
* *
* SASL *
* (St. Andrews Static Language) *
* Reference Manual *
* - t~ *
* D.A. Turner *
* Department of Computer Science *
* University of Kent at Canterbury *
* *
* edited and adapted for MTS *
* by *
* Harvey Abramson *
* *
* *
* *

October 1981

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia V6T 1W5

j' ,.

SASL Manual

Contents

I Introduction

I I Objects

I I I Lexical conventions

IV Expressions

V Definitions

VI Predefined functions

VII Out:put

VIII Summary of SASL syntax,

Appendices

I

II

III

Some SASL exercises

Solutions to exercises

Running SASL under MTS

Notice

etc.

2

5

9

1 1

1 7

20

23

25

27

29

33

SASL, the language and system described here, was first
implem~nted in C under UNIX by Dr. :William F. Campbell at . the
University of St. Andrews in Scotland. It has been translated
into BCPL and modified for MTS by Prof. Harvey Abramson of the
Department of Computer Science at the University of .British
Columbia. Please bring any bugs in the BCPL-MTS implementation
of InterSASL, or any discrepancies with this ,manual, to my
attention.

Prof. Harvey Abramson

2 SASL Manual

I INTRODUCTION

SASL is a mathematical notation for describing certain
kinds of data structure. The name SASL stands for "St Andrews
Static Language". "Static" because unlike a conventional
programming language, SASL contains no commands and a data
structure, once defined, cannot be altered. For more
information about the advantages of this kind of language and
its relationship to other languages the reader is referred to
the list of references on page 4.[1].

This manual is intended simply to describe SASL notation ,
to motivate its use by some elementary programming examples and
to serve as a reference manual for the SASL user. The reader
using this document as a reference manual should turn to section
VIII where the syntax of SASL is summarised. The first time
reader is advised to read sections I _to VII in order at least
once and then attempt some of the exercises in Appendix I.

In SASL a "program" is an expression describing some data
object - the response of the system is to print a representation
of the object. For example

2 + 3

is a SASL program, to which the system responds by printing

5

A slightly more complicated example will serve better to
convey the flavour of the language

fac 4

where fac O =

fac n = n * fac (n - 1)

The system responds to this expression by printing 24 (the
factorial of 4). The value of such a construction (called a
where-expression) is the value of the expression before the
"where". Unlike the case of "+" in the first example, a
knowledge of the factorial function is not built into the SASL
system so the expression "fac 4" is followed by a definition of
the meaning of the name "fac". Definitions of the meanings of
any number of names can be given following a ~where". Each
definition consists of one or more clauses.

Each
statement,
the above
factorial

clause of a definition can be read as a true
an equation~ involving the entity being defined. In
example there are two equations involving the

function. The "n~ of the second clause stands for an

SASL Manual 3

arbitrary
specially
equations
indeed it

number (excluding zero which has been dealt with
by the first equation). Mathematically the two

are sufficient to define t he factorial function
can be regarded as the solution of the equations.

Computationally each clause can be read as a substitution
rule asserting that the form on the left, wherever it occurs,
should be replaced by the form on the right. Using the clauses
in this way on the expression "fac 4" yields in succession the
expressions:

4 * fac 3

4 * (3 * f ac 2)

4 * (3 * (2 * f ac 1) }

4 * (3 * (2 * (1 * f ac O)))

4 * (3 * (2 * (1 * 1)))

which gives the value 24. It can be shown that the result
obtained by using such clauses as substitution rules · is always
the same as that obtained by finding the mathematical solution
of the clauses considered as equations.

In SASL by the use of where any eipression can be . followed
by the definitions of the meanings of one or more names. So for
example the expression to the right of an"=" in a definition
can itself be a where-expression. In this way expressions of
arbitrary complexity can be constructed. For example ·

binomial (n,3) + binomial(n,4)

where n = 10

binomial (n,r) = fac n / (fa~ (n - r) * fac r)

where fac O =

fac n = n * fac (n - 1)

1 0
gives the sum of the binomial coefficients C +

3

10
C

4

4 SASL Manual

Acknowledgements

No particular originality is claimed for SASL - indeed it
was a design aim that the notation should be as "standard" as
possible - the debt to Landin and Strachey will be particularly
apparent.

I would like to express my thanks to my colleagues Antony
Davie and Michael Weatherill for their advice and encouragement,
numerous St Andrews Honours students for their patience and
constructive criticism in trying out earlier versions of SASL
and Maureen Saunders for typing this manual.

DA Turner December 1976

References

[1] W.H. Burge, Recursive Pr ogramming Techniques,
Addison-Wesley, 1975.

[2] William Campbe l l, An Abstract Machine for a Purely
Func t ional Language, Dept. Of Comput er Science - University of
St . Andrews, 1979. ·

[3) Peter Henderson, Functional Programming - Application and
Implemen t ation, Prentice-Hall, 1980.

[4] D.A. Turner,~ New Implementation Technique for Applicative
Languages, Software-Practice and Experience, vol. 9,31 - 49,1979.

