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ABSTRAcr 

Before two images of the same object can be compared, they must be 
brought into correspondence with some reference datum. This process is 
termed registration. '!be reference can be one of the images, a synthetic 
image, a map or other symtolic representation of the area imaged. A novel 
method is presented for automatically determining the transformation to 
align a Landsat image to a digital terrain rrodel, a structure which 
represents the topography of an area. Parameters of an affine 
transformation are computed from the correspondence between features of 
terrain derived from the digital terrain rrodel, and brightness 
discontinuities extracted from the Landsat image. 
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1. Introduction 

There are many image analysis tasks where the objects in the scene are 

known beforehand. Often industrial inspection and manip.1lation tasks 

involve determining the positioo and orientation of a known part within a 

given image (Hsieh and F\J,1979; Agin,1980; Myers, 1980). Similarly, 

biomedical a:r;plications, such as chest X-ray interpretation (Ballard et al., 

1979), often deal with images whose general content is known. The 

interpretatioo of images acquired via satellite or aerial photography is 

facilitated by knowledge of the scene given in form of maps and other 

geographic data. Once the position and orientation of objects in a scene is 

determined, image analysis simplifies. Thus, registering the image to the 

scene model is an important first step in automatic image interpretation. 

In renote serysing, the spatial relations between the objects in the scene 

are precisely known, and the geometric relation between image and scene 

nodel can be characterized by a fixed mathematical transformation of known 

form bJt unknown parameters. In contrast, the number of ribs in a chest 

x-ray, for example, is given, as well as their general spatial 

relationships, bJt their precise size and position are not precisely known. 

The importance of registration has been denonstrated in the domain of 

Landsat images. When a new image has been brought into correspondence with 

surface data, the interpretation of ground oover is improved. For example, 

the effect of shading due to variations in surface topography and shadows 

can be estimated {W::x:)dham, 1980). 'Ihus far, registration has eluded 

cx:implete automation. The object of this thesis is to present a method for 

automated registratioo of Landsat images. 

A Landsat MSS image measures scene radiance in each of four spectral 
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bands, at a oominal ground resolution of 79 x 79 meters. The p:,si tion and 

attitude of the Landsat MSS platform is known with limited precision. After 

systematic rorrections based m the estimated platform p:,sition and 

attitude, the ground location of an image p:,int may differ from its true 

p:,sition by as much as 10 kilaneters. Since each picture element (pixel) of 

a Landsat MSS image has a oominal ground spacing of 56 meters in the across 

track direction and 79 meters in the along track direction, this represents 

an error of up to 179 pixels. Further processing is thus required to relate 

the image cx:x:,rdinate system to other cx:x:,rdinate systems. 

A digital terrain model (IJIM) represents surface elevation as a 

ftmction of ground cx:x:,rdinates. A IJIM can be accurately located in a 

geographic coordinate system. A Landsat image registered to a digital 

terrain nodel can be directly oompared with other sources of geographic 

information, and other images. 

An automatic method for registering Landsat images to digital terrain 

models is developed. As an example, figure 1 shows a 100 x 100 section of a 

Landsat image. Figure 2 shows a rontour plot at 100 meter intervals of the 

digital terrain model. In the method presented here, a set of curvilinear 

features is determined from both the Landsat image and the r:YIM. Features 

from the Landsat image are shown in figure 3 while those selected from the 

IJIM are depicted in figure 4. A rorresp:,ndence between the elements of the 

t\\O sets of curvilinear features is established which satisfies both 

geometric (shape) constraints and top:,logical (adjacency) constraints. The 

matching between elements determines p:,int pairs ini:x.it to a least-squares 

estimator for the parameters of an affine transform. The image registration 

problem is transformed into the problem of matching sets of curves in the 

plane. The p:,ints on the features used for calculating the transform are 



Figure 1 

100 X 100 pixel subsection of Landsat image (band 7) from 
September 14, 1976, frame ID 11514-17153. Photographed from 
the screen of the COv1TAL Vision 1. 
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Figure 2 
Contour.plot (109 meter interval) of the digital terrain Jrodel 
ubsect1on used 1n the test case. 
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Figure 3 

Features nerived from Lannsat image subsection 
acquired on Reptember 14, 1976. 

5 

I 



I 

6 

I -- / 

_j ( I 

I 

/ 
Figure 4 

Features derived from m:M using the sun's !X]Sition at the 
time of imaqe acquisition on September 14, 1976. 
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labelled 1-6 in figures 3 and 4. The registered Landsat image is shown in 

figure 5. The derived affine transform is: 

x' =ax+ by+ c 
y' = d x + e y + f 

where (x,y) are Landsat image CXlOrdinates, (x',y') are D'IM CXlOrdinates, and 

where 

a= 0.555292 
b = 0.131612 
C = 1.944259 
a= -0.143495 
e = 0.773612 
f = 2.197464 

Chapter 2 reviews previous \\Ork in registration, feature detection, 

digital terrain models and matching methods. 

7 

Chapter 3 develops the mettm for registering images to digital terrain 

rrodels. Krowledge of sun position is used to select features for 

registration. Geometric constraints are used to guide the registration 

process. 

Chapter 4 presents the particular implementation used to realize the 

method. 

Chapter 5 discusses the results and their relevance to other image 

understanding tasks. 



Figure 5 

Registered Landsatf1nage for September 14, 1976. '!he white square 
outlines the 10 km area oovered C¥ the D'IM. Photographed from the 
screen of the <XMI'AL Vision 1. 
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2. Previous W:>rk 

2.1 Registration and Rectification 

Image registration is the process of determining the rorrespondence 

between elements of t\\O or more images and applying a transformation to one 

image to align it with the other. '1\..0 satellite images \tOUld first be 

registered in order to proceed with change detection. Ho\.Jever, it is often 

necessary to register images oot just to each other but also to absolute 

ground coordinates. Registering an image to absolute ground coordinates is 

called image rectification. Often the term registration is used for ooth 

image-to-image registration and image-to-ground registration (i.e., 

rectification). 

9 

ComnonJy, two images are registered by manually selecting ground 

control points (OCP's) from each image (Bernstein, 1976). A ground control 

point is a distinctive ground feature detectable in an image. Typical OCP's 

are airports, land-water ooundaries, field patterns and highway 

intersections. Parameters of an appropriate transformation are calculated 

from a subset of the selected OCP's. Fbr each OCP in one of the images, the 

corresponding OCP must be located in the second. Manual selection of OCP's 

is time-ronsuming. Several techniques have been developed to automate 

partially the selection of ground control points. 

