
Distributed 1/0 using an Object-based Protocol

David R. Cheriton
Department of Computer Science

University of British Columbia
Vancouver, B. C., CANADA V6T lW 5

Technical Report 81-1
January 1981

Abstract

The design of a distributed 1/0 system is described. The system is
distributed in being implemented by s1:,rver processes, client processes end a
message communication mechanism between them. Date transfer between
processes is achieved using a "connectionless" object-based protocol. The
concept of file is generalized to that of a view of an object or activity
managed by aserver. This allows many objects, including application-defined
objects, to be viewed or accessed within the program 1/0 paradigm. Files are
instantiated as file instance objects to allow access to the associated data.
Conventional byte-stream program input/output facilities ere supported by a
subroutine library which makes the message-based implementation transparent
to applications.

This work was supported by the Natural Sciences and Engineering Research
Council of Canada.

,•
'

Distributed 1/0 using an Object-based Protocol

Keywords and Phrases: distributed system, byte-stream, interprocess
communication, message-based, object-based protocol

CR Categories: 4.35, 3.80

1. Introduction

Message-based systems and byte-stream program input and output have both
been used extensively. The design of an 1/0 system that implements
byte-stream 1/0 in terms of messages is described with examples of its use. In
justifying the design, we document the issues encountered and our solutions.
Some of these issues arose due to the goals we chose and some arose due to
our choice of execution model - particularly the semantics of the message
primitives. It is therefore helpful to first describe the progression that lead to
this work.

A research group at UBC have been experimenting with distributed system
structuring principles and techniques in a research system known locally es
Verex [5,15]. Verex, as a direct descendant of Thoth [4,6], provides many, small
(inexpensive) processes communicating via messages plus a date transfer
facility. It was necessary to invent protocols for transferring data between
processes; simply sending a message was not adequate in several cases. The
receiver may be, requesting the date from the sender so some request
conventions are required. It is also difficult, if not impossible, for the receiver
to accept arbitrarily large amounts of data whether or not it was requested.
Given that the date constituting one logical unit cannot be transmitted in one
indivisible message, problems of consistency, packetizing, and the general
communication protocol problems arise. There was sufficient uniformity in the
data transfer requirements to warrant developing one common protocol for the
system.

A common protocol was further motivated by the need to dynamically
interconnect processes to form cooperating program activities similar to the
UNIX shell [18] program constructions. In UNIX, a shell program may be
constructed from component programs joined together by byte streams called ~-

A somewhat orthogonal motivation came from the prevalent use of
byte-stream 1/0 as a useful programming abstraction. We have considerable
experience working with byte-stream I/0 and a large collection of programs
using it. The byte is also en efficient, portable data unit for both applications
and hardware. Despite the availability of messages at the application level in
our research system, device-independent byte-stream 1/0 has remained the
primary logical interface between a program and its external environment. Our
data transfer requirements were compatible with this program I/0 model.

These considerations inspired the goal of developing a common data
transfer protocol between processes that would also support a conventional
program I/0 model.

-1-

Several considerations further refined our goals. First, a prime goal of our
experimental system design has been to explore designs that minimize the use
of connections. A connection is e an association between two or more processes
similar to links in DEMOS [I] or virtual circuits in X.25 [7]. Connections impose
an overhead in both space and execution time. They also present conceptual and
implementation problems in systems of autonomous nodes where, for example,
failure and possible recovery at one end of a connection requires sophisticated
exception handling.

Second, our message primitives are oriented to supporting the remote
procedure call (RPC) model of communication. Each process has a single
message port with which is associated a message queue, a message buffer and a
global identifier. The operation of sending a message appears to the sending
process es e remote procedure call; the sender is blocked until the message has
been received end replied to by the receiving process, corresponding to the
suspension of the caller during a procedure invocation. These semantics are
simple and efficient to implement. They also allow the system to be structured
using the familiar procedure call model of program decomposition. However,
concurrency must be achieved by using multiple processes, not by multiple
outstanding messages sent by the same process. This contrasts with most
message systems in which non-blocking sending of messages is central to the
design. Receivers of messages can exploit message queuing, non-serial receiving
end replying to messages as well as the ability to forward a message to another
process. Providing the full power of message-passing in the receiver's view
allows processes acting as servers to provide sophisticated scheduling of
activities in response to messages received. Message communication in this
model is illustrated in Figure 1. The major primitives in our execution model
are described in greater detail in Appendix A.

In line with these considerations, we have developed an object-based
protocol that is connectionless because it consists of idempotent operations on
objects celled file instances. Server processes implement the file instance
objects on which clients request operations vie messages. The operations ere
defined with procedural semantics. Reclamation on failure is handled by loosely
tying the existence of e file instance to the existence of its creator/owner.
Each server implements e simple garbage collection scheme to reclaim file
instances when it detects the owner of an instance no longer exists.

This object-based approach suggested detaching the semantics of the object
- file instance - from its implementation. We have thus generalized the concept
of file to that of a view of some data associated with an object or activity of
interest. There is nOTUndamental association of storage with a file, although
that is a possible attribute. In many cases we are dealing with dynamically
created, often application-defined objects or activities. For example, our mail
system provides access to the inter-user mail messages as file instances,
allowing the mail system to use the I/0 protocol and providing access to the
mail f acllity from the 1/0 system.

Another design goal was to allow far economy and flexibility in server
design. The disparate range of objects and activities that we wished to view as
files and their corresponding servers varied sufficiently in properties that
"lowest common denominator" semantics were inadequate for applications and
prevented full exploitation of the servers. For example, it is necessary for
uniformity that either all servers support random access to file instance data or
that none does. Consequently, we identified a set of ~ attributes associated
with a file instance that further determine the semantics of operations on this

-2-

object. We found these type attributes necessary in implementing a subroutine
library (or package) that provided server-independent (conventional) byte-stream
1/0 ·at the application level.

The next section defines and discusses object-based protocols in the general
context; Section J describes the 1/0 system, including our concept of file and
file instance, the protocol and one program environment supported by this
system. Section 4 discusses the design rationale; Section 5 gives examples of
1/0 servers we have implemented. We close with a discussion unresolved
problems and plans for future research.

2. Object-based Protocols

An object-based protocol (OBP), is e protocol between communicating
processes defined in terms of en object - implemented by one of the processes
called the server - and operations on the object that the remaining processes,
called clients, may request of the server. The client sends e request message to
the server for a. particular operation on the object and the server returns a
reply message after performing the operation.