[5] D.A. Turner, The Semantic Elegance £i Applicative
Languages, Proceedings - ACM Conference on Functional
Programm i ng Languages and Architecture, 1981.

SASL Manual 5

II OBJECTS

The data items which SASL expressions describe are called
throughout this manual objects. Every SASL expression has an
object for its value. An expression has no other significance
than as a way of talking about this object - it can be replaced
by any other expression which has the same value without
affecting the value of any larger expression of which it is a
part. This property of expressions is called referential
t r anspa ren c y. A SASL program is an expression and the oµtcorne
o f t he program is to print the object which i t has for its

'' :· : ! •

value.

There are 6 types of object in SASL's universe of
discourse:

(a) numbers - 1e the integers, positive, negative and
zero

eg O 13 -6 128

(b) truthvalues - there are two of these,

true and false

(c) characters - these are
device that quotes
following it

eg %A %1 %%

written using
the character

"%" as a
immediately

Not conveniently written in this form are the
control characters for space, newline, newpage and
tab, written instead

sp nl np tab

respectively.

(d) lists - a list is an ordered set of objects called
its components.

eg 1 , 2, 3

is a liit of length 3, all of whose components are
numbers. It is also permitted to have infinite
lists - for example the list of all prime numbers

2, 3, 5, 7, 11, 13,

is a valid
exercises 1, 8,

SASL
9) • .

...
object. (See Appendix I ,

6 SASL Manual

(e) Functions - a function is a law of correspondence,
assigning to each object in SASL's universe of
discourse a corresp0nding object called the value
of the function on that object, or if you prefer,
the "output" of ' the function given the
corresponding object as "input". For example the
"fac" of the introduction is a function which
assigns to each non-negative integer its factorial
and gives the value undefined on all other
objects.

(f) undefined finally there is
undefined which is the value of
non-terminating expressions like

2 + false

or

fac (-3)

a unique object
ill formed or

It is also
inadequate
definition

produced by
information.

definitions which give
For example the

X = X

gives the name "x" the value undefined.

Completeness

All six types of object have the same "civil rights" :

Any object can be named
Any object can be the value of an expression
Any object can be a component of a list
Any object can be given to a function as its input
Any object can be returned by a function as its output

So among the possibilities are - a ii~t of lists, a list of
functions, a function which returns a list, a function which
returns a function.

Note that the different types of object can be mixed
freely. For example

e > b -> true 33

equivalent to the (illegal) Algol

if a> b theri true else 33

is a perfectly legal SASL expression. In the same spirit the
components of a list need not all be of the same type. So for

SASL Manual 7

example

1, true, fac(-3), (1, 2, 3)

is a list whose four components are respectively - a number, a
truthvalue, undefined and a list. Similarly a given function
need not always return the same type of object as output.
(Though given the same object as input a function must always
return exactly the same object as output, because of the static
nature of the language.)

Functions with~ than one input

Every function expects one object as input and gives~
object as output. Either of these objects, however, could be a
list. This gives us one way (due to P J Landin) of representing
a function of several arguments - for example the definition

f(x,y) = X + y

makes fa function which expects as input a 2-list and returns
the sum of its components. So

f(2 , 3) is 5

Notice by the way that we could give the input list a name by a
definition like

L = 2, 3

and then write instead the expression

f L

and this also would have the value 5.

Note on syntax - The reader should understand why we need the
brackets in f(2, 3). Not to make a list - that is done by the
comma. Nor to denote functional application mere
juxtaposition does that. They are there because functional
application binds more tightly than comma without them we
should be applying f to 2 only and not to the whole list.

This method of representing a function of several inputs
allows us to represent a function with a variable number of
inputs. For example we can define a function "sum" (see section
VI) that takes a list of~ length and sums its components.
Notice also that we can represent a function with several
outputs (even a variable number of outputs) by having it return
a list. So for example, f, defined by

f(a, b) =a+ b, a - b

returns as a pair the sum and difference of its inputs.

8 SASL Manual

Curried Functions

Another method of representing a function of several inputs
(named after the American logician H B Curry but due to
Schonfinkel) uses a function-generating function. As mentioned
earlier, any object can be returned by a function as its value.
In particular, a function-generating function may be defined,
ie, a function which returns another function as its value. For
example, consider the definition

f X y = X + y

f is a function that when applied to an input, "x", returns
another function that when applied to an input, "y", returns x +
y. So

f 1 2 is 3

Note that f 1 2 is read as (f 1) 2 and that f 1 has a meaning in
its own right - it is the function that adds one to things. In
fact the definition of f could have been written more explicitly
as

f X = 9

where g y = x + y

Curried functions like this f are extremely convenient and
provide the normal method in SASL for representing functions of
two or more arguments. For example given the definition

dooda x y z = (y + z)/x

dooda is a curried function of three arguments, with eg

dooda 3 5 7

giving the value 4.
less than its full
specific" version
For example

A curried function can always be applied to
quota of arguments, to produce a "more
of the function requiring fewer arguments.

dooda 2

is a (curried) function ot two arguments that could be called
"average".

