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Abstract 

For arbitrary graphs G and H, a G-factor of His a spanning 
subgraph of H composed of disjoint copies of G. G-factors are 
natural generalizations of 1-factors (or perfect matchings), in 
which G replaces the complete graph on two vertices. Our results 
show that the perfect matching problem is essentially the only 
instance of the G-factor problem that is likely to admit a poly­
nomial time bounded solution. Specifically, if G has any component 
with three or more vertices then the existence question for G­
factors is NP-complete. (In all other cases the question can be 
resolved in polynomial time.) 

The notion of a G-factor is further generalized by replacing 
G by an arbitrary family of graphs. This generalization forms 
the foundation for an extension of the traditional theory of match­
ing. This theory, whose details will be developed elsewhere, 
includes, in addition to further NP-completeness results, new poly­
nomial algorithms and simple duality results. Some indication of 
the nature and scope of this theory are presented here. 

Key words: algorithms, complexity, factor, graph, matching, 
NP-completeness. 





1. Introduction . 

Let H denote an arbitrary graph with vertex set V(H) and 

edge set E(H). A matching in H is any subset M of E(H) such 

that no two elements of M have a vertex in common. A matching M 

is perfect (also called a I-factor) if exactly one element of M is 

incident with each vertex in V(H). If H is a weighted graph then 

the weight of a matching M is just the sum I: weight (e) • 
eEM 

The notion of a matching in a graph has numerous applications 

in such diverse areas as transversal theory, assignment problems, 

network flows, multiprocessor· scheduling, shortest path algorithms, 

and the Chinese Postman and Traveling Salesman problems [3, 10, 12, 13, 

16, 17, 22, 31, 33, 36]. The existence of polynomial time bounded 

algorithms for the construction of matchings of maximum cardinality 

(and hence determing the existence of perfect matchings) or maximum 

weight is well known [6, 7, 8, 9], although the exact complexity of the 

problems is not yet settled and work continues on this aspect of the 

problem [23, 26]. In addition there is a rich mathematical theory that 

has developed about the matching problem that includes characterizations 

of graphs that admit perfect matchings [39] and (more generally) duality 

theorems on maximum matchings [l, 8, 12, 17, 32, 33, 34]. 

A matching in H may be viewed as a collection of disjoint 

subgroups of H , each isomorphic to 

t K 
t 

denotes the complete graph on 

In a perfect matching the 

t vertices. 
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vertex set V(H) is completely partitioned by the vertex sets of the 

subgraphs. This suggests the following natural generalization: 

Let G be an arbitrary graph. AG-packing of a graph H is a 

set {G1 , ••• ,Gd} of disjoin~ subgraphs of H such that each Gi is iso-

morphic to G. (Note that we do not require the G.'s to be induced 
l. 

subgraphs; that variant of the problem is discussed later in the 

paper). A perfect G-packing or G-factor of a graph H is a G-packing 

such that the sets V(Gi) partition V(H). Clearly, a K2-packing is 

just a matching and a K2-factor is a perfect matching. 

We were motivated to study this generalization of matching by 

both practical and theoretical considerations. Graph partitioning 

problems arise in a number of applications [2, 4, 11, 15, 21, 24, 29 ]. 

Our original motivation {19, 30] stemmed from the study of exa.mination 

scheduling. After an assignment of courses to examination periods, 

eliminating what could be called first-order conflicts (essentially a 

graph colouring problem), has been accanplished, the problem arises of 

assigning the examination periods to real time periods, under fairly 

standard constraints (normally sane k examination periods are scheduled 

in sequence each day). The objective here is to minimize second-order 

conflicts (or inconveniences). Typically, this might include an 

occurrence of a student writing two examinations on the same day, or 

perhaps two consecutive examinations on the same day. Suppose H is 

the graph whose vertex set is the set of examination periods 

(p., p,) 
l. J 

is weighted by the number of 

students common to courses examined in periods pi and p .• 
J 

Then 

minimization of the types of second-order conflicts illustrated above 
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corresponds to the construction of minimum weight K
3
- and p

3
t - factors 

in H. 

