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ABSTRACT 

This paper is a chapter in a book on the travelling salesman problem 
edited by Eugene L. Lawler, Jan Karel Lenstra and Alexander H.G. Rinooy Kan. 
By a solvable case of the travelling salesman problem is meant a case of the 
distance matrix for which a polynomial algorithm exists. In this paper 
several previously known special cases are related and extended. Further, 
an upper bound is obtained on the cost of an optimal tour for a broad class 
of matrices. 





§1. Introduction 

1.1 Survey of Methods and Results 

In this chapter the goal is to examine special cases of the distance 

matrix · {cij} for which the travelling salesman's problem can be solved in 

polynomial time. Since the assignment problem for any distance matrix can 

be solved in polynomial time, not surprisingly the polynomial solutions of 

special cases of the travelling salesman problem dealt with here require 

solving first the assignment problem. The unifying theme for the chapter 

is the manner in which an optimal tour~ for the travelling salesman is 

obtained from an optimal assignment¢. 

A cyclic permutation P = [p1, ... ,pa] takes values defined as follows: 

i, if ifpl'···,Pa' 

p(i) = Pj+l' if i=pj' and 

pl' if i=pa. 

Two cyclic permutations are disjoint if they have no cities in common. 

For any given assignment¢ and cyclic permutation P define: 

c¢(p) = c(¢p) - c(¢). 

Using this definition the following result is elementary: 

Theorem 1. Given any assignments ¢ and~ there exist disjoint cyclic permu-

tations P1, ... ,pk for which 

~ = ¢p 1 ... pk and 

c(~) = c(¢) + c¢(p 1) + ... + c¢(pk). 

Proof. Any permutation can be represented as the product of disjoint cyclic 

permutations, and therefore $-l~ can be so represented. The second result 

then follows from the fact that Pl'"''Pk are disjoint. 

End of Proof. 



An assignment¢ which is not a tour consists of two or more subtours. 

Cyclic permutations P1, .•. ,pk can be chosen to connect the subtours into a 

single tour~- The common method of determining an optimal tour~ used in 

this chapter is to first determine an optimal assignment~ and then to 

select cyclic permutations for which ~P 1 ... pk is a tour and 

c~(P 1) + ..• + c¢(Pk) is as small as possible. 
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In §2 the technique is first illustrated for upper triangular distance 

matrices, a solvable case first described in [Lawler, 1971]. In this case a 

single cyclic permutation p suffices and c~(p) = 0. Also in this section 

the method of selecting pis applied to a broad class of matrices C to obtain 

an upper bound on the cost of an optimal tour. For this class of matrices, 

as for all matrices, this cost is bounded below by the cost of an optimal 

assignment for C, but it is also bounded above by the cost of an optimal 

assignment for the matrix C' obtained from C by dropping one column and one 

row. 

In §3 it is shown that the distance matrix defined in [Fuller, 1972] 

is upper triangular so that the technique of §2 may be used for its solu­

tion. Moreover, because of the special form of the distance matrix an 

optimal assignment can be obtained by a simple algorithm. An exercise 

suggests a solvable generalization of the Fuller matrix. 

In §4 a class of distance matrices called double sum matrices is de­

fined. For this class of matrices a lower bound on the cost c(~) of an 

optimal tour~ is obtained by focusing attention on interchanges, that is 

cyclic permutations of two cities. The interchanges [p,q] considered are 

those with each of p and q in different subtours of~- The effect of such 

an interchange on¢ is to connect into a single subtour the pair of subtours 
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containing p and q. Therefore each such interchange can be regarded as an 

edge of cost c~([p,q]} connecting two nodes of a graph with subtours of~ 

as nodes. The cost c~(T) of a minimum spanning tree T for the graph is 

shown to be a lower bound for c~(p 1) + •.• + c~(pk) so that c(~) + c~(T) forms 

a lower bound for c(l/J). 

In §5 a special class of double sum matrices is defined suggested by 

the distance matrix defined in [Gilmore and l1>mory, 1964]. It is shown that 

the lower bound c(,) + c,(T) can be achieved for this special class. The 

interchanges used to define the edges of T can be applied in a particular 

order to define cyclic permutation p1, ... ,pk for which 

c4>(p 1) + ... + c~(pk) = c~(T). 