SASL Manual

III LEXICAL CONVENTIONS

Textually expressions are built up from units called
s mbols. There are four kinds. of basic symbols: names
"fac" , constants (like "4"), operators (like"+") and
special symbols called delimiters

where ->

9

basic
(like
seven

A name is any sequence of letters, digits and the
beginning with a letter. Examples

" " symbol

X X 1 fac a_rather_long_name

The operators and the various kinds of constant are listed in
section VII .

A basic symbol can consist of more than one character but
is regarded as a single textual entity. For a list of "reserved
words", ie names especially reserved for use as basic symbols,
the reader is referred to Appendix III.

Layout

Certain characters, called layout, are ignored by the
system and can be placed freely between basic symbols to make
programs readable. Layout consists of spaces, newlines and
comments. A comment consists of two vertical bars and all
symbols to the right on the same line, thus:

11 this is a comment

Layout cannot occur inside a basic symbol, except a string
constant where it is not ignored but taken as part of the
message being quoted. The presence of layout between basic
symbols is optional, subject to the following constraints:

i) Adjacent symbols must be separated by at least one
space wherever they would otherwise constitute an
instance of a single, larger, basic symbol. For
example in

fac 4

the space between the name and the constant is
necessary because fac4 would not ·be read by the system
as a name followed by a constant but taken as a single
name.

10 SASL Manual

ii) The following offside rule must be observed:
"Every symbol of ' an expression must lie below or to
the right of the first symbol of the expression" So
for example 2 + 3 can be written as

2+3 11 all squashed up, or as

2 all
+ spread

3 out, but not as

2 +
3

11

the 3 is OFFSIDE and will be
rejected by the system.

Finally note the convention that the delimiter ~ can be omitted
provided a newline is taken instead. So a-> b; c will often
be written

a-> b
C

Similarly the clauses following a ~here, which are supposed to
be separated by semicolons (when there is more than one clause)
are usually written one per line with the semicolons omitted.

SASL Manual 11

IV EXPRESSIONS

Simple Exoressions

A simple expression is a name or a constant. Also any
expression no matter how large and complicated (for example a
where - expression) can be en~losed in brackets without altering
i ts meaning and then becomes a simple expression. Brackets are
not used for any other purpose.

Note on syn t ax The first time reader of a language manual often
finds-himself asking the question "can I ... ?" eg "can I write
a conditional expression as a component of a list?", "can I
write a where-expression as the argument to a function?". The
above rule about bracketing says that the answer to such
questions in the case of SASL is always yes. If the syntax
(summarised in section VIII) appears at first glance to forbid
it, this merely means that the offending sub-expression needs to
be enclosed in brackets.

Combinations

If two simple expressions are juxtaposed, this represents
the application of a function to an argume~t (input). For
example

f X

denotes the result of applying the function f to the object x.
Notice that no brackets are needed - f(x) is also legal but so
is (f)x or (f ~) they all mean the same extra brackets can
always be inserted in an expression to emphasise grouping
without altering the meaning. In f(x + 1) however the brackets
are necessary because x + 1 is not a simple expression.
Functional application always associates to the left, so

f X y

means that the function f is applied to the object
as a result a function which is then applied toy.

(f x)(y)

to put in some unnecessary but harmles~ brackets.

Operator Expressions

example 13 * (x + f y)

x, yielding
Thus:

Operator expressions are built up out of simple expressions
and combinations using various operators. Different operators
have different binding powers, as is customary in mathematical
notation. For example"*" is more binding than"+" whence the
need for brackets in the above example. The operators are

1 2 SASL Manual

listed in section VIII together with their binding power and
include the arithmetic operators + - */rem("/" is integer
division), the relational operators>>= = ~= < <= and the
logical operators~ & I ("I" is inclusive "or"). There is a dot
operator for functional composition; i.e., (f.g) xis the same
as f(g x) - the dot is the most binding operator. In addition
there are two special operators on lists, : and++ , which are
discussed later. With the exception of these last two, all
operators associate to the left, so for example a - b - c means
(a b) c. Note also that functional application is more
binding than any operator so 1n

f X + 1

f is being applied to x, not to x + 1.

Equality

Notice that the sign"=" which has already been encountered
as a delimiter in definitions is also used as an operator in
expressions. (This is an example of two different basic symbols
being represented by the same character - fortunately the system
is always able to tell by context which use is intended.) Thus
in the definition

delta= i = j -> 0 ; 1

the second "=" is clearly be i ng used as a relational operator.
In general each operator expects operands of a particular type -
eg numbers for the arithmetic and relational operators,
truthvalues for the logical operators - and yields the value
undefined otherwise. The equality operators= and~=, however,
are defined between arbitrary pairs of objects. Objects of
different type are always unequal. E.g., the following
expressions al l take the value true:

2 + 2 = 4 false~= true

~= false %A~= %a (1,2,3) = (1,1+1,1+1+1)

Notice in the last example that equality between lists means
element by element equality. Lists of different length are
always unequal.

Logically, two functions are equal if, for every object in
SASL's universe, when they are both given the object as input
they both give the same output. Unfortunately this is not a
decidable question, since there is an infinity of objects to be
tested as inputs. Therefore the expression

f = g

where f and g are both functions takes the value undefined, (but

SASL Manual 1 3

of course if only one of them is a function the result will be
false).