As we shall see, our investigation of generalized matching 

can also be viewed as furthering our understanding of the perceived i ·. 

threshold between NP-complete and _>polynomial-time-solvable problems 

[5, 14, 27, 28]. Specifically, it is of interest to know which members 

of this family of problems admit polynomial-time-bounded algorithms 

and which, like the general subgraph isomorphism problem of which they 

are all special instances, are NP-complete. We are able to provide a 

complete characterization (in the above sense) of the complexity of 

finding a G-factor. This characterization is similar, in spirit, to 

the results of Schaefer (38], Yanakakis (40] and Lewis (35] each of 

which establishes NP-completeness results over a broad family of 

interesting problems. 

While our results here are essentially negative, it should be 

noted that an extension of the notion of G-packings and G-factors 

(replacing G by a family of graphs) has pointed the way to a very 

natural setting in which to extent the traditional theory of matching, 

giving rise to new polynomial algorithms and simple duality results 

[19, 20]. 

t ~t denotes the path on t vertices. 
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2. Generalizations of Matching. 

Our notion of a G-packing (and G-factor) is by no means the 

only natural extension of the familiar concept of matching. Indeed, 

in section 5, we introduce and motivate the notion of a G-packing 

(and G-factor) where G denotes a family of graphs. This extension 

subsumes, and should not be confused with, the notion of F-factor 

introduced by Muhlbacher [37]. 

If the concept of matching is extended in the natural way to 

hypergraphs the problem of determining the existence of a perfect 

matching is known to be NP-complete. Karp 127] describes what is 

probably the simplest version of this problem as three-dimensional 

matching: 

INSTANCE: An integer p 3 and a set u ~ {1,2, ••• ,p} • 

QUESTION: Is there a subset W c U of cardinality p such that no 

two elements of W agree in any coordinate? 

It should be clear that the k-dimensional matching problem 

(replace three by k above) is also NP-complete, when k ~ 3 • The 

two-dimensional matching problem is equivalent to the matching 

problem for bipartite graphs. 

Expressed as a language recognition problem, the existence 

problem for G-factors, which we denote FACT(G), becomes: 

INSTANCE: A graph H • 

QUESTION: Does H admit a G-factor? 

The problem FACT(1S_) is trivial since every graph admits a 

K1-factor. Furthermore, FACT(~) is just the question of existence , 
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of a perfect matching, and hence FACT(IS) E P. More generally, if 

G = a•is_ U a•Ki , that is the disjoint union of a copies of K
1 

and 

a copies of JS (or, equivalently, if each connected component of G ·has 

at most two vertices), then H admits a G-factor if and only if jv(H) I 
is divisible by jv(G) I and H admits a matching with at least 

- edges. Thus then the usual algorithms for finding a maximum 

matching (eg. [7, 34]) may be used to answer FACT(G) in polynanial 

time. Our central result suggests that all other problems FACT(G) 

are unlikely to admit efficient solutions. 

Theorem 4.2. If G is not of the form a•~ U S•K2 then FACT(G) 

is NP-complete • - ' 

Two important instances of this result, G = K3 and G = P
3 

, were 

established earlier by T. Schaeffer [14,28 J and D.S. Johnson [25]. 

The proof of Theorem 4.2 is deferred to Section 4. The 

following lemma allows us to restrict our attention to problems FACT(G) 

where G is a connected graph. 

Lemma 2 .1. Let G be a graph and G' any component of G with the 

maximum number of edges. Then, FACT(G') ~ p FACT(G). 

Proof. Suppose G' has p vertices and suppose G has r distinct 

components isanorphic to G' • If H is any graph with dp vertices, 

then let T(H) denote the graph HU d(G - G'). Obviously, if H 

admits a G'-factor then T(H) admits a G-factor. Suppose T(H) 

admits a G-factor F. F must contain exactly dr canponents 

isomorphic to G' • But, by the maximality of G' , the restriction 
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of F to d(G-G') contains at most d(r-1) components isomorphic to G'. 

Hence the restriction of F to H must be a G'-factor of H. Thus 

H admits a G'-factor if and only if T(H) admits a G-factor. o 
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3. Basic Modules and their Properties. 

Our objective in this and the next section is to demonstrate 

how, for an arbitrary connected graph G on k vertices, the k-dimensional 

matching problem can be polynomially reduced to the problem FACT(G). our 

construction is component-based (cf. [14]) in nature; in this section we 

describe the canponents (which we call modules) and their properties that 

we exploit in the general construction. 