Permutations of the rows and columns of a matrix for an assignment 

problem can be accommodated by renumberings of the rows and columns since 

the numberings do not connect a particular row with a particular column. 

For the travelling salesman problem, on the other hand, the numberings are 

important because the ith row and the ith column each contain distance in­

formation relating to the ith city. A renumbering of the rows or columns 

alone can however be accommodated. A permutations of the columns of C 

after a renumbering of the rows results in ciS(j)' i=l, ... ,n, being the 

distances in column j. 

It may be possible to transform a given distance matrix into one of 

the special forms described in this chapter by permutations of the rows and 

colun11s. This does not always mean that the matrix has then a solvable 

travelling salesman problem. The method of solution for upper triangular 

matrice~ can only be applied to matrices which can be brought to this form 

by a renumbering of the rows, or a renumbering of the columns, but not to 

those that require a renumbering of the rows and a permutation of the columns. 
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·1.2 Some Omissions 

Unfortunately limitations in space have required the elimination of 

several topics. These include the following. 

The motivating applications for the papers [Fuller, 1972] and [Gilmore 

and Gomory, 1964] are not discussed. The reader is urged to turn to these 

papers to gain some sense of the interaction between theory and practice. 

A time and space analysis of the algorithms described in this chapter 

has not been made. This is a serious omission in a chapter dealing with 

practical algorithms but the analysis is not difficult. The appendix to 

[Fuller, 1972] offers some help for one algorithm. 

The special case [Syslo, 1973] which obtains Hamiltonian circuits in 

directed line graphs from Eulerian circuits in an underlying graph to the 

line graph is not described. Since Eulerian circuits can be efficiently 

found, the travelling salesman problem for these special graphs can be 

efficiently solved. 

In the paper [Jenkyns, 1979] bounds for solutions to the travelling 

salesman problem are obtained using the theory of independence systems. 

These results are not used or described here. 

Exercise 1. The classic paper [Johnson, 1954] describes an optimal solution 

to a problem with close connections with [Gilmore and Gomory, 1964]. Show 

that the problem is not a travelling salesman problem. 

§2. Upper triangular and graded matrices 

2.1 Finding an Optimal Tour for Upper Triangular Matrices 

An upper triangular matrix is one in which all distances are zero on and 

below the main diagonal; that is, cij = O for i ~ j. The other distances 
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may be positive, negative or zero. 

Let C be an upper triangular matrix and let C' be obtained from C by 

removing the first column and the last row. Any assignment 4>' for C' can 

be extended to an assignment 4> for C by defining 4>(i) to be 4> 1 (i) for iln and 

4>(n) to be 1. Since the arc (n,1) has zero distance the cost of 4> is the 

cost of 4> 1
• Of course if 4> 1 is an optimal assignment for C' it does not 

follow that 4> is an optimal assignment for C, although it will be shown later 

that if~ is a tour then it is an optimal tour for C. 

Let~• be any optimal assignment for C' and let~ not be a tour. An 

optimal tour will be obtained from~ by combining its several subtours into 

one. This will be accomplished by removing from its subtours arcs (i,j) 

for which i ~ j, what are called backward arcs, and replacing them with 

other such arcs. Since backward arcs have zero distance the tour obtained 

will have the same total cost as 4> 1 or 4>. 

Note first that each subtour of~ must contain at least one backward 

arc. Hence a backward arc can be selected from each subtour, including 

(n,1) from the subtour of which it is a member. Let a selection of such 

arcs be (p1,4>(p 1)), ... ,(pk,4>(pk)), where 4>(p 1) > ~(p2) > ••• > 4>(pk). Here 

pk= n and 4>(pk) = 1. Consider now the permutation w = 4>[p 1, ... ,pk]. Each 

of the arcs (pi ,HP;)) is a backward arc by choice, that is pi ?: HP;). 

Consequently (pi,w(P;)) is a backward arc for 1 s i < k, since 

4>(p;) > ~(Pi+l) = w(P;), and (pk,w(pk)) is a backward arc since 

pk= n.::: 4>(p1) = w(pk). It follows therefore that c(w) = c(4i). Furthermore 

w is a tour. This fact is illustrated in figure 1 fork= 3. To show that 

~ is an -optimal tour is a little more difficult. To do so it will be shown 

that any tour for C defines an assignment for C' of the same cost so that 
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necessarily any tour for C with the same cost as an optimal assignment for 

c' is an optimal tour. 