These protocols differ from other protocols primarily in being defined in
terms of an abstract object. The state transitions of the protocol ere the state
transition of the object; the protocol operations ere the operations allowed on
the object; end the protection end access control is that associated with the
object. Object-based protocols are also asymmetric; all operations are requested
or initiated by the clients. The object is passive (consistent with the technical
use of the term object [12]). That is, the server only communicates with a
client in reply to an operation request. No signals [18], emergency messages
[12] or other spontaneous communication are used by the server. Finally, every
request message generates a reply from the server for which the client is
expected to wait before issuing a further request.

Object-based protocols support two levels of communication: client to
server and client to client (indirectly via the server end object). This is
illustrated in Figure 2. We ere only concerned here with the client-server
communication; the second level is client-defined et e semantic level similar to
two processes communicating vie an intermediary file in e conventional system.

Object-based protocols are of interest for several reasons. The object model
applied to protocols provides insight end design methodology similar to its
application to programming languages such es CLU [14] end operating systems
such as Cal-TSS [11] and Hydra [21]. For example, one is disciplined to identify
a well-specified abstract object with implementation-independent operations.
Conversely, object-based protocols arise naturally in implementing en
object-based system that uses messages for inter-module communication instead
of procedure cells.

Object-based protocols are also compatible with the RPC model of
interprocess communication. Their asymmetry is similar to the asymmetry
existing between the procedure caller and the activation of a procedure. The
client acts es the caller and the server acts es the procedure invocation. These
properties allow a client process to be written in the procedural programming
model while (transparently) using messages to communicate with a server
process. The message communication then allows servers and clients to be

-3-

distributed over several machines or systems.

An object-based protocol is end-to-end (between the client and server)
because all operations requested by a client are received by, and semantically
meaningful to, the server. This contrasts with protocols in which interaction is
defined in terms of an intermediate entity such as the DCE in X.25 [7].

Object-based protocols are good candidates for lightweight protocols.
Lightweight protocols are protocols that can be Implemented with low overhead
in processing, storage and lower-level communication support. They are of
interest for environments providing high-speed, low delay, low error rate
communication as is characteristic of local-area networks and message-oriented
operating system kernels. In these environments, longhaul (heavyweight)
protocols such es X.25 [7] reduce throughput and increase cost by the
unnecessary overhead they introduce on the communication link and network
nodes. Several protocols have been developed with this view [2,8].

We have experimented with object-based protocols that, to m1mm1ze
overhead, do not implement connections or virtual circuits between the client
and server. Instead, as end-to-end protocols, they exploit end-level semantics
and the "perfect" knowledge the server hes of the state of the object used in
the protocol. Several techniques to handle the synchronization, access control,
sequencing, flow control, errors and failure notification usually handled by the
virtual circuit are described below.

State is maintained as the state of the object. Because the object is
implemented by the server, the integrity of the object is easily guaranteed.
Because interaction is confined to the RPC model, synchronization is trivial.
The server sends a positive acknowledgement to each successful operation. The
client waits for the acknowledgement before updating its local record of the
state, if it chooses to maintain such a state.

Access to the object is controlled entirely by the server according to
protection information it associates with the object. The permission may be
determined from en access control list associated with the object or according

· to a capability offered by the client. Any client is allowed to access the object
if it hes the requisite permission. No "open" or "connect" operations are
required. Thus, protection is not required or assumed provided by the
communication subsystem.

The naming of objects used in the protocol is end-to-end; there is no name
mapping or conversion in the protocol. The server provides a name or identifier
that is used by clients to identify the object. Although the same name is used
by all clients, this does not necessarily imply a global naming scheme for
objects. Object identifiers may be unique and meaningful only relative to the
object server.

There is no notification on client failure or communication failure. Servers
reclaim resources by garbage collection using criteria for reclamation having
end-level semantics. We have avoided providing general exception notifications
due to the overhead and complexity in the semantics, implementation and use.

Reliability is achieved by checksumming and idempotency. Standard
redundancy techniques such as checksums can be used to detect corrupted
messages, which are then discarded. Requests are retransmitted when the client
does not receive a correct reply within a time-out period. This can cause the

-4-

server to receive duplicate messages which are handled by the idempotency of
the protocol. That is, the same operation issued multiple times has the same
result as the operation being issued once so there is no need to filter out
duplicate messages. The communication subsystem is not required to provide
perfect communication, only best efforts data transport [2].

The remainder of the paper describes a distributed I/0 system implemented
in terms of an object-based protocol. This is presented both as an example of
using 0BP's as well as a novel realization of an I/0 system based on message
communication. d

3. 1/0 System Description

The 1/0 system provides a uniform means of data transfer between
processes allowing simple interconnection of files, programs, services and
resources. The 1/0 system is defined in terms of files and file instance objects.

3.1 Files and File Instances

A file is a collection of data viewed as a se quence of variable-size records
or blocks.° This data is defined as the data associated with an object, activity or
resource in the system. For example, an object in a storage system can be
viewed as a file yielding the conventional file system model. Less
conventionally, data describing the current state of a system can be viewed as
a file even though the data may not be physically stored as such and may be
rapidly changing. The same data may be viewed as different files, differing in
some property of the view such as the ordering of the records. For example,
the data stored on disk can be viewed in the block units and order defined by
the physical sectors of the device, as the logical records and order defined by a
logical disk file in which these sectors are contained; and as a text file in
which the blocks are defined by the line delimiters. This is illustrated in Figure
3. Thus, the way data is viewed is separated from its underlying representation.

Files ere conceptual entities. In order to access data with a particular file
view, the file must be instantiated. A file instance is an object that represents
a version or snapshot (or "instantiation")of a file. For example, a file instance
of a storage system object represents a snapshot of the data associated with
the object, similar to the versions defined by Reed [17]. A file instance of an
X.25 logical channel is a (connected) virtual circuit. A file instance of data
describing current system activity is a (consistent) snapshot of the data at the
time the instance was created.

We have identified four logical usage modes for file instances as follows:

READ

CREATE

APPEND

data associated with the file instance is read but not
changed.

A new set of data is to be created by the client and
associated with the file instance, discarding any
previously associated data.

Data is appended to the current sequence of data
blocks. Data previously associated with the file
remains unchanged.

-5-

MODIFY Existing data is to be modified and possibly appended
to.

The usage mode is specified when a file instance is created, allowing economy
of implementation end immediate detection of incorrect usage. Usage modes
could otherwise be ignored except for the side-effect that CREATE has of
discarding the previous data sequence. That is, given a special operation for
discarding the file instance data, the usage modes could be omitted from the
design and usage could be deduced from the operations performed on the file
instance.

A file instance is further defined in terms of the operatrons on it as an
object.

