
STRATEGY-INDEPENDENT PROGRAM RESTRUCTURING

BASED ON BOUNDED LOCALITY INTERVALS

by

Samuel T. Chanson & Bernard Law

TECHNICAL REPORT 81-9

Strate~y-independent Program Restructuring

based on Bounded Locality Intervals

by

Samuel T. Chanson & Bernard M. Law

Dept. Of Computer Science,

University of British Columbia, August 1981.

ABSTRACT

A new program restructuring algorithm

phase/transition model of program behaviour is

scheme places much more emphasis on those

based on

presented.

blocks in

the

The

the

transition phases in the construction of the connectivity matrix

than the existing algorithms. This arises from the observation

that the page fault rate during the transition phases is several

orders of magnitude higher than that during the major phases.

The strategy is found, for our reference strings, to outperform

the critical working set strategy (considered to be the current

best), by non-negligible amounts. Furthermore, the overhead

involved is lower than that of CWS and not much higher than that

of the Nearness method which is the simplest scheme known.

Being strategy-independent, it also seems to respond better than

CWS when the memory management strategy used is not the working

set policy.

2

1. Introduction

In a virtual memory system, the performance of a program in

execution is strongly influenced by the way its instruction

codes and data are distributed among the levels of the memory

hierarchy, and how this information is accessed. This is one of

the reasons for the interest in program behaviour --- the study

of the mechanism underlying the observed memory reference

pattern of a program.

Numerous measurement eiperiments have been performed to

study memory reference behaviour. A commonly observed property

is that a program in execution favours a subset of its segments

(or blocks) during extended periods of time (3,5,6,12,17,19,21].

This property of reference clustering has come to be known as

program locality or locality of reference. It is also

well-known that by improving the degree of locality of the

program through reorganization of its relocatable blocks in the

virtual address space, substantial improvements in the paging

behaviour of the program can be obtained (see for example

[1, 4, 8, 15, 16, 20]). This approach is known as program

restructuring. The objective is to rearrange the blocks of a

program such that those that are needed within a relatively

short time of one another are found either in the same virtual

page or in pages that would otherwise tend to be in physical

memory at the same time. This has the obvious effect of

reducing the page fault rate. It has also been shown that

program restructuring is cost-effective

programs, particularly system programs

editors (see for example [15]).

3

for certain types of

such as compilers and

An initial requirement for programs to benefit from

restructuring is that they must consist of many relocatable

blocks the size of which should be small compared to the page

size. Hatfield and Gerald [16] for example, suggest that the

mean block size should be between a tenth to a third of the page

size.

The procedure of dynamic restructuring of programs normally

consists of the following steps:

Step 1. Based on the string of block references during program

execution, the desirability of pairing blocks together is

computed. This information is often stored in a matrix. Thus

the element (i,j) of the "desirability" (or connectivity) matrix

represents the desirability of placing blocks i and j in the

same page. The variou~ restructuring methods reported in the

literature differ mainly in the way the connectivity matrix is

computed.

Step 2. The blocks with the strongest connectivities are

grouped into clusters with the restriction that a cluster must

fit into a single page. Clustering techniques are well-known

(see for example [1,19]) and will not ·be discussed here.

Step 3. The-clusters are mapped· into pages. Since it is

4

sometimes not desirable to leave unused memory space - be~ween

clusters, various sequencing methods have been proposed to order

the clusters (see for example [19,24]).

In this paper, we

restructuring algorithms

shall focus our attention on

(i.e., those used to compute

connectivity matrix in Step 1).

the

the

All of the existing restructuring algorithms are based on

the raw (unaltered) block reference strings. Thus, generally

blocks that are frequently referenced will have strong

connectivities. This may seem to produce the desired result but

let us examine the program reference pattern in some detail.

2. Program behaviour

Various studies have shown that program behaviour can be

reasonably represented by the phase/transition model

[11,17,21,22,23). From the viewpoint of program locality, a

program's execution time can be regarded as a sequence of

locality phases (or simply phases) separated by transitions.