As an initial improvement to the manual method, rorrelation techniques 

can be used to improve the estimates of the OCP locations. Fbr each OCP in 

the reference image, a snail m x n subsection of image surrounding the OCP 

is used as a template. The best matched position of the template determines 
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the location of the oorresp:,nding OCP. The best position is that at which 

the correlatioo of the template with the image is maximized. The 

oorrelatioo between an m x n template Sl and a subsection of an image S2 at 

(x,y) is: 
~ ft L L Sl ( i, j) • S2 (x+i, y+j) 

i= I j= I 
High outp..1t of this operation may result if one of the subsections has a 

high average gray level. Fbr this and other reasons, it is oonvenient to 

normalize the correlatioo, resulting in the following formulation: 

tL (Sl(i,j) - Sl) • (S2(x+i,y+j) - 82) 
,., p1 

t~(Sl(i,j) - sf) 
2-L ~ (S2(x+i,y+j) 

L•I j;I t•I 'r-r 
where ~ ~ 

Sl = 1/(m n) LL Sl(i,j) 
and ~:r: I ,itrl 

S2 = 1/ (m n)• L f.s2 (x+i, y+j I 

i.• I .i =I 

2 
- S2) 

Then a perfect correlation corresponds to a value of 1. Sequential . 

similarity detectioo algorithms (SSDA's) can be used to speed up template 

matching (Barnea and Silverman,1972). This correlation process is repeated 

for each OCP. The refined GCP locations are used to determine the 

parameters of the registratioo transformation. This refinement technique 

can be embodied in a fully automatic registration procedure if a library of 

GCP templates is maintained for use in the registration of subsequent images 

of the same area. 

'!he OCP metl'x::>d can be further automated by introducing automatic 

selectioo of the GCP's. As a first step toward this, the reference image 

can be regularly sutxlivided into overlawing subimages, each of which is 
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used as a template in the oorrelation technique. This automatic method has 

difficulties. There is oo guarantee, for example, that the GCP templates 

can be located~ oorrelaticn in other images. The GCP's produced by 

regular subdivision are random with respect to the content of the image. 

Davis and Kenue(l977) describe a method for automatically selecting ground 

control p:,ints in a reference image. Ground control p:,ints are selected 

where there is a strong oonnected set of brightness disoontinuities. The 

algorithm thresholds the gradient of the image and finds connected sets of 

pixels in the thresholded gradient image. GCP 's are selected from the 

resulting set so as to be as evenly scattered al::x:>ut the image as p:,ssible. 

This method improves upon regular subdivision of the reference image into 

templates, but it also suffers two major shortcomings: 

1) Since the OCP's are chosen on the basis of image features, the GCP's 
have no necessary relation to ground features whose appearance can be 
expected to remain oonstant in other images. 
2) In particular, no attempt is made to take account of p:,ssible 
changes in illuminaticn between the images, which will systematically 
affect the appearance of the templates. 

In the absence of a scene rrodel, not much :rrore can be done. lbwever, 

digital terrain models, when available, can be used to select and verify 

OCP's for registration. 

Horn and Bachman (1978) use synthetic images generated from digital 

terrain models to register Landsat images. The synthetic image represents 

the appearance of the terrain under the illumination oonditions 

corresrx:>nding to the sun rx:>sition at the time of image acquisition. Their 

published "v.Ork assumes that the transformation between the synthetic image 

am the Landsat image can be described in terms of rotation, translation and 

scale dlange. A oorrelation of the real and synthetic images is used as 

measure of goodness of fit to guide the adjustment of rotation, translation 

and scaling. The oorrelation of the entire image is ultimately used. 'J1his 



is a:>mpJtationally expensive. The authors avoid rome of this expense by 

first using lCM resolution images to produce rough estimates of the 

transformation parameters. The full resolution of the data is used to 

cxxn:EX,1te the final refinements to the transformation parameters. 

12 

The method presented in this thesis follows the spirit of the \toOrk of 

Horn and Bachman. The known position of the sun is used to predict the 

terrain features which will appear as distinct image features. The symbolic 

features themselves are used to determine the transformation parameters. 

2.2 Digital Terrain M:)dels 

A digital terrain irodel (UIM) represents the surface of the earth in a 

particular region. This is usually taken to mean that the DIM can be used 

to determine the elevation of the surface at any point in the region. 

Besides providing height information, a digital terrain model also 

represents the surface orientation since slope and aspect can be derived. 

Slope information is crucial for accurate calculation of the synthetic 

image. Because the t1IM is defined in a ground a:iordinate system, an image 

registered to a IJIM can be directly cxxnpared to other sources of geographic 

information. 

A rornnon representation of terrain is as a discrete grid of terrain 

elevatioos. Slope is determined in a grid representation by local 

differencing. Alternatively, terrain can be moc'lelled as a set of contiguous 

non-overlawing triangular facets (figure 6), in a Triangulated Irregular 

Network (TIN) (Peucker et al., 1978). In the TIN, slope information is 

directly a:>mpJted from the surface facets. Efficient procedures exist for 

cawerting the grid to a TIN and vice-versa (Peucker et al., 1978; Fowler 
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Figure 6 

A Triangulated Irregular Network (TIN) 



and Little, 1979). 'Ihe digital terrain roodel used for the \-Ork described 

herein was constructed in the Trn format. 
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The structure of terrain can be rrodelled by the net\-Ork of ridges and 

channels (divides and streams). The ridges are convex linear surface 

features which, theoretically, oonnect passes (saddle points) to peaks 

(relative maxima). In practice the set of ridges on a surface also includes 

ronvex linear features which ronnect to the main ridges that oo join passes 

to peaks. Channels are concave linear features connecting passes to pits 

(relative minima). In additioo, the surface behavior of the terrain between 

ridges and channels is rrodelled. 'Ihis surface behavior includes lines along 

which the surf ace changes slope. These a.re termed breaks of slope. Actual 

productioo of a D'IM, whether a grid or a TIN, often involves recording the 

terrain structure of ridges and channels. 

Several meth:>ds exist for deriving the the location of ridges and 

channels from the grid representation (Peucker and I:ouglas, 1975~ Toriwaki 

and Fukumaru, 1978) . The TIN nodel is crlvantageous for feature selection 

since ridges, channels and breaks of slope are explicitly represented as the 

boundaries of triangular facets. 

