/SEC)
I/O REQU. RATE(/SEC.)
DELTA I/O REQU. RATE**
EXIT PROBABILITY
DELTA EXIT PROB.***
I/O SERVICE RATE(/SEC)
PAGE SERV. RATE(/SEC}
QUANTUM LENGTH(SEC}
B (EQU 5.1}
C (EQU 5.1}
MAIN MEMORY (PAGES}
OBSERVATION INTERVAL
LENGTH (SEC}
DELTA ARR. PERIOD(SEC)
DELTA CHARACTERISTIC
PERIOD++ (SEC)

TERMINAL

4.00
1 . 50
250

50
0 •• 8 7
0.05

30
100
0. 0 1
0 • 0 1

120
500

3

1 2
3

TABLE B.3 WORKLOAD FOR TABLE 5.3

SYSTEM 7 JOB
CHARACTERISTICS TERMINAL

ARR. RATE(/SEC.) 5.0
DELTA ARR. RATE*(/SEC} 2.50
I/O REQU. RATE(/SEC.) 250
DELTA I/O REQU. RATE** 100
EXIT PROBABILITY 0.90
DELTA EXIT PROB.*** 0. 1 0
I/O SERVICE RATE(/SEC) 30
PAGE SERV. RATE(/SEC) 100
QUANTUM LENGTH(SEC} 0.01
B (EQU 5.1) 0 . 0 1
C (EQU 5. 1) 120
MAIN MEMORY (PAGES) 500
OBSERVATION INTERVAL 3
LENGTH (SEC)
DELTA ARR. PERIOD(SEC) 1 2
DELTA CHARACTERISTIC 3
PERIOD++ (SEC)

TABLE B.4 WORKLOAD FOR TABLE 5.4

BATCH

2. 00
0.50

50
1 0

0.87
0.05

30
100
0 . 0 1
0. 0 1

120
500

3

1 2
3

BATCH

2.5
1.50

50
20

0.90
0. 1 0

30
100
0.01
0.01

120
500

3

1 2
3

44

45

SYSTEM / JOB
CHARACTERISTICS CLASS 1 CLASS 2 CLASS 3 CLASS 4

ARR, RATE{/SEC.) 2,75 2. 25 1 • 7 5 1 • 2 5
DELTA ARR. RATE*(/SEC) 0.50 0.50 0.50 0.50
I/0 REQU. RATE(/SEC.) 250 200 75 50
DELTA I/0 REQU, RATE** 50 50 1 0 1 0
EXIT PROBABILITY 0.78 0.80 0.90 0.92
DELTA EXIT PROB.*** 0.05 0.05 0.05 0.05
I/0 SERVICE RATE(/SEC) 30 30 30 30
PAGE SERV, RATE(/SEC) 100 100 100 100
QUANTUM LENGTH(SEC) 0. 0 1 0. 0 1 0. 0 1 0 • 0 1
B (EQU 5. 1) 0.01 0. 0 1 0.01 0. 0 1

. C (EQU 5. 1) 120 120 120 120
MAIN MEMORY (PAGES) 500 500 500 500
OBSERVATION INTERVAL 3 3 3 3
LENGTH (SEC)
DELTA ARR. PERIOD(SEC) 1 2 1 2 1 2 1 2
DELTA CHARACTERISTIC 3 3 3 3
PERIOD++ (SEC)

TABLE B.4 WORKLOAD FOR TABLE 5.5 THROUGH TABLE 5.7

