
ON THE COMPLEXITY OF GENERAL 
GRAPH FACTOR PROBLEMS 

by 

D.G. Kirkpatrick and P. Hell 

Technical Report 81-7 

August 1981 





ON THE COMPLEXITY OF GENERAL GRAPH FACTOR PROBLEMS 

by 

o.G. Kirkpatrick 
Department of Computer Science 
University of British Columbia 

P. Hell 
Departments of Computing Science and Mathematics 

Simon Fraser University 





Abstract 

For arbitrary graphs G and H, a G-factor of His a spanning 
subgraph of H composed of disjoint copies of G. G-factors are 
natural generalizations of 1-factors (or perfect matchings), in 
which G replaces the complete graph on two vertices. Our results 
show that the perfect matching problem is essentially the only 
instance of the G-factor problem that is likely to admit a poly­
nomial time bounded solution. Specifically, if G has any component 
with three or more vertices then the existence question for G­
factors is NP-complete. (In all other cases the question can be 
resolved in polynomial time.) 

The notion of a G-factor is further generalized by replacing 
G by an arbitrary family of graphs. This generalization forms 
the foundation for an extension of the traditional theory of match­
ing. This theory, whose details will be developed elsewhere, 
includes, in addition to further NP-completeness results, new poly­
nomial algorithms and simple duality results. Some indication of 
the nature and scope of this theory are presented here. 

Key words: algorithms, complexity, factor, graph, matching, 
NP-completeness. 





1. Introduction . 

Let H denote an arbitrary graph with vertex set V(H) and 

edge set E(H). A matching in H is any subset M of E(H) such 

that no two elements of M have a vertex in common. A matching M 

is perfect (also called a I-factor) if exactly one element of M is 

incident with each vertex in V(H). If H is a weighted graph then 

the weight of a matching M is just the sum I: weight (e) • 
eEM 

The notion of a matching in a graph has numerous applications 

in such diverse areas as transversal theory, assignment problems, 

network flows, multiprocessor· scheduling, shortest path algorithms, 

and the Chinese Postman and Traveling Salesman problems [3, 10, 12, 13, 

16, 17, 22, 31, 33, 36]. The existence of polynomial time bounded 

algorithms for the construction of matchings of maximum cardinality 

(and hence determing the existence of perfect matchings) or maximum 

weight is well known [6, 7, 8, 9], although the exact complexity of the 

problems is not yet settled and work continues on this aspect of the 

problem [23, 26]. In addition there is a rich mathematical theory that 

has developed about the matching problem that includes characterizations 

of graphs that admit perfect matchings [39] and (more generally) duality 

theorems on maximum matchings [l, 8, 12, 17, 32, 33, 34]. 

A matching in H may be viewed as a collection of disjoint 

subgroups of H , each isomorphic to 

t K 
t 

denotes the complete graph on 

In a perfect matching the 

t vertices. 



- 2 -

vertex set V(H) is completely partitioned by the vertex sets of the 

subgraphs. This suggests the following natural generalization: 

Let G be an arbitrary graph. AG-packing of a graph H is a 

set {G1 , ••• ,Gd} of disjoin~ subgraphs of H such that each Gi is iso-

morphic to G. (Note that we do not require the G.'s to be induced 
l. 

subgraphs; that variant of the problem is discussed later in the 

paper). A perfect G-packing or G-factor of a graph H is a G-packing 

such that the sets V(Gi) partition V(H). Clearly, a K2-packing is 

just a matching and a K2-factor is a perfect matching. 

We were motivated to study this generalization of matching by 

both practical and theoretical considerations. Graph partitioning 

problems arise in a number of applications [2, 4, 11, 15, 21, 24, 29 ]. 

