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A method using some results and techniques of Optimal 

Stochastic Control Theory is introduced to compute the optimal 

admission policy for paged batch-interactive computer systems. 

The admission policy determines the optimal number of batch and 

terminal jobs that should be activated at each system state to 

maximize throughput. The system state is defined as the vector 

(Nl,N2) where Nl and N2 are respectively the total number of 

terminal and batch jobs 1n the system. Thus the policy is 

adaptive to workload variation. As well, the quality of service 

given to each class of jobs (specifically their mean response 

times) can be adjusted by choosing a suitable weight for the 

terminal jobs. A large weight reduces the mean response time of 

the terminal jobs at the expense of the mean batch response time 

while maintaining the total system throughput at its maximum 

level. 

Unlike most existing adaptive control algorithms, the 

approach is based on mathematical modelling and its extension to 

cover the case of more than two classes of jobs is 

straightforward. 

* This work was supported by the National Science and Engineering Research 
Council of Canada under Gr3!lt A3554. 
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I. Introduction 

Load control 1s important in paged virtual memory systems. 

One reason is the fact that if the workload is allowed to 

increase unregulated, a point will be reached when 'thrashing' 

(and thus reduced throughput) will occur [l]. Furthermore, it 

has been shown that for such systems, an optimal degree of 

multiprogramming exists which maximizes the system throughput 

rate [3]. The optimal value, however, changes as the workload 

characteristics vary. A good load control policy should 

therefore dynamically adjust to the changing workload condition 

to optimize system performance at all times. A number of 

adaptive algorithms have been proposed (see for example [2-13)). 

Typically, they work by regulating the load to keep some 

measures related to program behaviour (usually the paging 

behaviour) to within some predetermined bounds. Generally the 

bounds are set to hopefully allow the highest possible load 

without saturating the system. 

Though these algorithms do improve system performance 

(usually the throughput rate), they are basically heuristics and 

therefore do not represent a systematic approach to tackle the 

problem of system load control. Furthermore, most large scale 

virtual memory systems nowadays support both ba t_ch ___ ..and 

interactive jobs. For such systems, one is interested not only 

to maximize the system throughput rate but also to guarantee 

good response times to the interactive users (possibly at the 
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expense of the batch turnaround times). Landwehr [SJ proposed a 

scheme to activate batch jobs based on the ter~inal load. The 

aim was to maintain good response to interactive requests by 

activating less batch jobs when the terminal load is heavy while 

ensuring a minimal level of batch throughput. There was, 

however, no attempt to prevent the system from becoming 

saturated or to optimize performance. As well, there do not 

appear to be a simple or systematic way of determing the values 

of the break points. Hine et al. [14] studied the problem from a 

slightly different viewpoint. Their goal was to provide 

different response times to each class of jobs (batch and 

interactive) while maximizing the CPU utilization. They 

employed a mathematical model but optimization was achieved by 

an exhaustive search technique. A heuristic was also given 

which gives good but not necessarily optimal results. 

In this paper, we propose to use optimal stochastic control 

theory to compute the optimal admission policy for paged batch -

interactive computer systems. The policy determines the number 

of batch and interactive jobs that should be activated at each 

system state. The admission policy minimizes the mean weighted 

sum of the number of batch and interactive jobs in the system. 

We shall show that this will maximize the total system 

throughput. By adjusting the weight win the weighted sum, one 

can easily control the quality of service (i.e., the response 

time) given to the two classes of jobs while maintaining the 

system throughput at its maximum level. Another advantage of 
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this mathematical modeling approach is its generality. Once a 

stochastic model of a system has been developed, the theory can 

be used to determine optimal policies pertaining to different 

criteria simply by using different objective functions in the 

model. We now proceed to give a brief review of some relevent 

results from optimal stochastic control theory. The reader is 

referred to [15) for a more thorough treatment. 

II. Review of some results of Optimal StochasticControl Theory 

Let S = {l, ... n} denotes the state space of a system. To 

each state 1 E Sand each control u in the finite control space 

C there corresponds a set of transition probabilities Pij (u), 

j=l, ..• n, where ~j denotes the probability that the next state 

will be j given that the current state is i and control u is 

applied. Each time the system is in state i E Sand control u 

is applied, an expected cost g(i,u) is incurred. The objective 

is to minimize over all admissible policies 

with l1k :§_-->£, l\(i)E U(i), V i E S, the average cost per stage 

N-1 
J (x ) = 1 irn ( 1/N) E { r g [ xk , Uk ( X] ) ]} 

7T o N-+ 00 k=O t 
•.....• ( 1) 

for any given initial state x0 E ~. Where xk is the state of the 

system at time k, uk(xk) is the control at time k conditioning 

on xk and U(i) is the set of all possible controls for state i. 

Given any stationary admissible policy 7T ={u,u, ... }. Let 
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us denote by p 
-u the transition probability matrix having 

elements Pij(u(i)): 

p = 
-u 

By the definition of Pij' we have 

P .. (u(i) )~O,'iii,j; 
lJ 

n 
r P .. (u(i))=l,'iii. 

j=l lJ 

Let us now consider the value of the cost function JTI(x0 ) 

of Equation (1). We may use the notation: 

JTI(i) = Ju(i), i=l,2 •.• n 

for stationary policies TI ={u,u, ... }. Denote 

J = -u 

Ju(l) g(l,u(l)) 

Ju(2) g(2,u(2)) 

J (n) u 

G = -u 

g(n,u(n)) 

With this notation it is easy to see that 

J -u 

N-1 
= lim(l/N) r PkG 

N-+oo k= 0-u-u 
•••••••• ( 2) 

where Pk 
-u (Praised to the kth power) is the k-step transition -u 

probabilities corresponding to a stationary policy n ={u,u, .. }. 
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It has been shown [15) that if there is a state t ES such 

that for every state i E S the probabi 1 i ty of reaching state t 

from state i is strictly positive, then an optimal stationary 

policy exists. Furthemore, if n ={u,u, ... } is an admissible 

stationary policy, then there exists a constant ,0u and a 

function ~:S->R such that 

J (i) = ,0 ' u u i = 1,2, ... n and 
n 

.0u+hu(i) = g(i,u(i)) + t P .. (u(i))h (j) ,i=l,2, •.• n 
j=l lJ u 

•••••••• ( 3) 

