
SOLVABLE CASES OF THE
TRAVELLING SALESMAN PROBLEM

by

Paul C. Gilmore

Technical Report 81-8

September 1981

r
I

'.

ABSTRACT

This paper is a chapter in a book on the travelling salesman problem
edited by Eugene L. Lawler, Jan Karel Lenstra and Alexander H.G. Rinooy Kan.
By a solvable case of the travelling salesman problem is meant a case of the
distance matrix for which a polynomial algorithm exists. In this paper
several previously known special cases are related and extended. Further,
an upper bound is obtained on the cost of an optimal tour for a broad class
of matrices.

§1. Introduction

1.1 Survey of Methods and Results

In this chapter the goal is to examine special cases of the distance

matrix · {cij} for which the travelling salesman's problem can be solved in

polynomial time. Since the assignment problem for any distance matrix can

be solved in polynomial time, not surprisingly the polynomial solutions of

special cases of the travelling salesman problem dealt with here require

solving first the assignment problem. The unifying theme for the chapter

is the manner in which an optimal tour~ for the travelling salesman is

obtained from an optimal assignment¢.

A cyclic permutation P = [p1, ... ,pa] takes values defined as follows:

i, if ifpl'···,Pa'

p(i) = Pj+l' if i=pj' and

pl' if i=pa.

Two cyclic permutations are disjoint if they have no cities in common.

For any given assignment¢ and cyclic permutation P define:

c¢(p) = c(¢p) - c(¢).

Using this definition the following result is elementary:

Theorem 1. Given any assignments ¢ and~ there exist disjoint cyclic permu-

tations P1, ... ,pk for which

~ = ¢p 1 ... pk and

c(~) = c(¢) + c¢(p 1) + ... + c¢(pk).

Proof. Any permutation can be represented as the product of disjoint cyclic

permutations, and therefore $-l~ can be so represented. The second result

then follows from the fact that Pl'"''Pk are disjoint.

End of Proof.

An assignment¢ which is not a tour consists of two or more subtours.

Cyclic permutations P1, .•. ,pk can be chosen to connect the subtours into a

single tour~- The common method of determining an optimal tour~ used in

this chapter is to first determine an optimal assignment~ and then to

select cyclic permutations for which ~P 1 ... pk is a tour and

c~(P 1) + ..• + c¢(Pk) is as small as possible.

2

In §2 the technique is first illustrated for upper triangular distance

matrices, a solvable case first described in [Lawler, 1971]. In this case a

single cyclic permutation p suffices and c~(p) = 0. Also in this section

the method of selecting pis applied to a broad class of matrices C to obtain

an upper bound on the cost of an optimal tour. For this class of matrices,

as for all matrices, this cost is bounded below by the cost of an optimal

assignment for C, but it is also bounded above by the cost of an optimal

assignment for the matrix C' obtained from C by dropping one column and one

row.

In §3 it is shown that the distance matrix defined in [Fuller, 1972]

is upper triangular so that the technique of §2 may be used for its solu­

tion. Moreover, because of the special form of the distance matrix an

optimal assignment can be obtained by a simple algorithm. An exercise

suggests a solvable generalization of the Fuller matrix.

In §4 a class of distance matrices called double sum matrices is de­

fined. For this class of matrices a lower bound on the cost c(~) of an

optimal tour~ is obtained by focusing attention on interchanges, that is

cyclic permutations of two cities. The interchanges [p,q] considered are

those with each of p and q in different subtours of~- The effect of such

an interchange on¢ is to connect into a single subtour the pair of subtours

3

containing p and q. Therefore each such interchange can be regarded as an

edge of cost c~([p,q]} connecting two nodes of a graph with subtours of~

as nodes. The cost c~(T) of a minimum spanning tree T for the graph is

shown to be a lower bound for c~(p 1) + •.• + c~(pk) so that c(~) + c~(T) forms

a lower bound for c(l/J).

In §5 a special class of double sum matrices is defined suggested by

the distance matrix defined in [Gilmore and l1>mory, 1964]. It is shown that

the lower bound c(,) + c,(T) can be achieved for this special class. The

interchanges used to define the edges of T can be applied in a particular

order to define cyclic permutation p1, ... ,pk for which

c4>(p 1) + ... + c~(pk) = c~(T).