Our original motivation {19, 30] stemmed from the study of exa.mination 

scheduling. After an assignment of courses to examination periods, 

eliminating what could be called first-order conflicts (essentially a 

graph colouring problem), has been accanplished, the problem arises of 

assigning the examination periods to real time periods, under fairly 

standard constraints (normally sane k examination periods are scheduled 

in sequence each day). The objective here is to minimize second-order 

conflicts (or inconveniences). Typically, this might include an 

occurrence of a student writing two examinations on the same day, or 

perhaps two consecutive examinations on the same day. Suppose H is 

the graph whose vertex set is the set of examination periods 

(p., p,) 
l. J 

is weighted by the number of 

students common to courses examined in periods pi and p .• 
J 

Then 

minimization of the types of second-order conflicts illustrated above 



- 3 -

corresponds to the construction of minimum weight K
3
- and p

3
t - factors 

in H. 

As we shall see, our investigation of generalized matching 

can also be viewed as furthering our understanding of the perceived i ·. 

threshold between NP-complete and _>polynomial-time-solvable problems 

[5, 14, 27, 28]. Specifically, it is of interest to know which members 

of this family of problems admit polynomial-time-bounded algorithms 

and which, like the general subgraph isomorphism problem of which they 

are all special instances, are NP-complete. We are able to provide a 

complete characterization (in the above sense) of the complexity of 

finding a G-factor. This characterization is similar, in spirit, to 

the results of Schaefer (38], Yanakakis (40] and Lewis (35] each of 

which establishes NP-completeness results over a broad family of 

interesting problems. 

While our results here are essentially negative, it should be 

noted that an extension of the notion of G-packings and G-factors 

(replacing G by a family of graphs) has pointed the way to a very 

natural setting in which to extent the traditional theory of matching, 

giving rise to new polynomial algorithms and simple duality results 

[19, 20]. 

t ~t denotes the path on t vertices. 



- 4 -

2. Generalizations of Matching. 

Our notion of a G-packing (and G-factor) is by no means the 

only natural extension of the familiar concept of matching. Indeed, 

in section 5, we introduce and motivate the notion of a G-packing 

(and G-factor) where G denotes a family of graphs. This extension 

subsumes, and should not be confused with, the notion of F-factor 

introduced by Muhlbacher [37]. 

If the concept of matching is extended in the natural way to 

hypergraphs the problem of determining the existence of a perfect 

matching is known to be NP-complete. Karp 127] describes what is 

probably the simplest version of this problem as three-dimensional 

matching: 

INSTANCE: An integer p 3 and a set u ~ {1,2, ••• ,p} • 

QUESTION: Is there a subset W c U of cardinality p such that no 

two elements of W agree in any coordinate? 

It should be clear that the k-dimensional matching problem 

(replace three by k above) is also NP-complete, when k ~ 3 • The 

two-dimensional matching problem is equivalent to the matching 

problem for bipartite graphs. 

Expressed as a language recognition problem, the existence 

problem for G-factors, which we denote FACT(G), becomes: 

INSTANCE: A graph H • 

QUESTION: Does H admit a G-factor? 

The problem FACT(1S_) is trivial since every graph admits a 

K1-factor. Furthermore, FACT(~) is just the question of existence , 



- 5 -

of a perfect matching, and hence FACT(IS) E P. More generally, if 

G = a•is_ U a•Ki , that is the disjoint union of a copies of K
1 

and 

a copies of JS (or, equivalently, if each connected component of G ·has 

at most two vertices), then H admits a G-factor if and only if jv(H) I 
is divisible by jv(G) I and H admits a matching with at least 

- edges. Thus then the usual algorithms for finding a maximum 

matching (eg. [7, 34]) may be used to answer FACT(G) in polynanial 

time. Our central result suggests that all other problems FACT(G) 

are unlikely to admit efficient solutions. 

Theorem 4.2. If G is not of the form a•~ U S•K2 then FACT(G) 

is NP-complete • - ' 

Two important instances of this result, G = K3 and G = P
3 

, were 

established earlier by T. Schaeffer [14,28 J and D.S. Johnson [25]. 

The proof of Theorem 4.2 is deferred to Section 4. The 

following lemma allows us to restrict our attention to problems FACT(G) 

where G is a connected graph. 

Lemma 2 .1. Let G be a graph and G' any component of G with the 

maximum number of edges. Then, FACT(G') ~ p FACT(G). 