2.3 Synthetic Images 

2.3.1 Reflectance Functions 

Image irradiance at a given point depends on the object material imaged 

at that point and its orientation in space with respect to the light 

source (s) and viewer. Fbllc:Ming Horn and Bachman, one nodel of image 
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formation uses a surface reflectance function: 

PHI(I,E,G) = P * CDS(I) 

where I, E, and G are the incident angle (I), emittance angle (E), and the 

phase angle(G) (figure 7). In the al:ove equation, Pis an albedo factor 

depending on the surface oomi;:osition, which, without additional a priori 

knowledge, is assumed to be constant. This reflectance function nodels a 

larnbertian surface which, as a perfect diffuser, appears equally bright from 

all viewing directions. The incident angle(!) is the angle between the 

surface rorrnal and the illumination direction. In the case of Landsat 

imagery, the principal light source is the distant sun, so that the 

illumination direction is effectively constant for all surface points. 

Diffuse illumination from the atmosphere and possibly from other scene 

elements is ignored in the synthetic image. 

The D'IM provides accurate estimates of the surface orientation for the 

test area. A synthetic image is produced under the assumption of an 

orthographic projection and a single light source at the known sun position. 

The brightness in the synthetic image at each picture element (pixel) is a 

function of the surface orientation at the appropriate point in the D'IM. 

Figure 8 shows a synthetic image produced from a digital terrain nodel, 

using the simple reflectance function described al:ove, with the sun from the 

northwest at 45 degrees elevation, as in standard cartographic convention. 
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Figure 7 

The geometiy of light reflection from a surface element 
is govemecr bv the incident angle, I, the erni ttance angle, 
E, and the phase angle, G. (after Horn and Bachman, 1978) 



Figure 8 

Synthetic image of the IYIM. The light source is positioned in the 
northwest at 45 degree elevation as in cartographic convention. 
Photographed from the screen of the C01TAL Vision 1. 
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2.3.2 Sun Position 

In order to produce a synthetic image oorresp:,nding to an actual 

imaging situation, it is necessary to determine the sun's p:,sition at the 

precise time of image acquisition. Fbrtunately, the time of acquisition of 

each Landsat scan line is accurately determined and recorded as part of the 

image annotation data. Standard tables or formulae can be employed to 

determine the position of the sun at a given date, time, latitude ana 

longitude. Sun p:,sition is described in terms of azimuth, the angle of 

rotation aoout the vertical axis, in degrees clockwise from north, and 

elevation, the angle of rotation aoove the horizontal (figure 9) In this 

description, standard cartographic convention situates the light source at 

azimuth 315 degrees, elevatioo 45 degrees. 

2.4 Feature Selection 

The literature in image analysis aoounds with techniques for 

determining the position and orientation of brightness discontinuities in 

images (Davis, 1975). An operator which performs this task is called an 

"edge detector". Generally, edge detectors perform well in locating sharp 

boundaries where the relative brightness difference is large and the 

boundary is locally linear. For the p.irpose of the method presented in this 

thesis, the features to be found in Landsat images are restricted to 

disoontinuities between relatively bright and dark regions. The intensity 

differences between regions are koown to be large and the transitions 

between the regions sharp. The focus of the research is not on the design 



"- I/ -o-
/ j ' 

s 

Figure 9 

Definition of the position of the sun in terms of 

azimuth e, ann elevation </>. 
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of an optimal filter for detecting such features. Rather it is assumed that 

most edge-detecting operators will be robust enough to detect the required 

ooundaries. 

Similarly, the choice of method for joining pixels which display edge 

activity into lines is not critical. Portions of the image features sought 

will be relatively straight, and oormecting these into curves is 

straightforward. Any rule for connection which prefers extending existing 

lines along the general line tendency is acceptable. It is presumed when 

the features are used that there will be gaps in the curves, so the degree 

to which a line-growing method is able to bridge these gaps is not critical. 

In sum, feature selection techniques were chosen from existing methods in 

the literature. 

Feature selection in the domain of the digital terrain model derives 

from an investigation of the production of synthetic images (discussed in 

section 2. 3). The method for D'IM feature selection will be elaoorated in 

section 3 .1.1. 

2. 5 Matching 

In the automatic registration method presented in the thesis, a 

one-to-one correspondence is derived between symbolic features of an image 

and a digital terrain model. This oorresp:>ndence between features can be 

modelled as a matching of the features, depending upon the similarity of 

their descriptioos. If the matching between features based on their 

symbolic descriptions is reliable, then matching methods can be used for 

automatic registration. Other researchers have considered the problem of 

matching an image to a model of the scene. Research on matching 



descriptioos of an image to nodels of the scene can be divided into tlx:>se 

which handle symbolic descriptions only, and those which also manipulate 

geometric relatioos. The topics of interest in this \<tOrk are l::oth 

representations of object and image relations and the control structures 

used in matching. 

2.5.1 Symbolic Matching 

21 

Barrow and Powlestone (1971) describe the adjacency relation of 

picture reqions by a region adjacency graph (RAG). 'J'his graph is 

necessarily planar. A descriptioo of a m:rlel scene is also represented in 

terms of a RAG. Recognition of elements in the picture is performed by 

matching a region with a roodel cx,mponent. Both region adjacency graphs are 

augmented by edges indicating relations between regions such as relative 

size, position (al::ove-below, left-right), shape and convexity. The match is 

incrementally increased, one region at a time. The search space can be 

represented as a tree; nodes represent matchings and descendants of a node 

represent developnents of the matching at the oode by adding another region. 

The search space is probed for a solution using best-first search. 

Barrow and Burstall (1976) use maximal matching of graphs for matching 

relational structures, such as image and scene descriptions represented as 

graphs. A graph is defined as a set N of rodes, and a relation R, a subset 

of NxN. A matching from Gl to G2 is a subset S of NlxN2 which preserves the 

relatioos in each graph; for all pairs (a,A) and (b,B) in S, a is connected 

to b in Gl if and only if A is connected to B in G2. A matching is maximal 

when ro other matching has higher cardinality. Under this definition, a 

node in Gl may be matched to more than one node in G2 and vice versa. T\,,o 
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pairs are 'oompatible' if the pairs are ins. A graph is derived as 

follows: the elements of the graph (the set X) are elements of Sand the 

relation (H) between elements of the graph is that of oompatibility between 

pairs. Given a graph so constructed, a maximal matching of the original 

graphs can be obtained by firrling a maximal clique (oomplete subgraph) of 

(X,H). It is clear that in such a clique all pairs are ccmpatible, by 

definition, and that its order is maximal. If the restriction that a = b 

iff A= Bis added to the definition of canpatibility, the oorrespondence 

generated by the maximal matching is one-to-one. 'J'o our dismay, however, 

this merely reduc-es a difficult problem to an NP-cx:mplete problem. However, 

the best clique-firrling algorithms seem to perform efficiently in rrost 

cases. 