Permutations of the rows and columns of a matrix for an assignment

problem can be accommodated by renumberings of the rows and columns since

the numberings do not connect a particular row with a particular column.

For the travelling salesman problem, on the other hand, the numberings are

important because the ith row and the ith column each contain distance in­

formation relating to the ith city. A renumbering of the rows or columns

alone can however be accommodated. A permutations of the columns of C

after a renumbering of the rows results in ciS(j)' i=l, ... ,n, being the

distances in column j.

It may be possible to transform a given distance matrix into one of

the special forms described in this chapter by permutations of the rows and

colun11s. This does not always mean that the matrix has then a solvable

travelling salesman problem. The method of solution for upper triangular

matrice~ can only be applied to matrices which can be brought to this form

by a renumbering of the rows, or a renumbering of the columns, but not to

those that require a renumbering of the rows and a permutation of the columns.

4

·1.2 Some Omissions

Unfortunately limitations in space have required the elimination of

several topics. These include the following.

The motivating applications for the papers [Fuller, 1972] and [Gilmore

and Gomory, 1964] are not discussed. The reader is urged to turn to these

papers to gain some sense of the interaction between theory and practice.

A time and space analysis of the algorithms described in this chapter

has not been made. This is a serious omission in a chapter dealing with

practical algorithms but the analysis is not difficult. The appendix to

[Fuller, 1972] offers some help for one algorithm.

The special case [Syslo, 1973] which obtains Hamiltonian circuits in

directed line graphs from Eulerian circuits in an underlying graph to the

line graph is not described. Since Eulerian circuits can be efficiently

found, the travelling salesman problem for these special graphs can be

efficiently solved.

In the paper [Jenkyns, 1979] bounds for solutions to the travelling

salesman problem are obtained using the theory of independence systems.

These results are not used or described here.

Exercise 1. The classic paper [Johnson, 1954] describes an optimal solution

to a problem with close connections with [Gilmore and Gomory, 1964]. Show

that the problem is not a travelling salesman problem.

§2. Upper triangular and graded matrices

2.1 Finding an Optimal Tour for Upper Triangular Matrices

An upper triangular matrix is one in which all distances are zero on and

below the main diagonal; that is, cij = O for i ~ j. The other distances

5

may be positive, negative or zero.

Let C be an upper triangular matrix and let C' be obtained from C by

removing the first column and the last row. Any assignment 4>' for C' can

be extended to an assignment 4> for C by defining 4>(i) to be 4> 1 (i) for iln and

4>(n) to be 1. Since the arc (n,1) has zero distance the cost of 4> is the

cost of 4> 1
• Of course if 4> 1 is an optimal assignment for C' it does not

follow that 4> is an optimal assignment for C, although it will be shown later

that if~ is a tour then it is an optimal tour for C.

Let~• be any optimal assignment for C' and let~ not be a tour. An

optimal tour will be obtained from~ by combining its several subtours into

one. This will be accomplished by removing from its subtours arcs (i,j)

for which i ~ j, what are called backward arcs, and replacing them with

other such arcs. Since backward arcs have zero distance the tour obtained

will have the same total cost as 4> 1 or 4>.

Note first that each subtour of~ must contain at least one backward

arc. Hence a backward arc can be selected from each subtour, including

(n,1) from the subtour of which it is a member. Let a selection of such

arcs be (p1,4>(p 1)), ... ,(pk,4>(pk)), where 4>(p 1) > ~(p2) > ••• > 4>(pk). Here

pk= n and 4>(pk) = 1. Consider now the permutation w = 4>[p 1, ... ,pk]. Each

of the arcs (pi ,HP;)) is a backward arc by choice, that is pi ?: HP;).

Consequently (pi,w(P;)) is a backward arc for 1 s i < k, since

4>(p;) > ~(Pi+l) = w(P;), and (pk,w(pk)) is a backward arc since

pk= n.::: 4>(p1) = w(pk). It follows therefore that c(w) = c(4i). Furthermore

w is a tour. This fact is illustrated in figure 1 fork= 3. To show that

~ is an -optimal tour is a little more difficult. To do so it will be shown

that any tour for C defines an assignment for C' of the same cost so that

6

necessarily any tour for C with the same cost as an optimal assignment for

c' is an optimal tour.

J
I

I
I

figure 1

Let. be any tour for C. It defines a path from city n to city 1.

