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Abstract 

The design of a distributed 1/0 system is described. The system is 
distributed in being implemented by s1:,rver processes, client processes end a 
message communication mechanism between them. Date transfer between 
processes is achieved using a "connectionless" object-based protocol. The 
concept of file is generalized to that of a view of an object or activity 
managed by aserver. This allows many objects, including application-defined 
objects, to be viewed or accessed within the program 1/0 paradigm. Files are 
instantiated as file instance objects to allow access to the associated data. 
Conventional byte-stream program input/output facilities ere supported by a 
subroutine library which makes the message-based implementation transparent 
to applications. 
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1. Introduction 

Message-based systems and byte-stream program input and output have both 
been used extensively. The design of an 1/0 system that implements 
byte-stream 1/0 in terms of messages is described with examples of its use. In 
justifying the design, we document the issues encountered and our solutions. 
Some of these issues arose due to the goals we chose and some arose due to 
our choice of execution model - particularly the semantics of the message 
primitives. It is therefore helpful to first describe the progression that lead to 
this work. 

A research group at UBC have been experimenting with distributed system 
structuring principles and techniques in a research system known locally es 
Verex [5,15]. Verex, as a direct descendant of Thoth [4,6], provides many, small 
(inexpensive) processes communicating via messages plus a date transfer 
facility. It was necessary to invent protocols for transferring data between 
processes; simply sending a message was not adequate in several cases. The 
receiver may be, requesting the date from the sender so some request 
conventions are required. It is also difficult, if not impossible, for the receiver 
to accept arbitrarily large amounts of data whether or not it was requested. 
Given that the date constituting one logical unit cannot be transmitted in one 
indivisible message, problems of consistency, packetizing, and the general 
communication protocol problems arise. There was sufficient uniformity in the 
data transfer requirements to warrant developing one common protocol for the 
system. 

A common protocol was further motivated by the need to dynamically 
interconnect processes to form cooperating program activities similar to the 
UNIX shell [18] program constructions. In UNIX, a shell program may be 
constructed from component programs joined together by byte streams called ~-

A somewhat orthogonal motivation came from the prevalent use of 
byte-stream 1/0 as a useful programming abstraction. We have considerable 
experience working with byte-stream I/0 and a large collection of programs 
using it. The byte is also en efficient, portable data unit for both applications 
and hardware. Despite the availability of messages at the application level in 
our research system, device-independent byte-stream 1/0 has remained the 
primary logical interface between a program and its external environment. Our 
data transfer requirements were compatible with this program I/0 model. 

These considerations inspired the goal of developing a common data 
transfer protocol between processes that would also support a conventional 
program I/0 model. 

-1-



Several considerations further refined our goals. First, a prime goal of our 
experimental system design has been to explore designs that minimize the use 
of connections. A connection is e an association between two or more processes 
similar to links in DEMOS [I] or virtual circuits in X.25 [7]. Connections impose 
an overhead in both space and execution time. They also present conceptual and 
implementation problems in systems of autonomous nodes where, for example, 
failure and possible recovery at one end of a connection requires sophisticated 
exception handling. 

Second, our message primitives are oriented to supporting the remote 
procedure call (RPC) model of communication. Each process has a single 
message port with which is associated a message queue, a message buffer and a 
global identifier. The operation of sending a message appears to the sending 
process es e remote procedure call; the sender is blocked until the message has 
been received end replied to by the receiving process, corresponding to the 
suspension of the caller during a procedure invocation. These semantics are 
simple and efficient to implement. They also allow the system to be structured 
using the familiar procedure call model of program decomposition. However, 
concurrency must be achieved by using multiple processes, not by multiple 
outstanding messages sent by the same process. This contrasts with most 
message systems in which non-blocking sending of messages is central to the 
design. Receivers of messages can exploit message queuing, non-serial receiving 
end replying to messages as well as the ability to forward a message to another 
process. Providing the full power of message-passing in the receiver's view 
allows processes acting as servers to provide sophisticated scheduling of 
activities in response to messages received. Message communication in this 
model is illustrated in Figure 1. The major primitives in our execution model 
are described in greater detail in Appendix A. 

In line with these considerations, we have developed an object-based 
protocol that is connectionless because it consists of idempotent operations on 
objects celled file instances. Server processes implement the file instance 
objects on which clients request operations vie messages. The operations ere 
defined with procedural semantics. Reclamation on failure is handled by loosely 
tying the existence of e file instance to the existence of its creator/owner. 
Each server implements e simple garbage collection scheme to reclaim file 
instances when it detects the owner of an instance no longer exists. 

This object-based approach suggested detaching the semantics of the object 
- file instance - from its implementation. We have thus generalized the concept 
of file to that of a view of some data associated with an object or activity of 
interest. There is nOTUndamental association of storage with a file, although 
that is a possible attribute. In many cases we are dealing with dynamically 
created, often application-defined objects or activities. For example, our mail 
system provides access to the inter-user mail messages as file instances, 
allowing the mail system to use the I/0 protocol and providing access to the 
mail f acllity from the 1/0 system. 

Another design goal was to allow far economy and flexibility in server 
design. The disparate range of objects and activities that we wished to view as 
files and their corresponding servers varied sufficiently in properties that 
"lowest common denominator" semantics were inadequate for applications and 
prevented full exploitation of the servers. For example, it is necessary for 
uniformity that either all servers support random access to file instance data or 
that none does. Consequently, we identified a set of ~ attributes associated 
with a file instance that further determine the semantics of operations on this 
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object. We found these type attributes necessary in implementing a subroutine 
library (or package) that provided server-independent (conventional) byte-stream 
1/0 ·at the application level. 

The next section defines and discusses object-based protocols in the general 
context; Section J describes the 1/0 system, including our concept of file and 
file instance, the protocol and one program environment supported by this 
system. Section 4 discusses the design rationale; Section 5 gives examples of 
1/0 servers we have implemented. We close with a discussion unresolved 
problems and plans for future research. 

2. Object-based Protocols 

An object-based protocol (OBP), is e protocol between communicating 
processes defined in terms of en object - implemented by one of the processes 
called the server - and operations on the object that the remaining processes, 
called clients, may request of the server. The client sends e request message to 
the server for a. particular operation on the object and the server returns a 
reply message after performing the operation. 