3.1. Modules and Coherences. 

A module is a graph M with non-empty subset C.:. V(M) of 

distinguished vertices. We call the elements of C (respectively 

V(M)-C) connector vertices (respectively interior vertices) of M. A 

G-module is any module that admits a G-packing covering all of its 

interior vertices (plus some, possibly empty, subset of its connector 

vertices). 

A modular extension of the module M is any graph H, con­

taining M as an induced subgraph, in which no interior vertex of M is 

adjacent to a vertex of H-M (that is, M is connected to the rest of H 

only through its connector vertices). let TI= {G1 , ••• ,Gd} be any 

G-packing of some modular extension H of M. A vertex v of M is 

said to be bound to M by TI, if VE V(Gi) implies V(Gi) C V(M). 

AG-module M is internally G-coherent if every G-factor of every 

modular extension of M binds to M all of its interior vertices (that 

is, it respects the modularity of M). 

The simplest example of an internally G-coherent G-module 

is the (.connected) graph G itself with any one vertex v E V(G) designated 
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as a connector vertex. We depict this schematically as: 

G 

3.2. Diamond Modules, 

If G is any connected graph and v E V(G), then the graph, 

formed from G by splitting v into two non-adjacent vertices v and 
~ 

vb, each of which is adjacent to all of the neighbours of v in G , is 

called a G-diamond, and is denoted D[G;v]. We depict D[G;v] schematically 

as 

D [G;v]: 

If 

is a G-module. 

V 
a 

and 

V 
a 

or simply 

are taken as connector vertices then D[G;v] 

Its coherence, it turns out, depends on the choice of vertex 

v, but a choice ensuring G-coherence always exists. Specifically, let 

v* be any vertex of G that is not a cutpoint and belongs to a 

biconnected component of G containing at most one cutpoint. Every graph 

G is a guaranteed to contain at least one such vertex (cf. [18], p. 36]. 
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LeJlU'lla 3.1. The module D[G;v*] with 

internally G-coherent. 

v* 
a 

and v* 
b 

as connectors is 

Proof. Let H be any modular extension of D[G;v*] and let <P be any 

G-factor of H. <P ind~ces:a partition TI of the interior vertices of 

D[G;v*]. Since D[G;v*] has exactly two connector vertices and each 

graph in <P is connected, TI has at most two cells. All of the vertices 

of D[G;v*] that do not belong to the same biconnected component as v* 
a 

must belong to the same partition of TI (otherwise there must be two 

vertex-disjoint paths from this set to v* in G, contradicting the 

choice of v*). Hence, if TI has two cells then some element of <P must 

contain all of the vertices of D[G;v*] that do not belong to the same 

biconnected component as v* either v* 
a ' a 

or v;, and at least one vertex 

of H-D(G;v*]. But this canponent has at least one more outpoint (namely 

v* or v*) than G , a contradiction. Thus, TI has exactly one cell a b 

and hence D[G;v*] is internally G~coherent. □ 

We can summarize the relevant properties of diamond modules as 

follows: 

Property 3.2. (a) Every G-factor of every modular extension of 

D[G;v*] binds to D[G;v*] its interior vertices plus exactly one of its 

connector vertices. 

(b) The graph D[G;v*] minus either one of its connector vertices admits 

a G-factor. 

Thus, diamond modules, wherever they appear in a .larger graph, force a 

"choice" of one or the other of their c9nnector vertices. 

3.3. Star Modules. 

AG-star, denoted S[G;v], is the graph formed from G by 

identifying, with each vertex w E V(G), the v -connector of a distinct a 
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copy of D[G;v]. If the vb-connectors of the jv(G) I G-diamonds used 

in the construction, relabelled as x1 , ..• ,xjv(G) I, are taken as connector 

vertices,then S[G;v] is a G-module. We depict S[G;v] schematically 

as: 

S [G;v]: 

S[G;v] can be seen as a modular extension of !v(G) ! disjoint 

copies of D[G;v]. As would be•expected the coherence of S[G;v] depends 

on the coherence of D[G;v]. Specifically, 

Lemma 3. 3. If D[Giv] is internally G-coherent then so is S[G;v]. 