J 
I 

I 
I 

figure 1 

Let. be any tour for C. It defines a path from city n to city 1. 

Let the cities in the path in the order in which they are encountered be 

P0 ,P1, ... ,pm,Pm+l' where p0 = n and Pm+l = 1. If m = 0 then .{n) = 1 and. 

defines an assignment for C' with the same cost as •. Assume therefore 

that m ~ 1. A cyclical permutation p of cities selected from p
0

, ••• ,~m+l 

will be defined with the following property: If~ is •P then ~(n) = 1 and 

the cost of~ is the same as the cost of~ so that~ and therefore. defines 

an assignment for C' of the same cost as •. The cost of~ is maintained as 

the same as. by replacing backward edges of. by other backward edges. 

There must be some i for which Pm~ Pi+l and P; > P;+i· If Pm~ Pi 

then O is one such i, while if Pm< p1 i is such an index if pi is the last 
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city :in the path for which Pm< Pi· Let m1 be one such i. Then (pm,Pm
1
+1) 

is a backward arc that can replace the backward arc (pm,Pm+l). 

The argument of the previous paragraph can now be repeated for the path 

p0 ,p1, ... ,pm ,Pm +l to define an m2 for which (pm ,Pm +l) is a backward arc 
1 1 1 2 

that can replace the backward arc (pm ,Pm +i>· Continued repetitions will 
2 2 

define indices m1,m2, ... ,mk such that (Pm. ,Pm. ) is a backward arc that 
J-1 J+l 

can replace the backward arc (pm ,Pm ) for j=l, ... ,k, where m
0 

= m, and 
j j+l 

such that mk is O. 

Now define p to be [Pm ,Pm , ..• ,pm] and~ to be Tp. For each j, 
o 1 k 

O s j < k, HPm_) is 
J 

that is ~(n) is 1. 

T(Pm ), that is p +·' while ~(pm) is T(Pm ), 
j+l mj+l 1 k o 

By definition each of the arcs (Pm.,T(Pm.)), where Os j s k, is back-
J J 

ward. But so also is each of the arcs (Pm.'~(Pm.)). Therefore c(~) = c(T). 
J J 

This completes the proof of: 

Theorem 2. ~ = ~[p1, ... ,pk] is an optimal tour for C. 

This proof cannot be generalized to the case where C is upper triangular 

after a renumbering of the rows and a permutation of the columns. In this 

case there is no assurance that every subtour of~ uses a backward arc. 

2.2 An Upper Bound for Graded Matrices 

The method of defining the cyclic permutation [p1, ... ,pk] to break the 

cycles of~ can be used to obtain an upper bound on the cost of an optimal 

tour for a broad class of distance matrices C. 

A matrix C is said to be graded across its rows if cij s cik for 

1 sis n and 1 s j s ks n. It is said to be graded up its columns if 

c .. ~ck.for 1 s j s n and 1 sis ks n. 
1J J 
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Theorem 3. Let C be any distance matrix for which either for some permuta­

tions of its columns C is graded across its rows and its last row is all 

zero, or for some permutation a of its rows C is graded up its columns and 

its first column is all zero. Lett' be an optimal assignment to the matrix 

C' obtained from C by deleting in the first case column S(l) and the last 

row, and in the second case row a(n) and the first column. Then c(~') is 

an upper bound on the cost of a tour of C. 

Proof. Consider the first case. Define~ as in 2.1 from~• taking account 

of the permutations. Because cns(l) = O it follows that c(~) = c(~'). If 

$ is a tour then c(~) = c(~') is an upper bound on the cost of an optimal 

tour. If~ is not a tour, select an edge from each subtour of~ including 

the edge (n,S(l)) from the subtour of which it is a member. As before 

order the arcs (pi,s- 1~(pi)) so that s-1~(p 1) > ••• > s-1~(pk), where pk= n 
1 -1 and S- ~(pk)= 1. Define w = S ~[p1, ... ,pk], which as before is a tour. 

Further c(w) = c(~) + 
n-1 

E (c -1 ( ) - C -1 ( ) 
i=l piS ~ Pi+l piS ~ Pi 

From the conditions on C and the ordering of the pi's it follows that 

c(w) ~ c{~). This completes the proof of the first case. The proof of the 

second case is identical since the matrix of the second case is a transpose 

of the mBtrix of the first case. 