CREATE_INSTANCE(file specification)

QUERY _INSTANCE(instance)

RELEASE_INSTANCE(instance, mode)

READ_INSTANCE(instance, block_number, buffer, bytes)

WRITE_INSTANCE(instance, block_number, buffer, bytes)

SET_INSTANCE_OWNER(instance, new_owner)

Table 1. File Instance Operations

* CREA TE INSTANCE creates a file instance according to the file
specification. For a disk-based storage system, the file specification
identifies an object stored on disk. For a virtual terminal [13], the file
specification may describe an area of the terminal screen or a logical
input source. When a file instance is created, an instance identifier is
returned along with information describing maximum block size, last
block number (written), bytes in last block, type and next block number
(to read). The file instance is initially owned by the client that created
it.

* QUERY INSTANCE returns the same information as returned by the
CREATE INSTANCE. This allows a client that is passed the file instance
identifierto get sufficient information about the instance to use it.

* RELEASE INSTANCE invalidates the instance identifier, releases
resources - dedicated to the instance and performs a file-dependent
function with the file instance data depending on the release mode. For
example, with a printer spool file instance, the data is printed providing
the mode is zero, otherwise the data is discarded. With a updated
transaction file, the file instance atomically replaces the "real" file if
the release mode is zero. File instances may be released when the
creator of the instance no longer exists or after a prolonged period of
inactivity on the instance in the case of, for example, instances
representing connections to public data networks.

-6-

* READ INSTANCE transfers the specified number of bytes to the client's
buffer-from the file instance starting at the specified block.

* WRITE INSTANCE transfers the specified number of bytes from the
client'sbuffer to the file instance starting at the specified block.

* SET INSTANCE OWNER sets the owner of a file instance to the
specified new -owner. This is used for transferring a file instance
representing a user login device such as a incoming network call from
the login handler process to the user's command interpreter program. It
is also used by the command interpreter to transfer ownership of the
standard input and output file instances of a program it is executing to
that program.

Although these operations are defined for all file instances, it is not
possible to provide the same semantics for them on all file instances without
some restrictions. For example, a communication line is logically a stream of
blocks; random access to not meaningful to support. Consequently, the
operations that may be performed on the file instance as well as the semantics
of these operations are indicated by the file instance ~- The type is
specified as a combination of the following attributes.

READABLE

WRITEABLE

APPEND ONLY

STREAM

FIXED LENGTH

VARIABLE BLOCK

READ _INSTANCE operations are allowed.

WRITE_INSTANCE operations are allowed.

WRITE INSTANCE operations are only effective to
bytes in the file instance beyond the current last
byte.

All reading and writing is strictly sequential. Each
READ INSTANCE operation must specify the same
block -number as that specified as the next block
number returned by the CREA TE INSTANCE and
QUERY INSTANCE operations. This next block to
read is-incremented after each READ INSTANCE
operation. Similarly, each WRITE-INSTANCE
operation must specify a block number one greater
than the last block number, which is incremented
after every write operation.

A file instance without the STREAM attribute
must have its associated data stored to allow
non-sequential access.

The associated sequence of data blocks is fixed in
length. The length is specified by the last block and
last byte returned from a create or query instance
operations. Otherwise the file instance grows to
accomodate the data written or the length of the
file instance is not known as in the case of terminal
input.

Blocks shorter than the full block size may be
returned in response to read operations other than

-7-

MULTI BLOCK

INTERACTIVE

due to end-of-file or other exception conditions. For
example, input frames from a communication line
may differ in length under normal conditions.

With a file instance that is VARIABLE BLOCK
and WRITEABLE, blocks that are written with less
than a full block size number of bytes return exactly
the amount written when read subsequently.

Read and write operations are allowed that specify e
number of bytes larger then the block size.

The file instance is a text line-oriented input stream
on which a prompt can be specified and
user-generated breaks can be received. It also has
the connotation of supplying interactively (human)
generated input.

Not all of the possible combinations of attributes yield a useful file type. The
file instance type is dependent on the server, file specification and the usage
mode. For example, the storage system provides file instances with type
attributes READABLE, FIXED LENGTH end MULTI BLOCK in response to a
CREATE INSTANCE operation-specifying READ usage mode. File instances of
X.25 virtual circuits have type attributes READABLE, WRITEABLE,
VARIABLE BLOCK and STREAM when created with CREATE usage mode (the
only mode -supported). This example illustrates that a single file instance can
support both an input and an output stream.

File instance types reflect differences between file instances that are
apparent in the semantics of the file instance operations. They do not cover
higher-level semantics such the meaning of writing to a particular file instance.
One of the objectives of our on-going research is to investigate the limitations
of our current type attributes and possible ext@nsion or modifications to these
at tributes.

Our concept of file differs from the conventional one in that a file is
purely a conceptual object, not a "real" object. File instances are the real
objects. For instance, the type information is associated with e file instance,
not the file. File instances differ from what are conventionally celled "open
files" in several ways. There is no connection between the user of a file
instance end the file instance that persists between operations on the file
instance. Consequently, there is no user-dependent state such as read/write
pointer maintained in the file instance; only the state of the instance is
maintained. Also, no concurrency control is provided between users of file
instances. Finally, the implicit creation associated with some open files such es
spool files, dial-up lines and X.25 circuits is made explicit in file instance
creation.

-8-

J.2 1/0 Servers

An 1/0 server is e process that implements file instances for client
processes. An I/O server provides remote file access to date to which it hes
access. For example, the storage server provides file instances of the objects it
is storing. A file instance created by the storage server for CREATE usage has
type attributes READABLE, WRITEABLE and MUL Tl BLOCK. It atomically
updates the underlying storage object when the file instance is released. The
printer server implements file instances similar to "open printer spool" files.
Only CREATE usage mode is supported, with type attributes READABLE,
WRITEABLE and MULTI BLOCK. It makes use of the storage server to store
the data for printing.

Any process can act as an 1/0 server if it provides the file instance
operations in response to request messages from clients. This allows
applications to introduce new 1/0 servers to implement new types of files as
well as filter access to system-implemented files. Servers may (and typically
do) provide operations beyond the file instance operations. In general, a server
provides the file instance operations to support the clients viewing its objects
or activities es files. This may be secondary to the real function of the server.

Acting as an 1/0 server does not preclude a process from also being a
client to other servers although the graph of client/server dependency must be
acyclic to avoid deadlock. The dependency between some of our current 1/0
servers is illustrated in Figure 4. An arrow from one server to another
indicates that the first server uses a service provided by the second server.

The choice of how each server implements its file instances, the protection
imposed and the additional operations provided are decisions local to the design
of the server. However, the 1/0 servers we have implemented conform to the
following general structure (given in a C-like language[9]).