Proof. Let 

G-factor of 

H 

H • 

be any modular extension of S [G;v] and let <P be any 

H must also be modular extension of each of the lv(G) I 
copies of D[G;v] used in the construction of S[G;v]. Since D[G;v] 

is internally G-coherent, it follows that all of the interior vertices 

of S[G;v] that are internal to one of the copies of D[G;v] must be 

bound to s [G;v] by <P • Since none of the remaining interior vertices 

of S[G;v] are adjacent to any of the connectors of S[G;v], it follows 

that <P binds to S[G,v] all of its interior vertices. □ 

Corollary 3.4. S[G;v*] is internally G-coherent. 

In fact, S[G;v*] satisfies the following somewhat stronger 
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property. AG-module M is G-coherent if it is intemally G-coherent, 

i£ every G-factor of every modular extension of M binds to M either 

all or none of its connector vertices, and if in addition, both Mand M-C 

admit G-factors. G-coherence places a strong restriction on the 

G-modularity of M. It is clear from the definitions that G-coherent 

modules M, wherever they appear in a larger graph, can be viewed as 

forcing a "choice" of either all or none of their connector vertices 

(both of which are possible). Our central construction rests on the 

following: 

Lemma 3.5. S[G,v*] is G-coherent. 

Proof. Let ~ be any G-factor of any modular extension of S[G,v*]. 

Note that S[G,v*] contains lv(G) 1
2 vertices of which lv(G) I are connectors. 

Since S[G,v*] is internally G-coherent and the total number of vertices bound 

to S[G,v*] by ~ must be a multiple of lv(G) I , it follows that either 

all or none of the connector vertices must be boW'ld to S[G,v*] by ~. □ 
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4. The General Construction. 

We are now prepared to state and prove our central lemma. 

Lemma 4.1. If G is a connected graph, then lv(G) I-dimensional 

matching ~p FACT(G). 

Proof. Let p k 
be any positive integer, and U ~ {1,2, ••• ,p} , 

where k = lv(G) I • It suffices to show how to construct (in polynomial 

time) a graph R(U) with the property that R(U) admits a G-factor 

if and only if U admits a k-dimensional matching. 

R(U) contains, among others, an independent set of pk vertices 

labelled by the pairs (i, j) , where l ~ i ~ p and l ~ j ~ k. For 

each k-tuple R(U) contains a distinct copy of 

S[G;v*] whose k connector vertices are arbitrarily identified with the 

k vertices labelled (1,t
1 ) , ... ,(k,tk). 

Suppose that U admits a k-dimensional matching W. We 

construct a G-factor cp of R(U) as follows. To those copies of S[G;v*] 

associated with k-tuples in w, cp binds all of their vertices (in 

particular, their connector vertices). To all other copies of 

S[G;v*], cp binds only their interior vertices. Thus, cp binds the 

vertex (i,j) to the star module associated with that unique k-tuple · 

in W containing j in position i. It follows that cp is a G-factor 

of R(U). 

conversely, suppose that R(U) admits a G-factor cp. We 

construct a k-dimensional matching W of u as follows. call a copy 

of S[G;v*] in R(u) "chosen" if cp binds to that copy all of its 

connector vertices. By Lemma 3.5 cp chooses exactly p of the star-
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modules in R(u). Let . W be the set of k-tuples associated with chosen 

star modules. Since each vertex (i,j) is bound to exactly one chosen 

star module, it follows that exactly one element of W contains j in its 

i-th canponent. Hence W is a k-dimensional matching of u. □ 

We now restate and give a direct proof of our central result. 

Theorem 4.2. If G is not of the form a•K1 U S•is then FAC'l'(G) is 

NP-complete. 

Proof. It is clear that all problems FACT(G) are in NP. By lemma 

2.1, it suffices to show that if G is a connected graph with at least 

three vertices, then FACT(G) is NP-complete. But this is immediate 

from Lemma 4.1 and the NP-completeness of k-dimensional matching, 

for k:::: 3. □ 

Thus virtually all uniform factoring problems (with the exception 

of matching) are NP-complete. A similar characterization holds for 

what we call "strict" G-factors. 

AG-packing (or G-factor) of H is strict if each G. belonging 
l. 

to the packing is an induced subgraph of H. Corresponding to FACT(G) 

we have the question S-FACT(G) expressed as: 

INSTANCE: A graph H 

QUESTION: Does H admit a strict G-factor? 