Proof. Suppose G' has p vertices and suppose G has r distinct 

components isanorphic to G' • If H is any graph with dp vertices, 

then let T(H) denote the graph HU d(G - G'). Obviously, if H 

admits a G'-factor then T(H) admits a G-factor. Suppose T(H) 

admits a G-factor F. F must contain exactly dr canponents 

isomorphic to G' • But, by the maximality of G' , the restriction 



- 6 -

of F to d(G-G') contains at most d(r-1) components isomorphic to G'. 

Hence the restriction of F to H must be a G'-factor of H. Thus 

H admits a G'-factor if and only if T(H) admits a G-factor. o 



- 7 -

3. Basic Modules and their Properties. 

Our objective in this and the next section is to demonstrate 

how, for an arbitrary connected graph G on k vertices, the k-dimensional 

matching problem can be polynomially reduced to the problem FACT(G). our 

construction is component-based (cf. [14]) in nature; in this section we 

describe the canponents (which we call modules) and their properties that 

we exploit in the general construction. 

3.1. Modules and Coherences. 

A module is a graph M with non-empty subset C.:. V(M) of 

distinguished vertices. We call the elements of C (respectively 

V(M)-C) connector vertices (respectively interior vertices) of M. A 

G-module is any module that admits a G-packing covering all of its 

interior vertices (plus some, possibly empty, subset of its connector 

vertices). 

A modular extension of the module M is any graph H, con­

taining M as an induced subgraph, in which no interior vertex of M is 

adjacent to a vertex of H-M (that is, M is connected to the rest of H 

only through its connector vertices). let TI= {G1 , ••• ,Gd} be any 

G-packing of some modular extension H of M. A vertex v of M is 

said to be bound to M by TI, if VE V(Gi) implies V(Gi) C V(M). 

AG-module M is internally G-coherent if every G-factor of every 

modular extension of M binds to M all of its interior vertices (that 

is, it respects the modularity of M). 

The simplest example of an internally G-coherent G-module 

is the (.connected) graph G itself with any one vertex v E V(G) designated 



- 8 -

as a connector vertex. We depict this schematically as: 

G 

3.2. Diamond Modules, 

If G is any connected graph and v E V(G), then the graph, 

formed from G by splitting v into two non-adjacent vertices v and 
~ 

vb, each of which is adjacent to all of the neighbours of v in G , is 

called a G-diamond, and is denoted D[G;v]. We depict D[G;v] schematically 

as 

D [G;v]: 

If 

is a G-module. 

V 
a 

and 

V 
a 

or simply 

are taken as connector vertices then D[G;v] 

Its coherence, it turns out, depends on the choice of vertex 

v, but a choice ensuring G-coherence always exists. Specifically, let 

v* be any vertex of G that is not a cutpoint and belongs to a 

biconnected component of G containing at most one cutpoint. Every graph 

G is a guaranteed to contain at least one such vertex (cf. [18], p. 36]. 



- 9 -

LeJlU'lla 3.1. The module D[G;v*] with 

internally G-coherent. 

v* 
a 

and v* 
b 

as connectors is 

Proof. Let H be any modular extension of D[G;v*] and let <P be any 

G-factor of H. <P ind~ces:a partition TI of the interior vertices of 

D[G;v*]. Since D[G;v*] has exactly two connector vertices and each 

graph in <P is connected, TI has at most two cells. All of the vertices 

of D[G;v*] that do not belong to the same biconnected component as v* 
a 

must belong to the same partition of TI (otherwise there must be two 

vertex-disjoint paths from this set to v* in G, contradicting the 

choice of v*). Hence, if TI has two cells then some element of <P must 

contain all of the vertices of D[G;v*] that do not belong to the same 

biconnected component as v* either v* 
a ' a 

or v;, and at least one vertex 

of H-D(G;v*]. But this canponent has at least one more outpoint (namely 

v* or v*) than G , a contradiction. Thus, TI has exactly one cell a b 

and hence D[G;v*] is internally G~coherent. □ 

We can summarize the relevant properties of diamond modules as 

follows: 

Property 3.2. (a) Every G-factor of every modular extension of 

D[G;v*] binds to D[G;v*] its interior vertices plus exactly one of its 

connector vertices. 