These protocols differ from other protocols primarily in being defined in 
terms of an abstract object. The state transitions of the protocol ere the state 
transition of the object; the protocol operations ere the operations allowed on 
the object; end the protection end access control is that associated with the 
object. Object-based protocols are also asymmetric; all operations are requested 
or initiated by the clients. The object is passive (consistent with the technical 
use of the term object [12]). That is, the server only communicates with a 
client in reply to an operation request. No signals [18], emergency messages 
[12] or other spontaneous communication are used by the server. Finally, every 
request message generates a reply from the server for which the client is 
expected to wait before issuing a further request. 

Object-based protocols support two levels of communication: client to 
server and client to client (indirectly via the server end object). This is 
illustrated in Figure 2. We ere only concerned here with the client-server 
communication; the second level is client-defined et e semantic level similar to 
two processes communicating vie an intermediary file in e conventional system. 

Object-based protocols are of interest for several reasons. The object model 
applied to protocols provides insight end design methodology similar to its 
application to programming languages such es CLU [14] end operating systems 
such as Cal-TSS [11] and Hydra [21]. For example, one is disciplined to identify 
a well-specified abstract object with implementation-independent operations. 
Conversely, object-based protocols arise naturally in implementing en 
object-based system that uses messages for inter-module communication instead 
of procedure cells. 

Object-based protocols are also compatible with the RPC model of 
interprocess communication. Their asymmetry is similar to the asymmetry 
existing between the procedure caller and the activation of a procedure. The 
client acts es the caller and the server acts es the procedure invocation. These 
properties allow a client process to be written in the procedural programming 
model while (transparently) using messages to communicate with a server 
process. The message communication then allows servers and clients to be 
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distributed over several machines or systems. 

An object-based protocol is end-to-end (between the client and server) 
because all operations requested by a client are received by, and semantically 
meaningful to, the server. This contrasts with protocols in which interaction is 
defined in terms of an intermediate entity such as the DCE in X.25 [7]. 

Object-based protocols are good candidates for lightweight protocols. 
Lightweight protocols are protocols that can be Implemented with low overhead 
in processing, storage and lower-level communication support. They are of 
interest for environments providing high-speed, low delay, low error rate 
communication as is characteristic of local-area networks and message-oriented 
operating system kernels. In these environments, longhaul (heavyweight) 
protocols such es X.25 [7] reduce throughput and increase cost by the 
unnecessary overhead they introduce on the communication link and network 
nodes. Several protocols have been developed with this view [2,8]. 

We have experimented with object-based protocols that, to m1mm1ze 
overhead, do not implement connections or virtual circuits between the client 
and server. Instead, as end-to-end protocols, they exploit end-level semantics 
and the "perfect" knowledge the server hes of the state of the object used in 
the protocol. Several techniques to handle the synchronization, access control, 
sequencing, flow control, errors and failure notification usually handled by the 
virtual circuit are described below. 

State is maintained as the state of the object. Because the object is 
implemented by the server, the integrity of the object is easily guaranteed. 
Because interaction is confined to the RPC model, synchronization is trivial. 
The server sends a positive acknowledgement to each successful operation. The 
client waits for the acknowledgement before updating its local record of the 
state, if it chooses to maintain such a state. 

Access to the object is controlled entirely by the server according to 
protection information it associates with the object. The permission may be 
determined from en access control list associated with the object or according 

· to a capability offered by the client. Any client is allowed to access the object 
if it hes the requisite permission. No "open" or "connect" operations are 
required. Thus, protection is not required or assumed provided by the 
communication subsystem. 

The naming of objects used in the protocol is end-to-end; there is no name 
mapping or conversion in the protocol. The server provides a name or identifier 
that is used by clients to identify the object. Although the same name is used 
by all clients, this does not necessarily imply a global naming scheme for 
objects. Object identifiers may be unique and meaningful only relative to the 
object server. 

There is no notification on client failure or communication failure. Servers 
reclaim resources by garbage collection using criteria for reclamation having 
end-level semantics. We have avoided providing general exception notifications 
due to the overhead and complexity in the semantics, implementation and use. 

Reliability is achieved by checksumming and idempotency. Standard 
redundancy techniques such as checksums can be used to detect corrupted 
messages, which are then discarded. Requests are retransmitted when the client 
does not receive a correct reply within a time-out period. This can cause the 

-4-



server to receive duplicate messages which are handled by the idempotency of 
the protocol. That is, the same operation issued multiple times has the same 
result as the operation being issued once so there is no need to filter out 
duplicate messages. The communication subsystem is not required to provide 
perfect communication, only best efforts data transport [2]. 

The remainder of the paper describes a distributed I/0 system implemented 
in terms of an object-based protocol. This is presented both as an example of 
using 0BP's as well as a novel realization of an I/0 system based on message 
communication. d 

3. 1/0 System Description 

The 1/0 system provides a uniform means of data transfer between 
processes allowing simple interconnection of files, programs, services and 
resources. The 1/0 system is defined in terms of files and file instance objects. 

3.1 Files and File Instances 

A file is a collection of data viewed as a se quence of variable-size records 
or blocks.° This data is defined as the data associated with an object, activity or 
resource in the system. For example, an object in a storage system can be 
viewed as a file yielding the conventional file system model. Less 
conventionally, data describing the current state of a system can be viewed as 
a file even though the data may not be physically stored as such and may be 
rapidly changing. The same data may be viewed as different files, differing in 
some property of the view such as the ordering of the records. For example, 
the data stored on disk can be viewed in the block units and order defined by 
the physical sectors of the device, as the logical records and order defined by a 
logical disk file in which these sectors are contained; and as a text file in 
which the blocks are defined by the line delimiters. This is illustrated in Figure 
3. Thus, the way data is viewed is separated from its underlying representation. 

Files ere conceptual entities. In order to access data with a particular file 
view, the file must be instantiated. A file instance is an object that represents 
a version or snapshot (or "instantiation")of a file. For example, a file instance 
of a storage system object represents a snapshot of the data associated with 
the object, similar to the versions defined by Reed [17]. A file instance of an 
X.25 logical channel is a (connected) virtual circuit. A file instance of data 
describing current system activity is a (consistent) snapshot of the data at the 
time the instance was created. 