Informally, a phase is an interval during which the small set of

blocks being referenced is constant; and a transition denotes

the interval of migrating from one phase to another. By

subdividing the program into blocks, the locality set of a phase

(phase set) is the set of blocks active in that phase. (A given

5

block is considered active in a phase whenever processing of

that phase requires the presence of the block in main memory.)

Similary, the transition set is the set of blocks active during

the transition.

Kahn's empirical studies [17] show that the phases cover at

least 98% of virtual time but the disruptive transition

intervals between the phases dominate the page fault behaviour.

The rate of page faults during transitions was found to be 100

to 1000 times higher than that during phases. Moreover, the

work of Denning and Kahn [11) indicates that for executable

memory size greater than the mean phase size (which is normally

the case), performance is much more dependent on the

characteristics of transitions than either the program behaviour

within phases or the memory management algorithm in use.

Thus by using the raw block reference string to compute

connectivities, the blocks in the transition sets are unduly

ignored. This is because though they cause the majority of the

page faults, they are referenced comparatively infrequently.

Therefore their connectivities must necessarily be very low

compared to those of the blocks in the phase sets. We believe

that an effective restructuring algorithm should· put more

emphasis on the transition blocks.

An obvious method is to identify the transition sets and to

use more weights for these blocks in the computation of the

6

connectivity matrix. However, a basic difficulty with the

phase/transi'tion model is the one of formulating a procedure

which could identify all the distinctive phases and their

corresponding locality sets given a reference string [11). The

notion of the Bounded Locality Interval (BLI) introduced by

Madison and Batson [18) overcomes this problem.

The initial idea of the BLI was triggered by the

observation that the least-recently-used (LRU) stack contains,

at any time t, the blocks arranged in the order of the times at

which they were last referenced, with the most-recently-used

block at the top of the stack. If the top i elements in the LRU

stack are {Pi} then we can also record fi, the time of formation

of this set and ei, the time at which a reference was last made

to a stack p~sition greater than i. (Thus ei is the termination

time of {Pi}.) At any instant t, an activity set is defined as

any {Pi} in which every element of that set has been referenced

more than once since the set has been formed at the top of the

LRU stack. The lifetime, li, of such an activity set is defined

to be the difference between fi and ei where ei > fi. A BLI is

the pair (Ai,li), such that Ai is the activity set and li is its

lifetime (see [18] for details).

The notion could be generalized by defining an activity set

as one whose elements have been referenced at least k times

since the set was formed. In particular, the definition given

above is for the case when k=1. Moveover, k is the only

7

parameter of the model and it is independent of -the memory

management policy. Another important characteristic of the BLI

is the implicit hierarchical nature of localities embedded in

the definition. More on this in the next section.

The concept of the BLI is a reasonable solution to the

problem of identifying distinctive major phases in a given

reference string, except that we still have to determine whether

a phase is really a "major" phase. Intuitively one would expect

that a major phase should have a reasonably long lifetime.

Batson [2] correctly points out that the criterion of

"reasonably long" can only be formulated in the context of the

particular virtual memory -ystem upon which the program will be

executed. He suggests that the mean time required to transfer a

block from secondary storage to main memory can be used to

determine a sequence of major phases and transitions. If pis

the block transfer time, each BLI is regarded as a major phase

if its lifetime is greater than p.

3. The restructuring algorithm

We shall call the new algorithm the BLI restructuring

algorithm because of the importance of the BLI notion in its

formulation. The given reference string is first partitioned

into a sequence of major and transition phases using the

definition of BLI with a chosen value for the parameter k and

8 .

the block transfer time p. To keep the cost down, one may want

to use only the top level BLI's, which partition the reference

string into the longest possible subintervals of distinctive

referencing behaviour. However, our . empirical results show that

if the phases are too long and consist of more blocks than can

be accommodated in a page, the results are not as good as those

using lower level (and therefore smaller) BLI's. This is

because the lower level BLI's provide more detailed information

about the reference pattern. We choose to use the lowest level

(i.e., the shortest) BLI's whose length exceeds p. It turns out

that because of the way the connectivity matrix is constructed,

this does not increase the overall computational overheads of

the scheme.