Let the cities in the path in the order in which they are encountered be

P0 ,P1, ... ,pm,Pm+l' where p0 = n and Pm+l = 1. If m = 0 then .{n) = 1 and.

defines an assignment for C' with the same cost as •. Assume therefore

that m ~ 1. A cyclical permutation p of cities selected from p
0

, ••• ,~m+l

will be defined with the following property: If~ is •P then ~(n) = 1 and

the cost of~ is the same as the cost of~ so that~ and therefore. defines

an assignment for C' of the same cost as •. The cost of~ is maintained as

the same as. by replacing backward edges of. by other backward edges.

There must be some i for which Pm~ Pi+l and P; > P;+i· If Pm~ Pi

then O is one such i, while if Pm< p1 i is such an index if pi is the last

7

city :in the path for which Pm< Pi· Let m1 be one such i. Then (pm,Pm
1
+1)

is a backward arc that can replace the backward arc (pm,Pm+l).

The argument of the previous paragraph can now be repeated for the path

p0 ,p1, ... ,pm ,Pm +l to define an m2 for which (pm ,Pm +l) is a backward arc
1 1 1 2

that can replace the backward arc (pm ,Pm +i>· Continued repetitions will
2 2

define indices m1,m2, ... ,mk such that (Pm. ,Pm.) is a backward arc that
J-1 J+l

can replace the backward arc (pm ,Pm) for j=l, ... ,k, where m
0

= m, and
j j+l

such that mk is O.

Now define p to be [Pm ,Pm , ..• ,pm] and~ to be Tp. For each j,
o 1 k

O s j < k, HPm_) is
J

that is ~(n) is 1.

T(Pm), that is p +·' while ~(pm) is T(Pm),
j+l mj+l 1 k o

By definition each of the arcs (Pm.,T(Pm.)), where Os j s k, is back-
J J

ward. But so also is each of the arcs (Pm.'~(Pm.)). Therefore c(~) = c(T).
J J

This completes the proof of:

Theorem 2. ~ = ~[p1, ... ,pk] is an optimal tour for C.

This proof cannot be generalized to the case where C is upper triangular

after a renumbering of the rows and a permutation of the columns. In this

case there is no assurance that every subtour of~ uses a backward arc.

2.2 An Upper Bound for Graded Matrices

The method of defining the cyclic permutation [p1, ... ,pk] to break the

cycles of~ can be used to obtain an upper bound on the cost of an optimal

tour for a broad class of distance matrices C.

A matrix C is said to be graded across its rows if cij s cik for

1 sis n and 1 s j s ks n. It is said to be graded up its columns if

c .. ~ck.for 1 s j s n and 1 sis ks n.
1J J

8

Theorem 3. Let C be any distance matrix for which either for some permuta­

tions of its columns C is graded across its rows and its last row is all

zero, or for some permutation a of its rows C is graded up its columns and

its first column is all zero. Lett' be an optimal assignment to the matrix

C' obtained from C by deleting in the first case column S(l) and the last

row, and in the second case row a(n) and the first column. Then c(~') is

an upper bound on the cost of a tour of C.

Proof. Consider the first case. Define~ as in 2.1 from~• taking account

of the permutations. Because cns(l) = O it follows that c(~) = c(~'). If

$ is a tour then c(~) = c(~') is an upper bound on the cost of an optimal

tour. If~ is not a tour, select an edge from each subtour of~ including

the edge (n,S(l)) from the subtour of which it is a member. As before

order the arcs (pi,s- 1~(pi)) so that s-1~(p 1) > ••• > s-1~(pk), where pk= n
1 -1 and S- ~(pk)= 1. Define w = S ~[p1, ... ,pk], which as before is a tour.

Further c(w) = c(~) +
n-1

E (c -1 () - C -1 ()
i=l piS ~ Pi+l piS ~ Pi

From the conditions on C and the ordering of the pi's it follows that

c(w) ~ c{~). This completes the proof of the first case. The proof of the

second case is identical since the matrix of the second case is a transpose

of the mBtrix of the first case.

End of Proof.

Although no important use is made of Theorem 3 in this chapter, it is

included here to suggest a possibly interesting use of the cycle breaking

technique of this section. An upper bound on the cost of an optimal tour

can be useful in branch and bound algorithms for the travelling salesman

9

problem as was described in [Gilmore, 1962] for the roore general quadratic

assignment problem, or w can be used as a quick approximate solution.