Finally note that = and ~= cannot be used to test for
undefined, i.e.,

a = b a~= b

are both undefined if either a or b is undefined. It is a
fundamental result in the theory of computation (the Halting
theorem) that there can be no effective test for undefined.

List Exoressions

Operator expressions may be separated by commas to denote
lists.

Example

a, b, a+ b, a - b

Note that the list is created by commas and that brackets are
not needed. In SASL brackets are used only to force (or to
emphasise) grouping. Note also that commas are less binding
than any operator.

The components of a list are accessed by applying the list
to a number: 1 for the first component, 2 for the second, etc.
So if "L" names the list

1 I (2, 3 I 4) , (5, 6)

L is

L 2 is 2, 3 I 4

L 3 is 5

L 4 is undefined

L 3 2 is 6 (remember the left association rule)

The list with no components
Spe!cially:

the empty list

() I I Pronounced "nil"

is written

A special notation is also needed for singleton lists. Thus

2,

is a list of length one, whose first and only member is the

14 SASL Manual

number 2.

A string is just a list all of whose components happen to
be characters. So

'hello"
is just shorthand for

%h, %e, %1, %1, %0

and the empty string '" is just the same as the empty list ().

There are two useful operators on lists, namely
("prefix") and++ ("concatenate"). Examples of prefixing:

1 : (2, 3, 4) gives 1, 2, 3, 4

%h : 'ello" gives 'hello"

a:() gives a,

(): (1, 2, 3) gives (), 1, 2, 3

(1 ,2) : (3,4,5) gives (1 ,2),3,4,5

Note that the left operand of ":" can be any object, that the
right operand must be a list, and that its action is to make the
list one component longer by prefixing the given object as its
first component.

Examples of concatenation

(1 ,2) ++ (3,4,5) gives 1 ,2,3,4,5

(1 ,) ++ (2, 3)

'hel" ++ 'lo"

gives 1,2,3

gives 'hello"

() ++ L = L ++ () = L provided Lis a list

() ++ () = ()
'

Notice that both operands of "++" must be lists, or else the
result is undefined.

Both these operators associate to the right (no other
operator does). So·

1 : 2 : (3 4) gives 1,2,3,4

'ab"++ %c 'de" gives 'abcde"

SASL Manual

Conditional Expressions

These are of the form

condition-> object1 ; object2

and the value is object1 if condition is
condition is false, and undefined otherwise.

X < 0 -> - X · ; X

denotes the "absolute value" of x.

true, object2
So for example

1 5

Syntactical~y, the condition can be represented by an
operator expression and each alternative by any expression
except a where-expression (i.e., a where-expression would have
to be enclosed in brackets if it occurred as the arm of a
conditional). So for example the second arm of the conditional
could be another conditional and so on, allowing the often
useful form:

condition1 -> objectl

condition2 -> object2

conditionN -> objectN

object

Note that the layout here obviates the need for any semicolons.

where-Expressions

Finally, any expression can be followed by "where
definition~" as explained in the introduction. There can be any
number of definitions, each consisting of any number of clauses.
Each name defined can be ~sed throughout the where-expression,
with the given meaning, unless it is redefined in an inner
where-expression, in which case its use for a different purpose
in the inner where-expression in no way interferes with its use
in the rest of the expressi6n. So for example

a+ (a+ a

where a= 2)

where a= 1

has value 5, since the first "a" has the value 1 and the next

1 6 SASL Manual

two have the value 2 .. The first "a" is said to be outside the
scope of the inner whe r e. It should be stressed that the
mean i ng of a given occurrence of a name depends on its textual
posi t ion. So

1 + (f 1 where y = 10)

where

f X = X + y

where y =

has the value 3 (no, not 12).

Outside the scope of any where all names have the value
undefined, except those defined in the so- called "predefined
environment", which denote standard functions (see section VI).
By means of directives of the form "def definitions?" the user
can extend the predefined environment (see Appendix III).

When mo r e t han one clause is used to define a single
f unction the clauses must be grouped together; furthermore their
order is sign i fican t in that during substitution clausal forms
are matched in the order they are given.

The order of definitions of distinct objects
where-expression is of no significance.

1n a

i.
I

SASL Manual 1 7

V DEFINITIONS

Multiple Definitions

The simplest kind of definition sets a single name equal to
an expression, as in

X = 13

This is a special case of a more general form

"namelist" = "expression"

where "namelist" is a construction of arbitrary complexity built
from names and constants using commas, brackets and the operator
~:". The effect of the definition is that the names on the left
are given values such that the equation becomes a true one. (If
there are no such values the names are given the value
undefined).