Equation(3) represents a system of n linear equations with 

We may 

add one ~aditional equation to this system by requiring that 

•••.•••• ( 4 ) 

hu(t) then becomes the base on which the other hu(i)'s are 

computed. Since a unique solution exists for this system [15), 

it forms the basis for solving the average cost problem. We 

shall call the method of this solution the Policy Improvement 

Algorithm which is an iterative minimization process. 

k k k Let n = {u ,u , ... } be an admissible stationary policy 

obtained at the kth iteration of the algorithm. We determine 

the average cost per state ,0u corresponding to irk by solving the 

system of (n+l) equations: 

0'k+hk(i) = g(i,uk(i}) + ~ P .. (uk(i) )hk(j) ,i=l,2, ..• n 
-U U j=l lJ U 

k 
h (t) = 0 •••••..• (5) 

u 
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Subsequently, we find a . k+l k+l k+l po 1 1 Cy 1T = { U , U , • • • } where 

uk+l{i) is such that 

( . k+ 1 ( . ) ) g i,u l. + 
n 
I 

j=l 

n 
= min {g(i,u) + l P .. {u)hk(j)}, i = 1,2, ... ,n ··(6) 

UEUU) j=l l.J u 
k+l The average cost per stage <P for the (k+l)th iteration is u 

obtained by solving Equation !5) with the superscript k replaced 

by k+l. It can be shown that <P~+l ~ <P~ The iteration is 

repeated until (<Pk - <Pk+l) is O (or in practice, less than some 
u u 

arbitrarily small constant). The policy ,rk+l ={uk+l ,uk+l , ... } 

is optimal. 

III. Model description and performance optimization 

Consider a combined batch-interactive system as in Figure 1. 

There are N active terminals in the system and batch jobs arrive 

at a mean rate of <PB. Upon arrival to the system, the jobs 

(both batch and interactive) enter the memory queues and await 

admission into the memory loop. An adaptive load control 

algorithm determines nl and n2, the number of interactive and 

batch jobs respectively, to be admitted into the memory loop at 

each system state. The system state in turn is defined by the 

vector (Nl,N2) where Nl and N2 are the number of interactive and 

batch jobs respective~in the system (i.e., those in the memory 

loop plus those waiting in the memory queues). The interactive 

user think time is assumed to be an exponentially distributed 
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random variable with mean 1/~T. Therefore the mean arrival 

rate of the interactive jobs is (N - Nl). ~T when the system 

state is (Nl,N2). For simplicity, only three service centers 

are considered within the memory loop. They are the CPU, drum 

and file disk service centers. 

N terminals 

------+-< -~w 
(N-N

1
)$) Memory ()ueue: _ 

t_DTTfTIIID-i I 

< j T 1 (nl ,n2) 

T2(nl,n2) ~B --)f llTTTII ITµ-)-11 I 111 Iii 
Dl)-~T'TTT""> 
DISK 

I (y--1111 11 [! ~ ; 
I -r--- -- ------

Memory Loop (n1 ,n2 ) 

Figure 1. The System Model 

Our problem is to find an optimal admission policy TI* such 

that the system throughput' rate is maximized and the mean 

response time for interactive jobs can be controlled. The 

simplest way to do this is to minimize the expected weighted sum 

of the number of jobs in the system (i.e., E(w*Nl+N2)) at each 

system state. (Notice Nl and N2 are the total number of jobs in 

the system including those waiting in the memory queues). The 

weight w reflects the importance of the interactive job relative 

to the batch job and is normally greater than 1. Consider the 

simple case when w equals 1 which implies the mean total number 
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of jobs in the system is to be minimized. For a given job 

arrival rate, Little's Law says that minimizing the mean number 

of jobs will also minimize the mean wait time of the jobs in the 

system. Thus the mean system throughput rate is maximized. As 

w is increased, Nl will be further reduced by admitting the 

interactive jobs sooner thus cutting down their memory queue 

wait time and hence the interactive response time. This however 

will result in the batch jobs having to wait longer to be 

admitted in order to maintain the degree of multiprogramming at 

the optimal value. Thus the mean response time of batch jobs 

suffers but the mean sy~tem throughput rate remains constant at 

its maximum level. The above argument is validated by the 

results reported in Section v. 

An admission policy determines the number of interactive 

and batch jobs (nl and n2 respectively) to be admitted into the 

memory loop at each system state. Thus the optimal admission 

policy is a mapping of (Nl,N2) to (nl,n2) i.e., 

n* = (N
1

,N
2

) ➔ (n
1

,n2 ) such that 

N-1 
z = lim (1/N) E { I g(xk)} 

N➔ oo k=O 

is minimized, where xk = (Nl,N2) is the state of the system at 

time k and the cost function g(xk) is (w*Nl+N2). This problem 

fits into _the framework of the basic problem of optimal 

stochastic control and hence can be solved by the techniques 

described in Section II. 
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Because of the blocking which occurs when a job cannot be 

allocated main memory, the model in Figure 1 cannot be solved 

exactly. We use the decomposition technique (16] to obtain an 

approximate solution. The method is to solve the memory loop as 

an independent closed central-server network, then replace it by 

a single composite server whose service rate is the same as the 

throughput rate of the memory loop. As the state-transition 

rate within the memory loop greatly exceeds the interactions 

between it and the rest of the system, the error introduced by 

the approximation should be small [16]. 