Exercise 2 Theorem 3 describes a bound for a matrix that is either graded

across the rows and has a zero row, or is graded up its columns and has a

zero column. Develop bounds for matrices that are only either graded across

their rows or up their columns.

§3. Fuller Matrices

A Fuller matrix described in [Fuller, 1972] can be transformed into an

upper triangular matrix. Further, the assignment problem to be solved in

applying the technique of the last section has a simple method of solution.

3.1 A Fuller Matrix is Upper Triangular

Let fi and si, 1 s i < n, and fn be non-negative numbers satisfying

Os f sf. s s. < 1. For 1 sis n define c,.n = 0 and for 1 s j s n-1 n , ,

define

{

sj - fi if sj ~ fi

cij = 1 + Sj - f; otherwise

The distance matrix so obtained is called here a Fuller matrix. The form of

the matrix can be simplified by adding fi to row i for 1 sis n, subtracting

Sj from column j for 1 $ j s n-1, and subtracting fn, the smallest f, from

column n. The new distances then are:

cin = fi - fn

c .. = {0 if Sj ~ f;
lJ 1 otherwise

Let C be the distance matrix so defined. It can be assumed that the cities

have been renumbered so that f 1 ~ ... ~ fn. Then C is upper triangular since

10

if i -~ j and j s n-1 then sj ~ fj ~ f1, so that cij = 0, while also Cnn = 0.

3.2 An Optimal Assignment for C.

To solve the travelling salesman problem for C by the technique described

in §2 it is first necessary to find an optimal assignment~• for the matrix

C' obtained from C by dropping the first column and the last row. Such an

assignment can be found quite simply.

Clearly an optimal assignment for c' will select as many zero distance

arcs from columns 2 through n-1 of C as any other assignment, and further

will select those arcs from rows with the smallest index i. The latter is

necessary to permit the selection of the least cost available arc from the

last column, since the distances in the last column are in decreasing order.

Consider the following algorithm for defining an assignment ¢ 1 for C':

1. For i = 1 to n-1, find a j, 2 s j s n-1 if one exists, for which cij = 0

and ¢1 l(j) is undefined and set ¢'(i) = j, otherwise leave ¢'(i) un­

defined.

2. Let k be the largest i for which $'(i) is undefined and set ¢ 1 (i) = n.

3. For each i for which ~•(i) is undefined select a j for which ¢•-l(j) is

undefined and set ¢'(i) = j.

Theorem 4. ¢ 1 is an optimal assignment for C'.

Proof. Consider any other assignment wand compare the number of zero cost

arcs selected by¢' and~- The number selected by~ from the first k rows

can be no more than the number selected by~•, for 1 s ks n-1. For consider

a row from which w selects but ¢ 1 does not select a zero cost arc. Necessar­

ily it is a row for which in each column in which the row has a zero cost

arc,¢' has selected a zero cost arc in a prior row. Consequently since w

selects a zero cost arc in such a row it must have selected fewer zero cost

11

arcs ·from prior rows than did~•.

It follows also therefore that if wand~• select the same number of

zero cost arcs then ~•-1(n) ~ w-1(n). For let ~•(k) = w(i) = n, where k < i.

Necessarily~• selects a zero cost arc for row i while w does not. Yet the

nurrber of zero cost arcs selected by~• in rows prior to i is not less than

the number selected by w. Since~• and w select the same number of zero cost

arcs it follows that in some row following i in which w selects a zero cost

arc~• does not. But that is impossible from step (2) of the algorithm since

k < i.

Since~• selects as many zero cost arcs as wand ~•- 1(n) ~ w- 1(n) it

follows that c(~•) s c(~).

End of Proof.

It is clear from the matrix C that the choice of an optimal tour is not

dependent upon the values sj but only upon how these values compare with the

fi. But it is also clear from the algorithm for determining an optimal tour

that the choice is also not dependent upon the values fi. Indeed the zero

and one-distance arcs of Care all that affect the choice.

Exercise 3 The application of the algorithm for upper triangular matrices

to a Fuller matrix required first the transformation of the matrix as does

also the application of the algorithm for an optimal assignment for C'.

Describe an algorithm which operates directly on the original fi and Sj and

compare the algorithm with the one described in [Fuller, 1972].