Examples

1)

2)

3)

4)

5)

x, y, z = 1, 2, 3

has the same effect as the three simple definitions

X = 1; y = 2; Z = 3

x, y = a < b -> 1 ,- 2 . -1 -2 ,

has the same effect as

X = a < b -> 1 - 1
y = a < b ... ,> 2 -2

(a,b), c, d = L
I I

L must be a 3-list
with L 1 a 2 - list

has the same effect as

a = L 1; b = L 1 2; c = L 2; d = L 3

a : b: c = 'hello"

has the same effect as

a= %h; b = %e; c = 'llo"

1,x,x = L

here L must be a 3-list with L 1 = 1 and L 2 = L 3 in
which case the definition has the effect of

X = L 2

l 8 SASL Manual

Function-form Definitions

These consist of one or more clauses of the form

"function form" = "expression"

where "function form" consists of the name of the function being
defined followed by one or more formal parameters. Each formal
parameter is a name, a constant or a "namelist" enclosed in
brackets. The names occurring in the formal parameters are not
being defined but are purely local to the clause, standing for
arbitrary input objects.
Examples

1)

2)

3)

I X = X

Defines the "identity function" - applied to any object
(even itself!) It gives the same object back as output.

f O = 1
f 1 = 2
f 2 = 0

Defines f to be "add 1 modulo 3".

A(O,n) = n + 1
A(m,O) = A(m-1 ,1)
A (m, n) = A (m- 1 , A.(m, n- 1))

Defines "Ackerman's function". Note that the last clause
"(m,n)" stand for an arbitrary pair of inputs excluding
those which are dealt with specially by the other two
clauses. (The order in which the clauses are written is
relevant.)

Section VI, where the standard functions are defined,
should be read carefully for many more examples of SASL function
definitions.

SASL Manu·al 19

A Note on Recursion

As the reader will have gathered from previous examples in
SASL definitions can be rec~rsive. Mutual recursion is also
permitted; eg,

oddx= x = 1 I even (x-1)

even x = x = 0 I odd (x-1)

Not only functions
recursively. For example

but also lists can be defined

X = 1 : X

makes x the infinite list 1,1,1, .•. (Any infinite list whose
structure can be described recursively is permitted in SASL.)
Another e~ample of this kind of "immediate" recursion is to
define a function f by

f = H f

where His a function-generating function. For example if H was
defined by

H g n = n = 0 -> 1 ; g (n-1) * n

then f would be the factorial function. Immediate recursion
(and immediate mutual recursion) is always permitted in SASL.

20 SASL Manual

VI PREDEFINED FUNCTIONS

The following definitions establish the predefined
environment of standard functions. Where a function cannot
conveniently be defined in SASL its defining expression is given
as a comment in English.

hd (a : x) = a 11 so hd x is just x 1 (provided x is a list)

tl (a : x) = x

So hd gives the first component of a list and tl removes the
first component from the list. For any non-empty list X'
(hd X tl x) = x.

number X = 11 if X is a number . then true else false

char X = II likewise, characters

logical X = 11 likewise, truthvalues

list X = 11 likewise, lists

function X = 11 likewise, functions

I I
So for any x which is not undefined exactly one of the above
five functions gives true and the other four give false.

let .ter X = X = %A X = %B ...
X = %a X = %b

digit X = X = %0 X = %1

abs X = X < 0 -> -x X

length () = 0
length (a : x) = 1 + +ength x

reverse{)=()
reverse (a:x) = reverse x ++ (a,)

sum() = 0
sum (a x) =a+ sum x

product () = l
product (a x) =a* product x

and()=
and (a

or () =
ot (a

true
x) = a & and x

false
x} = a I or x

X = %Z
X %z

I X = %9

SASL Manual 2 1

count a b = a > b -> ()

a count (a + 1) b

I ! So count a b is the list a, a + 1 , ... , b

from n = n from (n + 1) 11 ie the infinite list n, n+ 1 , n+2, ...
map f () = ()

Jnap f (a x) = f a . map f X .
11 So map f (a 1 , ... , an) gives f a 1 , ••• , f an

for a b f = map f (count a b)

zip X = hd X = () -> ()
map hd X . zip (map tl x) .

So zip ((al, ... , an), (bl, ••• , bn), ••. , (z1, ..• , zn))
gives ((a1, b1, ... , z1), ... , (an, bn, •.. , zn))
eq zip('abc", '+++", '123") gives ('a+l", 'b+2", 'c+3")

while f g x = f x -> while f g (g x)
X

until f g x = f x -> x
un t i 1 f g (g x)

11

n
while f g x = g x for the least n such that

n
f (g x) is false.

The next three functions rest on the · idea that a 1 i st in which
there are no repetitions can conveniently be u~ed to
represent a set.

member ()a= false
member (a : x) a= true I I note the repetition of "a" in the form.
member (a x) b = member x b

I I member set xis true iff x occurs in the list, set~

union () y = y
union (a x) y = member y· a-> union y x

I I insures against repetitions
a : union x y

intersection () y = ()
intersection (a x) y = member ya-> a : intersection x y

intersection x y

code ch= I I the numeric code for character ch
. implementation dependent

22

decode ch = I I the character whose code is n
implementation dependent

SASL Manual

digitval d the digit corresponding to the charact~r d,
eg, digitval %3 gives 3

spaces O = ()
spaces n = sp spa c e s (n - 1)

width x = x =true-> 4
x =false-> 5

II

X = () -> 0
list x -> width
char x -> 1

(hd x) + width (tl x)

number x -> x < 0 ->
X >
1

'unknown width"

9 ->
+ width
+ width

-x)
X / 10)

So width x the number of characters needed for printing x.
See section VII.