We have identified four logical usage modes for file instances as follows: 

READ 

CREATE 

APPEND 

data associated with the file instance is read but not 
changed. 

A new set of data is to be created by the client and 
associated with the file instance, discarding any 
previously associated data. 

Data is appended to the current sequence of data 
blocks. Data previously associated with the file 
remains unchanged. 
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MODIFY Existing data is to be modified and possibly appended 
to. 

The usage mode is specified when a file instance is created, allowing economy 
of implementation end immediate detection of incorrect usage. Usage modes 
could otherwise be ignored except for the side-effect that CREATE has of 
discarding the previous data sequence. That is, given a special operation for 
discarding the file instance data, the usage modes could be omitted from the 
design and usage could be deduced from the operations performed on the file 
instance. 

A file instance is further defined in terms of the operatrons on it as an 
object. 

CREATE_INSTANCE( file specification) 

QUERY _INSTANCE( instance ) 

RELEASE_INSTANCE( instance, mode ) 

READ_INSTANCE( instance, block_number, buffer, bytes) 

WRITE_INSTANCE( instance, block_number, buffer, bytes) 

SET_INSTANCE_OWNER( instance, new_owner) 

Table 1. File Instance Operations 

* CREA TE INSTANCE creates a file instance according to the file 
specification. For a disk-based storage system, the file specification 
identifies an object stored on disk. For a virtual terminal [13], the file 
specification may describe an area of the terminal screen or a logical 
input source. When a file instance is created, an instance identifier is 
returned along with information describing maximum block size, last 
block number (written), bytes in last block, type and next block number 
(to read). The file instance is initially owned by the client that created 
it. 

* QUERY INSTANCE returns the same information as returned by the 
CREATE INSTANCE. This allows a client that is passed the file instance 
identifierto get sufficient information about the instance to use it. 

* RELEASE INSTANCE invalidates the instance identifier, releases 
resources - dedicated to the instance and performs a file-dependent 
function with the file instance data depending on the release mode. For 
example, with a printer spool file instance, the data is printed providing 
the mode is zero, otherwise the data is discarded. With a updated 
transaction file, the file instance atomically replaces the "real" file if 
the release mode is zero. File instances may be released when the 
creator of the instance no longer exists or after a prolonged period of 
inactivity on the instance in the case of, for example, instances 
representing connections to public data networks. 
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* READ INSTANCE transfers the specified number of bytes to the client's 
buffer-from the file instance starting at the specified block. 

* WRITE INSTANCE transfers the specified number of bytes from the 
client'sbuffer to the file instance starting at the specified block. 

* SET INSTANCE OWNER sets the owner of a file instance to the 
specified new -owner. This is used for transferring a file instance 
representing a user login device such as a incoming network call from 
the login handler process to the user's command interpreter program. It 
is also used by the command interpreter to transfer ownership of the 
standard input and output file instances of a program it is executing to 
that program. 

Although these operations are defined for all file instances, it is not 
possible to provide the same semantics for them on all file instances without 
some restrictions. For example, a communication line is logically a stream of 
blocks; random access to not meaningful to support. Consequently, the 
operations that may be performed on the file instance as well as the semantics 
of these operations are indicated by the file instance ~- The type is 
specified as a combination of the following attributes. 

READABLE 

WRITEABLE 

APPEND ONLY 

STREAM 

FIXED LENGTH 

VARIABLE BLOCK 

READ _INSTANCE operations are allowed. 

WRITE_INSTANCE operations are allowed. 

WRITE INSTANCE operations are only effective to 
bytes in the file instance beyond the current last 
byte. 

All reading and writing is strictly sequential. Each 
READ INSTANCE operation must specify the same 
block -number as that specified as the next block 
number returned by the CREA TE INSTANCE and 
QUERY INSTANCE operations. This next block to 
read is-incremented after each READ INSTANCE 
operation. Similarly, each WRITE-INSTANCE 
operation must specify a block number one greater 
than the last block number, which is incremented 
after every write operation. 

A file instance without the STREAM attribute 
must have its associated data stored to allow 
non-sequential access. 

The associated sequence of data blocks is fixed in 
length. The length is specified by the last block and 
last byte returned from a create or query instance 
operations. Otherwise the file instance grows to 
accomodate the data written or the length of the 
file instance is not known as in the case of terminal 
input. 

Blocks shorter than the full block size may be 
returned in response to read operations other than 
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MULTI BLOCK 

INTERACTIVE 

due to end-of-file or other exception conditions. For 
example, input frames from a communication line 
may differ in length under normal conditions. 

With a file instance that is VARIABLE BLOCK 
and WRITEABLE, blocks that are written with less 
than a full block size number of bytes return exactly 
the amount written when read subsequently. 

Read and write operations are allowed that specify e 
number of bytes larger then the block size. 

The file instance is a text line-oriented input stream 
on which a prompt can be specified and 
user-generated breaks can be received. It also has 
the connotation of supplying interactively (human) 
generated input. 

Not all of the possible combinations of attributes yield a useful file type. The 
file instance type is dependent on the server, file specification and the usage 
mode. For example, the storage system provides file instances with type 
attributes READABLE, FIXED LENGTH end MULTI BLOCK in response to a 
CREATE INSTANCE operation-specifying READ usage mode. File instances of 
X.25 virtual circuits have type attributes READABLE, WRITEABLE, 
VARIABLE BLOCK and STREAM when created with CREATE usage mode (the 
only mode -supported). This example illustrates that a single file instance can 
support both an input and an output stream. 

File instance types reflect differences between file instances that are 
apparent in the semantics of the file instance operations. They do not cover 
higher-level semantics such the meaning of writing to a particular file instance. 
One of the objectives of our on-going research is to investigate the limitations 
of our current type attributes and possible ext@nsion or modifications to these 
at tributes. 