3.1 The memory loop as a closed central-server network 

Our task is to compute the throughput rates of the 

interactive and batch jobs when there are nl interactive and n2 

batch jobs in the memory loop (denoted as T1 (nl,n2) and 

T2 (nl,n2) respectively). 

simplify the computation: 

We make the usual assumptions to 

i) The virtual time between successive page-faults and file disk 

requests for class r jobs are exponentially distributed with 

means Lr(p) and 1/dr respectively, where 

2b r 
Lr(p) = 2 

1 + (a /p) r 

.........• ( 7) 

is the expected lifetime for class r jobs when the main memory 

allocation is p pages. The lifetime function in Equation (7) 

was first proposed by Chamberlin et al. [17] (Figure 2) where b 
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is the expected virtual inter page-fault time when a class r job 

is allocated ar pages of main memory and ar is the number of 

pages that provides the job with half of its longest possible 

lifetime. 
L (p) r 

b r 

~-------L-------'------~p 
a r 

Figure 2. The Lifetime Function 

ii) The CPU time request for class r jobs is exponentially 

distributed with mean 1/Cr. 

iii) The mean drum and disk service rates (µ 2 and µ 3 

respectively) are the same for all classes of jobs. 

iv) The service discipline of the CPU, for which the service 

rate µlr is class-dependent, is processor sharing. 

Also, 

From the above assumptions, it is easy to see that 

µl = d + C + 1/L (p), r r r r 

the transition probabilities, 

r = 1,2 . . . . . . ( 8) 

g .. (r), of a class r job 
l. J 

going from server i to server j are given by: 

. . . . ( 9) 
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The state of the model is defined by the number of jobs in each 

class at each server. Thus if kir is the number of class r jobs 

at server i, the state K of our model is given by the vector 

Following Baskett et al. [ 18], the 

stationary probability Pn (~) of state K when there are nl 

interactive and n2 batch jobs in the system(~ is the vector 

(nl,n2)) is given by: 

p (K) 
n -

k1r k k 
1 {X X 2r X 3r} _ 1 k I k I k I lr 2r 3r 

- G (n) 1. 2. 3. 1r ~! • k7°" . k! 
r=l lr 2r 3r 

the x. 's are- the solutions of the transition equations: 
ir 

3 

·, ( 10) 

.I q .. (r)U. X. =U. X. 
lJ ir 1r Jr. Jr, 

j = 1,2,3 

r = 1,2 
· .. · · · (11) 

l=l 

and G(~) is the normalizing constant which normalizes the sum of 

all the probabilities to 1. It is easy to see that 

xlr = 1 

ql2(r) . µlr 
x2r 

1 (12) = = µ 2L (P) 
. .. 

µ2 r r 

ql3(r) . 
JJ lr d. 

x3r 
r = = 

µ3 )J 3 

Assuming the memory is equally partitioned among all the jobs, 

the mean value of Pr is Y/(nl+n2) where Y is the capacity of the 

main memory. Extending the results of Buzen [19] to the 

multi-class case, an efficient· method for computing G(~) was 

derived. 

We define an auxiliary function 
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rn = 1,2, ... ,M, 

where M is the total number of service centers in the system 

(which is 3 in our case). It can be shown [20) that 

G(.!.!_) = g(nl,n2,M), 

The recursive relationship 

(X )p • (X )q • g(n -p n -q rn-1)}··(14) ml rn2 1 ' 2 ' 

together with the initial condition 

(nl+n2)! 

nl!n2! 
...... (15) 

can be used to compute G(n) efficiently (see [20) for details). 

The utilization of server m when the memory loop is in 

state n can be shown to be equal to 

u (rn) 1 
g(n1 ,n2 ,rn-l) 

= - g(n
1

,n
2

,rn) n 
....... (16) 

and the partial utilization of server m for class r jobs is 

given by 

u (rn,r) 
n 

nl n2 
= 1 I I { _..E_ • <e+gl ' • 

g( nl,n2,m) 0 p+q p!q! p=l q= -

· · · · · · ( 1 7) 
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The throughput rate of class r jobs in the memory loop Tr(nl,n2) 

can now be computed from Equations (17), (15) and (14) using the 

familiar relationship: 

· · · · · ( 18) 

3.2 For mul ation of the opti ma l control problem 

The memory loop in Figure 1 is replaced by an aggregate server 

(Figure 3) whose service rate is workload dependent and is equal 

to T (nl,n2) when there are nl class land n2 class 2 jobs in 

the memory loop (Equation (18)). N terminals 

,---------- --, 
aggregate 1 

~ 
server 

nl' i------1--~-----;:, 
~B ------'----:;:►!..Lil wl I i..u.l I w.l !f µ n2) 

I 

1 SYSTEM (Nl, N2) 
l- - - - - - - - - ,. _ - - J 

Figure 3. The system rcodel with the rrerrory loop r eplaced 
by an aggregate server. 

In a small interval h, the transition probability Pi.j_(~) of 

the system going from state i to state j when the load of the 
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memory loop is n is given by equation: 

<P Bh' for i = (Nl,N2), i = (N1 ,N 2+1), N2 < m -1 - 2 

lN-N1)~Th, for i = (Nl,N2)' i = (N1+1,N2) 

Tl (!!_)h, for i = (Nl,N2), i = (N
1
-l,N2), Nl > 

P .. (n) = ~- T2 (!!_)h, for i = (Nl,N2), i = (Nl, N2-l) , N2 > 

1 - (sum of the above 4 cases) for i = i 
la otherwise .... 

If the control decision is made each time a job arrives or 

departs from the system, the system state vector (Nl,N2) can be 

described by a two dimensional semi-Markov decision process. 

The set of possible control for each state i=(Nl,N2), is 

{~=(nl,n2), 0 <= nl <= Nl, 0 <= n2 <= N2}. It is easy to see 

that the transition probability, P.ij(~), of going from state 1 

to state i when control~ is applied is the same as those given 

in Equation (19). 

The problem of finding an optimal admission policy is 

formulated as a minimization problem of the average cost per 

unit time over all admissible policies 

min{J 
'TT 

= lim 
N-+c:o 

(1/N) 

where P is 
'TT 

the 

P.ij, and 
g(O,O) 
g(l,0) 

g!Nl,N2) 

g (N, rn
2

) 

transition probability matrix having element 

0 

0 

(19) 

- --
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The optimal admission policy is solved by the Policy 

Improvement Method described in Section II. 