Ljustify n x = x, spaces (n - width x)

Rjustify n x = spaces(n - width x), x

Cjustify n x = spaces L, x, spaces R
where L, R = D/2 , D - L

D = n - width x

Ljustify n x left-justifies x when printed in a field of total
print-width n: Rjustify and Cjustify likewise but right- and
centre-justified respectively.

show ()
show nl
show sp
show tb
show X

=
=
=
=

=

' ()"
'nl"
'sp"
'tb"

char
list

X

where

show x? lets you see
the structure of x.
See Section VI I - OUTPUT.

X -> %% I X
X ->
haschars 6 X -> 0 ' . showstr X -ti .
%(. show (hd x) . showlist (tl . .

haschars Ox= true
haschars n () = true

x)

haschars n (a : x) = char a & haschars (n ~ 1) x
showlist () = %) ,
showlist (a : x) = %, : show a : showlist x
showlist x = ')++" show x
showstr () = %',
showstr x = char (hd x) -> (hd x) : showstr (tl x)

%" : '++" : show x

SASL Manual 23

VII OUTPUT

The object which is the value of a program is printed using
the following conventions.

If it is a character it is set down in the first print
position of a single, otherwise blank, line of output. If it is
a number it is printed as a string of decimal digits, preceded
by a "-" if negative. If _it is a truthvalue it is printed as
true or false. Each of these objects is printed occupying the
minimal number of print positions with no preceding or following
layout.

An attempt to print a function results in a warning message
(consisting of the name of the function in angle brackets< ••• >)
since a function is an infinite object with np standard external
representation.

An attempt
an error message
the system has
expression whose

to print the undefined object results either in
or in a failure to produce any output (because

gone into a loop trying to evaluate the
value 1s undefined).

A list .is printed by printing each of its components in
turn, from left to right, starting with the first and without
inserting spaces, commas or any other delimiters between the
components. This has the effect of "flattening out" all
structure, so each of

1, 2, 3, 4

(1,2), (), (3,4)"

I 1234 II

produce the same output when printed, namely:

1234

So spaces and newlines are not automatically inserted in
the output. It is up to the user to include the layout
characters he wants at relevant points in the structure that is
the final value of his program.

The user will find, after a little practice, that this
scheme gives great flexibility in the control of layout. The
functions Ljustify, Rjusti{y and Cjustify (see section VI) are
useful here.

24 SASL Manual

Examole. The following program prints a table of factorials

title, for 1 7 line

show
~

where
title= 'A TABLE OF FACTORIALS", nl
linen= 'factorial", n, ' is", fac n, nl
fac O = 1
fac n = n * fac (n - 1)

This produces the output

A TABLE OF FACTORIALS
factorial 1 is 1
factorial 2 is 2

factorial 7 is 5040

The user can prevent any particular structure from being
"flattened" on printing by using the standard function show -
for any list structure x, show x prints out a full description
of x (which could be read back in again to create the object x).
In fact it works (see section VI) by inserting extra characters
into the structure of x so that when show xis flattened the
result is an expression describing the structure of x.

In general all output is directed to the terminal at which
the SASL program was typed in. The user has the option of
redirecting the output for the SASL program to a named file (see
Appendix III).

SASL Manual

VIII SUMMARY OF SYNTAX ETC

<expr> ::= <expr> where <defs> <condexp>

<condexp> .. -.. - <opexp> -> <condexp> ; <condexp> I <listexp>

< 1 i stexp> : : = <opexp>·, .•. , <opexp> I <opexp>, I <opexp>

<opexp> ::= <prefix><opexp> I <opexp><infix><opexp> I <comb>

<comb> ::= <comb><simple> I <simple>

<simple> : : = <name> I <constant> I (<expr>)

<defs> ::= <clause> ; <defs> / <clause>

<clause> ::= <namelist> = <expr> I <name> <rhs>

<rhs> ::= <formal><rhs> <formal>= <expr>

<namelist> : := <struct>, .•. ,<struct> I <struct>, I <struct>

<struct> ::= <formal> : <struct>

<formal> ::= <name> / <constant>

<formal>

(<namelist>

25

<constant> ::= <numeral>

<numeral> ::= <digit>*

,<char-const> I true I false I () I <string>

- <digit>* I I * means 1 or more

<char-const> ::= %<any char> I sp I nl I tab

<string> ::= '<any message not containing unmatched string quotes>"

Note: a semi-colon ; may be replac~d by a newline in
<condexp> and <defs>.

Operators in order of increasing binding power

++ infix (right associative)
I infix
& infix
-, prefix

> >= = -,= <= < infix
+ - infix
+ - prefix

* I rem infix
infix

26 SASL Manual

List of predefined functions ---
hd tl number char logical list
function letter digit abs length reverse
sum product and or count from
map zip while until member union
intersection code decode digitval spaces Ljustify
Rjustify Cjustify show

SASL Manual 27

APPENDIX I SOME SASL EXERCISES

Solutions to these problems are given in Appendix II. None of
them require more than a dozen lines of SASL for their solution.
They have not been chosen to be specially difficult or tricky
but simply to illustrate some of the basic techniques used in
SASL programming.