-9-

IO_ server()

{

}

\ Base function executed by en 1/0 server.

state = Initialize();

rereat

}

id = Receive(message);

select(OPERATION[message])
{

}

case CREA TE INSTANCE:
reply = Create instance(state, message, id);

case RELEASE INSTANCE:
reply= Release instance(state, message, id);

case READ INSTANCE: -
reply = Read instance(state, message, id);

case WRITE INSTANCE:
reply = Write instance(state, message, id);

case SET INSTANCE OWNER:
-reply= Sef_instence_owner(state, message, id);

(other requests handled)

default: reply = ILLEGAL_REQUEST;

if(reply == NO REPLY) next;
REPLY CODE[message] = reply;
Reply(message , id);

General Form of 1/0 Servers

J.J 1/0 Protocol

The 1/0 protocol is an object-based protocol in which the objects are file
instances. Most of the properties of this protocol were covered in the general
discussion of object-based protocols in Section 2. The protocol consists of a
request message format for each file instance operation plus the format of the
reply message received in response to each of these request messages. The
semantics of these request and reply messages follow from the semantics of
file instances and file instance operations described previously. The request and
reply messages for reading and writing instances are described in greater detail
below.

The format for a read or write instance request message is

request ::=
· operation code

file instance id
block number
bytes

- the operation requested
- server-generated instance identifier
- starting block to read or write
- number of bytes to read or write

-10-

buffer - location of data buffer

The format for the reply message is

reply ::=
reply code
count

- indicating success or reason for failure
- number of data bytes transferred

The file instance identifier is that specified by the server when the instance is
created. The file instance is uniquely and globally identified by specifying the
server implementing the file instance and the file instance identifier.

The block number is used es a sequence number for file instances with type
attribute STREAM and es a location specifier for non-stream file instances to
make read and write operations idempotent. For non-stream file instances, a
read or write request message that is retransmitted because the reply message
was lost results in the read or write being performed again (with no
side-effects). For stream files, the block number allows the server to recognize
that the read or write request is out of sequence. To perserve idempotency, the
server must reply with the same reply message as the client would receive if
the retransmission had not occurred es well as avoid side-effects on the file
instance such as, for example, duplicate data blocks appearing on a user
terminal. A stream 1/0 server thus replies without error indication (end without
performing a read or write) to a read request that specifies a block number one
less than the next block to read from the stream and to write requests that
specify a block number equal to the lest block written. Effectively, a read or
write request for block number N serves as an acknowledgement to the reply to
the read or write request for block N-1. This does not detect erroneously
generated reed or write request messages that look like retransmissions.
However, this is en unlikely client error end only reduces the support for client
error signalling. It does not impinge on the integrity of file instances or the
server. It is one of the features of the 1/0 system design that each server can
be designed independently to trade-off the cost of distinguishing a
retransmitted request message from en erroneous message with the level of
client error signalling it chooses to support. One of the objectives of our
on-going research is to explore this trade-off.

A similar problem with idempotency arises in releasing a file instance. The
reply to a request to release a non-existent file instance cannot signal an error
in case this is a retransmission of an earlier request that successfully released
the file instance. Further, the retransmission of a request to create a file
instance results in the creation of a second file instance. In the worst case, the
first file instance is released by the server garbage collector when the creating
process is determined to no longer exist. However, for servers such as a tape
server that only support one file instance et a time, the server assumes that
the request is a retransmission if it is received from the same process that
owns the existing file instance end specifies the same file.

Requests end replies are sent by short control messages. Date being reed or
written is normally transferred by the separate data transfer facility. If the
date is short enough to fit in the control message starting et the buffer field,
it is instead appended to the request (in case of writing) end the reply (in the
case of reeding). This may always be the case in systems providing large
messages. Thus, the design can take advantage of larger messages than our
current 8-word messages. This also provides efficient data transfer for small
amounts of data such es the byte-level interaction with a terminal used by a

-11-

screen editor. It is especially desirable to avoid using the data transfer facility
when the data to be transferred is smaller in size than its description, namely
the buff~r pointer. Using Verex on a 16-bit machine, 8 bytes of data fit in a
control message.

The server may defer setisf ying the request until the data is available (for
example, from a terminal or a pipe) by not replying immediately, end continue
to handle other requests. It may also reply indicating the process should retry
the request if it is unable to service the request immediately.

The simplicity of this protocol has allowed I/0 servers to be implemented
by undergraduate students with no previous experience with communications.

J.4 Symbolic File and Server Naming

Symbolic naming of both 1/0 servers end files is required to provide a
user-friendly environment and server-independent file identification. We follow
a scheme common to several distributed systems in using a name server to
perform name mapping. The name server also handles requests to change the
symbolic mapping by addition, deletion, aliasing, end modification of symbolic
names.

The name server accepts a symbolic name and maps it to a server and a
file specification, returning this information to the client. For certain requests
such es CREATE INSTANCE, the name server forwards the request to the
appropriate 1/0 server with the symbolic name replaced by the file
specification associated with the symbolic name. In the latter case, the client
receives the I/0 server's reply to the "create instance" request as illustrated in
Figure 5. The technique of forwarding after name mapping is an extension of
the name mapping services for efficiency. The client can instead issue a
separate CREATE INSTANCE request using the server and file specification
returned to it by the name server.

The file specification provided by the name server for the create instance
request may contain part of the symbolic name to allow the recipient 1/0
server to complete the name mapping. For example, a remote storage server
may map part of the symbolic name in the context of the remote system it
represents. However, we have minimized the use of symbolic names by the
servers for simplicity and efficiency.

The name server is not pert of the 1/0 system but a service used by the
1/0 environment library to allow symbolic naming of files and servers.

J.5 The 1/0 Environment Library

The program I/0 environment is the interface to the 1/0 system provided
for application programs. It serves to insulate applications from the unusual
nature of the underlying structure of the 1/0 system. We have to date
implemented one I/0 environment (subroutine) library. It is described below to
IUustrate how conventional input and output can be implemented using the
object-based 1/0 protocol described in the previous section.

The programming environment implemented is similar in flavor to the C
standard 1/0 library [9,10]. It supports device-independent byte-stream 1/0 as
well as block-oriented 1/0. To access a file, the file is first opened using a
symbolic name to identify the file and a second argument to specify the desired

-12-

mode of access: READ, CREATE, APPEND or MODIFY. A process can then~
a byte at a time from the file or ~ a byte at a time to the file to access the
file in a byte-oriented mode. It can also read or write a sequence of bytes to
or from the file in the block-orientE~d mode. Closing the file releases the
resources dedicated to the open file and ensures that all changes to the file
have taken place. An (Open file) operation allows a file instance to be opened
directly by specifying its server and instance identifier. The program 1/0
environment is described in greater detail in the Appendix B. Note that "open
files" only exist as objects implemented by the environment library.

The internal design and implementation of the library is fairly apparent
given the 1/0 model and the underlying server and communication support. The
following discussion attempts to focus on points of interest.