IV. Interpreting the results 

Using the model as described in the previous section, the 

values of certain performance indices under a given admission 

policy TI ={u,u, ... u} can be computed by using an appropriate g 

function in Equation (5). The performance indices chosen are 

the mean response times and throughput rates for each class of 

jobs. 

To compute the mean response time R for interactive jobs, 

we first compute the mean number of interactive jobs Zl in the 

system by using g(i,u(i)) = Nl in Equation (5) and then apply 

Little's formula to obtain : 

Similarly, the mean turnaround time for batch jobs is given by: 

where Z2 is the mean number of batch jobs in the system an·a is 

computed by using g(i,u(i)) = N2 in Equation (5). The mean 

throughput rates for interactive and batch jobs are computed by 

substituting T1 (nl,n2) and T2 (nl,n2) for g(i,u(i)) respectively 

in Equation ( 5 ) . 
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4.1 The efficts of the weight won performance 

Since the optimal admission policy minimizes the mean 

weighted sum of the number of jobs in each class in the system, 

the effects of won the performance indices deserve examination. 

Figures S(a) through B(a) are some samples plots of the 

mean response times for each class of jobs versus the weight (w) 

under different workloads with and without load control. The 

lower-bound mean response time for interactive jobs (i.e., when 

the batch stream is absent and the optimal control is applied) 

is also plotted on each of these graphs. 

Figures S(b) to 8(b) are the corresponding throughput plots 

with the total system throughput (sum of batch and interactive 

throughtputs) also given. The different workload conditions are 

simulated by varying the CPU requirements for each class of jobs 

systematically over a range of values and keeping the other 

workload parameters constant. This is justified on the ground 

that changing the other parameter values has the same net effect 

as far as affecting the residence times of the jobs in the 

system (and thus the system throughput rate) is concerned. 

These figures show that the optimal admission policy 

improves the mean response times and throughputs for each class 

of jobs considerably over those with no control. For a given 

system hardware configuration and characteristics, the exact 
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improvements depend on the workload of the system. Generally, 

the heavier the workload the greater the improvements. When the 

system load is light the improvement is only marginal. This 

leads to the logical conclusion that there is no need to control 

the system when the expected workload is light. 

From the figures, the following interesting effects of won 

the performance indices can be observed: 

i) An increased value of w increases the interactive throughput 

and decreases the batch throughput. It also decreases the mean 

interactive response time and increases the batch turn-around 

time. In other words, the larger the value of w the better the 

quality of service is given to the interactive jobs. 

ii) When w exceeds a certain value, the rates of change of the 

values of the performance indices with respect tow decrease as 

w increases and become insignificant for large w. This is an 

important property because it implies that the batch throughput 

will not continue to drop as w increases but is guaranteed to 

exceed some minimum level. 

iii) The total system throughput does not vary appreciably as w 

varies. Recall that when w=1, the optimal admission policy 

minimizes the total number of jobs in the system which is 

equivalent to maximizing the total system throughput. This 

property implies that the optimal admission policy always 

produces maximum or near-maximum total system throughput 

regardless of the value of the weight chosen. 

iv) The mean interactive response time becomes very close to 
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the lower-bound when w exceeds some value (denoted by w*). The 

value of w* depends on the relative loads of interactive and 

batch jobs. The heavier the interactive load relative to the 

batch load the greater the value of w*. This property suggests 

that we can choose a suitably large value of w such that the 

mean interactive response time is acceptably low (say within 10 

percent of the lower bound). 

From the above observations, we can see that an optimal 

admission policy can be obtained by choosing a suitable value of 

w which, 

1) gives good response to the interactive jobs, 

2) maximizes the total system throughput, 

3) guarantees a minimum batch throughput. 

Since the optimal admission policy improves the mean 

interactive response time considerably over that with no control 

(especially when the load is heavy) we expect that more 

terminals can be supported. To verify this we plot the 

interactive response times (with and without control) versus the 

number of terminals (Figure 9). It shows that the saturation 

point (according to ~leinrock's definition* [21)) when control 

is applied is about twice that with no control under the given 

workload. 

* defined as the intersection of the mean normalized response 
time curve asymptote and the horizontal line corresponding to 
the mean response time when there is only one terminal. 
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4.2 The optimal admission policy 

Tables (1) through (9) are some samples of optimal admission 

policies obtained by the Policy Improvement Method. 

It is obvious that the weight (w) of the objective function 

affects the optimal admission policies. For a given set of 

parameter values, different weights in the objective function 

result in different optimal admission policies. Tables (1) to 

(3) are the policies obtained by using different weights ranging 

from 1 to 3 and keeping the other parameters constant. The 

other parameter values used are: ¢T=0.0S, ¢
8

=0.1, Y=60 pages, 

N=6, m2=S, bT=0.018, bB=0.012, aB=10, aT=20, Tio=20, Bro=10, 

F
5

=30, p
5

=80, cpuT=0.3, cpuB=0.3 (all time 9nits are in seconds) 

where 

1/¢ = mean terminal "think" time 
T 

¢=mean batch arrival rate 
B 

Y= total memory size 

N= number of terminals 

rn = maximum number of batch jobs to be considered 
2 

bT,bB,aT,aB= parameters of the life time functions for bat~h and 

terminal jobs 

TIO= mean interactive I/O request rate 

Bro= mean batch I/O request rate 

p = s mean paging rate 

F s = mean I/O service rate 

CPUT= mean interactive CPU service rate 
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CPUB= mean batch CPU service rate 

As expected these tables show that the larger the weight 

used in the objective function the higher the priority given to 

the interactive jobs. This is reflected by the fact that at 

some of the system states the policy with the larger weight 

admits more interactive jobs into the memory loop than those by 

policies with a smaller weight. 

The policies in Tables (4) (6) have the same set of 

parameter values and weight except for cpuB, which varies from 

0.2 to 0.6. Varying cpuB and keeping the other parameters 

constant simulates different relative loads between interactive 

and batch jobs. These tables show that the lighter the load of 

one class of jobs relative to the other the better service it 

will receive. For example, as cpuB increases (hence the batch 

load decreases) the optimal policy admits more batch and less 

interactive jobs into the memory loop for the same system 

states. 