1) Define an infinite list of the Fibonacci numbers

fib= 1, 1, 2, 3, 5, •••
except for the first two,
each number is the sum of
the previous two

2) Define a function "sort" which takes a list of numbers and
sorts it into ascending order. ,

3) Write a program to print the moves for Towers of Hanoi (ask
someone if you do not know the rules) with 3 discs.

4) Write a program to print the following table:

A TABLE OF POWERS

N
1
2

N**2
1
4

N**3
1
8

N**4
1

1 6

N**5
1

32

etc where N runs up to 10 and the table is to fill
_a page of width 100.

5) Define a function "perms" which lists all the permutations
of a given list.

6) A (curried) function of n arguments can
tautologous if it returns true for every one
possible combinations of truth-valued arguments.
function "Taut" to test for this.

be called
of the 2**n

Define a

7) If f is a function that expects a 2-liat, then

curry f

where curry f x y = f(x , y)

is a curried function of two arguments with the same output.
Write a more general function, CURRY, such that if f is a
function that expects an n-list then

CURRY n f

will be the corresponding function of n arguments.

28 SASL. Manual

8) Write a program which will print all the prime numbers 1n
order, starting with 2. (Use the sieve of Eratosthenes.)

9) Write a program t .o produce, the following output: .
The· 1st line is :
'The 1st line is :"
The 2nd line is:
''The 1st· line is :""
The 3rd line is:
'The 2nd line is:"

etc

1 0) Write a prog•ram to find a way of plac: ing 8 queens crn a chess
board so that no queen is in check from another.

SASL Manual 29

APPENDIX II SOLUTIONS TO EXERCISES

In some cases several solutions are given to
different techniques.

illustrate

1) Fibonacci

2)

a) I I an easy way, u~ing an auxilliary function f

fib= f 1 1
fa b = a : f b (a+ b)

b) 11 by immediate recursion

fib .= 1 : 1 : map sum (zip (fib, tl fib))

Sorting

a) II insertion sort (simple but inefficient)

sort () = ()
sort (a . . x) = insert a (sort x)
insert a () = a,
inser't a (b . xJ = a < b -> a b X .

b insert a X

b) 11 quicksort

sort () = ()
sort (a x) = sort m ++ a . sort n .

where m, ri = split a X () ()
split a () m n = m, n
split a (b x) m n = b < a -> split a X (b

split a X m (b . n) .
c} 11 treesort

sort x = flatten (maketree x () }
maketre~ (} t = t
maketree (a : · x) t = maketree x (add at)
add a (} = a, (} , ()
add a (b, L, R) = a< b -> b, add a L, R

b, L, add a R
flatten()=()

m)

flatten (a L , R} = flatten L ++ a flatten R

n

30 SASL Manual

3) Towers of Hanoi

hanoi 3 'abc"
where
hanoi O (a,b,c) = ()
ha no i n (a , b , c) = ha no i (n - 1) (a , c , b) ,

4) Table of Powers

'move a disc from ",a,' to ",b,nl,
ha no i (n - 1) (c , b, a)

title, captions, for 1 10 line
where
title= 'A TABLE OF POWERS", nl
captions= map f (%N: for 2 5 caption), nl
caption i = 'N**", i
f = Ljustify 20
linen= map f (for 1 5 (powers n)), nl
powers n = f n

where f x = x: f (n * x)

5) Permutations

1

1 I There are umpteen ways of defining this, but here is one
of the shorter ways.

perms () = () ,
perms x = f x
where
f (a : y) = map (cons a) (perms y) ++ g (y ++ (a,)) ·
9 y = X = y -> () ; f y
cons x y = x : y

6) Taut

a)

I I
This would be a much harder problem if f wasn't
curried.

Taut O t = t
Taut n f = Taut -(n-1) (f true) & Taut (n-1) (f false)

b) I I a refinement - we don't even need to known

Taut f = logical f -> f
Taut (f true) & Taut (f false) .

SASL Manual

7) CURRY

I I This is a bit subtle, although its only 3 lines long

CURRY Of= f ()
CURRY n f x = CURRY (n - 1) (pa f x)
pa fax= f (a : x)

3 1

pa means "partially apply". The key step here was inventing
"pa" which takes a function which expects an n-list and
freezes its first argument creating a function that wants an
n-1 list. The reader should satisfy himself that CURRY as
defined obeys the equation CURRY n f xl ••• xn = f (xl ••• xn)
for arbitrary n, as required.