Our concept of file differs from the conventional one in that a file is 
purely a conceptual object, not a "real" object. File instances are the real 
objects. For instance, the type information is associated with e file instance, 
not the file. File instances differ from what are conventionally celled "open 
files" in several ways. There is no connection between the user of a file 
instance end the file instance that persists between operations on the file 
instance. Consequently, there is no user-dependent state such as read/write 
pointer maintained in the file instance; only the state of the instance is 
maintained. Also, no concurrency control is provided between users of file 
instances. Finally, the implicit creation associated with some open files such es 
spool files, dial-up lines and X.25 circuits is made explicit in file instance 
creation. 
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J.2 1/0 Servers 

An 1/0 server is e process that implements file instances for client 
processes. An I/O server provides remote file access to date to which it hes 
access. For example, the storage server provides file instances of the objects it 
is storing. A file instance created by the storage server for CREATE usage has 
type attributes READABLE, WRITEABLE and MUL Tl BLOCK. It atomically 
updates the underlying storage object when the file instance is released. The 
printer server implements file instances similar to "open printer spool" files. 
Only CREATE usage mode is supported, with type attributes READABLE, 
WRITEABLE and MULTI BLOCK. It makes use of the storage server to store 
the data for printing. 

Any process can act as an 1/0 server if it provides the file instance 
operations in response to request messages from clients. This allows 
applications to introduce new 1/0 servers to implement new types of files as 
well as filter access to system-implemented files. Servers may (and typically 
do) provide operations beyond the file instance operations. In general, a server 
provides the file instance operations to support the clients viewing its objects 
or activities es files. This may be secondary to the real function of the server. 

Acting as an 1/0 server does not preclude a process from also being a 
client to other servers although the graph of client/server dependency must be 
acyclic to avoid deadlock. The dependency between some of our current 1/0 
servers is illustrated in Figure 4. An arrow from one server to another 
indicates that the first server uses a service provided by the second server. 

The choice of how each server implements its file instances, the protection 
imposed and the additional operations provided are decisions local to the design 
of the server. However, the 1/0 servers we have implemented conform to the 
following general structure (given in a C-like language[9]). 
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IO_ server() 

{ 

} 

\ Base function executed by en 1/0 server. 

state = Initialize(); 

rereat 

} 

id = Receive( message ); 

select( OPERATION[message] ) 
{ 

} 

case CREA TE INSTANCE: 
reply = Create instance( state, message, id ); 

case RELEASE INSTANCE: 
reply= Release instance( state, message, id ); 

case READ INSTANCE: -
reply = Read instance( state, message, id ); 

case WRITE INSTANCE: 
reply = Write instance( state, message, id ); 

case SET INSTANCE OWNER: 
-reply= Sef_instence_owner( state, message, id); 

( other requests handled) 

default: reply = ILLEGAL_REQUEST; 

if( reply == NO REPLY ) next; 
REPLY CODE[message] = reply; 
Reply( message , id ); 

General Form of 1/0 Servers 

J.J 1/0 Protocol 

The 1/0 protocol is an object-based protocol in which the objects are file 
instances. Most of the properties of this protocol were covered in the general 
discussion of object-based protocols in Section 2. The protocol consists of a 
request message format for each file instance operation plus the format of the 
reply message received in response to each of these request messages. The 
semantics of these request and reply messages follow from the semantics of 
file instances and file instance operations described previously. The request and 
reply messages for reading and writing instances are described in greater detail 
below. 

The format for a read or write instance request message is 

request ::= 
· operation code 

file instance id 
block number 
bytes 

- the operation requested 
- server-generated instance identifier 
- starting block to read or write 
- number of bytes to read or write 
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buffer - location of data buffer 

The format for the reply message is 

reply ::= 
reply code 
count 

- indicating success or reason for failure 
- number of data bytes transferred 

The file instance identifier is that specified by the server when the instance is 
created. The file instance is uniquely and globally identified by specifying the 
server implementing the file instance and the file instance identifier. 

The block number is used es a sequence number for file instances with type 
attribute STREAM and es a location specifier for non-stream file instances to 
make read and write operations idempotent. For non-stream file instances, a 
read or write request message that is retransmitted because the reply message 
was lost results in the read or write being performed again (with no 
side-effects). For stream files, the block number allows the server to recognize 
that the read or write request is out of sequence. To perserve idempotency, the 
server must reply with the same reply message as the client would receive if 
the retransmission had not occurred es well as avoid side-effects on the file 
instance such as, for example, duplicate data blocks appearing on a user 
terminal. A stream 1/0 server thus replies without error indication (end without 
performing a read or write) to a read request that specifies a block number one 
less than the next block to read from the stream and to write requests that 
specify a block number equal to the lest block written. Effectively, a read or 
write request for block number N serves as an acknowledgement to the reply to 
the read or write request for block N-1. This does not detect erroneously 
generated reed or write request messages that look like retransmissions. 
However, this is en unlikely client error end only reduces the support for client 
error signalling. It does not impinge on the integrity of file instances or the 
server. It is one of the features of the 1/0 system design that each server can 
be designed independently to trade-off the cost of distinguishing a 
retransmitted request message from en erroneous message with the level of 
client error signalling it chooses to support. One of the objectives of our 
on-going research is to explore this trade-off. 

A similar problem with idempotency arises in releasing a file instance. The 
reply to a request to release a non-existent file instance cannot signal an error 
in case this is a retransmission of an earlier request that successfully released 
the file instance. Further, the retransmission of a request to create a file 
instance results in the creation of a second file instance. In the worst case, the 
first file instance is released by the server garbage collector when the creating 
process is determined to no longer exist. However, for servers such as a tape 
server that only support one file instance et a time, the server assumes that 
the request is a retransmission if it is received from the same process that 
owns the existing file instance end specifies the same file. 

Requests end replies are sent by short control messages. Date being reed or 
written is normally transferred by the separate data transfer facility. If the 
date is short enough to fit in the control message starting et the buffer field, 
it is instead appended to the request (in case of writing) end the reply (in the 
case of reeding). This may always be the case in systems providing large 
messages. Thus, the design can take advantage of larger messages than our 
current 8-word messages. This also provides efficient data transfer for small 
amounts of data such es the byte-level interaction with a terminal used by a 
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screen editor. It is especially desirable to avoid using the data transfer facility 
when the data to be transferred is smaller in size than its description, namely 
the buff~r pointer. Using Verex on a 16-bit machine, 8 bytes of data fit in a 
control message. 

The server may defer setisf ying the request until the data is available (for 
example, from a terminal or a pipe) by not replying immediately, end continue 
to handle other requests. It may also reply indicating the process should retry 
the request if it is unable to service the request immediately. 

The simplicity of this protocol has allowed I/0 servers to be implemented 
by undergraduate students with no previous experience with communications. 