Open issues a CREATE INSTANCE request to the name server to map to
the server end file specification to produce an instance of the file for
simulating an open file connection. This use of the name server is illustrated in
Figure 5. Pert of the mode specified to Open indicates whether the file is to
be used in the byte or block mode. For the byte mode, the local file structure
created by Open includes a buffer equal in length to the block size of the file.

Close generates a RELEASE INSTANCE request if the instance being
closed was created by the Open that allocated the local file structure. (This is
indicated by a flag stored in the local file structure.) Other functions either do
not cause interaction with server processes or do so by calling Read or Write,
which generate READ INSTANCE and WRITE INSTANCE requests
respectively.

Get and Put are implemented by getting and putting a byte at a time into
the local buffer until it is empty or full respectively. When the file is being
read, the buffer contains up to a block of data read from the associated file
instance. When the file is being written, the buffer contains up to a block of
data to be written to the file instance. To handle switching between reading
and writing, Get and Put use separate indices into the local file buffer. When
reading, the read index maintains the byte position within the buffer. The write
index is set to a value greater than the block size so as to cause Put to call a
write "fix-up" function when next called. The write fix-up function performs
the necessary actions to continue putting bytes into the local buffer, setting
the write index to the current byte position in the buffer. This is the same
fix-up function called when the buffer is full after a sequence of Put's.
Similarly, the read index used by Get causes it to call the read fix-up function
if the local buffer is empty or if the file was being written.

The separate read and write indices allow a program to intermix calls to
Get and Put while inexpensively maintaining a byte-level window on the file.
For example, the execution of Get involves one simple test, namely on the
read index to check whether a call to the read fix-up function is required.
Because the local file structure records whether it is reading or writing, blocks
need only be written if changed and only read if the data is required or for
maintaining consistency of a block that is partially modified. Seek also exploits
the knowledge of the current reading/writing mode to minimize interaction with
the 1/0 server.

This implementation contrasts with the Thoth [6] byte-stream
implementation in which a block is always written out before reading another
block when a file is open for reading and writing, even though the block may

-13-

not have been changed. It also differs from the UNIX 1/0 library [9,10] in which
simultaneous reading, writing and seeking et the byte-level on a file using a
local buff er is not supported.

Exceptions are handled et two levels. At the byte-level, both Get and Put
return a special value EOF (Exception On File) which is generated by the
"fix-up" function in response to an exceptional condition. The file can then be
queried for a code indicating the nature of the exception which is usually the
reply code from the lest . reed or write request. Possible exception codes
include: end-of-file, end-of-medium, device error es well es less expected
exceptions such es non-existent file instance, permission denied, end server
una veil able.

The exception-detecting scheme allows a single test to be performed to
check for exceptions while getting or putting bytes to or from a file yet
provides a means of. determining the nature of the exception once it is
detected. Moreover, simple programs can treat EOF as simply "end-of-file".
Thus, the increased complexity of exceptions possible due to leek of reel open
file connections is handled with no significant increase in code.

Each local file structure currently requires 16 words of storage plus
block-size bytes for a buffer if used in the byte-oriented mode. In our current
implementation on a Texas Instruments 990 machine, the program library is
approximately 4 kilobytes of code when loaded, including various standard Input
and output formatting routines. (The size is dependent on the subroutines
referenced.) The cost of executing Get end Put is 13 instructions (when the
fix-up function is not celled) including the function call and return sequence.

This library provides a device-independent 1/0 interface with only minor
semantic and functional differences from conventional program environments.
Thus, existing programs end programming styles can be used without concern
for the underlying distributed design of the 1/0 system. We have found it easy
to convert our suite of software and document preparation programs to use this
subroutine library and the 1/0 system even though they were originally written
for and used with a conventional 1/0 system.

4. Design Rationale

The design was governed by the following design goals.

* It must support the conventional program 1/0 model of byte-streams
while allowing extensibility to application-defined end implemented files.

* It must be distributed in that: resources requirements ere distributed
among the client end server processes; processes can exercise local
autonomy in file instance implementation; end failures tend to be local
to the failed components.

* It must allow efficient, inexpensive 1/0 servers as well as minimize the
load on the communication subnetwork.

The subroutine library does provide a conventional I/0 model implemented in
terms of the 1/0 protocol end the message primitives. The 1/0 system is
extensible because any process can act es an 1/0 server if it implements the

-14-

protocol. The system is distributed in that clients end servers only interact vie
message-passing. Each server exercises autonomous control over the file
instances it implements. Finally, efficiency is achieved by allowing flexibility of
server implementation, server-specified file instance typing, end block-oriented
reeding end writing. Also, the program environment library strives for minimal
server interaction. The main design issues addressed were the use of an
idempotent object-based protocol, file instances, end block-oriented reeding end
writing. These issues ere discussed below.

An object-based protocol was used to provide a simple, light-weight
protocol. The protocol is efficent for the server because there ls no connection
to support, no date streaming and no spontanteous communication with a client.
There is also no client notification scheme to handle. In our implementation
experience to data, servers can easily reclaim resources using a garbage
collector which is invoked in response to need for resources.

The protocol is simple and efficient for the client because the subroutine
library can easily provide a simple procedural interface; the use of messages,
file instances end servers is transparent to the application.

The protocol is also undemanding of the communication subsystem. We
assume a fest, low-error rate but not necessarily reliable datagram service es is
available in many local-area networks. The data streaming provided by
long-haul protocols end other byte-stream protocols [2,8] is assumed not
necessary due to the speed of transmission and not desirable due to the added
complexity. The idempotency of the protocol means that duplicate messages
need not be filtered out. Corrupted messages ere discarded causing
retransmission (and possibly duplicate messages).

File instances were invented to be the objects on which the protocol was
based. This was done instead of using the "reel" underlying objects because we
recognized that these "reel" objects were in many cases created es part of
being accessed. This is modelled explicitly by the concept of file instance. As
examples, a version of a file, en X.25 virtual circuit, a printer spool file, the
current login information ell represent file objects that ere created as pert of
accessing them. The explicit support of this creation removes the need for
separate "connect" or "setup" operations. For example, the call specification for
a virtual circuit is specified in creating the file instance. Similarly, creating a
tape file instance may require mounting a tape and creating a printer spool file
may require specifying output formatting parameters.

File instances support accessing date in a consistent version because a file
instance can represent a snapshot of the underlying object or activity, which
may have changed since the file instance was created. Similarly, a file instance
can represent a new version of an object that atomically updates the object
when it is released, thus providing support for databases end transaction
processing [19].

File instances also support the generalization of files to views of data that
can be instantiated with a particular description. This generalizes the
mechanism available in many systems in which the views of data ere both
implicit and fixed.