(b) The graph D[G;v*] minus either one of its connector vertices admits 

a G-factor. 

Thus, diamond modules, wherever they appear in a .larger graph, force a 

"choice" of one or the other of their c9nnector vertices. 

3.3. Star Modules. 

AG-star, denoted S[G;v], is the graph formed from G by 

identifying, with each vertex w E V(G), the v -connector of a distinct a 



- 10 -

copy of D[G;v]. If the vb-connectors of the jv(G) I G-diamonds used 

in the construction, relabelled as x1 , ..• ,xjv(G) I, are taken as connector 

vertices,then S[G;v] is a G-module. We depict S[G;v] schematically 

as: 

S [G;v]: 

S[G;v] can be seen as a modular extension of !v(G) ! disjoint 

copies of D[G;v]. As would be•expected the coherence of S[G;v] depends 

on the coherence of D[G;v]. Specifically, 

Lemma 3. 3. If D[Giv] is internally G-coherent then so is S[G;v]. 

Proof. Let 

G-factor of 

H 

H • 

be any modular extension of S [G;v] and let <P be any 

H must also be modular extension of each of the lv(G) I 
copies of D[G;v] used in the construction of S[G;v]. Since D[G;v] 

is internally G-coherent, it follows that all of the interior vertices 

of S[G;v] that are internal to one of the copies of D[G;v] must be 

bound to s [G;v] by <P • Since none of the remaining interior vertices 

of S[G;v] are adjacent to any of the connectors of S[G;v], it follows 

that <P binds to S[G,v] all of its interior vertices. □ 

Corollary 3.4. S[G;v*] is internally G-coherent. 

In fact, S[G;v*] satisfies the following somewhat stronger 



- 11 -

property. AG-module M is G-coherent if it is intemally G-coherent, 

i£ every G-factor of every modular extension of M binds to M either 

all or none of its connector vertices, and if in addition, both Mand M-C 

admit G-factors. G-coherence places a strong restriction on the 

G-modularity of M. It is clear from the definitions that G-coherent 

modules M, wherever they appear in a larger graph, can be viewed as 

forcing a "choice" of either all or none of their connector vertices 

(both of which are possible). Our central construction rests on the 

following: 

Lemma 3.5. S[G,v*] is G-coherent. 

Proof. Let ~ be any G-factor of any modular extension of S[G,v*]. 

Note that S[G,v*] contains lv(G) 1
2 vertices of which lv(G) I are connectors. 

Since S[G,v*] is internally G-coherent and the total number of vertices bound 

to S[G,v*] by ~ must be a multiple of lv(G) I , it follows that either 

all or none of the connector vertices must be boW'ld to S[G,v*] by ~. □ 



- 12 -

4. The General Construction. 

We are now prepared to state and prove our central lemma. 

Lemma 4.1. If G is a connected graph, then lv(G) I-dimensional 

matching ~p FACT(G). 

Proof. Let p k 
be any positive integer, and U ~ {1,2, ••• ,p} , 

where k = lv(G) I • It suffices to show how to construct (in polynomial 

time) a graph R(U) with the property that R(U) admits a G-factor 

if and only if U admits a k-dimensional matching. 

R(U) contains, among others, an independent set of pk vertices 

labelled by the pairs (i, j) , where l ~ i ~ p and l ~ j ~ k. For 

each k-tuple R(U) contains a distinct copy of 

S[G;v*] whose k connector vertices are arbitrarily identified with the 

k vertices labelled (1,t
1 ) , ... ,(k,tk). 

Suppose that U admits a k-dimensional matching W. We 

construct a G-factor cp of R(U) as follows. To those copies of S[G;v*] 

associated with k-tuples in w, cp binds all of their vertices (in 

particular, their connector vertices). To all other copies of 

S[G;v*], cp binds only their interior vertices. Thus, cp binds the 

vertex (i,j) to the star module associated with that unique k-tuple · 

in W containing j in position i. It follows that cp is a G-factor 

of R(U). 

conversely, suppose that R(U) admits a G-factor cp. We 

construct a k-dimensional matching W of u as follows. call a copy 

of S[G;v*] in R(u) "chosen" if cp binds to that copy all of its 

connector vertices. By Lemma 3.5 cp chooses exactly p of the star-



- 13 -

modules in R(u). Let . W be the set of k-tuples associated with chosen 

star modules. Since each vertex (i,j) is bound to exactly one chosen 

star module, it follows that exactly one element of W contains j in its 

i-th canponent. Hence W is a k-dimensional matching of u. □ 

We now restate and give a direct proof of our central result. 