End of Proof. 

Although no important use is made of Theorem 3 in this chapter, it is 

included here to suggest a possibly interesting use of the cycle breaking 

technique of this section. An upper bound on the cost of an optimal tour 

can be useful in branch and bound algorithms for the travelling salesman 
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problem as was described in [Gilmore, 1962] for the roore general quadratic 

assignment problem, or w can be used as a quick approximate solution. 

Exercise 2 Theorem 3 describes a bound for a matrix that is either graded 

across the rows and has a zero row, or is graded up its columns and has a 

zero column. Develop bounds for matrices that are only either graded across 

their rows or up their columns. 

§3. Fuller Matrices 

A Fuller matrix described in [Fuller, 1972] can be transformed into an 

upper triangular matrix. Further, the assignment problem to be solved in 

applying the technique of the last section has a simple method of solution. 

3.1 A Fuller Matrix is Upper Triangular 

Let fi and si, 1 s i < n, and fn be non-negative numbers satisfying 

Os f sf. s s. < 1. For 1 sis n define c,.n = 0 and for 1 s j s n-1 n , , 

define 

{ 

sj - fi if sj ~ fi 

cij = 1 + Sj - f; otherwise 

The distance matrix so obtained is called here a Fuller matrix. The form of 

the matrix can be simplified by adding fi to row i for 1 sis n, subtracting 

Sj from column j for 1 $ j s n-1, and subtracting fn, the smallest f, from 

column n. The new distances then are: 

cin = fi - fn 

c .. = {0 if Sj ~ f; 
lJ 1 otherwise 

Let C be the distance matrix so defined. It can be assumed that the cities 

have been renumbered so that f 1 ~ ... ~ fn. Then C is upper triangular since 
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if i -~ j and j s n-1 then sj ~ fj ~ f1, so that cij = 0, while also Cnn = 0. 

3.2 An Optimal Assignment for C. 

To solve the travelling salesman problem for C by the technique described 

in §2 it is first necessary to find an optimal assignment~• for the matrix 

C' obtained from C by dropping the first column and the last row. Such an 

assignment can be found quite simply. 

Clearly an optimal assignment for c' will select as many zero distance 

arcs from columns 2 through n-1 of C as any other assignment, and further 

will select those arcs from rows with the smallest index i. The latter is 

necessary to permit the selection of the least cost available arc from the 

last column, since the distances in the last column are in decreasing order. 

Consider the following algorithm for defining an assignment ¢ 1 for C': 

1. For i = 1 to n-1, find a j, 2 s j s n-1 if one exists, for which cij = 0 

and ¢1 l(j) is undefined and set ¢'(i) = j, otherwise leave ¢'(i) un­

defined. 

2. Let k be the largest i for which $'(i) is undefined and set ¢ 1 (i) = n. 

3. For each i for which ~•(i) is undefined select a j for which ¢•-l(j) is 

undefined and set ¢'(i) = j. 

Theorem 4. ¢ 1 is an optimal assignment for C'. 

Proof. Consider any other assignment wand compare the number of zero cost 

arcs selected by¢' and~- The number selected by~ from the first k rows 

can be no more than the number selected by~•, for 1 s ks n-1. For consider 

a row from which w selects but ¢ 1 does not select a zero cost arc. Necessar­

ily it is a row for which in each column in which the row has a zero cost 

arc,¢' has selected a zero cost arc in a prior row. Consequently since w 

selects a zero cost arc in such a row it must have selected fewer zero cost 
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arcs ·from prior rows than did~•. 

It follows also therefore that if wand~• select the same number of 

zero cost arcs then ~•-1(n) ~ w-1(n). For let ~•(k) = w(i) = n, where k < i. 

Necessarily~• selects a zero cost arc for row i while w does not. Yet the 

nurrber of zero cost arcs selected by~• in rows prior to i is not less than 

the number selected by w. Since~• and w select the same number of zero cost 

arcs it follows that in some row following i in which w selects a zero cost 

arc~• does not. But that is impossible from step (2) of the algorithm since 

k < i. 

Since~• selects as many zero cost arcs as wand ~•- 1(n) ~ w- 1(n) it 

follows that c(~•) s c(~). 

End of Proof. 