Exercise 4 The Generalized Fuller Matrix

The parameters fi and si determining the distances of a Fuller matrix

satisfy ·the condition Os fn s fi s si < 1 for 1 sis n-1. For a generalized

Fuller matrix this condition is relaxed to Os fn s fi < 1 and Os si < 1 so

12

that the transfonned matrix C is no longer upper triangular. Moreover, the

matrix does not satisfy the conditions of theorem 3 since although the matrix

is graded up its columns its first column is not necessarily all zero. Never­

theless the technique of theorem 3 can be applied. It is only necessary to

ensure when executing step (3) of the algorithm for finding an optimal assign­

ment for C' that no cycle is created in which a zero-distance arc does not

appear. Then a single zero-distance arc can be chosen from each cycle. Show

in this way that an upper bound like that of theorem 3 applies to generalized

Fuller matrices. Can an optimal tour be obtained in this way?

§4. Double Sum Distance Matrices

Let D = (dij)~,j=l be any matrix of elements d;j for which d;j ~ 0. A

distance matrix C is a double sum matrix based on D if there is a permutation

~ of the columns of C for which

In this section a lower bound on the cost of an optimal tour for a double

sum distance matrix is derived. In the next section it is shown that this

lower bound can be achieved when the matrix O on which the double sum matrix

is based satisfies special constraints. The results of these two sections

generalizes those of [Gilmore and Gomory, 1964].

The permutation~ of the columns of C used to define Casa double sum

matrix plays a special role throughout this section because of the following

theorem:

Theorem 5. ~ is an optimal assignment for C.

Proof. Let 1/J be any permutation for which there exist a p and q for which

p < q and ~- 11/J(p} > ~-11/J(q). Consider then c(l/J) c(l/J[p,q]}, that is

13

-cw([p,q]) as defined in §1. Let p' = ~-l (p) and q' = ~-l~(q) + 1. Then

n ~•
= I: L. dkl

k=p l=q'
q-1 p'

= I: I: dkl
k=p l=q'

Figure 2 illustrates the area of D to be summed to obtain this term. Since

dkl ~ 0 it follows that c(~) ~ c(~[p,q]). Thus any permutation~ differing

from~ can be transformed to~ by a series of interchanges that do not in­

crease the cost of the assignment.

End of Proof.

1

p

q

n

figure 2

Theorem 1 will be used to obtain a lower bound for the cost of a tour

$. However some definitions are needed first.

14

A cyclic permutation P = [p1, •.. ,pk] is said to cover an interchange

[q,q+l] if min{pl' .•. ,pk} sq< ma·x{pl' ••• ,pk}. A permutation l/J = cj,•p 1 ... t:ik

is said to cover an interchange [q,q+l] if one of p1, .•. ,pk covers (q,q+l].

Lemma 1. For any cyclic permutation p

ccj,(p) ~ E{dqq+l : where P covers [q,q+l]}

Proof. For any p

Ccj,(p) = ~ Cqcj,(P(q)) - Cqcj,(q)•
q ,n P

Since cqcj,(q) sums only terms d;j for which i ~ j it follows that any term dij

for which i < j that is summed for cqcj,(p(q)) contributes at least once to the

sumccj,(p).

and therefore the sum includes dqq+l for all q for which p1 sq< p2.

Let P now be a cyclic permutation in some order of the cities p1, ... ,pk,

where k > 2 and p1 < p2 < ... < Pk· Consider any pair of cities Pj-l and Pj

from p. Since p is a cyclic pennutation of p1, ... ,pk in some order there is

some i, 1 sis j-1, for which p(p;) ~ Pj, for otherwise P could be factored

into a cyclic permutation of 1, ... ,j-1 in some order and a cyclic permutation

of j, ... ,n in some order. But

Since P; s Pj-l < Pj s p(pi) this sum includes dqq+l when Pj-l sq< pj.

End of Proof.

15

From theorem 1 therefore follows:

Lemma 2. For any permutation~

c(~} ~ c(~} + I{dpp+l: where~ covers [p,p+l]}.

None of the le11111as established so far make any distinction between an

arbitrary permutation and a tour. This deficiency will now be rectified.

If~ is itself a tour then it is necessarily an optimal tour for C

because of theorem 5. For the remainder of this section it is assumed there­

fore that~ is not a tour but defines two or more subtours of the cities.