An earlier design [3] in which the objects of the protocol were files
suffered problems in supporting the temporary, created objects described above.

-15-

File instances can also have shorter identifiers than the underlying objects,
reducing the overhead when reading and writing. This is especially true when
the file specification is a description of en object to create. Because the
identiflcatioh is generated (autonomously) by each server and is meaningful only
relative to that server, an application can define its own files and use the 1/0
system for data transfer between its different modules.

The separation between the creation of a file instance and "opening" the
file also recognizes that the instance may need to exist longer than that
implied by the file opening and closing. This is solved in other systems by the
server maintaining a count of the number of open file connections to this file
end releasing it when ell the connections are closed. Related to this, the
process creating the instance may not need an open file connection to the
instance. It may be creating it solely for use by another process, es is the case
with the UNIX ■hell [18].

Block-oriented reeding and writing hes several moti vetions. The block is
intended to reflect an efficient unit of communication for the server which
may in turn be dependent on the underlying hardware. Because the block size is
a parameter, no loss of portability need ensue from the use of e
hardware-dictated block size. The constraint that all reed's end write's must ·
start on block boundaries reduces the hardware end software support required
for interactions. For instance, if the block size matches the unit used by the
device or communication line the server manages, it need not provide buffering
to match different sized packets or blocks. Also, the block interaction
facilitates the server providing atomic operations such as indivisible write's
[19,20].

An application of block-mode access is a database system using B-trees for
storing relations on disk. By using the block as the storage unit for nodes of the
B-trees, the database could be guaranteed efficient access and indivisible
update to nodes. However, the use of block numbers internal to data structures
is contingent upon the block size remaining invariant. For example, the data
could not be copied directly to another device with a different block size.

In the environment library, although the Read end Write operations do not
allow starting et an arbitrary location in a file es do those of UNIX [10,18], the
letter are easily implemented with Get and Put. Also, many uses of Read end
Write in UNIX recognize the efficiency of the underlying physical block size
end implicitly implement block-oriented operations.

The ultimate design rationale lies in the utility of the design. We have
modified our research system to use this design. Currently, all the standard
files and devices are available and many standard programs use the system for
all their 1/0 activity. The next section describes some of the 1/0 servers with
which we ere experimenting.

5. Example 1/0 Servers

Four examples ere given of 1/0 servers in our current system. All of these
have been implemented and used, although the implementations in some cases
ere incomplete.

-16-

5.1 Storage Server

The storage server provides storage of data, using disks, tapes or whatever
storage devices are available. It supports the ability to view the data as files in
the conventional sense. The storage server provides a file instance as a
snapshot of the date when the file instance is used in READ mode. When e file
instance is used for CREATE or APPEND, the data written to the file instance
atomically updates the underlying date of the storage container when the file
instance is released with e successful release mode.

The storage server primarily provides services for storing data. It provides
access to that data using the I/0 protocol but it need not store data as files in
the conventional sense.

This examples illustrates how the service, namely storage, is detached from
the view of the stored date, i.e. as files. Our current work is engaged in
expanding the devices used by the storage server to other devices than disk,
implementing atomic update, and exploring novel file specifications that go
beyond the conventional disk file model.

5.2 Seaaion Server

The session server functions primarily to record the users currently logged
in, handle the log-in sequence and control access to the passwords end user
information. It is useful to have e program that prints the users currently
signed on, requesting this information from the session server. It is difficult for
the program to accept ell the information et one time because there may be en
unbounded amount of date returned. Conversely, if the program requests the
information in packets, the information may be, in total, inconsistent.

Using the 1/0 protocol, this information is read as though contained in e
file. In response to a create instance request, the session server creates a file
instance that contains the information about users signed on at that time. This
file Instance can then be read by the program using the standard 1/0 routines
with the guarantee that the information is consistent. The file instance is
released according to the standard 1/0 protocol.

This example illustrates the use of the I/0 system for providing a
consistent data picture of an on-going activity when the data involved is
changing.

5.3 Mail Server

The mail server provides inter-user communication in the form of user-level
mail messages. A mail server is dynamically created whenever activity is
initiated on a user's mailbox (providing a mail server for that user is not
already in existence). The mail server supports the 1/0 protocol for transferring
new messages to the user's mailbox as well as reading messages in the mailbox.
By also providing symbolic naming of user mailboxes, inter-user communication
is easily coupled with the 1/0 system, reducing the need to use special "mail"
programs. For example, the error output of a concurrently executing
compilation can be connected by the user directly to his mailbox, causing him
to be informed when the compilation completes as well as conveniently
delivering any error messages resulting from the compilation. Similarly,
general-purpose text editors and text formatters can be used easily in the
preparation of messages.

-17-

The mail server uses the services of the storage server to store inter-user
message data and management information. This illustrates how a server can
provide a service that is basically a refinement and an extension of
conventional files, yet still make the services available using the 1/0 system. It
also illustrates how an application can provide a new type of file, namely mail
message files in this case.

5.4 A Unix-like Command Interpreter

The 1/0 system raises some problems for appli cetl ons that have used
tightly-coupled 1/0 connections in other systems. An example of this is the
UNIX shell [18] (command interpreter) which makes extensive use of
byte-stream open file connections and shared file state information supported
by the UNIX kernel. The shell supports a standard input, output and error
output and the piping of a program's output into another program's input. It also
supports redirection of input and output and so-called "here" documents, in
which programs executed from a command file also take their standard input
from the command file starting immediately after the point they are invoked.

To implement these features, we exploit two properties of the 1/0 system
and the execution environment. First, the 1/0 system allows any process to act
as an 1/0 server. Second, the command interpreter can consist of several
processes in the same space (a team as in Thoth [4,6]), some of which can act
as 1/0 servers for programs thecommand interpreter is controlling. The need
for multiple processes arises because of the multiple concurrent reeding,
writing, program termination and exceptions that can occur.

Each of the standard input, output, and error output is specified to a
program by server and file instance. A program can then access any one of
these file instances by . calling Open file with these parameters. This
specification is provided by the command interpreter.

The command interpreter determines the program input, output and error
file from the symbolic names specified on the command line. In the case of
pipes, it requests an instance of a pipe from the pipe server. All input, output
and error output that is not redirected goes through the commend interpreter.
The standard input defaults to a file instance provided by the command
interpreter process that handles command interpreter input. Similarly, the
standard output and error output default to that of the commend interpreter.
The process interaction for a simple commend pipeline is illustrated in Figure
6. In this example, the text editor is suspended waiting for input from the
interpreter while the interpreter oversees the operation of the command
pipeline.-stored text is being filtered through the text formatter end overstrike
filter to the printer. Each arrow points from a client using the 1/0 protocol to
an 1/0 server with which it is communicating.