Tanimoto (1976) offers an exc-ellent discussion of the rrotivation for 

using graph matching and develops an algorithm for enumerating all maximal 

matchings of~ graphs. A matching assigns labels to regions in the 

segmentation of an image. The labels form one set of nodes in a bipartite 

graph, and the regions the other set. F.dges represent the oompatibility of 

descriptions of a region with a label and henc-e restricted to a yes-no 

decision. A maximal matching of the bipartite graph so formed is the 

maximal set of edges from one set of nodes to the other, where a node occurs 

at rrost in one edge. Tanimoto mtes that methods for oonstructing such 

bipartite graphs are 'neither usually ob\rious nor nec-essarily possible'. 

One awroach is to allow edges which satisfy many oonstraints such as degree 

restrictions. Usually these are determined by 'local oonstraints, that is, 

those which only require examining the neighbors of a node. A maximal 

matching can be generated in O(e * sqrt(n)) time, where e is the number of 

edges in the graph, and n the number of nodes. An algorithm is presented by 
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Tanimoto which can list the set of maximal matchings of the graph. A note 

of caution: the nl.D'Tlber of maximal matchings is potentially exponential inn. 

A recent paper by Itai, Rodeh and Tanimoto (1978) also characterizes the 

cases when matching problems with restrictions are NP-conplete (Aho et 

al.,1974), and provides a discussioo of the awlicability of graph-matching 

vis-a-vis constraint propagation. 

Maximal matching techniques are awealing because once the 

a:::,mpatibility relation is constructed, generation of matchings is efficient. 

H:Jwoever, the effectiveness of maximal matching methods depends upon the 

extent to which the oompatibility relation can constrain matchings to 

appropriate ones. If the rompatibility relation is too general, many 

matchings will be generated which are incorrect. Comp..1ting a:::,mpatibility 

becomes expensive when the interrelatioo of features extends rrore than just 

to local features. In the registration problem, in particular, the solution 

must satisfy global oonstraints, while rompatibility testing must be rather 

local to allow maximal matching to be a successful alternative method. In 

additioo, it is oot clear that the relations anong features can easily be 

characterized by descriptions such as 'left-right' or 'near-far'. Rather, 

metric relatioos such as angle and distance are awropriate in this domain, 

especially as they are precisely known for the JJIM. Using metric relations 

becomes nore important when matchings between intrinsic aspects of features, 

such as shape, length or position, are less reliable. 

2.5.2 Geometrically Constrainecl Matohing 

Fisdller and Esdllanger (1973) detail a method for matching a reference 

image in raster format to a reference image which is described by a graph 



OOITlfX>Sed of oomponents (ooherent pieces of the m:xlel). Fbr each of these 

ccmponents, a local evaluation array (LFA) is oomputed. The LFA measures 

the goodness of fit of each oornponent of the m:xlel at each point in the 

image, rather like the goodness of fit of a template at all points in the 

image. The m:xlel oornponents are assumed to be joined together by springs. 

The cost of a matching is the anount of tension in the springs joining the 

oomponents. This method is rompatible with a 'rubber-sheeting' 

transformation of the image, in which direction is not globally preserved 

and scaling can vary across the image. 
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Dynamic programming is used to solve the matching problem. Using the 

IBA, the oost of orienting the constituent ex>J'Tl!X)nent subassemblies can be 

oomputed, recorded in tabular form, and used to find a global mini.mum .cost 

matching. The oost of this met:ood increases exponentially as the degree of 

interconnection of the cx:mtponents rises. As an alternative, the authors 

suggestea an incremental met:ood, very similar to Barrow and Po}JPlestone 's 

technique. The ~rk is of note int~ respects: first, it constructs a full 

transformation from one image to the other, and second, it uses geometric 

constraints as WE!ll as semantic constraints in the matching. The 

registratioo met:ood presented in this thesis uses an incremental method. 

Bajcsy and Chance (1975) studied the problem of establishing the 

rorrespondence between images of brain slices before and after chemical or 

physical operations in which there is awreciable shape distortion of the 

brain. The images are processed to extract the veins in the images. The 

nodes (vein junctions) are ordered by degree. A matching is generated by 

ocxnparing the degree of junctions from the t\\10 images. Because it is likely 

that an edge in one graph will shc:M up in another, this seems an appropriate 

strategy. The graphs are oot totally matched in this processi rather, the 



initial matching is used as a 'seed' to a registration procedure which 

perturbs the initial mapping slightly in order to reach an optimal match. 

The authors state that without such an initial match, the hill-climbing 

method of the registration is not sufficiently constrained and might 'walk 

off the edge of the image' • 
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l'brk at SRI (Bolles et al., 1979) m:>dels the transformation from the 

test image to the reference as a function of camera parameters, such as 

focal length, position, yaw, pitch and roll. The reference is a 'database' 

of highways and features of highways. An essential part of the SRI method 

is that there is a good 'a priori' estimate of the camera parameters and of 

the errors in these parameters. These estimates are used to predict the 

location and extent of the region in the image which is to be searched for 

an element from the reference image. The predicted search region for an 

element is termed i t;.s 'uncertainty region' • Once an element is located 

within its search region, the search regions for other elements are 

constrained in location and size. The pairing of reference element and 

image element provides new informatioo which is used to improve the camera 

parameters and reduce the errors. Both linear and point features are 

hand-selected from the reference image for registration. Because highway 

structures, such as the boundaries of lanes, are locally very similar, it is 

possible to mistake a feature for one offset from the proper match. 'lb 

prevent this situation, the system identifies features nearby which can be 

used to verify a match, and searches for them in the image. Fbr example, 

highways are cx,mposed of several parallel lanes; in detection of a highway 

the system searches for locally offset lanes to oonfirrn the matching of 

others. This notion is termed 'local suJ;lX)rt' for a feature match. The 

matching of elements provides information for the correspondence refinement 
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process which solves the ronlinear camera parameter estimation problem. 