Tables ( 7 ) - ( 1 0 ) are the optimal admission policies for 

different workloads which give mean interactive response time 

close to the lower bound. By comparing these policies it is 

observed that they are very similar to one another. Very often, 

when the number of interactive jobs in the system exceeds some 

number { 3 in our numerical example) the policies will admit 
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regardless of 
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of interactive jobs into the memory loop 

how many batch and interactive jobs there are in 

the system. This confirms the results of our earlier work [22] 

which solves the load control problem using queuing theory and 

optimization technique. From Table (11) it is observed that 

that number is equal to the number of interactive jobs which 

produces the highest partial interactive CPU utilization. 

The similarity of the optimal admission policies would lead 

one to expect that a policy that produces optimal performance 

for a given workload to give close to optimal performance for a 

range of workload conditions (especially when w is large). If 

this is actually the case then in practice we need only to 

implement one standard policy for a range of workload instead of 

one for each workload condition. We choose the policy in Table 

(9), (which gives optimal performance at cpuT=0.4, cpuB=0.3) as 

the standard policy in our example. The performances of this 

policy for different workloads are computed and compared with 

the optimal values (a typical result is given in Table (12)). 

It is observed that the performances are quite close to the 

optimal performances in all cases. 

v. Conclusion 

We have described a method using some results and techniques 

of optimal stochastic control theory to compute the load control 
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policy of a combined batch-interactive computer system. The 

policy determines the optimal number of batch and terminal jobs 

that should be admitted depending on the current state of the 

system. A mathematical model of the system was developed and 

the theory applied to compute the optimal admission policy. The 

objective function to be minimized per unit time is the mean 

weighted sum of the number of jobs in each class 1n the system 

(E(w*N1+N2)). 

The policy thus obtained was shown to exhibit the following 

properties: 

i) It gives good mean response time for interactive jobs (close 

to the lower bounds if sufficiently large weight w is used). 

ii) It maximizes the total system throughput. 

iii) It guarantees some minimum level of batch throughtput. 

iv) A policy that produces an optimal performance for a given 

workload provides near-optimal performance for a range of 

different workload conditions, especially when w is large. 

v) The quality of service given to each class of jobs can be 

easily controlled by choosing some suitable weight w. 

The extension to cover more than two classes of jobs is 

straightforward. 
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FIGURES $ (a) to 8(a): 

N Mean interactive response time (No control) 

* II II II II (with control) 

B Mean batch response time (rlo control) 

-+- " II II II (with control) 

Lower bound of mean interative response time 

Figures S (b) to S(b): 

:Total system throught rates (jobs/s) 

-*- :Interactive throughput rate (with control) 

I II II II (No control) 

-+- Batch throuhgput rate (with control) 

B II II II (NO control) 

Fig. 4. Legend for Figures .S(a) to 8(a) 

and Figures 5(b) to l(b) 



Cl 

~ 

C 

i 

a 

wfi 
:c. ..., 
~ 

CJ 

ui -

N 

18 

t-l ~ H H. N 

Q 

IIQ-1-----,-----r----~r----,----, 
D.D &.D 2.D 3.D 4.D S,O 

WEIGHT 

cpuT=0.3, cpuB=0.3 

~T=0.05, da=0.1, r=60, N=6, m2=5, bT=0.018 

b8=0.012, c8=10, cr=20, r10=20, a10=10, F
5
=3o, P =80 s 

• 



I­
=> 
D.. :r. 
L!) 

10 

Q 

"' . Q 

B~ 
o:c :r. 
I-

I"! 
0 

"! 
0 

~ 
0 

a 
a 

; ; 

D.D l.D 

Ft6. .S(b) 
cpuT = 0.3, 

+ 

e::::b J:.:.::! 

2.D 
WEIGHT 

3.D 4.D 

cpuB = 0.3 

For other parameter values, see Fig. 

z. 'I 

:I.D 

5 (a) 



30 

a 

uf 

0 

t 
~ N N N H ~ N ..., .... 
UJQ z: . 
~~ 
Vl 

~ 
L.M M * ~ * a 

.,; -
a 

~ 

9 B 9 B 9 s 
0 
D.i 

:t--:t :t 
. Q 

t :t: + 

"t 
D.D l.D 2.D 

VE1GHT 
3.D 4.D 5.D 

F-r, J.. . 6(a.) 

cpuT = 0.3, cpuB = 0.7 

For other parameter values, see Fig. 5 (a) 



-

oq 
C 

,­
a 

ID 
CJ 

"' . 
Q 

N 
Q 

-
Q 

1:1 
Q 

D.D 

l-14 . 

3.l 

¥ r y r ¥ ~ 
IJ fB Pl la ffl ffi 

l .D 2,D 
WEIGHT 

3.D 4,0 :I.D 

6(b) 

cpuT = o.3, cpuB = 0.7 

For other parameter values, see Fig. .5 (a) 



Cl co -
Q 

fli ... 

Q 

ID 

32 

Q 

~:_-t-------,r----,-----r----.---­
ll.D l.D 2.D 3.0 

\/tlGHT 
4,D 5,0 

Fxr:, 7 ra.) 

cpuT = 0.5, cpuB = 0.3 

For other parameter values, see Fig. $(a) 



( . 

t­::, 

~ 
L!) 

O! 
C 

110 
C 

co 
Cl 

.,.. . 
a 

~~ o:o :c 
t-

"! 
a 

a 

Cl 
a 

D.D 1.D 2,D 3.D 
WEIGHT 

r,q. 7rb) 
cpuT = O.~, cpuB = O. 3 

For other parameter values, 

33 

◄.D , .o 

see Fig. -5 (a} 



--
V 
ci ... 