The command interpreter input process reeds e line and makes it available
to the currently attached program if the line is not escaped to be a command
line. Otherwise it Interprets and executes the input line as a command. This
makes the facility of escaping from a subsystem context to execute a commend
available during the execution of any program as well as providing the
command interpreter context for the execution of the commend line. It also
makes features like attaching and detaching to concurrently running programs
possible.

This example illustrates how a large application can be written es many

-18-

separate programs that interact via the 1/0 system using application-defined
files and file instances. The command interpreter is strictly an application
program to the system; any user may write and select a command interpreter
of his choice. The command interpreter program end its suite of command
programs implement a command language. Because of the size of the language
and the desire for extensibility, most individual commands are implemented es
separate programs. Interaction between the managing interpreter program and
the command programs takes place through the I/0 system using files
implemented by the interpreter program.

This approach to user interface design and program interconnection is
equally applicable to virtual terminal models similar to RIG [12,13].

6. DiscuSBion

We have presented the design of a distributed 1/0 system that uses an
object-based protocol to pro vi de uniform data transfer between a di verse set of
files, programs, resources end services. A program library has been
implemented that provides a conventional byte-oriented 1/0 abstraction and a
block-oriented abstraction. The conventional I/0 abstraction was considered
important to retain because of the large number of programs that use this
model and the programming experience we have with it.

Central to the design is the I/0 protocol which defines interaction between
clients and 1/0 servers. The protocol is Implemented in terms of processes and
message primitives so it is insulated from the underlying network architecture
and the protocol is insulated from the correspondence between processes and
processors. Because the protocol is implemented for clients by a subroutine
library, it is detached from the program environment it supports and can
support many different program environments.

The important aspect of the semantics of the message primitives used here
is that they are simple transaction-oriented operations. A client process is only
connected with a server process from the time that it sends to the server until
the server replies to the client process. Beyond this, numerous different sets of
primitives would support the design described here. For example, the 1/0
protocol could be implemented as a Level 2 protocol in the PUP internetwork
architecture [2].

To date, to support the I/0 system we have implemented terminal servers,
an X.25 server, a printer server, a pipe server, a mail server, storage server
and a commend interpreter providing a subset of the UNIX shell facilities. The
letter stages of preparing this report used a text editor and text formatter that
use the 1/0 system. Our experience so far has been very flavoureble. The major
disadvantage has been a slight increase in the size of programs due to I/0
functions being included as subroutines rather than being available as system
calls, as was the previous scheme. Future projects include a local-area network
implementation, new server designs, new models of user interfaces using the
I/0 system, and naming issues, particularly reverse name mapping, i.e. file
instance to symbolic name.

Our design philosophy is in sympathy with a trend in local-area network
communication away from sophisticated layered protocols and tightly coupled
state-synchronized connections. These protocols seem best used for long-haul

-19-

•

communications in which errors, propagation delay and complex network
topology ere important design considerations. The low delay and error rates of
many local-area networks and message kernels suggest that simpler
connectionless end-to-end protocols may be sufficient.

Acknowledgements

Discussions with Steve Deering and John Demeo have contributed to the
ideas and form of this paper. Their work and that of Brent Hilpert and Tony
Kusalik on the implementation of the design are also recognized. The influence
of UNIX on the program 1/0 model end the problems considered has been
substantial.

References

1. F. Baskett, J. H. Howard end J. T. Montague, Task Communication in
DEMOS. Proc. 6th ~- Operating Systems Principles, Operating
Systems Review, Vol. II;"l'fo. ~ November 1977, 23- 31.

2. D. R. Boggs, J. F. Shoch, E. A. Taft end R. M. Metcalfe, Pup: An
Internetwork Architecture IEEE Trans. on Communications vol.
COMM-28, pp. 612-624, April 1980.

3. D. R. Cheriton, A Loosely-Coupled 1/0 System for
Environment. IFIP WG 6.4 International Workshop
Networks, Zurich, Switzerland, August 1980.

a Distributed
on Local-Area

4. D. R. Cheriton, Multi-process structuring and the Thoth operating system.
UBC Computer Science Technical Report 79-5, University of British
Columbia March 1979. (based on the author's Ph. D. thesis, University of
Waterloo 1978).

5. D. R. Cheriton, Designing an Operating System to be Verifiable. USC
Computer Science Technical Report 79-9, October 1979.

6. D. R. Cheriton, M. A. Malcolm, L. S. Melen and G. R. Sager, Thoth, a
portable real-time operating system. Comm. A.C.M. 22, 2 (Feb. 1979)
105-115.

7. CCITT Rapporteur on X.25 - Level 3, Draft revised recommendation X.25,
CCITT COM vn no. 439, BS amended, Feb. 1980.

8. M. A. Johnson, Ring byte stream protocol specification. Computer
Laboratory, Cambridge, April 1980.

9. 8. W. Kernighan and D. M. Ritchie, The g Programming Language.
Prentice-Hall Software Series, Prentice-Hall, New Jersey 1978.

10. 8. W. Kernighan and D. M. Ritchie, UNIX Progamming - Second Edition
(Appendix), UNIX Version 7 documentation, Bell Laboratories, November
1978.

-20-

11. B. Lampson and H. Sturgis, Reflections on an Operating System Design.
Comm. A.C.M. 19, 5 (May 1976), 251-265.

12. K. Lantz, Uniform Interfaces for Distributed Systems. Computer Science
Technical Report TR63, University of Rochester, May 1980.

13. K. Lantz and R. Rashid, Virtual Terminal Management in a Multiple
Process Environment. Proc. 7th ~- Operating Systems Principles,
December 1979, ACM order no. 534790.

14. B. Liskov, A. Synder, R. Atkinson and C. Schaffert, Abstraction
Mechanisms in CLU. Comm. A.C.M. 20, 8 (August 1977), 564-576.

15. T. W. Lockhart, The Design of A Verifiable Operating System Kernel. UBC
Computer Science Technical Report 79-15, November 1979.

16. D. L. Parnes, On the Criteria To Be Used in Decomposing Systems into
Modules. Comm. A.C.M. 15, 12 (December 1972), 1053-1058.

17. D. P. Reed, Naming and Synchronization in a Decentralized Computer
System. Ph.D. thesis, MIT /LCS/TR-205, September 1978.

18. D. M. Ritchie and K. Thompson, The UNIX timesharing system. Comm. A.
C. M. 17, 7 (July 1974), 365-375. -

19. H. Sturgis, J. Mitchell and J. Israel, Issues in the Design and Use of a
Distributed File System. Operating Systems Review Vol. 14, No. 3 (July
1980), 55-69.