Bolles (1979) describes a further use of the maximal clique method for 

matching features in an image with a model. ltx'les in the feature graph 

represent labellings of nodes. Arcs represent oompatibility relations 

between the labellings of features. These reJations are based on distance 

and orientation measures cx:>mPJted in the image and CXJnpared with model 

descriptions. A maximal clique in this graph represents a maximal match of 

the features of the image with the labels in the model. As with all maximal 

matching methods, there are difficulties with the combinatorial behavior of 

the problem and the inordinate size of the graphs; generating graphs for 

reasonable problems in itself is time--oonsuming. Bolles (p. 144) suggests 

several ways of improving the method: 

1) Restrict the rrodel to key features 

2) Use geometric limits with respect to some feature to exclude 

unnecessary features. 

3) Iteratively awly the maximal clique method to refine the 

assignment. 

With respect to the last p::,int, Bolles further states "the benefit of this 

awroach is derived from the fact that the structural constraints are 

applied sequentially instead of all at once" (p.145). 

In general, methods for maximal matching suffer from the difficulties 

encountered in Bolles's method. Explicit construction of the relations 

which may mld between elements of the model and the features of the image 

is itself an expensive task. The registration method presented here follows 

the spirit of Bolles' s work. The method depends up::,n an analysis of the 



rrodel to find promising features of the nodel. These are found in the 

image. Nearby features of the model are used to confirm the initial 

matching. Then additiooal features are selected for matching, from the 

restricted set constrained by the previous matches. Local sui:p:,rt for a 

feature acts as a breadth-first look-ahead to select promising matches, 

following which a depth-first search is conducted for further matches. In 

addition, once an estimate for the matching has been oonstructed, it is 

locally adjusted to improve the registration. 
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These facets of the method anticipate the suggestions of Bolles. The 

illumination conditions at the time of image acquisition are used to 

determine the features. Key features are selected based on the structural 

ccrnplexity of their cx,mponents. The geometric constraints of the transform 

derivation guide its developnent. Lastly, the inspection and rejection of 

cooices at early stages of the search deliver the benefits of sequential 

exploration of the possibilities. 
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3. The Registration Method 

The registratioo method proceeds in several stages. The data oonsist 

of the raw Laoosat image ana a digital terrain model (mM) for the area 

imaged. 'Ihe time at which the image was acquired is known. In the first 

stage, features of the digital terrain model and the Landsat image are 

derived. '!he second stage ronsiders matchings of three features from roth 

the DIM and the image. Each match determines the parameters of an affine 

transformatioo. When one of the derived transforms predicts other 

ridge-to-Landsat feature pairings, with a sufficiently small total residual 

error, the transformation is accepted. otherwise, registration fails. 

3.1 The First Stage: Feature Extraction 

3.1.1 Extracting Features _from Digital Terrain M:>dels 

Since the stm's positioo oorresponding to the Landsat image is known, 

it is possible to determine the location of convex breaks of slope which 

will appear in the image with strong brightness disoontinuities, as follows: 

The slope of each surface facet is derived and the brightness of the facet 

determined using the reflectance function. Fbr every location in the TIN 

where surface slope changes (represented by the junction of facets), the 

brightness of the surface facets adjoining is oomp.ited. The difference 

between these values indicates the ~elative magnitude of the brightness 

disrontinuity to be expected at that p:>sition. In testing the method, only 

those edges are selected which are rounded, on one side, by a self-shadowed 
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facet (one which receives :ro direct illumination), and, on the other side, 

by a facet whose predicted brightness is relatively high (figure 10) • This 

restricts the features to a snall subset of all edges which will generate 

brightness discontinuities. Many ridges will not be self-shadowed on one 

side, but will nevertheless appear as sharp discontinuities in the image. 

However, areas in self-shadow, if present, will be very dark in the image, 

and their appearance will be less sensitive to ground cover variation. 

Self-shadowed ridges tend to lie perpendicular to the azimuthal direction of 

the sun. This leads to strong constraint along the direction parallel to 

the azimuthal direction of the sun, but little constraint in the orthogonal 

direction. Pairings of features at junctions or endpoints of features 

provide the needed constraint in the orthogonal direction. F.dges satisfying 

this criterion are merged into C'Urves when their endpoints are adjacent and 

merging them does not cause the resulting curve to loop back upon itself. 

Only those C'Urves are outp...it which represent a strong brightness 

discontinuity. These curves will be terrnea "ridges" in the following 
, 

discussion of the registration method, while roting that the C'Urves can be 

generated both by terrain ridges as well as other convex breaks of slope. 

The features extracted from the OIM are soc,wn in figure 4. 

3.1.2 E>ctracting Features from the Landsat Image 

In the Landsat image, some surface slope breaks appear as boundaries at 

transitions between bright and dark regions. Desirable tx::>undaries are those 

formed by convex breaks of slope oriented perpendicular to the azimuthal 

directioo of the sun's illuminatioo. Shadow boundaries also ar:,pear as 

transitions between bright and dark regions, but, since the direction of the 
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Fi~ure 10 

Self-shadowed surfaces. 
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incident illuminatioo is koown, they can be distinguished from the 

transition features formed by ridges. Shadows are dark on the side of the 

edge nearer the light source. Figure 11 sh'.::Ms the Landsat image subsection 

used for the registration tests. 

3.1.3 Selecting Feature Points 

The Landsat image is correlated with an edge detector COITIJX)sed of h«) 

orth:)gonal a::mponents. The 5x5 Sobel operator (Iannino and Shapiro, 1979) 

was used because it had been reported to yield acceptable results, in the 

literature. The ratio of the outp.1ts of the components of the operator 

provides an estimate of the direction of the boundary element passing 

through the pixels tested. 

The edge detector gives high values oot only at discontinuities, but 

also at pixels offset from the discontinuities. This produces secondary 

lines, called echos, lying parallel to the original (figure 12). In order 

to eliminate these as early as possible a scheme of Nevatia and Babu (1979) 

is used. An edge element is jtrlged to exist at a pixel if: 

a) the magnitooe of the filter outp..it is above a threshold 
b) its magnitude is higher than that of its h«) neighbors in the 
direction oormal to the estimated edge direction, and 
c) the edge directions of these neighboring pixels are within 45 
degrees of the directioo at the central pixel. 

If any of these conditions do not oold then no edge element is judged to 

exist. The effect of this process is to suppress the echo elements at an 

early stage, eliminating the need for later curve thinning procedures 

(figure 13). 
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Figure 11 

100 X 100 pixel subsection of Landsat image (band 7) from 
September 14, 1976, frame ID 11514-17153. Photographed from 
the screen of the a:MTAL Vision 1. 
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Figure 12 

• 

Result of applying.the edge detector. *'s nwresei:it.edge elements 
whose orientation is oonsistent with the suns JX>Sition. 