J.4 Symbolic File and Server Naming 

Symbolic naming of both 1/0 servers end files is required to provide a 
user-friendly environment and server-independent file identification. We follow 
a scheme common to several distributed systems in using a name server to 
perform name mapping. The name server also handles requests to change the 
symbolic mapping by addition, deletion, aliasing, end modification of symbolic 
names. 

The name server accepts a symbolic name and maps it to a server and a 
file specification, returning this information to the client. For certain requests 
such es CREATE INSTANCE, the name server forwards the request to the 
appropriate 1/0 server with the symbolic name replaced by the file 
specification associated with the symbolic name. In the latter case, the client 
receives the I/0 server's reply to the "create instance" request as illustrated in 
Figure 5. The technique of forwarding after name mapping is an extension of 
the name mapping services for efficiency. The client can instead issue a 
separate CREATE INSTANCE request using the server and file specification 
returned to it by the name server. 

The file specification provided by the name server for the create instance 
request may contain part of the symbolic name to allow the recipient 1/0 
server to complete the name mapping. For example, a remote storage server 
may map part of the symbolic name in the context of the remote system it 
represents. However, we have minimized the use of symbolic names by the 
servers for simplicity and efficiency. 

The name server is not pert of the 1/0 system but a service used by the 
1/0 environment library to allow symbolic naming of files and servers. 

J.5 The 1/0 Environment Library 

The program I/0 environment is the interface to the 1/0 system provided 
for application programs. It serves to insulate applications from the unusual 
nature of the underlying structure of the 1/0 system. We have to date 
implemented one I/0 environment (subroutine) library. It is described below to 
IUustrate how conventional input and output can be implemented using the 
object-based 1/0 protocol described in the previous section. 

The programming environment implemented is similar in flavor to the C 
standard 1/0 library [9,10]. It supports device-independent byte-stream 1/0 as 
well as block-oriented 1/0. To access a file, the file is first opened using a 
symbolic name to identify the file and a second argument to specify the desired 
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mode of access: READ, CREATE, APPEND or MODIFY. A process can then~ 
a byte at a time from the file or ~ a byte at a time to the file to access the 
file in a byte-oriented mode. It can also read or write a sequence of bytes to 
or from the file in the block-orientE~d mode. Closing the file releases the 
resources dedicated to the open file and ensures that all changes to the file 
have taken place. An (Open file) operation allows a file instance to be opened 
directly by specifying its server and instance identifier. The program 1/0 
environment is described in greater detail in the Appendix B. Note that "open 
files" only exist as objects implemented by the environment library. 

The internal design and implementation of the library is fairly apparent 
given the 1/0 model and the underlying server and communication support. The 
following discussion attempts to focus on points of interest. 

Open issues a CREATE INSTANCE request to the name server to map to 
the server end file specification to produce an instance of the file for 
simulating an open file connection. This use of the name server is illustrated in 
Figure 5. Pert of the mode specified to Open indicates whether the file is to 
be used in the byte or block mode. For the byte mode, the local file structure 
created by Open includes a buffer equal in length to the block size of the file. 

Close generates a RELEASE INSTANCE request if the instance being 
closed was created by the Open that allocated the local file structure. (This is 
indicated by a flag stored in the local file structure.) Other functions either do 
not cause interaction with server processes or do so by calling Read or Write, 
which generate READ INSTANCE and WRITE INSTANCE requests 
respectively. 

Get and Put are implemented by getting and putting a byte at a time into 
the local buffer until it is empty or full respectively. When the file is being 
read, the buffer contains up to a block of data read from the associated file 
instance. When the file is being written, the buffer contains up to a block of 
data to be written to the file instance. To handle switching between reading 
and writing, Get and Put use separate indices into the local file buffer. When 
reading, the read index maintains the byte position within the buffer. The write 
index is set to a value greater than the block size so as to cause Put to call a 
write "fix-up" function when next called. The write fix-up function performs 
the necessary actions to continue putting bytes into the local buffer, setting 
the write index to the current byte position in the buffer. This is the same 
fix-up function called when the buffer is full after a sequence of Put's. 
Similarly, the read index used by Get causes it to call the read fix-up function 
if the local buffer is empty or if the file was being written. 

The separate read and write indices allow a program to intermix calls to 
Get and Put while inexpensively maintaining a byte-level window on the file. 
For example, the execution of Get involves one simple test, namely on the 
read index to check whether a call to the read fix-up function is required. 
Because the local file structure records whether it is reading or writing, blocks 
need only be written if changed and only read if the data is required or for 
maintaining consistency of a block that is partially modified. Seek also exploits 
the knowledge of the current reading/writing mode to minimize interaction with 
the 1/0 server. 

This implementation contrasts with the Thoth [6] byte-stream 
implementation in which a block is always written out before reading another 
block when a file is open for reading and writing, even though the block may 
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not have been changed. It also differs from the UNIX 1/0 library [9,10] in which 
simultaneous reading, writing and seeking et the byte-level on a file using a 
local buff er is not supported. 

Exceptions are handled et two levels. At the byte-level, both Get and Put 
return a special value EOF (Exception On File) which is generated by the 
"fix-up" function in response to an exceptional condition. The file can then be 
queried for a code indicating the nature of the exception which is usually the 
reply code from the lest . reed or write request. Possible exception codes 
include: end-of-file, end-of-medium, device error es well es less expected 
exceptions such es non-existent file instance, permission denied, end server 
una veil able. 

The exception-detecting scheme allows a single test to be performed to 
check for exceptions while getting or putting bytes to or from a file yet 
provides a means of. determining the nature of the exception once it is 
detected. Moreover, simple programs can treat EOF as simply "end-of-file". 
Thus, the increased complexity of exceptions possible due to leek of reel open 
file connections is handled with no significant increase in code. 

Each local file structure currently requires 16 words of storage plus 
block-size bytes for a buffer if used in the byte-oriented mode. In our current 
implementation on a Texas Instruments 990 machine, the program library is 
approximately 4 kilobytes of code when loaded, including various standard Input 
and output formatting routines. (The size is dependent on the subroutines 
referenced.) The cost of executing Get end Put is 13 instructions (when the 
fix-up function is not celled) including the function call and return sequence. 