Theorem 4.2. If G is not of the form a•K1 U S•is then FAC'l'(G) is 

NP-complete. 

Proof. It is clear that all problems FACT(G) are in NP. By lemma 

2.1, it suffices to show that if G is a connected graph with at least 

three vertices, then FACT(G) is NP-complete. But this is immediate 

from Lemma 4.1 and the NP-completeness of k-dimensional matching, 

for k:::: 3. □ 

Thus virtually all uniform factoring problems (with the exception 

of matching) are NP-complete. A similar characterization holds for 

what we call "strict" G-factors. 

AG-packing (or G-factor) of H is strict if each G. belonging 
l. 

to the packing is an induced subgraph of H. Corresponding to FACT(G) 

we have the question S-FACT(G) expressed as: 

INSTANCE: A graph H 

QUESTION: Does H admit a strict G-factor? 

Note that H admits a strict G-factor if and only if its complement H 

admits a strict G-factor. Then S-FACT(G) and S-FACT(G) are 

polynomially equivalent, and it is sufficient to consider problems 



- 14 -

S-FACT(G) for connected graphs G only. Clearly, if G has fewer than 

three vertices a polynanial algorithm for S-FACT(G) follows from 

algorithms for maximum matching (eg. [7]). As with FACT(G) all other 

cases appear to be intractable. 

Theorem 4.3. 

NP-complete. 

If G has at least three vertices then S-FACT(G) is 

Proof. Observe that, in the proof of lemma 4.1., the graph R(O) admits 

a G-factor if and only if it admits a -~~i~t G-factor. (This follows from 

the construction of star modules.) Hence, lemma 4.1 also proves that 

lv(G) I-dimensional matching ~P S-FACT(G). Thus, the result follows 

from obvious fact that S-FACT(G)E NP and the NP-completeness of 

k-dimensional matching, for k ~ 3. □ 



- 15 -

5. Family Packings and Factors. 

We introduced G-packings and G-factors as a generalization of 

conventional matchings and have reached the unfortunate conclusion that 

this is an unlikely direction in which to generalize the rich theory -

most notably the existence of polynanial time bounded algorithms - that 

is associated with the matching problem. However, a straightforward 

extension of the notion of G-packing suggests itself as another natural 

generalization of matching. While negative results still abound, this 

extension does give rise to a number of positive results which hint at 

a new generalized theory of matching including both polynomial 

algorithms and elegant duality results. 

We extend the notion of G-packing by replacing G by a family 

G of "packing" graphs. AG-packing of a graph H is a set 

of disjoint subgraphs of H such that each G, 
l. 

is isomorphic 

to some element of G. AG-factor is defined similarly. The existence 

problem for G-factors, denoted FACT(G), becomes: 

INSTANCE: A graph H. 

QUESTION: Does H admit a G-factor: 

As an example, if Ct denotes the cycle on t vertices and 

G = {~, c3 , c4 , c
5

, ••• } , then FACT(G) can be solved as an 

assignment problem, [33). 

The NP-completeness of many problems FACT(G) stems directly 

drom our earlier constructions. As a simple example, consider: 



- 16 -

Example 5.1. FACT({Xt I t ~ 3}) is NP-complete. 

Proof. It suffices to observe that the graph used in our reduction 

of 3-dimensional matching to FACT(K
3

) contains no complete subgraphs 

of order four. Thus any {Kt t ~ 3}-factor must also be a K3-factor. o 

It is interesting to note that H has a {Kt It~ 3}-factor 

if and only if its complement has a colouring in which each colour class 

contains at least three vertices. This connection with colouring is 

explored in more detail in (19]. Example 5.1 is subsumed by the 

following theorem whose proof will appear elsewhere. 