., 
O'I 

H H H H H H 
la 
cc 

Ci 

~CQ --w 
~"': a..,.. 
Vl 

~ 

,r A 9 B B 9 A 
ID 

a .. 
D.D 1.0 2.D 

VEJGHl 
3,0 4.D 5.D 

'f1er. lfa..J 

cpuT = 0.5, cpuB = 0.7 

For other parameter values, see Fig. 5 \a) 
ff 



( 

t-
::J 
CL 
:i:. 
~ 

~ 
Cl 

ID 

0 

"' a 

8~ io 
t-

.., 
c:i 

N 
Cl 

-
Q 

a 
Q 

35 

---;-

D.D l.D 2.D 3.P 
WEIGHT 

4,D ~.D 

'F]4. BtbJ 

cpuT = 0.5, cpuB = 0.7 

For other parameter values, see Fig 5 (a) 



l 

VI 
a:: 

Cl 

~ 

C, 

l/1 
M 

Cl 

0 
M 

Cl 

l/1 
N 

~ Cl 

LLJ ::, 
>N .... 
1-
u 
< 
0:: 
LLJ 
I-
~ C1 

LL l/'l 
0 

t .... 
1-

LLJ 

~ Cl 

~ ::! 
VI 
LLJ 
c:: 
2: 
< 
LLJ 
~ 

0 

If) 

C") 

Cl 

J. !) 

.I 

3.0 
NO. 

y 

: No control 

-*--* : with control 

6.0 9.0 12.Q 
OF INTERACTIVE JOB 
FIG. 9 

cpuT = 0.3, cpun = 0.3 

For other parameter values, see J:"ig. 5(a) 

36 

-

15.0 



IN TABLES (1) TO (10), ENTRY (I,J) CORRESPONDS TO THE 

SYSTEM STATE WITH I INTERACTIVE JOBS AND J BATCH JOBS. 

37 

THE TUPLE (X,Y) REPRESENTS THE CONTROL DECISION (I.E., ADMIT 

X INTERACTIVE ANDY BATCH JOBS INTO THE MEMORY LOOP.). 

All the tables have the following parameter values: 

¢T = 0.05; ¢B = 0.1, Y = 60, N = 6, m2 = 5, bT=0.018, 

bB = 0.012, cB = 10, CT= 20, TIO= 20, BIO= 10, Fs = 30, 

Ps = 80. 

Mean interactive response time without control 
Mean batch turn around time without control 
Throughput of interactive job without control 
Throughput of batch job without control 

WEIGHT= 1 . 0 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 ( 0, 0) ( 0 , 1 ) ( 0 , 2 ) ( 0 , 3 ) ( 0 , 4 ) ( 0 , 4 ) 
1 ( 1 , 0 ) ( 1 ' 1 ) ( 0 , 2 ) ( 0, 3} ( 0 , 4 } ( 0 , 4 } 
2 ( 2 , 0 ) ( 2 I 1 ) ( 0, 2) ( 0, 3) ( 0 , 4 ) ( 0, 4) 

I 3 ( 3 , 0 ) ( 2 , 1 ) ( 0 , 2 ) ( 0 , 3 ) ( 0, 4) ( 0, 4) 
4 ( 3 , 0 ) ( 2 , 1 ) ( 0 , 2 ) ( 0 , 3 ). ( 0 , 4 ) ( 0 , 4 ) 
5 ( 3 , 0 ) ( 2 ' 1 ) ( 0 , 2 ) ( 0 , 3 ) ( 0 , 4 ) ( 0 , 4 ) 
6 ( 3 , 0 } ( 2 I 1 ) ( 0 , 2 ) ( 0 , 3 ) ( 0 , 4 ) ( 0, 4) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 

= 66.97 
= 33.32 
= 0.0690 
= 0.0669 

= 29.35 
= 10.72 
= 0.1216 
-= 0.0990 

TABLE 1. OPTIMAL ADMISSION POLICY WITH CPUT=0.3, CPUB=0.3 



WEIGHT= 2.0 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 (0,0) ( 0, 1 ) ( 0, 2) ( 0 , 3 ) ( 0, 4) ( 0, 4) 
1 ( 1 , 0) ( 1 , 1 ) ( 1 , 2) ( 0 , 3 ) ( 0, 4) ( 1 , 3 ) 
2 ( 2, 0) ( 2 , 1 ) ( 1 , 2 ) ( 0 , 3 ) ( 0 , 4 ) ( 1 , 3) 

I 3 ( 3 , 0 ) ( 2 , 1 ) ( 1 , 2) ( 0 , 3 ) ( 0 , 4 ) ( 1 , 3 ) 
4 ( 4, 0) ( 2 , , ) ( 1 , 2) ( 0 , 3 ) ( 0 , 4 ) ( 1 , 3) 
5 ( 3 , 0 ) ( 2 , 1 ) ( 1 , 2) ( 0 , 3 ) ( 0 , 4 ) { 0, 4) 
6 ( 3 , 0 ) ( 2 , 1 ) ( 1 , 2 ) ( 0 , 3 ) ( 0 , 4 ) ( , , 3 ) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 

= 27.50 
= 11.91 
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= 0.1263 
= 0.0986 

TABLE 2. OPTIMAL ADMISSION POLICY WITH CPUT=0.3, CPUB=0.3 

WEIGHT= 3.0 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 { 0 , 0 ) ( 0 , , ) ( 0 , 2 ) ( 0, 3) ( 0 , 4 ) ( 0 , 4 ) 
1 ( 1 I 0) ( 1 I 1 ) ( 1 I 2) ( 1 I 3 ) ( 1 , 3 ) { 1 , 2) 
2 ( 2 , 0 ) { 2 1 1 ) ( 2 I 2 ) ( 1 , 3 ) ( 2 I 1 ) { 2, 0) 

I 3 ( 3, 0) { 2 , 1 ) { 2 , 2) ( 2 , 2 ) { 3 , 0 ) ( 3, 0) 
4 { 3 , 0 ) ( 2 I 1 ) ( 2, 2) ( 3 , 0 ) ( 3 , 0 ) ( 3 I 0 ) 
5 ( 3 , 0) ( 2 , 1 ) ( 2 I 2 ) ( 3 , 0 ) ( 3 , 0 ) { 3 I O ) 
6 ( 3 , 0 ) ( 2 , 1 ) { 2 I 2) { 3 , 0 ) { 3 , 0 ) ( 3 , 0 ) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 