This library provides a device-independent 1/0 interface with only minor 
semantic and functional differences from conventional program environments. 
Thus, existing programs end programming styles can be used without concern 
for the underlying distributed design of the 1/0 system. We have found it easy 
to convert our suite of software and document preparation programs to use this 
subroutine library and the 1/0 system even though they were originally written 
for and used with a conventional 1/0 system. 

4. Design Rationale 

The design was governed by the following design goals. 

* It must support the conventional program 1/0 model of byte-streams 
while allowing extensibility to application-defined end implemented files. 

* It must be distributed in that: resources requirements ere distributed 
among the client end server processes; processes can exercise local 
autonomy in file instance implementation; end failures tend to be local 
to the failed components. 

* It must allow efficient, inexpensive 1/0 servers as well as minimize the 
load on the communication subnetwork. 

The subroutine library does provide a conventional I/0 model implemented in 
terms of the 1/0 protocol end the message primitives. The 1/0 system is 
extensible because any process can act es an 1/0 server if it implements the 
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protocol. The system is distributed in that clients end servers only interact vie 
message-passing. Each server exercises autonomous control over the file 
instances it implements. Finally, efficiency is achieved by allowing flexibility of 
server implementation, server-specified file instance typing, end block-oriented 
reeding end writing. Also, the program environment library strives for minimal 
server interaction. The main design issues addressed were the use of an 
idempotent object-based protocol, file instances, end block-oriented reeding end 
writing. These issues ere discussed below. 

An object-based protocol was used to provide a simple, light-weight 
protocol. The protocol is efficent for the server because there ls no connection 
to support, no date streaming and no spontanteous communication with a client. 
There is also no client notification scheme to handle. In our implementation 
experience to data, servers can easily reclaim resources using a garbage 
collector which is invoked in response to need for resources. 

The protocol is simple and efficient for the client because the subroutine 
library can easily provide a simple procedural interface; the use of messages, 
file instances end servers is transparent to the application. 

The protocol is also undemanding of the communication subsystem. We 
assume a fest, low-error rate but not necessarily reliable datagram service es is 
available in many local-area networks. The data streaming provided by 
long-haul protocols end other byte-stream protocols [2,8] is assumed not 
necessary due to the speed of transmission and not desirable due to the added 
complexity. The idempotency of the protocol means that duplicate messages 
need not be filtered out. Corrupted messages ere discarded causing 
retransmission (and possibly duplicate messages). 

File instances were invented to be the objects on which the protocol was 
based. This was done instead of using the "reel" underlying objects because we 
recognized that these "reel" objects were in many cases created es part of 
being accessed. This is modelled explicitly by the concept of file instance. As 
examples, a version of a file, en X.25 virtual circuit, a printer spool file, the 
current login information ell represent file objects that ere created as pert of 
accessing them. The explicit support of this creation removes the need for 
separate "connect" or "setup" operations. For example, the call specification for 
a virtual circuit is specified in creating the file instance. Similarly, creating a 
tape file instance may require mounting a tape and creating a printer spool file 
may require specifying output formatting parameters. 

File instances support accessing date in a consistent version because a file 
instance can represent a snapshot of the underlying object or activity, which 
may have changed since the file instance was created. Similarly, a file instance 
can represent a new version of an object that atomically updates the object 
when it is released, thus providing support for databases end transaction 
processing [19]. 

File instances also support the generalization of files to views of data that 
can be instantiated with a particular description. This generalizes the 
mechanism available in many systems in which the views of data ere both 
implicit and fixed. 

An earlier design [3] in which the objects of the protocol were files 
suffered problems in supporting the temporary, created objects described above. 
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File instances can also have shorter identifiers than the underlying objects, 
reducing the overhead when reading and writing. This is especially true when 
the file specification is a description of en object to create. Because the 
identiflcatioh is generated (autonomously) by each server and is meaningful only 
relative to that server, an application can define its own files and use the 1/0 
system for data transfer between its different modules. 

The separation between the creation of a file instance and "opening" the 
file also recognizes that the instance may need to exist longer than that 
implied by the file opening and closing. This is solved in other systems by the 
server maintaining a count of the number of open file connections to this file 
end releasing it when ell the connections are closed. Related to this, the 
process creating the instance may not need an open file connection to the 
instance. It may be creating it solely for use by another process, es is the case 
with the UNIX ■hell [18]. 

Block-oriented reeding and writing hes several moti vetions. The block is 
intended to reflect an efficient unit of communication for the server which 
may in turn be dependent on the underlying hardware. Because the block size is 
a parameter, no loss of portability need ensue from the use of e 
hardware-dictated block size. The constraint that all reed's end write's must · 
start on block boundaries reduces the hardware end software support required 
for interactions. For instance, if the block size matches the unit used by the 
device or communication line the server manages, it need not provide buffering 
to match different sized packets or blocks. Also, the block interaction 
facilitates the server providing atomic operations such as indivisible write's 
[19,20]. 

An application of block-mode access is a database system using B-trees for 
storing relations on disk. By using the block as the storage unit for nodes of the 
B-trees, the database could be guaranteed efficient access and indivisible 
update to nodes. However, the use of block numbers internal to data structures 
is contingent upon the block size remaining invariant. For example, the data 
could not be copied directly to another device with a different block size. 

In the environment library, although the Read end Write operations do not 
allow starting et an arbitrary location in a file es do those of UNIX [10,18], the 
letter are easily implemented with Get and Put. Also, many uses of Read end 
Write in UNIX recognize the efficiency of the underlying physical block size 
end implicitly implement block-oriented operations. 

The ultimate design rationale lies in the utility of the design. We have 
modified our research system to use this design. Currently, all the standard 
files and devices are available and many standard programs use the system for 
all their 1/0 activity. The next section describes some of the 1/0 servers with 
which we ere experimenting. 

5. Example 1/0 Servers 

Four examples ere given of 1/0 servers in our current system. All of these 
have been implemented and used, although the implementations in some cases 
ere incomplete. 
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5.1 Storage Server 

The storage server provides storage of data, using disks, tapes or whatever 
storage devices are available. It supports the ability to view the data as files in 
the conventional sense. The storage server provides a file instance as a 
snapshot of the date when the file instance is used in READ mode. When e file 
instance is used for CREATE or APPEND, the data written to the file instance 
atomically updates the underlying date of the storage container when the file 
instance is released with e successful release mode. 