Let V be the set of subtours of~- A graph G*(~} = (V,E*(~)) is

uniquely determined by a permutation~ as follows. Let as before

w = ~P 1 ... Pk. Let E*(w) consist of all pairs {v1,v2}, for which at least

one of P1, ... ,Pk has members in each of v1 and v2, The graph G*(~) permits

the statement of a necessary condition for~ to be a tour:

Lemma 3. If~ is a tour then G*(~) is connected.

Proof. Let G* be a connected component of G*(~), and let S be the set of

all cities of nodes of G*. Let p be any city of S. For each Pi all the

cities of Pi are either all members of Sor all not members. Hence

P1 ... pk(p) is in S, as is also ~Pl•••Pk(p). Therefore S = {~(p) : pES}.

It follows that if~ is a tour S must contain all cities and G*(~) is

connected.

End of Proof.

This necessary condition for~ to be a tour together with lenma 2 will

be used to obtain a lower bound on the cost of an optimal tour. To do so

another graph G = (V,E) with nodes Vis needed. G has multiple edges, with

an edge -in E corresponding to each interchange [p,p+l] for which p and

p+l are in different subtours of~- For each such interchange there is an

16

edge ·connecting the two subtours with cost c~([p,p+l]) = dpp+l· Any permu­

tation~= ~p 1 ... pk defines a subgraph G(~) = (V,E(~)) of G. Each edge of

E corresponding to an interchange [p,p+l] covered by~ is a member of E(~)

with the same cost dpp+l·

Lenma 4. If G*(~) is connected then so also is G(w).

Proof. Consider any edge · {v1,v2} of G*(w). Let Pi have a member r in v1 and

sin v2. It is sufficient to show that there is a path in G(w) connecting v1
and v2.

Without loss of generality it may be assumed that r < s. Consider the

interchanges [p,p+l] for which rs p and p+l s s. By definition they are all

covered by w, Consider those that are members of E(w), that is for which p

and p+l are in different cycles of V. Consider also the cycles v of V which

have a member q for which rs q s s. The interchanges correspond to edges of

G(w) connecting v1 to v2 via the given cycles.

End of Proof.

The graph G is necessarily connected. There is therefore a spanning tree

of G with minimum cost. Let T be such a tree and let c(T) be its cost. A

lower bound on the cost of tours for C can now be established.

Theorem 6. Let w be any tour. Then c($) ~ c(~) + c(T).

Proof. G(~) is a subgraph of G and is by lenma 4 connected. Consequently if

c(E(~)) is the sum of the costs of edges in E($) it follows that

c(E(w)) ~ c(T). But L{dpp+l : where$ covers [p,p+l]} ~ c(E(w)). The theorem

follows directly therefore from lemma 2.

End of Proof.

Let a 1, ... ,am be all of the interchanges determined by the edges of the

minimum spanning tree T of G, where the ordering of the interchanges is

17

arbitrary. The permutation a1 •.• am determines disjoint cyclic permutation

for which a1 •.. am = P1 .•• Pk. Naturally the sum C$(p1) + .•• + c$(pk) depends

upon the order of application of the interchanges so that if w = $P1 ••• Pk

then c(w) depends upon the order. However, the goal of combining the subtours

into a single tour is achieved no matter the order of application:

Theorem 7. w = $a1 •.. ak is a tour if a1, ... ,ak are all the interchanges

corresponding to the edges of T taken in any order.

The proof of the theorem is left as an exercise.

Exercise 5 Prove theorem 7.

Exercise 6 Show that a Fuller matrix is not in general double sum.

Exercise 7 Develop upper and lower bounds for the cost of an optimal tour

for a double sum matrix using theorems 5 and 3 and provide a formula for the

difference between these bounds. Compare this difference with c(T) of

theorem 6.

Exercise 8 (Research problem) Are double sum matrices solvable?

§5. A solvable case of double sum matrices

The lower bound on the cost of a tour derived in theorem 6 was obtained

under the assumption that C is double sum. Here it will be shown that under

an asslJllption on the matrix D upon which C is based a tour w can be con­

structed with cost equal to the lower bound. The assumption, that each city

is one of two types, has been suggested by [Gilmore and Gomory, 1964), and

the main result of that paper will be shown to follow from the results of

this section. The optimal tour w = $p 1 •.. pk is constructed by applying the

interchanges defined by the spanning tree Tin a particular order to create

cyclic permutations P1, ... ,Pk for which c¢(P 1) + ... + c~{Pk) = c(T).