It is clear from the matrix C that the choice of an optimal tour is not 

dependent upon the values sj but only upon how these values compare with the 

fi. But it is also clear from the algorithm for determining an optimal tour 

that the choice is also not dependent upon the values fi. Indeed the zero 

and one-distance arcs of Care all that affect the choice. 

Exercise 3 The application of the algorithm for upper triangular matrices 

to a Fuller matrix required first the transformation of the matrix as does 

also the application of the algorithm for an optimal assignment for C'. 

Describe an algorithm which operates directly on the original fi and Sj and 

compare the algorithm with the one described in [Fuller, 1972]. 

Exercise 4 The Generalized Fuller Matrix 

The parameters fi and si determining the distances of a Fuller matrix 

satisfy ·the condition Os fn s fi s si < 1 for 1 sis n-1. For a generalized 

Fuller matrix this condition is relaxed to Os fn s fi < 1 and Os si < 1 so 
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that the transfonned matrix C is no longer upper triangular. Moreover, the 

matrix does not satisfy the conditions of theorem 3 since although the matrix 

is graded up its columns its first column is not necessarily all zero. Never­

theless the technique of theorem 3 can be applied. It is only necessary to 

ensure when executing step (3) of the algorithm for finding an optimal assign­

ment for C' that no cycle is created in which a zero-distance arc does not 

appear. Then a single zero-distance arc can be chosen from each cycle. Show 

in this way that an upper bound like that of theorem 3 applies to generalized 

Fuller matrices. Can an optimal tour be obtained in this way? 

§4. Double Sum Distance Matrices 

Let D = (dij)~,j=l be any matrix of elements d;j for which d;j ~ 0. A 

distance matrix C is a double sum matrix based on D if there is a permutation 

~ of the columns of C for which 

In this section a lower bound on the cost of an optimal tour for a double 

sum distance matrix is derived. In the next section it is shown that this 

lower bound can be achieved when the matrix O on which the double sum matrix 

is based satisfies special constraints. The results of these two sections 

generalizes those of [Gilmore and Gomory, 1964]. 

The permutation~ of the columns of C used to define Casa double sum 

matrix plays a special role throughout this section because of the following 

theorem: 

Theorem 5. ~ is an optimal assignment for C. 

Proof. Let 1/J be any permutation for which there exist a p and q for which 

p < q and ~- 11/J(p} > ~-11/J(q). Consider then c(l/J) c(l/J[p,q]}, that is 
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-cw([p,q]) as defined in §1. Let p' = ~-l (p) and q' = ~-l~(q) + 1. Then 

n ~• 
= I: L. dkl 

k=p l=q' 
q-1 p' 

= I: I: dkl 
k=p l=q' 

Figure 2 illustrates the area of D to be summed to obtain this term. Since 

dkl ~ 0 it follows that c(~) ~ c(~[p,q]). Thus any permutation~ differing 

from~ can be transformed to~ by a series of interchanges that do not in­

crease the cost of the assignment. 

End of Proof. 

1 

p 

q 

n 

figure 2 

Theorem 1 will be used to obtain a lower bound for the cost of a tour 

$ . However some definitions are needed first. 
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A cyclic permutation P = [p1, •.. ,pk] is said to cover an interchange 

[q,q+l] if min{pl' .•. ,pk} sq< ma·x{pl' ••• ,pk}. A permutation l/J = cj,•p 1 ... t:ik 

is said to cover an interchange [q,q+l] if one of p1, .•. ,pk covers (q,q+l]. 

Lemma 1. For any cyclic permutation p 

ccj,(p) ~ E{dqq+l : where P covers [q,q+l]} 

Proof. For any p 

Ccj,(p) = ~ Cqcj,(P(q)) - Cqcj,(q)• 
q ,n P 

Since cqcj,(q) sums only terms d;j for which i ~ j it follows that any term dij 

for which i < j that is summed for cqcj,(p(q)) contributes at least once to the 

sumccj,(p). 

and therefore the sum includes dqq+l for all q for which p1 sq< p2. 

Let P now be a cyclic permutation in some order of the cities p1, ... ,pk, 

where k > 2 and p1 < p2 < ... < Pk· Consider any pair of cities Pj-l and Pj 

from p. Since p is a cyclic pennutation of p1, ... ,pk in some order there is 

some i, 1 sis j-1, for which p(p;) ~ Pj, for otherwise P could be factored 

into a cyclic permutation of 1, ... ,j-1 in some order and a cyclic permutation 

of j, ... ,n in some order. But 

Since P; s Pj-l < Pj s p(pi) this sum includes dqq+l when Pj-l sq< pj. 