= 1 6. 96 
= 30.07 
= 0.1623 
= 0.0609 

TABLE 3. OPTIMAL ADMISSION POLICY WITH CPUT=0.3, CPUB=0.3 



WEIGHT= 2.0 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 ( 0, 0} ( 0 , 1 } ( 0 , 2 } ( 0 , 3 } ( 0 , 4 } ( 0 , 4 } 
1 ( 1 , 0 } ( 1 , 1 } ( 1 , 2} ( 1 , 2} ( 1 , 2) ( 1 , 1 } 
2 (2,0) ( 2 , 1 ) ( 2 , 1 } ( 2, 1 ) ( 2 , 0 } (2,0} 

I 3 ( 3, 0) ( 3 , 0 } ( 3 , 0 } ( 3 , 0 ) ( 3 , 0 } ( 3 , 0 ) 
4 ( 3 , 0 } ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 } 
5 ( 3, 0) ( 3 , 0 } ( 3 , 0 } ( 3 , 0 ) ( 3 , 0 ) ( 3, 0) 
6 ( 3, 0) ( 3, 0) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 

= 7.55 
= 34.92 
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= 0.2178 
= 0.0598 

TABLE 4. OPTIMAL ADMISSION POLICY WITH CPUT=0.5, CPUB=0.2 

WEIGHT= 2.0 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 ( 0 , 0 ) ( 0 , 1 ) ( 0 , 2 ) ( 0 , 3 ) ( 0 , 4 ) ( 0 , 4 ) 
1 ( 1 , 0 ) ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3) ( 0 , 4 ) ( 1 , 2) 
2 ( 2 , 0 ) ( 2 , 1 ) ( 2 , 2 ) ( 1 , 3 ) ( 1 , 3) ( 2 IO) 

I 3 ( 3 , 0 ) ( 3 I 1 ) ( 2 I 2 ) ( 1 , 3) ( 1 , 3) ( 3 IO) 
4 ( 3, 0) ( 3 I 1 ) ( 2 , 2 ) ( 1 , 3 ) ( 2 , 2 ) ( 3 , -0) 
5 ( 3 , 0 ) ( 2 I 1 ) ( 2 I 2 ) ( 1 , 3) ( 2 , 2 ) ( 3 , 0 ) 
6 ( 3 , 0 ) ( 2 , 1 ) ( 2 , 2 ) ( 1 , 3} ( 3 , 0 ) ( 3 IO) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 

= 9.65 
= 1 0. 66 
= 0.2023 
= 0.0965 

TABLE 5. OPTIMAL ADMISSION POLICY WITH CPUT=0.5, CPUB=0.4 



WEIG}{T = 2.0 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 (0,0) ( 0, 1 ) ( 0 , 2 ) ( 0, 3) ( 0 , 4 ) ( 0 , 4 ) 
1 ( 1 , 0) ( 1 , 1 ) ( 1 , 2) ( 1 , 3) ( 0 , 4 ) ( 1 , 3) 
2 ( 2 , 0 ) ( 2, 1 ) ( 2 , 2 ) ( 1 , 3) (0,4) ( 0 , 4 ) 

1 3 ( 3 , 0 ) ( 2, 1 ) ( 1 , 2) ( 0, 3) ( 0 , 4 ) ( 0 , 4 ) 
4 ( 3, 0) ( 2 , 1 ) ( 1 , 2) ( 1 , 3) ( 0 , 4 ) ( 0 , 4 ) 
5 (3,0) ( 2 , 1 ) ( 1 , 2) ( 1 , 3) ( 0 , 4 ) ( 1 , 3) 
6 ( 3 , 0 ) ( 2 , 1 ) ( 1 , 2) ( 0, 3) (0,4) ( 0 , 4 ) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 

= 8.55 
= 5.36 
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= 0.2101 
= 0.0999 

TABLE 6. OPTIMAL ADMISSION POLICY WITH CPUT=0.5, CPUB=0.6 

WEIGHT= 3.5 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 ( 0 , 0 ) ( 0 , 1 ) ( 0 , 2 ) ( 0, 3) ( 0 , 4 ) ( 0 , 4 ) 
1 ( 1 , 0 ) ( 1 , 1 ) ( 1 , 2 ) ( 1 , 2 ) ( 1 , 2 ) ( 1 , 0 ) 
2 ( 2, 0) ( 2, 1 ) ( 2 , 1 ) ( 2, 0) ( 2 , 0 ) ( 2 , 0 ) 

I 3 ( 3 , 0 ) ( 3 , 1 ) ( 3 , 0 ) ( 3, 0) ( 3, 0) ( 3, 0) 
4 ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) ( 3, 0) ( 3 , 0 ) ( 3, 0) 
5 ( 3 , 0 ) ( 3, 0) ( 3 , 0 ) ( 3, 0) ( 3, 0) ( 3 , 0) 
6 ( 3 , 0 ) ( 3, 0) ( 3 , 0 ) ( 3, 0) ( 3 , 0 ) ( 3 , 0 ) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 
Lower bound of interactive response time 

= 23.84 
= 48.66 
= 0.1369 
= 0.0068 
= 23.68 

TABLE 7. OPTIMAL ADMISSION POLICY WITH CPUT=0.2, CPUB=0.2 



WEIGHT= 9.0 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 ( 0 , 0 ) ( 0 , 1 ) ( 0 , 2 ) ( 0 , 3 ) ( 0 , 4 ) ( 0, 4) 
1 ( 1 , 0 ) ( 1 , 1 ) ( 1 , 2) ( 1 , 2) { 1 , 2) { 1 , 1 ) 
2 ( 2 , 0 ) ( 2 , 1 ) ( 2 , 1 ) ( 2 , 1 ) { 2, 1 } ( 2 , 0 ) 