For each of the phases, we obtain an unordered set

consisting of all the distinct blocks in the phase set. The

connectivity matrix M=[mij] which is an nxn matrix (n is the

total number of blocks in the program) with indices labelled by

block numbers is constructed as follow. Mis initialized to

zero. For each set of blocks and for all combination of block

pairings of i and j in the set, mij is incremented by one where

i is different from j.

Notice that unlike the other existing algorithms, a block

in a transition set is given the same weight in the construction

of the connectivity matrix despite its much lower frequency of

reference during execution. This is a direct consequence of

• l

9

mapping the reference string of each phase (major or transition)

into a set of distinct blocks. Since every block in a set

appears exactly once, the frequency of reference is taken to be

the same for all blocks.

It should be apparent that a whole family of program

restructuring algorithms based on BLI is possible. First, k can

assume different values (the value of p is fixed by the

characteristics of the paging device). Then when the major and

transition phases are identified, one can use i) only the major

phase sets, ii) only the transition phase sets or iii) both the

major and transition phase sets in the computation of the

connectivity matrix. Since i) defeats the purpose of the BLI

restructuring policy which emphasizes the contribution of the

transition phases to page fault behaviour it will not be

considered further. Noting that a transition set generally also

contains the blocks in the next major phase set, ii) then is

similar to iii} except that it places even more weights on the

blocks in the transition sets. Our initial experiments show

that ii) and iii} produce very similar results. Since ii) is

less expensive , it is used throughout the subsequent

experiments that are reported in this paper •

Finally, one could order the blocks in each set according

to their first reference times and consider only adjacent pairs

(or combinations of j consecutive references, j=2,3, •••) in

constructing the connectivity matrix. Our empirical results

1 0

show that due to the small set size (about 5 for major and 10

for transition sets), it is more effective and not much costlier

to consider all combinations of pairs in each set. The latter

method provides a more global view of the reference pattern.

3. Description of the experiment

The experiment is based on block reference strings gathered

from the execution of a Pascal compiler on an Amdahl 470 V/6 II

computer. The Pascal compiler was written in Pascal and

considered to be well structured. It consisted of 336

relocatable blocks (procedures and functions) and about 90% of

these had sizes less than 800 bytes. The average block size was

about 600 bytes. Thus each 4K-byte (4096) page could hold about

7 blocks on the average. The compiler consisted of about 54

pages of codes. The block reference strings collected are

'reduced' in the sense that successive references to the same

block produce only a single reference. (Jhus for example,

aaaaabbbcccc yields simply abc.)

Six programs were used as input to the Pascal compiler in

the experiment. They ranged from production programs to

artificial ones consisting of various number of syntax errors.

The performance of three restructuring algorithms - Hatfield and

Gerald's Nearness method (NEAR) [16], Ferrari's Critical Working

Set (CW~) [13] (considered to be the current best) and the BLI

1 1

algorithm were .compared. • The clustering algorithm used was the

one of hierarchical classification [19]. The mapping of

clusters into pages followed the same procedure as used in CWS

[13]. Since CWS is a strategy-oriented restructuring algorithm

and assumes the working set memory management policy [9] to be

used, the window size is also a factor in our experiments. To

reduce the numper of factors, various window sizes, ranging from

10 to 100 block references were tested using one of the

reference strings. The window size of 50· was found to give the

best performance for all three restructuring algorithms in terms

of the percentage reduction in page fault rate relative to that

of the original ordering (ORIG). This value was subsequently

used in all the experiments. The factors and their values

(known as levels) are listed in Table 1.

The performance indices are chosen to be the page fault

rate and the mean working set size. Together they cover, to

certain extent, the space and time components of a computational

activity.