18

5.1 Type 1 and Type 2 Cities and An Order of Application of Interchanges

Consider now the matrix D upon which C is based. A city p, 1 s p s n,

may be of one of the following two types although for general D it may be of

neither type:

Type 1: For a 11 i and j, i < p < j, d. . = 0.
1J

Type 2: For all i and j, i ~ p ~ j, dij = O.

The areas of D that must be zero for city p to be type 1 or type 2 are illus­

trated in figure 3. Note that if pis of type 2 then Ci~(j) = 0 for i ~ p ~ j.

The assumption on D for the solvable case described in this section is that

each city is either of type 1 or of type 2.

p p+l

~I

p-1 //
p

¾
figure 3

19

Consider now the spanning tree T of §4. Such a tree defines a collec­

tion of interchanges [p,p+l] which detennine c(T) as the sum of the costs

c~{[p,p+l]). By applying the interchanges in a particular order cyclic

pennutations P1, ... ,pk can be obtained for which c~(P 1) + •.. + c~(pk) = c(T).

The possibilities for that order are detennined by the following theorem:

Theorem 8. Let P be any cyclic permutation.

(a) Let either (i) q be of type 2 and the largest integer in p,

or (ii) q+l be of type 1 and the smallest integer in p.

Then C$(p[q,q+l]) = C$(p) + C$([q,q+l])

(b) Let either (i) q be of type 1 and the largest integer in P,

or (ii) q+l be of type 2 and the smallest integer in p,

Then c¢{[q,q+l]P) = c¢(P) + c¢([q,q+l]).

Proof. Only cases (ai) and (bi) will be proved. The other cases are left

as an exercise.

Consider the case (ai). Note that if w is ¢p[q,q+l] then

~(q +l) if p = q,

~(p) = ¢(p(q)) if p = q+l,

~(p(p)) otherwi se

Let o1 = cq+l¢(p(q)) - cq¢(P(q)) and o2 = cq~(q+l) - cq+l¢(q+l)

Then c~(p[q,q+l]) = c¢(p) + o1 + o2.

But o1 = 0 and o2 = dqq+l since q is of type 2 and q > p(q). Recall that

c¢([q,q+l]) = dqq+l·

Consider lastly the case (bi). Note that if w is ~[q,q+l]p then

$(q+l) if p = p-l(q),

if p = q+l,

¢(p(p)) otherwise

Let o1 = cP-l(q}~(q+l} - cp-l(q}$(q) and o2 = cq+l~(q) - cq+l~(q+l)"

Then C$([q,q+l]P) = c~(p) + o1 + o2• But
n n

o1 = ! d iq+l and o2 = I: d iq+l
i=p-l(q) i=q+l .

Therefore
n

ol + o2 = . I:_1 diq+l = dqq+l
1=P (q}

since q is of type 1 and p- 1(q) < q.

5.2 An Algorithm for Finding an Optimal Tour

Theorem 8 provides the basis for several algorithms for finding an

optimal tour~= ~P 1 ... pk from an optimal assignment~- Here one such

algorithm is described.

20

(1) Let I be the set of interchanges determined by the tree T. Seti to 0.

(2) If I is empty then stop. Otherwise reset i to i+l. Let p be the

smallest integer for which an interchange [p,p+l] is in I. Set Pi to

[p,p+l] and reset I to I~{[p,p+l]}.

(3) Let q be the largest integer in pi· If [q,q+l] is not in I go to (2).

Otherwise if q is of type 2 reset Pi to pi•[q,q+l], and if q is of

type 1 reset pi to [q,q+l]•pi. Reset I to I~{[q,q+l]} and go to (3).

Step (2) of the algorithm begins the construction of the next cyclic

permutation when Pi is completed. Step (3) of the algorithm is justified

by the cases (ai) and (bi) of theorem 8.

5.3 An Example

The distance matrix C defined in [Gilmore and Gomory, 1964] is double

st.an and each city is of type 1 or type 2 so that the method of solution

21

described in this section can be applied. To show this is not difficult.

Let f and g be functions defined over the reals satisfying:

f{x) + g(x) c?: 0

and define:

J
Aj

f(x)dx

= Bi
ij

B· 1

g(x)dx

Aj

if A.~ B. , J ,

otherwise.