Note that H admits a strict G-factor if and only if its complement H 

admits a strict G-factor. Then S-FACT(G) and S-FACT(G) are 

polynomially equivalent, and it is sufficient to consider problems 
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S-FACT(G) for connected graphs G only. Clearly, if G has fewer than 

three vertices a polynanial algorithm for S-FACT(G) follows from 

algorithms for maximum matching (eg. [7]). As with FACT(G) all other 

cases appear to be intractable. 

Theorem 4.3. 

NP-complete. 

If G has at least three vertices then S-FACT(G) is 

Proof. Observe that, in the proof of lemma 4.1., the graph R(O) admits 

a G-factor if and only if it admits a -~~i~t G-factor. (This follows from 

the construction of star modules.) Hence, lemma 4.1 also proves that 

lv(G) I-dimensional matching ~P S-FACT(G). Thus, the result follows 

from obvious fact that S-FACT(G)E NP and the NP-completeness of 

k-dimensional matching, for k ~ 3. □ 
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5. Family Packings and Factors. 

We introduced G-packings and G-factors as a generalization of 

conventional matchings and have reached the unfortunate conclusion that 

this is an unlikely direction in which to generalize the rich theory -

most notably the existence of polynanial time bounded algorithms - that 

is associated with the matching problem. However, a straightforward 

extension of the notion of G-packing suggests itself as another natural 

generalization of matching. While negative results still abound, this 

extension does give rise to a number of positive results which hint at 

a new generalized theory of matching including both polynomial 

algorithms and elegant duality results. 

We extend the notion of G-packing by replacing G by a family 

G of "packing" graphs. AG-packing of a graph H is a set 

of disjoint subgraphs of H such that each G, 
l. 

is isomorphic 

to some element of G. AG-factor is defined similarly. The existence 

problem for G-factors, denoted FACT(G), becomes: 

INSTANCE: A graph H. 

QUESTION: Does H admit a G-factor: 

As an example, if Ct denotes the cycle on t vertices and 

G = {~, c3 , c4 , c
5

, ••• } , then FACT(G) can be solved as an 

assignment problem, [33). 

The NP-completeness of many problems FACT(G) stems directly 

drom our earlier constructions. As a simple example, consider: 
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Example 5.1. FACT({Xt I t ~ 3}) is NP-complete. 

Proof. It suffices to observe that the graph used in our reduction 

of 3-dimensional matching to FACT(K
3

) contains no complete subgraphs 

of order four. Thus any {Kt t ~ 3}-factor must also be a K3-factor. o 

It is interesting to note that H has a {Kt It~ 3}-factor 

if and only if its complement has a colouring in which each colour class 

contains at least three vertices. This connection with colouring is 

explored in more detail in (19]. Example 5.1 is subsumed by the 

following theorem whose proof will appear elsewhere. 

Theorem 5.2. Let G be any subset of 

or ~ E G then FACT(G) is in P, otherwise FACT(G) is 

NP-complete. 

One further example should help to substantiate our claim 

that the study of family factorizations is a fertile setting in which to 

generalize the traditional theory of matching. 

Example 5 . 3 . FACT({Kl,t I t ~ l}) is in P. 

Proof. It is straightforward to confirm that a graph H admits a 

{Kl,t It~ l}-factor if and only if it contains no isolated vertices. 

The facility location (or domination number) problem (4, 111 

can be viewed as trying to find a minimal {Kl,t It~ l}-factor. our 

framework makes it natural to express the related problem of 

determining the existence of factors using only a restricted subset 

of facilities (star graphs). Example 5.3 is just one special case of 

the following: 
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Theorem 5 • 4. Let G be any subset of {K1 t ft~ l} • If for 
. I 

some t ~ 1, ~,t 1 G and ~,t+l E G, then FACT(G) is NP-complete. 

Otherwise FACT(G) is in P. 

The proof of Theorem 5.4 also includes a duality result 

analogous to the theorems of Tutte (38) and Berge (1, p. 159) for star 

matchings; it will appear elsewhere. We have similar results for any 

set of complete bipartite graphs. 
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6. Conclusions. 

We have shown that all uniform factorization problems, with the 

sole exception of matching, are NP-complete. While this result is of 

interest in its own right as a contribution to our knowledge of NP-completeness, 

it also lays the fo\llldation as outlined in Section 5, for a new generalized 

theory of matching including new polynanial algorithms. The details of 

this theory will be explored elsewhere. 
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