Since the absolute improvement is influenced by the values

of the other factors used in the experiments as well as by the

quality of the layout in the original program, the results must

be interpreted as such. The magnitude of the relative

performance improvements of both NEAR and CWS are consistent

with those reported in the literature.

rABLE 1 FACTORS AND LEVELS FOR THE EXPERIMENT

PROGRAM: A PASCAL COMPILER
MEMORY -MANAGEMENT POLICY: WORKING SET

FACTORS NAME
LEVELS

DESCRIPTION

12

Input data
(program to
be compil
ed)

Pl
P2
P3
P4
PS
P6

program P, 25 statements, 50 errors

Restructur
ing

Algorithms

Clustering
Algorithms

Window size
(references)

Page size

4. Results

ORIG
NEAR
cws
BLI

NUCL
HIER

10 to 100
in
increments
of 10

program P, 25 statements, 25 errors
program P, 25 statements, 5 errors
program P, 25 statements, no errors
program Quicksort, 60 stts, no errors
program BLI,355 statements, no errors

Original ordering
Hatfield's Nearness Method
Ferrari's Critical-Working-Set
k=l,p=15

Nucleus-constructing
Hierarchical classifi~ation
(HIER found to be superior.
Subsequent value fixed at HIER)

50 was found to be optimal
for all restructuring algorithms
(see Section 3). Subsequent
value fixed at 50.

Fixed at 4096 bytes

Improvements in the number of page faults and the average

working set size by program restructuring are computed in terms

of percentage reduction according to the formula

% Reduction= (Po - Pr)/Po *100

where Po and Pr are the original and restructured performance

indices respectively.

13

Table 2. Comparsion of the 3 restructuring algorithms to ORIG on

percentage reduction in the number of page faults.

Memory policy: working set

ref. # block # page restructuring algorithms

string ref. * faults ---------------------------
(ORIG) NEAR CWS BLI

--
P1 10950 606 23.4 32.3 35.B

P2 9951 693 25.3 33.2 39.5

P3 21305 1764 32.4 36.7 41 • 6

P4 7216 533 26. 1 31. 5 38.1

PS 34802 3066 30.8 33.4 42.5

PG 62194 5507 25.9 35.2 39.4

mean over all strings 27.3 33.7 39.5

* successive references to the same block produce only 1 block
reference (see Section 3).

14

Table 3~ Comparsion of the 3 restructuring algorithms to ORIG on

percentage reduction in the mean working set size.

Memory policy: working set

ref.

string

P1

P2

P3

P4

PS

P6

mean working

set size in

pages (ORIG)

5.9

6.8

7.5

6.8

7.6

7.9

mean over all strings

restructuring algorithms

NEAR CWS BLI

27.5 __ 31 • 6 28.2

27.2 27.8 27.9

30.3 26.6 29.5

24.7 30.4 26.3

28.2 25.2 27.2

24.8 26.9 28.9

27.1 28.0 28.0

15

Table 4. Comparsion of the 3 restructuring algorithms to ORIG on

percentage reduction in the number of page faults.

Memory policy: first-in-first-out

ref. # page restructuring algorithms

string faults ----------------------------
(ORIG) NEAR cws BL'!

--
P1 396 40.2 52.3 61.6

P2 457 35.9 45.5 55. 1

P3 1 1 2 1 56.6 64.9 80.2

P4 384 33.1 53.9 58.9

PS 2088 47.4 50.6 73.6

P6 3572 43.5 55.0 68.7

mean over all strings 42.8 53.7 66.4

16

Table 5. percentage reduction in the number of page faults over

ORIG using the layout for Pl over all other strings.

Memory policy: working set

restructuring

algorithm

NEAR

CWS

BLI

P2

20

26

30

reference string

15

1 9

23

P4

1 9

24

29

P5

18

22

26

P6

1 5

23

23

mean

17

23

26

Table 2 shows that BLI is superior to CWS for all six

reference strings, averaging 17.2% over CWS in the reduction of

the number of page faults. CWS, on the other hand, is 23.4%

better than NEAR which in turn yields 27.3% less page faults

than the case of no restructuring~ As is evident from Table 3,

there does not seem to be any substantial difference in the mean

working set size among the three algorithms. Each is about 28%

better than the case of no restructuring.