End of Proof. 
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From theorem 1 therefore follows: 

Lemma 2. For any permutation~ 

c(~} ~ c(~} + I{dpp+l: where~ covers [p,p+l]}. 

None of the le11111as established so far make any distinction between an 

arbitrary permutation and a tour. This deficiency will now be rectified. 

If~ is itself a tour then it is necessarily an optimal tour for C 

because of theorem 5. For the remainder of this section it is assumed there­

fore that~ is not a tour but defines two or more subtours of the cities. 

Let V be the set of subtours of~- A graph G*(~} = (V,E*(~)) is 

uniquely determined by a permutation~ as follows. Let as before 

w = ~P 1 ... Pk. Let E*(w) consist of all pairs {v1,v2}, for which at least 

one of P1, ... ,Pk has members in each of v1 and v2, The graph G*(~) permits 

the statement of a necessary condition for~ to be a tour: 

Lemma 3. If~ is a tour then G*(~) is connected. 

Proof. Let G* be a connected component of G*(~), and let S be the set of 

all cities of nodes of G*. Let p be any city of S. For each Pi all the 

cities of Pi are either all members of Sor all not members. Hence 

P1 ... pk(p) is in S, as is also ~Pl•••Pk(p). Therefore S = {~(p) : pES}. 

It follows that if~ is a tour S must contain all cities and G*(~) is 

connected. 

End of Proof. 

This necessary condition for~ to be a tour together with lenma 2 will 

be used to obtain a lower bound on the cost of an optimal tour. To do so 

another graph G = (V,E) with nodes Vis needed. G has multiple edges, with 

an edge -in E corresponding to each interchange [p,p+l] for which p and 

p+l are in different subtours of~- For each such interchange there is an 
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edge ·connecting the two subtours with cost c~([p,p+l]) = dpp+l· Any permu­

tation~= ~p 1 ... pk defines a subgraph G(~) = (V,E(~)) of G. Each edge of 

E corresponding to an interchange [p,p+l] covered by~ is a member of E(~) 

with the same cost dpp+l· 

Lenma 4. If G*(~) is connected then so also is G(w). 

Proof. Consider any edge · {v1,v2} of G*(w). Let Pi have a member r in v1 and 

sin v2. It is sufficient to show that there is a path in G(w) connecting v1 
and v2. 

Without loss of generality it may be assumed that r < s. Consider the 

interchanges [p,p+l] for which rs p and p+l s s. By definition they are all 

covered by w, Consider those that are members of E(w), that is for which p 

and p+l are in different cycles of V. Consider also the cycles v of V which 

have a member q for which rs q s s. The interchanges correspond to edges of 

G(w) connecting v1 to v2 via the given cycles. 

End of Proof. 

The graph G is necessarily connected. There is therefore a spanning tree 

of G with minimum cost. Let T be such a tree and let c(T) be its cost. A 

lower bound on the cost of tours for C can now be established. 

Theorem 6. Let w be any tour. Then c($) ~ c(~) + c(T). 

Proof. G(~) is a subgraph of G and is by lenma 4 connected. Consequently if 

c(E(~)) is the sum of the costs of edges in E($) it follows that 

c(E(w)) ~ c(T). But L{dpp+l : where$ covers [p,p+l]} ~ c(E(w)). The theorem 

follows directly therefore from lemma 2. 

End of Proof. 

Let a 1, ... ,am be all of the interchanges determined by the edges of the 

minimum spanning tree T of G, where the ordering of the interchanges is 
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arbitrary. The permutation a1 •.• am determines disjoint cyclic permutation 

for which a1 •.. am = P1 .•• Pk. Naturally the sum C$(p1) + .•• + c$(pk) depends 

upon the order of application of the interchanges so that if w = $P1 ••• Pk 

then c(w) depends upon the order. However, the goal of combining the subtours 

into a single tour is achieved no matter the order of application: 

Theorem 7. w = $a1 •.. ak is a tour if a1, ... ,ak are all the interchanges 

corresponding to the edges of T taken in any order. 

The proof of the theorem is left as an exercise. 

Exercise 5 Prove theorem 7. 