The value of cij can be rewritten as

(1)

1(-co,Aj]n[Bi,+oo]lf+ [Aj,+co]n[Bi,-co] g (2)

where [J denotes an interval, I If is the integral of f over the enclosed

interval, and I lg the integral of g.

Assume that the cities have been renumbered and a permutation~ defined

for which

(3)

The distance matrix C can be simplified by subtracting the first column from

every column and then subtracting the last row from every row. The resulting

new distance from city i to city j is given by

(CH (j) - Ci ~ (1)) - (~ ~ (j) - C n ~ (1)) . (4)

Using (2):

CH(j) - CH(l) = l[A~(l)'AHj}]n[B;,+co] If+ l[-co,Bi]n[A~(l)'A~(j)]lg

so that

cnHj) - cn~(l) = I [A~(l)'A~(j)]n[Bn,+co] If+ [- co,Bn]n[A~(l)'AHj)]lg

Subtracting the second of these from the first yields

l[A~(l)'A~(j)]n[B;,Bn] lf+g

as the value of (4).

(5)

The distance matrix defined by (5) has been obtained by legitimate

column and row operations so that (5) may replace (2) as the definition

22

of cij• It is clear therefore that although the distance defined by (2)

is dependent upon both f and g, a solution to an assignment or travelling

salesman problem for that distance is dependent only upon f+g. This obser­

vation was drawn in [Gilirore and Gomory, 1964] from the algorithm used to

solve the travelling salesman problem. Here the observation is immediate.

Define Bn+l to be Bn and let

Pk= [Bk,Bk+l1 for k=l, ... ,n.

Similarly define A¢(O) to be A¢(l) and let

Q1 = [A¢(1-1),A¢(1)1 for l=l, ... ,n.

Since

But the P's are all mutually disjoint as are also the Q's. It follows there­

fore that

so that C is double sum based on the matrix D with dkl = IPknQ1 lf+g·

Further each city is necessarily of type 1 or of type 2 since for any p

either BP~ A♦ (p) or Bp > A¢(p)· In the first case it follows from (3) that

Bis A¢(j) whenever is p s j. But Pi-l = [Bi-l'Bi] and Qj+l = [A ♦ (j)'A♦ (j+l)J

so that di-l j+l = O; that is dij = 0 for i ~ p ~ j as required for a type 1

city. 1n the second case it follows from (3) that Bi > A¢(j) whenever

i ~ P ~ j. But P. = [B.,B.+lJ and Q. = [A(' l)'A (')] so that d
1
.J. = 0 for

1 1 l J ¢ J- ¢ J

i ~ p ~ j as required for a type 2 city.

23

Exerc,se 8 Show that the greedy algorithm will not in general find an

optimal tour for a double sum matrix in which each city is of type 1 or

type 2. By the greedy algorithm is meant the algorithm which beginning

with one city will find a tour by taking as the next city one of least

distance from the present which has not been previously visited.

Exercise 9 Prove cases (aii) and (bii) of theorem 8.

Bibliography

[Fuller, 1972] Samuel H. Fuller, An Optimal Drum Scheduling Algorithm,
IEEE Transactions on Computers, Vol. C-21, No. 11, 1972, pp. 1153-1165.

24

[Gilmore, 1962] P.C. Gilmore, Optimal and Suboptimal Algorithms for the
Quadratic Assignment Problem, J. Soc. Indust. Appl. Math. Vol. 10, No. 2,
1962, pp. 305-313.

[Gilmore and Gomory, 1964] P.C. Gilmore and R.E. Gomory, Sequencing a
One State-Variable Machine: A Solvable Case of the Travelling Salesman
Problem, Operations Research, Vol. 12, No. 5, 1964, pp. 655-679.

[,lenkyns, 1979] T.A. Jenkyns, The Greedy Travelling Salesman Problem,
Networks, Vol. 9, 1979, pp. 363-373.

[Johnson, 1954] S.M. Johnson, Optimal Two- and Three-Stage Production
Schedules with Setup Times Included, Naval Res. Log. Quart. 1, 1954,
pp. 61-68.

[Lawler, 1971] Eugene L. Lawler, A Solvable Case of the Travelling Salesman
Problem, Mathematical Programming 1, 1971, pp. 267-269.

[Syslo, 1973] Maciej M. Syslo, A New Solvable Case of the Travelling Sales­
man Problem, Mathematical Programming, Vol. 4, 1973, pp. 347-348.