To test ·the performance of BLI under memory management

other than the working set policy, the experiment corresponding

to Table 2 was repeated, this time using a fixed partition (15

17

page frames} first-in-first-out page replacement policy. The

results are presented in Table 4. We note that while the

relative improvement of CWS over NEAR remains at about 25%, BLI

is now 23.6% better than CWS instead of 17.2%. This may

indicate the strength and portability of the BLI scheme, which

is strategy-independent, over the tailored restructuring

algorithms (see also [15]}.

Finally, a set of experiment was performed to test the data

dependence of BLI. Table 5 shows the percentage reduction in

the number of page faults relative to ORIG for reference strings

P2 through P6 using the layout corresponding to the reference

string Pl. The memory policy is the one of working set. There

is a general degradation of relative improvement for all three

schemes, but the BLI method is still superior to CWS in all

cases, averaging 26% improvement over ORIG and 13% over CWS.

CWS is now 35% better than NEAR which would suggest that NEAR is

most data dependent and CWS is the least data dependent of the

three algorithms.

The cost of program restructuring basically consists of the

costs in gathering the reference string, constructing the

connectivity matrix and clustering. The cost of gathering the

reference string is independent of the restructuring algorithm.

As well, the cost of clustering in our experiments do not differ

noticably among the three algorithms. The cost of constructing

the connectivity matrix in terms of the CPU time used is least

18

for NEAR which is the simplest of the three. That for CWS was

found to be about three times as much. For BLI, the cost was

less than half that for CWS and just 30% above that for NEAR.

The main reason is the small size of the reduced major phase and

transition sets (about 5 and 10 blocks respectively).

A simple algorithm has been derived which would locate the

approximate major and transition phases with less overheads than

the scheme outlined by Madison and Batson [18]. For the purpose

of program restructuring, it is perhaps even more suitable since

it is non-hierarchical and, for our reference strings, generates

reasonably small major and transition phase sets. The

experiments reported here have been repeated using this method

of identifying the localities and the results are always within

!5% of the BLI results. The mean of the results are practically

the same as that for BLI. The algorithm can be described as

follows. Start off by gathering the blocks into a transition

phase set. A major phase starts as soon as a block in the

transition phase set is referenced again and it ends when a

block not belonging to the transition phase is referenced. Of

course, a phase is not considered a major phase if its length

does not exceed p. (Recall that in gathering our block

reference strings, successive calls to the same block are

replaced by a single reference.)

The CPU time in constructing the connectivity matrix using

this algorithm is only about 13% higher than the one for NEAR.

1 9

5. Conclusion

A new program restructuring algorithm based on the

phase/transition model of program behaviour has been described.

The scheme places much more emphasis on those blocks in the

transition phases in the construction of the connectivity matrix

than the existing algorithms. This arises from the observation

that the page fault rate during the transition phases is several

orders of magnitude higher than that during the major phases.

The strategy is found, for our reference strings, to outperform

the critical working set strategy (considered to be the current

best), by ·non-negligible amounts. Furthermore, the overhead

involved is lower than that of CWS and not much higher than that

of the Nearness method which is the simplest scheme known.

Being strategy-independent, it also seems to respond better than

CWS when the memory management strategy used is not the working

set policy.

ACKNOWLEDGEMENT

This work was supported in part by the Nati9nal Science and
Engineering Research Council of Canada under grant A3554.

20

REFERENCES

[1] M. S. Achard, J.Y.Babonneau, M.Carpentier, G.Morisset,
and M.B.Mounajjed, "The Clustering Algorithms in the
Opale Restructuring System," Performance of Computer
Installation, D. Ferrari(ed.) CILEA, North-Holland
Publishing Co., pp.137~153, June 1978.