** 

•• ** •• • • • 
• • • 

• * 
• • ** • • .. .. 

** .. 
*** • ••• ** 

• * • 
•• • • .. 

• 

•••• 
* • 

* ... 
* 

.. • 

•••• • 

• 

* 

• • 

• 

• •• 

* • 
* • • • •• •• ... 
•• •• 

* * * • 
* • • • 

• 
• 
* • • 

•• 

• • • 

* ** • 

• • • • • •• 

• • • 

• 

* . .. 

• • 

• • • • 

• 
• • • • • 

.. 
* *** 
**** • ••• •• 

34 

* * • • 

• * 
• • 

* 
* * • 

• • • .. 
* • • 
* 

• • 
• • * • **** • • • 

**** *** .. .. 
*** ••• • •• 

•• • •• .. . 
•• ****** 

** 
... 

. .. 
•• • • •• 

• • • 

... 
** • • ... *** * 

• • 

... 

•• • 
• • 

*** • • 
• • 

• 

•• • • • 

** ... 
• 

** ** * • 
** 

** • .. 
* • 

• * • • 
* 

♦ 

• * • ••• •• • 

* 

*** • * •• •• • •• 

*** •• * • ** •• •• 

•• 

.. .. 
** 

•• ••• • •• • •• ••• ... 
••••••• 

** *** ••• 
* ** • • 

* • .. 
****** 

• • 

••• 

.. . • 
• • • 

* 
* 

** 
* * 

•• • * ** * • • • ••••• 
• •• * • • 
* 

• • 

• 
* 

*** • 

** 
** • 

***** * .. 
• . .. 

• * 
•• • •• • 

•• • 
* • ** 

* • 
• 

• 

•• 

• • 

• • 
• 
• 
* • ... . 

• • 

• • • 

• • • 

• • 

* * ** 

• 
** * 

** 
** 

•• 
... 
• • * 

• 
* • •• • 

* 
• ••• • **** •• 

* 

*** • •• • • 
* 

* • 
•••• .. ... • 

* • 
• .. 

• • 

• 
* 

• • 

* *** * * • ... ... 
** 

** .. 
• 

***** 
*** ••••• • 

**** 
* .. .. 

• •• • 

** 
• 
* • .. ** 

* • 
* 

* 

• 
•• 
** ** 

* 

•• 
•• 
** 

• 
*** • • 

*** •• 

• • •• ** 
*** •• 

** * • • •• •• * •••••• 
• • •• 

* * •• 

•••• 

* • 

• • 
.. 

* .. .. 
•• • • 

• • 

• •• •••••••• • • •• 
• • • 

•• • 

* • 
• 

*** 
* * * • * * 

• 

• 

• 

• • ** • 

* •••••••••••• 
** • 

* • 
• ** .. 

*** • 

• 
* 

* 
* • • •• • • 

• 

• • • • • 
* 

• * • • • 

•• • •• • • • * * •• • •• •• • •• ••• •• 

• • • 

• • 

* 

• 
••••• • • 

• • * 

• 

• ** • 

• •• 
** •• •• • • • • * 

• • • 

• 

• * • • 
•• • 

• ••• • • ••• 
* * • 

Figure 13 

• • • 

• 
• 

• 
••• 

• • • 

* • 

• • 
* • 

• •• 

• • 

... .. 
• • • • • •• * 

• •• ••• • 

• 
• • • 

•• •• • • •• * 
• 

•• * 
**** 

•• 

• • •• .. 
•• 

** •• * .. .. 
••• ... 

• 
• 

• • 
••••• 

**** • ... •• •• • •• • • ••• 

• • • * •• 

• •• 
• • • • ••• • ••••••••• ••••• • •• 

• • 

• * 
•• • 

* • •• 
• 
** * ** • • 
* 

** * 
•• * 

* • • * • • * • 

.. 
• • ••• 

* •••• • • • ... 
•• • .. 

• 
• • 
* • 

* • .. 
* 

••• •• •• • 

* ... 
• 

* 

,.. 

•••• •• • • • • 
* 

* • • • 

•• 

• • 

• •• • ••• •• 

F.dge detector output after echo suppression. 

* 



35 

3.1.4 Line Growing 

The outp.it of the Sobel operator is used to construct the linear 

features, following the method of (Bajcsy and Tavakoli, 1976). The process 

is divided into two steps. First, pixels are connected into curves 

represented as sets of pixels. Next, a piecewise linear approximation is 

derived for these curves, and curves are merged when possible. In the 

discussion which follows, the terms "line" and "curve" will be used 

interchangeably to refer to a string of points connected by straight line 

segments. 

In the first stage, a histogram of the values of the filter outp.it is 

derived. This density histogram is used to direct the process s:, that lines 

are 'grown' from those points which had the highest output from the 

filtering step. A cumulative distriootion function is derived from the 

density histogram. At each step in the line growing process, the threshold 

is relaxed s:, that five percent nore pixels are aoove it. Initially the 

threshold is set at the 95 percent level. 

At each stage in the line construction process, the threshold is set at 

the proper level and all points in the image aoove the threshold and not 

already in a line are processed. The threshold is then lowered a level, and 

the process repeated, until the minimLnn level is reached. Lines are 

constructed incrementally in this first stage: at first a line consists of a 

single point. When an adjacent point lies aoove the current threshold, and 

cannot be joined to any existing line, it is joined to the single point and 

fornE a tw:>-point line. To ensure that the lines found have less than a 

certain maximLnn curvature, points are added to an existing line only if they 

are adjacent to the endpoints of the line and the segment connecting the new 
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mint to the endpoint lies within 45 degrees of the direction of the nearest 

segment in the line. 

The result of the first stage is a set of lines each oonsisting of a 

set of oonnected pixels. Figure 14 shows these lines: at each pixel the 

last digit of the curve to which that pixel belongs is printed. In the next 

stage, these lines are merged into larger connected lines when two 

oonditioos hold: first, the lines are adjacent at their endpoints, and, 

second, the segment directions are c:x,mpatible, that is, joining the b.O 

lines at their enapoints cbes oot cause the resulting curve to loop back 

upon itself. The segments are o:mpatible in direction if the dot product of 

the segments, oonsidered as vectors originating at the cx:moon endpoint, is 

less than or equal to zero (figure 15). Figure 16 shows the curves after 

merging. 'Ib aid in curve merging, a piecewise linear awroximation is 

derived for each of the curves. 