Exercise 6 Show that a Fuller matrix is not in general double sum. 

Exercise 7 Develop upper and lower bounds for the cost of an optimal tour 

for a double sum matrix using theorems 5 and 3 and provide a formula for the 

difference between these bounds. Compare this difference with c(T) of 

theorem 6. 

Exercise 8 (Research problem) Are double sum matrices solvable? 

§5. A solvable case of double sum matrices 

The lower bound on the cost of a tour derived in theorem 6 was obtained 

under the assumption that C is double sum. Here it will be shown that under 

an asslJllption on the matrix D upon which C is based a tour w can be con­

structed with cost equal to the lower bound. The assumption, that each city 

is one of two types, has been suggested by [Gilmore and Gomory, 1964), and 

the main result of that paper will be shown to follow from the results of 

this section. The optimal tour w = $p 1 •.. pk is constructed by applying the 

interchanges defined by the spanning tree Tin a particular order to create 

cyclic permutations P1, ... ,Pk for which c¢(P 1) + ... + c~{Pk) = c(T). 
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5.1 Type 1 and Type 2 Cities and An Order of Application of Interchanges 

Consider now the matrix D upon which C is based. A city p, 1 s p s n, 

may be of one of the following two types although for general D it may be of 

neither type: 

Type 1: For a 11 i and j, i < p < j, d. . = 0. 
1J 

Type 2: For all i and j, i ~ p ~ j, dij = O. 

The areas of D that must be zero for city p to be type 1 or type 2 are illus­

trated in figure 3. Note that if pis of type 2 then Ci~(j) = 0 for i ~ p ~ j. 

The assumption on D for the solvable case described in this section is that 

each city is either of type 1 or of type 2. 

p p+l 

~I 

p-1 // 
p 

¾ 
figure 3 
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Consider now the spanning tree T of §4. Such a tree defines a collec­

tion of interchanges [p,p+l] which detennine c(T) as the sum of the costs 

c~{[p,p+l]). By applying the interchanges in a particular order cyclic 

pennutations P1, ... ,pk can be obtained for which c~(P 1) + •.. + c~(pk) = c(T). 

The possibilities for that order are detennined by the following theorem: 

Theorem 8. Let P be any cyclic permutation. 

( a) Let either ( i) q be of type 2 and the largest integer in p, 

or (ii) q+l be of type 1 and the smallest integer in p. 

Then C$(p[q,q+l]) = C$(p) + C$([q,q+l]) 

(b) Let either (i) q be of type 1 and the largest integer in P, 

or (ii) q+l be of type 2 and the smallest integer in p, 

Then c¢{[q,q+l]P) = c¢(P) + c¢([q,q+l]). 

Proof. Only cases (ai) and (bi) will be proved. The other cases are left 

as an exercise. 

Consider the case (ai). Note that if w is ¢p[q,q+l] then 

~(q +l) if p = q, 

~(p) = ¢(p(q)) if p = q+l, 

~(p(p)) otherwi se 

Let o1 = cq+l¢(p(q)) - cq¢(P(q)) and o2 = cq~(q+l) - cq+l¢(q+l) 

Then c~(p[q,q+l]) = c¢(p) + o1 + o2. 

But o1 = 0 and o2 = dqq+l since q is of type 2 and q > p(q). Recall that 

c¢([q,q+l]) = dqq+l· 

Consider lastly the case (bi). Note that if w is ~[q,q+l]p then 

$(q+l) if p = p-l(q), 

if p = q+l, 

¢(p(p)) otherwise 



Let o1 = cP-l(q}~(q+l} - cp-l(q}$(q) and o2 = cq+l~(q) - cq+l~(q+l)" 

Then C$([q,q+l]P) = c~(p) + o1 + o2• But 
n n 

o1 = ! d iq+l and o2 = I: d iq+l 
i=p-l(q) i=q+l . 

Therefore 
n 

ol + o2 = . I:_1 diq+l = dqq+l 
1=P (q} 

since q is of type 1 and p- 1(q) < q. 

5.2 An Algorithm for Finding an Optimal Tour 

Theorem 8 provides the basis for several algorithms for finding an 

optimal tour~= ~P 1 ... pk from an optimal assignment~- Here one such 

algorithm is described. 
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(1) Let I be the set of interchanges determined by the tree T. Seti to 0. 