The storage server primarily provides services for storing data. It provides 
access to that data using the I/0 protocol but it need not store data as files in 
the conventional sense. 

This examples illustrates how the service, namely storage, is detached from 
the view of the stored date, i.e. as files. Our current work is engaged in 
expanding the devices used by the storage server to other devices than disk, 
implementing atomic update, and exploring novel file specifications that go 
beyond the conventional disk file model. 

5.2 Seaaion Server 

The session server functions primarily to record the users currently logged 
in, handle the log-in sequence and control access to the passwords end user 
information. It is useful to have e program that prints the users currently 
signed on, requesting this information from the session server. It is difficult for 
the program to accept ell the information et one time because there may be en 
unbounded amount of date returned. Conversely, if the program requests the 
information in packets, the information may be, in total, inconsistent. 

Using the 1/0 protocol, this information is read as though contained in e 
file. In response to a create instance request, the session server creates a file 
instance that contains the information about users signed on at that time. This 
file Instance can then be read by the program using the standard 1/0 routines 
with the guarantee that the information is consistent. The file instance is 
released according to the standard 1/0 protocol. 

This example illustrates the use of the I/0 system for providing a 
consistent data picture of an on-going activity when the data involved is 
changing. 

5.3 Mail Server 

The mail server provides inter-user communication in the form of user-level 
mail messages. A mail server is dynamically created whenever activity is 
initiated on a user's mailbox (providing a mail server for that user is not 
already in existence). The mail server supports the 1/0 protocol for transferring 
new messages to the user's mailbox as well as reading messages in the mailbox. 
By also providing symbolic naming of user mailboxes, inter-user communication 
is easily coupled with the 1/0 system, reducing the need to use special "mail" 
programs. For example, the error output of a concurrently executing 
compilation can be connected by the user directly to his mailbox, causing him 
to be informed when the compilation completes as well as conveniently 
delivering any error messages resulting from the compilation. Similarly, 
general-purpose text editors and text formatters can be used easily in the 
preparation of messages. 
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The mail server uses the services of the storage server to store inter-user 
message data and management information. This illustrates how a server can 
provide a service that is basically a refinement and an extension of 
conventional files, yet still make the services available using the 1/0 system. It 
also illustrates how an application can provide a new type of file, namely mail 
message files in this case. 

5.4 A Unix-like Command Interpreter 

The 1/0 system raises some problems for appli cetl ons that have used 
tightly-coupled 1/0 connections in other systems. An example of this is the 
UNIX shell [18] (command interpreter) which makes extensive use of 
byte-stream open file connections and shared file state information supported 
by the UNIX kernel. The shell supports a standard input, output and error 
output and the piping of a program's output into another program's input. It also 
supports redirection of input and output and so-called "here" documents, in 
which programs executed from a command file also take their standard input 
from the command file starting immediately after the point they are invoked. 

To implement these features, we exploit two properties of the 1/0 system 
and the execution environment. First, the 1/0 system allows any process to act 
as an 1/0 server. Second, the command interpreter can consist of several 
processes in the same space (a team as in Thoth [4,6]), some of which can act 
as 1/0 servers for programs thecommand interpreter is controlling. The need 
for multiple processes arises because of the multiple concurrent reeding, 
writing, program termination and exceptions that can occur. 

Each of the standard input, output, and error output is specified to a 
program by server and file instance. A program can then access any one of 
these file instances by . calling Open file with these parameters. This 
specification is provided by the command interpreter. 

The command interpreter determines the program input, output and error 
file from the symbolic names specified on the command line. In the case of 
pipes, it requests an instance of a pipe from the pipe server. All input, output 
and error output that is not redirected goes through the commend interpreter. 
The standard input defaults to a file instance provided by the command 
interpreter process that handles command interpreter input. Similarly, the 
standard output and error output default to that of the commend interpreter. 
The process interaction for a simple commend pipeline is illustrated in Figure 
6. In this example, the text editor is suspended waiting for input from the 
interpreter while the interpreter oversees the operation of the command 
pipeline.-stored text is being filtered through the text formatter end overstrike 
filter to the printer. Each arrow points from a client using the 1/0 protocol to 
an 1/0 server with which it is communicating. 

The command interpreter input process reeds e line and makes it available 
to the currently attached program if the line is not escaped to be a command 
line. Otherwise it Interprets and executes the input line as a command. This 
makes the facility of escaping from a subsystem context to execute a commend 
available during the execution of any program as well as providing the 
command interpreter context for the execution of the commend line. It also 
makes features like attaching and detaching to concurrently running programs 
possible. 

This example illustrates how a large application can be written es many 
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separate programs that interact via the 1/0 system using application-defined 
files and file instances. The command interpreter is strictly an application 
program to the system; any user may write and select a command interpreter 
of his choice. The command interpreter program end its suite of command 
programs implement a command language. Because of the size of the language 
and the desire for extensibility, most individual commands are implemented es 
separate programs. Interaction between the managing interpreter program and 
the command programs takes place through the I/0 system using files 
implemented by the interpreter program. 

This approach to user interface design and program interconnection is 
equally applicable to virtual terminal models similar to RIG [12,13]. 

6. DiscuSBion 

We have presented the design of a distributed 1/0 system that uses an 
object-based protocol to pro vi de uniform data transfer between a di verse set of 
files, programs, resources end services. A program library has been 
implemented that provides a conventional byte-oriented 1/0 abstraction and a 
block-oriented abstraction. The conventional I/0 abstraction was considered 
important to retain because of the large number of programs that use this 
model and the programming experience we have with it. 

Central to the design is the I/0 protocol which defines interaction between 
clients and 1/0 servers. The protocol is Implemented in terms of processes and 
message primitives so it is insulated from the underlying network architecture 
and the protocol is insulated from the correspondence between processes and 
processors. Because the protocol is implemented for clients by a subroutine 
library, it is detached from the program environment it supports and can 
support many different program environments. 

The important aspect of the semantics of the message primitives used here 
is that they are simple transaction-oriented operations. A client process is only 
connected with a server process from the time that it sends to the server until 
the server replies to the client process. Beyond this, numerous different sets of 
primitives would support the design described here. For example, the 1/0 
protocol could be implemented as a Level 2 protocol in the PUP internetwork 
architecture [2]. 