3.1.5 Approximations to Lines 

A piecewise linear a:i;::proximation to a digital line (Ramer,1972: 

Pavlidis, 1977) awroximates a line to a given precision by a set of linear 

segments oonnecting points on the line. In its oonstruction, the first and 

last points in the line are oonnected by a straight line segment. The 

extreme points lying farthest in perpendicular distanqe from the line 

segment are determined, Band Din the example sl"Pwn in figure 17 • The 

extreme p:,ints are included in the awroxi.mation if their distances from the 

segment are aoove the specified threshold, which will be termed the "detail 

level" of the line. The line is then subdivided into the three sets of 

J;Oints to the left, between and right of the selected !X)ints. The three 
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compatible segments 

incompatible segments 

Figure 15 

'I\..D lines can be merged if the dot product of the segments 
at the join JX)int is negative. 
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subsets of the line are processed recursively in a similar fashion. In 

figure 17, these subsets are AB, B(l) and DEF. If the p:,int farthest from 

the segment in a particular subset is within the thresholn distance, then 

processing of that subset of the line is stopped, and only the endp:,ints of 

the line segment retained. 'llle process of finding such an approximation is 

termed 'generalization'. The tree-like structure derived in this fashion is 

useful in cartographic romputatioos (Ballard,1979). A tree for a 

generalized form of a curve is also shown in figure 17. 

By varying the detail level used in romp..1ting the a..1rve approximation, 

a family of approximations is generated (figure 18) • Alternatively, the 

perpendicular distance of a p:,int in the a..1rve from the next highest level 

segment can be recorded in the approximation. The distance so found is a 

measure of the significance of that p:,int in the approximation of the curve. 

By constructing b.o lines, parallel to and offset from a given s~nt 

of a curve, and at a given perpendia..1lar distance, a region in the plane is 

described which is called the 'band' of that segment of the curve. When the 

segment ronnects the endpoints of the curve, the region is the band of the 

curve (figure 19). The detail at which the Q.1rve is examined can be varied 

by altering the perpemicular distance at which the band is constructed. 

The band of a curve will be used to determine whether a a..1rve overlaps 

another, in a..1rve cx:,rnparison and in testing of the registration. 

Since nost of the lines in the Landsat image rontain many oolinear 

p:,ints, the line approximations contain significantly fewer p:,ints than the 

the original lines represented as oonnected sets of pixels. Using the 

ai;:proximations, directional decisions involving the orientation of line 

segments are less affected by perturbatioos at the end of curves caused by 

quantization. The outp.it of the feature-detector is the set of lines in 
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Figure 19 

The bana of a curve. 
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generalized form, which are longer than a specified minimum length (figure 

20). These curvilinear features derived from a Landsat image will be termed 

"1-edges". 

Since the ridges are derived from the TIN representation, they are 

represented as a string of contiguous line segments. It is natural to 

convert this form to the piecewise linear approximations used for curves 

found in the Landsat image. If a D'IM feature is represented by a single 

straight line segment, then it is 'simple' • 'Any curve whose representation 

includes interior points is said to be 'structured'. The ridges and 1-edges 

are inp.1 t to the second stage. 

3.2 The Second Stage: Matching 

The basic awroach in the second stage is to locate the known features, 

the ridges, in the image. Features are located sequentially, and the 

location of a feature in an image will constrain search for other features. 

Ridges will be located by structurally matching ridges with 1-edges. A 

ridge matched to an 1-edge is a "pairing". A pairing locates a ridge in the 

image and provides a pair of matched points which are used as ground control 

points (sectioo 3.4). Because of the sequential nature of the algorithm, it 

is useful to introduce an ordering. 

The ridges are considered in the order of their structural complexity. 

This is because it is assumed that the more strongly an element differs from 

a straight line the less likely it is to be matched incorrectly. The goal 

of the matching process is to pair a sufficient number of ridges and 1-edges 

to cx,mpute transform parameters. Features in the IYIM are ordered as 

follows: 



45 

I 

/ ~ 

I 

.._ 

/ I 

\ 
-./ 

I 
Figure 20 

Landsat image features for subsection in figures 11-16. 



1. All structured ridges are considered before simple ridges (figure 
21). 
2. The strength of a ridge is the product of its length and the 
estimated brightness discontinuity across it. Structured ridges and 
simple ridges are each ordered according to the ridge strength. 
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The relation of structured feature to structured feature is potentially 

a many-to-many re lat ion. A portion of a ridge may be represented by two or 

more line segments while the corresponding 1-edge is represented as a single 

line segment, or vice versa. To consider all possible relations between two 

structured curves means examining the relations between all powersets of 

ooth. Representing and manip.1lating such relations significantly 

CXEplicates curve matching. Consequently, all structured features in the 

Landsat image are broken cbwn into simple elements, represented by single 

line segments. 

3.3 The Affine Transfonnation 

Horn and ~am (1979) derronstrate that, if snall, second-order 

effects are ignored, an affine transfonnation is sufficient to register 

small subsections of a Landsat image to a plane tangent to the earth's 

surface. The parameters of this transfonnation can be expressed in terms of 

the parameters of the satellite's orbit and other fixed quantities. An 

affine transform has 6 degrees of freedom .and can be written as: 

x' = a X +by+ C 

y' = d x + e y + f 

where x,y are image cxx,rdinates and x' ,y' are MM coordinates. A subset of 
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Figure 21 

Structured (A) and simple ( B) ridges. 
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affine transformatioos can be expressed as a cxxnposition of rotation, 

translation and scaling of the coordinate axes. However, the fully general 

affine transform cbes not admit this simple decomposition. 

Finding the tranformation parameters requires at least three matched 

points. These can be determined manually by identifying ground control 

points in both the IYIM and the image. Let the coordinates of the image 

:Enints be (x
1
,y

1 
), (x 1,Yi> and (x3,y3) and the tflM coordinates be (x,' ,y

1
' ), 

(X z 1 , Ya 
1 

) and {X .J 
1

, y 'l 1 
) • Then 

so 

x, Ya 1 
Xt Y& 1 
X l Y.s 1 

a a 
be 
C f 

= 

a d 
be 
C f 

= 

..... 

X I y I 
I I 

X 'y , 
I a. 