Theorem 5.2. Let G be any subset of 

or ~ E G then FACT(G) is in P, otherwise FACT(G) is 

NP-complete. 

One further example should help to substantiate our claim 

that the study of family factorizations is a fertile setting in which to 

generalize the traditional theory of matching. 

Example 5 . 3 . FACT({Kl,t I t ~ l}) is in P. 

Proof. It is straightforward to confirm that a graph H admits a 

{Kl,t It~ l}-factor if and only if it contains no isolated vertices. 

The facility location (or domination number) problem (4, 111 

can be viewed as trying to find a minimal {Kl,t It~ l}-factor. our 

framework makes it natural to express the related problem of 

determining the existence of factors using only a restricted subset 

of facilities (star graphs). Example 5.3 is just one special case of 

the following: 



- 17 -

Theorem 5 • 4. Let G be any subset of {K1 t ft~ l} • If for 
. I 

some t ~ 1, ~,t 1 G and ~,t+l E G, then FACT(G) is NP-complete. 

Otherwise FACT(G) is in P. 

The proof of Theorem 5.4 also includes a duality result 

analogous to the theorems of Tutte (38) and Berge (1, p. 159) for star 

matchings; it will appear elsewhere. We have similar results for any 

set of complete bipartite graphs. 



- 18 -

6. Conclusions. 

We have shown that all uniform factorization problems, with the 

sole exception of matching, are NP-complete. While this result is of 

interest in its own right as a contribution to our knowledge of NP-completeness, 

it also lays the fo\llldation as outlined in Section 5, for a new generalized 

theory of matching including new polynanial algorithms. The details of 

this theory will be explored elsewhere. 



- 19 -

References 

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam 1973. 

[2] F.T. Boesch and J.F. Gimpel, "Covering the Points of a Digraph with 
Point-Disjoint Paths and its Application to Code Optimization". 
J. ACM 24 (1977), 192-198. 

(3] N. Christofides, "Worst-case Analysis of a New Heuristic for the 
Travelling Salesman Problem", GSIA, C&rnegie-Mellon University, 1976. 

[4] E. Cockayne, s. Goodman, ands. Hedetniemi, "A Linear Algorithm for 
the Domination Number of a Tree", Information Processing Letters 
4 (1975), 41-44. 

(51 s. A. Cook, "The Complexity of Theorem-Proving Procedures", Proc. 

(61 

Third ACM Symp. on Theory of Competing (1971), 151-158. 

W. H. Cunningham 
Optimum Matching", 

and A. B. Marsh, III, "A Primal Algorithm for 
Math. Programming Study 8 (1978), 50-72. 

(71 J. Edmonds, "Paths, Trees, and Flowers", Canad. J. Math. 17 (1965), 
449-467. 

(8] J. Edmonds, "Maximum Matching and a Polyhedron with (0,1) Vertices", 
J. Res. Nat. Bureau of Standards 69B (1965), 125-130. 

[9] J. Edmonds and E. L. Johnson, "Matching: a well-solved class of 
integer linear programs" , in R. K. Guy et al. , eds. , Combinatorial 
Structures and their Applications, Gordon and Breach, N.Y., 1970, 
pp. 89-92. 

(10] J. Edmonds and E. L. Johnson, "Matching, Eule:r Tours, and the Chinese 
Postman", Math. Programming 5(1973), 88-124. 

(11] M. Farber, "Domination and Duality in Weighted Trees", Proc. 12th 
Southeastern Conf. on Combinatorics, Graph Theory and Computing, 
to appear. 

(12] L. R. Ford, Jr. and D.R. Fulkerson, Flows on Networks, Princeton 
University Press, 1962. 

(13] M. Fujii, T. Kasami and K. Ninamiya, "Optimal Sequencing of Two 
Equivalent Processors", SIAM J. Appl. Math. 17 (1969), 784-789, 
Erratum, ibid. 20 (1971), 141. 

(14] M.R. Garey and D.S. Johnson, computers and Intractability, W. H. Freeman 
and Company, San Fransisco, 1979. 

(15] L. L. Garnishteyn, "The P.artitioning of Graphs", Engineering Cybernatics, 
1 (1969), 76-82. 