To date, to support the I/0 system we have implemented terminal servers, 
an X.25 server, a printer server, a pipe server, a mail server, storage server 
and a commend interpreter providing a subset of the UNIX shell facilities. The 
letter stages of preparing this report used a text editor and text formatter that 
use the 1/0 system. Our experience so far has been very flavoureble. The major 
disadvantage has been a slight increase in the size of programs due to I/0 
functions being included as subroutines rather than being available as system 
calls, as was the previous scheme. Future projects include a local-area network 
implementation, new server designs, new models of user interfaces using the 
I/0 system, and naming issues, particularly reverse name mapping, i.e. file 
instance to symbolic name. 

Our design philosophy is in sympathy with a trend in local-area network 
communication away from sophisticated layered protocols and tightly coupled 
state-synchronized connections. These protocols seem best used for long-haul 
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communications in which errors, propagation delay and complex network 
topology ere important design considerations. The low delay and error rates of 
many local-area networks and message kernels suggest that simpler 
connectionless end-to-end protocols may be sufficient. 
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Appendix A: Program Environment Primitives 

The following are the major functions used in our research system, Verex, 
for implementing the 1/0 system. 

id = Create _proceu(pri orl t y) 

creates a new process in an initial state awaiting a reply message from its 
creator and returns a unique port identifier which is used to specify the process 
subsequently in communication. There is one port per process so the terms 
process identifier and port identifier are interchangeable. Operations are 
provided for initializing the state of the process. 

Destroy _proceBS(i d) 

halts and removes the process associated with id rendering the identifier 
invalid. The kernel unblocks all other processes that are blocked on e 
nonexistent port (or process) with a time-out mechanism. 

Send(id, meusage) 

sends the message to the specified process port end blocks the sender until the 
buffer has been received and replied to. 

id = Recei ve(meuage) 

transfers the oldest unreceived message into the specified message buffer. The 
sender is now awaiting a reply. The invoking process is blocked until a message 
is received if necessary. 

Reply(meuage, id) 

replies to the specified process and unblocks this process providing it is 
awaiting reply from the invoking process. 

Forward(meSBage, idl, id2) 

forwards the message to the process associated with id2 and makes the process 
specified by idl appear as though it originally sent to id2 (providing the first 
process was awaiting reply from the forwarding process). 

Transfer_from(id, remote_array, n, local_array) 

transfers n bytes from the remote array in the space of the process to the 
local array in the space of the invoking process. The process must be awaiting 
reply from the invoking process. 

Transfer to(id, remote_array, n, local_array) 

is similar except the data is transferred to the remote array. It is also possible 
to transfer data directly between two processes awaiting reply from the 
invoking process. 

The system also contains process state query and modification functions 
plus less-used varieties of message communication primitives. 
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Appendix B: 1/0 Program Environment 

The following describes the major functions provided in our program 1/0 
environment. 

file = Open(filename, mode) 

opens the file specified by the symbolic name filename with en access mode 
which is one of READ, CREATE, APPEND or MODIFY. The symbolic naming is 
similar to UNIX in syntax. 

file = Open_file(aerver,lnatance,mode) 

opens e file specified by the server and instance identifier. The identifier file 
is used subsequently to identify the file structure. 

Cloae(file) 

completes any outstanding updates to the file and releases the local resources 
and data structures associated with file. 

The 1/0 model is further divided into a byte-oriented and a block-oriented 
set of operations. 

Byte-Oriented Abstraction 

In the byte-oriented abstraction, a file is a sequence of bytes numbered O, 
1, ... n-1 where n is the number of bytes contained in the file. Associated with 
an open file is a buffer and a current byte position. 

byte = Get(file) 

assigns to byte the value in the current byte location of the local file structure 
specified by file and increments the current byte location by one. 

byte = Put(file, byte) 

sets the byte value at the current byte location to byte, increments the 
current byte location by one, and returns the value byte. 

It is an error to issue a Put on a file only opened for READ. Similarly, it 
is an error to issue a Get on a file that is not READABLE. 

Flush(file) 

flushes changes recorded in the local buffer to the "real" file. 

Seek( file, offset, origin) 

changes the current byte location of the file to that specified by origin and 
offset, where the origin may be the beginning of the file, the end of the file, 
or the current byte location. This allows random access to the file. 

n = Byte _location(file) 

returns the current byte location of the file. 
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Exceptions occurring when executing Get or Put are signalled by these 
functions returning a special value EOF (Exception On File) which corresponds 
to the conventional end-of-file indication. In the case of EDF being returned, 

code = File_ exception(file) 

returns a code that indicates the nature of the exception, which can be 
end-of-file, end-of-medium, remote (device) error as well as less expected 
exceptions such as non-existent file, permission denied, and file unavailable. 
Standard procedures are defined for printing error messages and invoking 
program termination depending on which exception code is returned. 

Exceptions occurring during the execution of other operations are indicated 
by an exception code returned by the operation (which was not shown for 
simplicity). The Open operation takes an optional parameter that is set to 
indicate the exception when it fails; a null file value is returned. If the optional 
parameter is omitted, Open performs the default exception action of printing a 
message and terminating the program. 

Block-Oriented Abstract I on 

In the block-oriented abstraction, a file is a sequence of blocks of some 
maximum size, celled the block size of the file. 

block_aize = Block_aize(file) 

returns the block size in bytes of the local file. Associated with the local file 
structure is a current block location. 

block_location = Block_location(file) 

All operations are on blocks. 

count = Read(file, buffer, n) 

reads a maximum of n bytes into the buffer from file and returns the number 
of bytes actually reed. The bytes are read from the beginning of the block at 
the current block location of the file. The number of bytes read may be less 
than the number requested for several reasons including encountering the 
end-of-file, encountering the end-of-line (in the case of terminal input), as well 
as particular error condl ti ans. 

count = Write(file, buffer, n) 

writes the first n bytes from buffer to the file starting at the beginning of the 
current block and returns the number of bytes actually written. If either Read 
or Write return a count less than that specified in the cell, the procedure 
File exception returns the exception code indicating the reason. It is an error 
to read or write with a byte. count larger than the block size if the file is not 
MULTI BLOCK. 

Seek_block(file, block_offaet, origin) 

changes the current block location to that specified by block offset and 
origin. Note that neither Read nor Write change the current blocklocation. 
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