8) Primes

show primes
where
primes= sieve (from 2)
sieve (p: x) = p: sieve (filter p x)
filter p (a : x) = a rem p = 0 -> filter p x

a : filter p x

9) Recursive display of lines

zip (L, newlines)
where
L = f 1
newlines= nl : newlines
f n =('the", n, ord n, ' line is :") :

(%', L n, %") : f (n + 1)
ord = 'st"; ord 2 = 'nd"; ord 3 = 'rd";
ord n = n >= 10 -> ord (n rem 10)

'th"

10) Eight Queens

I I One method

displ soln
where
displ b = zip ('rnbqkbnr" , b, spaces 8)
soln = until full extend()
~xtend b = until safe alter (addgueen b) I I bis a board
addqueen b = 1 : b
full b = length b = 8
alter(8 : b) = alter b j j backtrack
alter(g : b) = g + 1 : b
safe(g : b) = and (for 1 (length b) nocheck)

where nocheck i = g ~=bi & abs(g - bi) ~= i

32 SASL Manual

I I another method

hd (solns ()) 11 hd because we want only the fir st solution
where
solns q b = q > 8 -> ()

safe g b -> length (g : b) ~ 8 -> displ (q: b),
solns 1 (q: b) ++ solns (g+l) b

solns (q+1) b
safe g b = and (for 1 (length b) noch~ck)

. where nocheck i = q ~=bi & abs (g - bi) ~= i
displ b = zip ('rnbqkbnr" , b, spaces 8) , nl -

SASL Manual 33

APPENDIX III RUNNING SASL UNDER MTS

The SASL system that runs under MTS is interactive and
allows the user to maintain a global environment of defined
names and to evaluate SASL expressions interactively within this
environment.

1) Ente r ing the SASL System

To "login" to sasl type

$run sasl:intersasl

Normally, SASL
contains just a
wish to start
SASL predefined

establishes a skeleton environment that
few system defined names. Should the user
with an environment containing all of the

functidns (see section VI) he may type

$run sasl:intersasl par=sasl:sasl.prelude

instead. In fact, he may start with any predefined
environment that he has prepared using a dump command (see
below) by typing

$run sasl:intersasl par=filename

where the named file contains the prepared environment.

InterSASL currently runs in a space of 250,000 "SASL
cells", or in 750,000 words of memory.

2) Typing Rules

Reserved words (eg where) are typed in without underlining.
The following words all have special meaning either in SASL
system commands or in the SASL ·language proper. Therefore
they may not be used as names.

where rem true false nl
tb def display echo noecho
off mess nomess delete dump
trace gc nogc help to
sp get load definitions

34 SASL Manual

3) SASL System Commands

Once logged into SASL the user may type in any of the
following commands.

a) help
- list a summary of SASL commands.

b) Maintaining the global environment.

definitions
list all names defined in the current global

environment.

display <name>
- display the definition of the named object.

def <defs>?
add the definitions to the environment. New

definitions of existing names replace old definitions.
(See section VIII for syntax of <defs>.)

delete,<name>
- delete the named object from the global environment.

dump <filename>
- dump a copy of the curr~nt global environment onto
the named MTS file~ the environment is dumped to -DUMP
if <filename> does not exist.

load <filename>
load a new global environment from the named MTS

file; this replaces the old one. The file must have
been prepared by the use of a dump com~and.

c) Evaluating SASL exoressions

<expr>?
- evaluate the SASL expression and print its value as

. output.

<expr> to <filename>
- as before but output is appended to the end of the
named MTS file. The output is written to -OUT if
<filename> does not exist. The user can cancel the
evaluation of an expression by pressing the ATTN key

SASL Manual

d) Controlling messages

mess (nomess)

35

enable (inhibit) the output of resource usage
messages at the end of subsequent evaluations.

gc (nogc)
- enable (inhibit) the output of heap usage messages
at each subsequerit garbage collection.

trace n
- where n is an integer

e) Reading commands from files

get <filename>
treat the nam~d MTS file as subsequent source input

up until its EOF. The file may contain any number of
commands but get's may be nested only nine deep.

echo (noecho)
- enable (inhibit)
from MTS files.
placed within MTS

f) $<MTS command>

the echoing of subsequent input
These two commands are most often

files.

- execute MTS command (like in UNIX ed)

g) off
- "log off" from SASL

36 SASL Manual

4) Error Messages

The system deals with expressions in two stages, so there
are two kinds of error message.

a) Compiler messages

These are normally output together with a copy of the
offending line in the source text and are
self-explanatory. Eg

(2 + *) •••

Syntax expression expected where* found.

After an error the compiler recovers and continues
through the source looking for further errors.

b) Evaluator Messages

These arise when the value of a meaningless expression
like 2+false has to be printed. Again the messages
are normally self-explanatory,

example

map double (1, 2, 3, 4, 5, false, 7, 8, 9)
where
double x = 2 * x, sp

produces the output

2 4 6 8 10
Illegal Expression: 2 * false

14 16 18

The form of the illegal expression together with its
relative position in the output normally suffice to
locate the error in the program. In despera~ion you
can resort to the trace n command for tracing the
evaluation after n cycles. There is one case where
this is obviously helpful - if your program is sitting
in a tight loop and not printing anything. See 3d
above.

(Feedback on ways to improve the error reports is especially
welcome. In particular if the SASL system says something that
you think is just wrong or downright misleading please tell us
about it - DAT, WRC, HOA.)