- 20 -

[16] P.C. Gilmore and R.E. Ganory, "Sequencing a one-state variable 
Machine: A solvable Case of the Travelling Salesman Problem", 
Operations Research 12 (1964), 655-679. 

(17] M. Hall, "Distinct representations of subsets", Bull. Amer. Math. 
Soc. 54 (1948), 922-926. 

[18] F. Harary, Graph Theory, Addison-Wesley 1968. 

[19] P. Hell and D.G. Kirkpatrick, "Scheduling, Matching and Coloring", 
in G.R. Szasz et al., eds., Algebraic Methods in Graph Theory, 
Colloq. Math. Soc. Janos Bolyai, 1981. 

[20] P. Hell and D.G. Kirkpatrick, "On Generalized Matching Problems", 
Information Processing Letters, 12 (1981), 33-35. 

[21] L.J. Herbert, "Some Applications of Graph Theory to Clustering", 
Psychometrika 39 (1974), 283-309. 

[22] A.J. Hoffman and H.M. Markowitz, "A Note on Shortest Path, 
Assignment, and Transportation Problems", Naval Res. Logist. 
Quart. 10 (1963), 375-380. 

[23] J.E. Hopcroft and R.M. Karp, "An n512 Algorithm for Maximum 
Matchings in Bipartite Graphs", SIAM J. Comput. 2 (1973), 225-231. 

[24] A.K. Hope, "Component Placing through Graph Partitioning in 
Computer-Aided Printed-Wiring-Board Design", Electronic Letters 
8 (1972) , 87-88. 

[25) D.S. Johnson, private communication, August 1977. 

[26] o~ Kariv, An O(n2
"
5

) Algorithm for Finding Maximum Matching in a 
General Graph, Ph.D. Thesis, Weizmann Institute, Israel, 1976. 

(27) R.M. Karp, Reducibility among Combinatorial Problems, in R.E. Miller 
and J.W. Thatcher, eds., complexity of Computer Computations, Plenum 
Press, N.Y. 1972, pp~ 85-103. 

[28] R.M. Karp, "On the complexity of Combinatorial Problems", Networks 
5(1975), 45-68. 

[29] B.W. Kernighan and s. Lin, "An Efficient Heuristic Procedure for 
Partitioning Graphs", The Bell System Tech. J. 49 (1970, 291-307. 

[30] D.G. Kirkpatrick and P. Hell, "On the Completeness of a Generalized 
Matching Problem", in Proc. Tenth Annual ACM Symposium on Theory of 
Computing, 1978, pp. 240-245. 

[31] J.M. Klein and H. Takamori, "Parallel Line Assignment Problems", 
Mgt. Sci. 19 (1972), 1- 10. 



[32] 

[33] 

[34] 

[35] 

[36) 

[37] 

[38] 

[39] 

[40] 

- 21 -

II o. Konig, "Graphs and Matrices", Mat. Fiz. Lapok 38 (1931), 116-119. 

H.W. Kuhn, "The Hungarian Method for the Assignment Problem", 
Naval Res. Logist. Quart. 2 (1955), 83-97. 

E.L. Lawler, Combinatorial Optimization, Holt, Rinehart and 
Winston, N.Y., 1976. 

J.M. Lewis, "On the Complexity of the Maximum Subgraph Problem", 
Proc. Tenth Annual ACM Symposium on Theory of Computing, pp. 
265-274. 

Mirsky, Perfect, Transversal Theory. 

II 
J. Muhlbacher, "F-factors of graphs: a generalized matching 
problem, Information Processing Lett. 8 (1979), 207-214. 

T.J. Shaefer, "The Complexity of Satisfiability Problems, Proc. 
Tenth Annual ACM Symposium on Theory of Computing, pp. 216-226. 

W.T. Tutte, "The Factorisation of Linear Graphs", J. London 
Math. Soc. 22 (1947), 107-111. 

M. Yanakakis, "Node-and Edge-Deletion NP-Complete Problems" 
Proc. Tenth Annual ACM Symposium on Theory of Computing, pp. 253-264. 