(2) If I is empty then stop. Otherwise reset i to i+l. Let p be the 

smallest integer for which an interchange [p,p+l] is in I. Set Pi to 

[p,p+l] and reset I to I~{[p,p+l]}. 

(3) Let q be the largest integer in pi· If [q,q+l] is not in I go to (2). 

Otherwise if q is of type 2 reset Pi to pi•[q,q+l], and if q is of 

type 1 reset pi to [q,q+l]•pi. Reset I to I~{[q,q+l]} and go to (3). 

Step (2) of the algorithm begins the construction of the next cyclic 

permutation when Pi is completed. Step (3) of the algorithm is justified 

by the cases (ai) and (bi) of theorem 8. 

5.3 An Example 

The distance matrix C defined in [Gilmore and Gomory, 1964] is double 

st.an and each city is of type 1 or type 2 so that the method of solution 



21 

described in this section can be applied. To show this is not difficult. 

Let f and g be functions defined over the reals satisfying: 

f{x) + g(x) c?: 0 

and define: 

J
Aj 

f(x)dx 

= Bi 
ij 

B· 1 

g(x)dx 

Aj 

if A.~ B. , J , 

otherwise. 

The value of cij can be rewritten as 

( 1) 

1(-co,Aj]n[Bi,+oo]lf+ [Aj,+co]n[Bi,-co] g (2) 

where [ J denotes an interval, I If is the integral of f over the enclosed 

interval, and I lg the integral of g. 

Assume that the cities have been renumbered and a permutation~ defined 

for which 

( 3) 

The distance matrix C can be simplified by subtracting the first column from 

every column and then subtracting the last row from every row. The resulting 

new distance from city i to city j is given by 

( CH ( j ) - Ci ~ (1 ) ) - ( ~ ~ ( j ) - C n ~ (1 ) ) . (4) 

Using (2): 

CH(j) - CH(l) = l[A~(l)'AHj}]n[B;,+co] If+ l[-co,Bi]n[A~(l)'A~(j)]lg 

so that 

cnHj) - cn~(l) = I [A~(l)'A~(j)]n[Bn,+co] If+ [- co,Bn]n[A~(l)'AHj)]lg 

Subtracting the second of these from the first yields 

l[A~(l)'A~(j)]n[B;,Bn] lf+g 

as the value of (4). 

(5) 



The distance matrix defined by (5) has been obtained by legitimate 

column and row operations so that (5) may replace (2) as the definition 
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of cij• It is clear therefore that although the distance defined by (2) 

is dependent upon both f and g, a solution to an assignment or travelling 

salesman problem for that distance is dependent only upon f+g. This obser­

vation was drawn in [Gilirore and Gomory, 1964] from the algorithm used to 

solve the travelling salesman problem. Here the observation is immediate. 

Define Bn+l to be Bn and let 

Pk= [Bk,Bk+l1 for k=l, ... ,n. 

Similarly define A¢(O) to be A¢(l) and let 

Q1 = [A¢(1-1),A¢(1)1 for l=l, ... ,n. 

Since 

But the P's are all mutually disjoint as are also the Q's. It follows there­

fore that 

so that C is double sum based on the matrix D with dkl = IPknQ1 lf+g· 

Further each city is necessarily of type 1 or of type 2 since for any p 

either BP~ A♦ (p) or Bp > A¢(p)· In the first case it follows from (3) that 

Bis A¢(j) whenever is p s j. But Pi-l = [Bi-l'Bi] and Qj+l = [A ♦ (j)'A♦ (j+l)J 

so that di-l j+l = O; that is dij = 0 for i ~ p ~ j as required for a type 1 

city. 1n the second case it follows from (3) that Bi > A¢(j) whenever 

i ~ P ~ j. But P. = [B.,B.+lJ and Q. = [A(' l)'A (')] so that d
1
.J. = 0 for 

1 1 l J ¢ J- ¢ J 

i ~ p ~ j as required for a type 2 city. 
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Exerc,se 8 Show that the greedy algorithm will not in general find an 

optimal tour for a double sum matrix in which each city is of type 1 or 

type 2. By the greedy algorithm is meant the algorithm which beginning 

with one city will find a tour by taking as the next city one of least 

distance from the present which has not been previously visited. 

Exercise 9 Prove cases (aii) and (bii) of theorem 8. 
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