[2] A. P. Batson, "Program behavior· ·at the symbolic
level," Computer, vol.9,no.11,pp.21-28, Nov. 1976.

[3] L.A. Belady, "A study of replacement algorithms for
virtual storage computers," IBM Syst. J., vol.5, no.2,
pp.78-101, 1966.

[4] L.A. Belady, and
sharing in computer
pp282-288, May 1969.

C. J. Kuehner, "Dynamic space
systems," Commun. ACM, vol.12,

[5] B. Brawn and F. G. Gustavson, "Program behavior in a
paging environment," in 1968 AFIPS Conf. Proc., Fall
Joint Comput. Conf., vol.33, Washington, DC, 1968,
pp.1019-1032.

[6] W. w. Chu and H. Opderbeck, "The page fault frequency
replacement algorithm," Proc. FJCC, pp.597-609, 1972.

[7] w. W. Chu and H. Opderbeck, "Program behavior and the
page fault frequency algorithm," IEEE Computer 9 11,
Nov. 1976~ pp.29-38.

[8] L. w. Comeau, "A study of the effect of user program
optimization in a paging system," in Proc. ACM Symp.
Operating Syst~ms Principles, Oct. 1967.

[9] P. J. Denning, "The working set model for program
behavior," Commum. ACM, vol.11, pp.323-333, May 1968.

[10) P. J. Denning and G. S. Graham, "Multiprogramming
memory management," IEEE Proc., vol.63, pp.924-939,
June 1975.

2.1

[11] P. J. Denning and R. C. Kahn, "A study of program
locality and lifetime functions," in Proc. 5th ACM
Symp. Operating Systems Principles, pp.207-216,
Nov.1975.

[12] P. J. Denning, "Working Sets Past and Present" IEEE
Trans. on Software Engineering vol.SE-6,no.1, pp.64-84
Jan. 1980.

[13] D. Ferrari, "Improving Locality by Critical Working
sets," CACM, vol.17, pp.614-620, Nov. 1974.

[1 4] D. Ferrari, . "Improving Program
Strategy-Oriented Restructuring,"
Processing 74, Proc. IFIP Congress 74,
Amsterdam, pp266-270, 1974. ·

Locality by
Information

North-Holland,

[15] D. Ferrari, "The improvement of program behavior,"
IEEE Computer 9 11, pp.39-47, Nov.1976.

[1 6] D. J. Hatfield and J. Gerald,
for virtual memory," IBM
pp.168-192, 1971.

"Program
Sys. J.

restructuring
vol. 1 0, no. 3,

[17] K. C. Kahn, "Program behavior and load dependent
system performance," Ph.D. Dissertation, Dept. of
Computer Sci., Purdue Univ., w. Lafayette, IN,
Aug. 1976.

[18) A. W. Madison and A. P. Batson, "Characteristics of
program localities," CACM, vol.19, pp.285-294,
May 1976.

[19) T. Masuda, H. Shiota, K. Noguchi, and T. Ohki,
"Optimaztion of program locality by cluster analysis,"
in Proc. IFIP Congress, pp.261-265,1974.

[20] T. Masuda, "Methods For the Measurement of Memory
Utilization and the Improvement of Program Locality",
IEEE Trans. on Software Engineering, vol.SE-5,no.6,
pp. 6 1 8- 6 3 1 , NOV • 1 9 7 9 .

[21) J. R. Spirn and P. J. Denning, "Experiments with
program locality," iri AFIPS Conf. Proc., FJCC, vol.41,

' 22

Montvale, NJ: AFIPS Press, pp.611-621,1972.

[22] J. R. Spirn, Progra~ Behavior: Models and Measurement.

[23]

New York: Elsevier/Noth-Holland, 1977.

G.S. Graham, "A Study of Program
Behaviour," (Ph.D. Thesis),
Computer Science Dept, 1976.

and Memory Policy
Purdue University,

[24] R. N. Horspol and J.M. Laks, "An improved block
sequencing method for program restructuring," Dept. of
Computer Science, McGill University, April 1981.