20. D. Swinehart, G. McDaniel and D. Boggs, WFS: A Simple File System for a
Distributed Environment. Proc. 7th ~- Operating Systems Principles,
December 1979, ACM order no. 534790.

21. W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Piersen and F.
Pollack, HYDRA: The Kernel of a Multiprocessor Operating System.
Comm. A.C.M. 17, 6 (June 1974), 337-345.

-21-

Appendix A: Program Environment Primitives

The following are the major functions used in our research system, Verex,
for implementing the 1/0 system.

id = Create _proceu(pri orl t y)

creates a new process in an initial state awaiting a reply message from its
creator and returns a unique port identifier which is used to specify the process
subsequently in communication. There is one port per process so the terms
process identifier and port identifier are interchangeable. Operations are
provided for initializing the state of the process.

Destroy _proceBS(i d)

halts and removes the process associated with id rendering the identifier
invalid. The kernel unblocks all other processes that are blocked on e
nonexistent port (or process) with a time-out mechanism.

Send(id, meusage)

sends the message to the specified process port end blocks the sender until the
buffer has been received and replied to.

id = Recei ve(meuage)

transfers the oldest unreceived message into the specified message buffer. The
sender is now awaiting a reply. The invoking process is blocked until a message
is received if necessary.

Reply(meuage, id)

replies to the specified process and unblocks this process providing it is
awaiting reply from the invoking process.

Forward(meSBage, idl, id2)

forwards the message to the process associated with id2 and makes the process
specified by idl appear as though it originally sent to id2 (providing the first
process was awaiting reply from the forwarding process).

Transfer_from(id, remote_array, n, local_array)

transfers n bytes from the remote array in the space of the process to the
local array in the space of the invoking process. The process must be awaiting
reply from the invoking process.

Transfer to(id, remote_array, n, local_array)

is similar except the data is transferred to the remote array. It is also possible
to transfer data directly between two processes awaiting reply from the
invoking process.

The system also contains process state query and modification functions
plus less-used varieties of message communication primitives.

-22-

Appendix B: 1/0 Program Environment

The following describes the major functions provided in our program 1/0
environment.

file = Open(filename, mode)

opens the file specified by the symbolic name filename with en access mode
which is one of READ, CREATE, APPEND or MODIFY. The symbolic naming is
similar to UNIX in syntax.

file = Open_file(aerver,lnatance,mode)

opens e file specified by the server and instance identifier. The identifier file
is used subsequently to identify the file structure.

Cloae(file)

completes any outstanding updates to the file and releases the local resources
and data structures associated with file.

The 1/0 model is further divided into a byte-oriented and a block-oriented
set of operations.

Byte-Oriented Abstraction

In the byte-oriented abstraction, a file is a sequence of bytes numbered O,
1, ... n-1 where n is the number of bytes contained in the file. Associated with
an open file is a buffer and a current byte position.

byte = Get(file)

assigns to byte the value in the current byte location of the local file structure
specified by file and increments the current byte location by one.

byte = Put(file, byte)

sets the byte value at the current byte location to byte, increments the
current byte location by one, and returns the value byte.

It is an error to issue a Put on a file only opened for READ. Similarly, it
is an error to issue a Get on a file that is not READABLE.

Flush(file)

flushes changes recorded in the local buffer to the "real" file.

Seek(file, offset, origin)

changes the current byte location of the file to that specified by origin and
offset, where the origin may be the beginning of the file, the end of the file,
or the current byte location. This allows random access to the file.

n = Byte _location(file)

returns the current byte location of the file.

-23-

Exceptions occurring when executing Get or Put are signalled by these
functions returning a special value EOF (Exception On File) which corresponds
to the conventional end-of-file indication. In the case of EDF being returned,

code = File_ exception(file)

returns a code that indicates the nature of the exception, which can be
end-of-file, end-of-medium, remote (device) error as well as less expected
exceptions such as non-existent file, permission denied, and file unavailable.
Standard procedures are defined for printing error messages and invoking
program termination depending on which exception code is returned.

Exceptions occurring during the execution of other operations are indicated
by an exception code returned by the operation (which was not shown for
simplicity). The Open operation takes an optional parameter that is set to
indicate the exception when it fails; a null file value is returned. If the optional
parameter is omitted, Open performs the default exception action of printing a
message and terminating the program.

Block-Oriented Abstract I on

In the block-oriented abstraction, a file is a sequence of blocks of some
maximum size, celled the block size of the file.

block_aize = Block_aize(file)

returns the block size in bytes of the local file. Associated with the local file
structure is a current block location.

block_location = Block_location(file)

All operations are on blocks.

count = Read(file, buffer, n)

reads a maximum of n bytes into the buffer from file and returns the number
of bytes actually reed. The bytes are read from the beginning of the block at
the current block location of the file. The number of bytes read may be less
than the number requested for several reasons including encountering the
end-of-file, encountering the end-of-line (in the case of terminal input), as well
as particular error condl ti ans.

count = Write(file, buffer, n)

writes the first n bytes from buffer to the file starting at the beginning of the
current block and returns the number of bytes actually written. If either Read
or Write return a count less than that specified in the cell, the procedure
File exception returns the exception code indicating the reason. It is an error
to read or write with a byte. count larger than the block size if the file is not
MULTI BLOCK.

Seek_block(file, block_offaet, origin)

changes the current block location to that specified by block offset and
origin. Note that neither Read nor Write change the current blocklocation.

-24-

send

sender reply

\
\ ·

reply to \
forwarded \
message

\

receiver 2

I

receiver I

I

/
~orwarded

/ message

FIG. I Message Communication

request

client I reply server

request

reply

FIG. 2 Two Levels of Object- based Communication

client 2

Views:
physical disks

file instance
data blocks

t sec ors

k

k+I

k+2

k+3

k+4

•

•

•

k+I

--
~

~ --

~ --

logical disk file
I . I d og1ca recor s

0 -
I -,- --

, 2 -
3

-
4

-
•

~

•

•

h

u
I

.
J

FIG. 3 Different Views of the Same Data.

text file
t t r ex mes

0

I

4

5

6

•
•

•

m

--2
--3

printer
server

FIG. 4

command program I /0

mail
server

pipe
server

storage
server

session
server

terminal
server

I/0 Server Dependencies

command
interpreter

VIRTUAL
TERMINAL/
NETWORK

SERVER

X·25
server

client
CREATE- INSTANCE 1--------------,11 name server
with symbolic name

reply to
CREATE-INSTANC
request.

I request forwarded
I with file specification

substituted. -·

1/0 server

FIG. 5 Symbolic Name Mapping by the Name Server.

storage
server

text
editor

text
formatter

command
interpreter

pipe
server

terminal
server

overstrike
filter

printer
server

FIG. 6 Process Interaction for a Sim pie Command Pipeline.