I 3 ( 3 , 0 ) { 3, 0) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 } ( 3 , 0 ) 
4 ( 3 , 0 ) { 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) (3,0) 
5 ( 3 , 0 ) ( 3 , 0 ) ( 3, 0) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) 
6 ( 3, 0) ( 3 , 0 ) ( 3, 0) ( 3 , 0 ) ( 3 , 0 ) ( 3 , 0 ) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 
Lower bound of interactive response time 
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= 24.53 
= 41 • 58 
= 0.1347 
= 0.0303 
= 23.68 

TABLE 8. OPTIMAL ADMISSION POLICY WITH CPUT=0.2, CPUB=0.5 

WEIGHT= 3.5 

Optimal policy is 
********************* 

0 
0 (0,0) 
1 (1,0) 
2 (2,0) 

I 3 (3,0) 
4 (3,0) 
5 (3,0) 
6 (3,0) 

1 
( 0, 1 ) 
( 1 , 1 ) 
( 2 , 1 ) 
( 3 , 0 ) 
( 3 , 0 ) 
( 3, 0) 
( 3, 0) 

2 
( 0 , 2 ) 
( 1 , 2 ) 
( 2 , 1 ) 
( 3 , 0 ) 
( 3 , 0 ) 
( 3 , 0 ) 
( 3 , 0 ) 

J ***************** 
3 4 5 

(0,3) (0,4) (0,4) 
( 1 , 3 ) ( 1 , 2 ) ( 1 , 1 ) 
(2,1) (2,0) (2,0) 
(3,0) (3,0) (3,0) 
(3,0) (3,0) (3,0) 
(3,0) (3,0) (3,0) 
(3,0) (3,0) (3,0) 

***************************************** 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job 
Throughput rate of batch job 
Lower bound of interactive response time 

= 9.96 
= 30.91 
= 0.2002 
= 0.0653 
= 8.64 

TABLE 9. OPTIMAL ADMISSION POLICY WITH CPUT=0.4, CPUB=0.3 
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WEIGHT= 3.5 

Optimal policy is 
********************* J ***************** 

0 1 2 3 4 5 
0 ( 0 , 0) ( 0, 1 ) ( 0, 2) { 0 , 3 ) { 0 , 4 ) { 0 , 4) 
1 { 1 , 0) { 1 , 1 ) { 1 , 2) ( 1 , 2) { 1 , 1 ) ( 1 , 0) 
2 ( 2 , 0 ) ( 2 , 0 ) ( 2, 0) ( 2 , 0 ) ( 2 , 0 ) ( 2 , 0 ) 

I 3 { 3 , 0 ) ( 3 , 0 ) ( 3 IO) ( 3 , 0) ( 3 , 0 ) ( 3, 0) 
4 ( 3 , 0) ( 3 , 0 ) { 3, 0) ( 3 1 0 ) ( 3 I 0 ) ( 3, 0) 
5 ( 3 I O) ( 3 , 0 ) { 3 IO) ( 3 1 0) ( 3 I 0 ) ( 3 , 0 ) 
6 ( 3 , 0 ) ( 3 , 0 ) { 3, 0) { 3 I O) { 3 , 0 ) ( 3 I O) 

***************************************** 

= 5.42 
= 34.61 

Mean interactive response time 
Mean batch turn around time 
Throughput rate of interactive job = 0.2360 
Throughput rate of batch job = 0.0596 
Lower bound of interactive response time = 4.93 

TABLE 10. OPTIMAL ADMISSION POLICY WITH CPUT=0.6, CPUB=0. 

0 

2 

0 

0.0 
0.0 

0.0 
0.5352 

N2 

2 

0.0 
0.7495 

3 

0.0 
0.8386 

4 

0.0 
0.8689 

5 

0.0 
0.8640 

0.4872 0.3379 0.2454 0.1824 0.1359 0.0993 
0.0 0.3832 0.5703 0.6624 0.6986 0.6924 

0.6779 
0.0 

0.4946 
0.2917 

0.3671 
0.4496 

0.2711 
0.5298 

0. 1 956 
0.5553 

0.1225 
0.5048 

3 0.7483 0.5544 0.4059 0.2894 0.1799 0.1243 
0.0 0.2292 0.3573 0.4175 0.4013 0.3803 

N1 -------- -------- -------- -------- -------- --------
4 0.7449 0.5404 0.3810 0.2356 0.1633 0.1090 

5 

6 

0.0 0.1008 0.2790 0.2994 0.3024 0.2752 

0.6750 
0.0 

0.5599 
o.o 

0.4711 
0.1399 

0.3436 
0.0990 

0.2900 
0. 1987 

0.2396 
0.1498 

0.2017 
0.2257 

0.1611 
0.1638 

0.1352 
0.2193 

0.1453 
0. 1977 

0.1218 
0.2479 

0.0937, 
0.1716 

TABLE 11. CPU UTILIZATION UT{N1 ,N2)*/UB(N1,N2) 
N1 AND N2 ARE THE NUMBER OF INTERACTIVE AND BATCH JOBS 
IN THE MEMORY LOOP RESPECTIVELY. 
Y=60 BT=0.018 BB=0.012 AT=20 AB=10 FS=30 PS=B0 



TW., interactive response time without control 
TO= " " " with optimal control 
TS = " " " with suboptimal control 
PW= total throughput without control 
PO= " " with optimal control 
PS = " " with suboptimal control 
BO = batch throughput with optimal control 
BS = " " with suboptimal control 

cpuT=0.2 

cpuB I 0. 1 10.2 0.3 0.4 0.5 0.6 

TW 243 192 135 93 68.9 55.4 

TO 23.6 23.6 23.7 23.8 24.5 26.6 

TS 24.3 24.4 24.5 24.5 24.6 24.8 

PW 0.043 0.0695 0.099 0.129 0.153 0.171 

PO O • 1 4 1 0 . 1 4 3 0 . 1 4 6 0 . 1 5 0 0 . 1 6 5 0 . 1 8 5 

PS 0.141 o.147 0.154 0.160 0.165 0. 180 

BO 0.003 0.0054 0.0087 0.0134 0.0303 0.057 

BS 0.006 0.0127 0.0193 0.0254 0.0306 0.051 

TABLE 12 
Comparision of the performance of the standard admission 
policy to optimal policies under different workloads 
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