X I y t 
1 ) 

If more than three OCP's are supplied, a least-squares estimate of the 

transform can be co~ted. If 

M = 

x,_ yf\ 1 

Then the least-squares estimate with equal weighting to all points for the 

transform parameters is: 

a d 
be 
C f 

= 
T •l T 

(M·M) · M 

Once three feature pairings have been established, the affine transform 

can be estimated. A set of three pairings will be termed a 'matching' and a 

set of rrore than three pairings an 'extended matching'. Exhaustive 
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examination of all matchings is too expensive. The number of triples grows 

as n. Hence the number of matchings grows as n, where each of the feature 

sets is of cardinality n. Krowledge of the constraints imp:,sed on the 

problem is used to limit the search space. An estimate of the affine 

transform is derived (following Horn and ~am, 1979) from orbital 

parameters included in the image annotation, and other fixed parameters of 

the scanner. Section 4.4 presents the analytic expressions for the 

parameters of the affine transform and describes the parameters of the 

satellite orbit. Because this estimate of the transform is available, it 

can be used to eliminate the generation of some incorrect matchings. 

3.4 Construction of~ Pairing 

Initially, the location of an image feature in the D'IM is known only to 

within 10 kilometers. This delimits a search region for a feature. The 

system begins by selecting a ridge and finding the 1-edges in its search 

region. Each 1-edge is transformed according to the 'a priori' transform 

estimate, and a::,mpared with the candidate ridge. The basis of the 

ocmparison is the representation of a curve as a piecewise linear curve. 

The construction of this representation, as described in section 3.1.5, 

involves determination of the direction of the curve, which is the direction 

of the vector connecting its endp::>ints. The band aoout the curve is a 

region in the plane bounded by t\t.O lines parallel to the direction vector 

and offset from it by a fixed anount. The width of the band is the distance 

between the parallel lines. Asses31\ent of a pairing of features proceeds as 

follCMs: 
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a) If the ridge is simple, the transformed 1-edge is translated ro that 
one of its endpoints ooincides with an endp:,int of the ridge segment. 
The perpendicular distance D from the ridge to the other endpoint of 
the 1-edge is a:xnp.1ted. There are three cases: 

1) D is less than or equal to the band width. The i;osi tions at 
which the 1-edge can be matched include all p:,i nts in the ridge 
segment. In practice, three positions are used (figure 22): at 
either endp:>int, or at the centerpoints, the averages of the 
endpoints of the segments. 
2) Dis less than twice the band width. The 1-edge is oonstrained 
to match its oenterpoint to the oenterpoint of the ridge (figure 
23). 
3) Otherwise, the pairing is rejected. 

In cases 1 and 2, the measure of goodness of the match is the cosine of 
the angle between the two curves. In case 3, the measure of the match 
is arbitrarily set to O. The translation vector for the pairing is 
oonstructed from the difference of the matched points. 

b) If the ridge feature is structured, then the 1-edge is oompared with 
each of the line segments in the ridge as arove. The result of the 
oomparison is a list of matchings of the 1-edge with each of the 
segments in the ridge. 

If structured 1-edges were used in pairing developnent, endpoint matches 

oould be confirmed on the basis of the relative orientation of the segments 

rreeting at that endpoint. Local oontext is provided by the adjacency of 

segments. In the present system, local support for a pairing serves this 

purpose. 

'!he result of a match determines a point-to-point oorrespondence which 

is used in estimating the affine transform. The list of pairings of ridge 

and 1-edges, oorted by value, is associated with the ridge. Pairings whose 

value is too small are oot allc:Med to enter into the oonstruction of a 

matching. This acts to eliminate pairings which can only arise fran 

cx,mbinations of rotation, scaling and skewing inconsistent with the known 

imaging geanetry. 
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Loose fit in a pairing. Matchinq is pennitted onlv at 
centeq:x:>ints, the average of segment endpoints. ·· 
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3.5 Support for~ Pairing 

A pairing specifies a translation vector. The residual error in 

position of an image feature after transformation can be nodeled as a 

translation. Hence the translation needed to bring a transformed 1-edge 

into correspondence with a ridge is used to guide the developnent of 

matchings. Each subsequent pairing must be ronsistent with the previous 

pairings, that is, the translation required to ronstruct the pairing must be 

similar to those previous. Similarity between translation vectors is 

measured by treating each translation as a p:>int in the plane and finding 

the distance between the points. If the distance is too large, the 

translations are ina:,mpatible. Otherwise, the translations are considered 

ronsistent. Testing translation ronsistency eliminates the generation of 

many incorrect matchings. 

Experimentatioo with the feature sets has shown that translation alone 

is not a sufficient constraint. For example, the location and orientation 

of ridges is often rontrolled by the underlying geological structure of the 

region. Ridges are often parallel or nearly so, and the spacing between 

ridges can be very regular. Hence, a pairing of a ridge to an image feature 

may be correct in orientation, but offset by the inter-ridge spacing. 

Consider the following example: The problem is b:> register the image 

resembling the numeral 4 represented in figure 24 to a rrodel of the numeral. 

Image segments are referred b:> by their endpoints, ABCDEF, and the nodel 

segments by the same letters, with quotes, A'B'C'D'E'F'. In this example, 

if segment A-C is rorrpared with B-D, the match will be high in value, 

assuming an identity a priori transformation. Orientation and length of the 
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segment cb little to distinguish A~ and B-D. 'Ib eliminate incorrect 

matchings cause by this phenomenon, the local spatial structure of both the 

ridges and the 1-edges must be used to guide the matching. In terms of the 

example, note that when A~ is registered to B'-D', C-D overlaps D'-E', 

partially oonfirming the match with B'-D'. But when A~ is paired with 

A'~', all segments in the image will participate in a pairing consistent 

with that involving A~. 

When an initial pairing of features is made, nearby ridges are examined 

and a tally is kept of the number of nearby ridges which can be paired with 

1-edges in a matching consistent with that under construction. Consistency 

here is again measured by comparing the translations necessary to bring a 

feature into alignment, under the a priori transform, with a given 1-edge. 

If a structured ridge is being oonsidered, the tally is formed by oounting 

the number of segments in the ridge which can be pairecl with 1-edges under 

mutually oompatible translations. Developing a pairing of the elements of a 

structured ridge with several simple 1-edges cx:,mpensates somewhat for the 

decomposition of structured 1-edges into separate simple features. The 

simple 1-edges can be paired with the elements of a structured ridge as they 

\IOuld have been had they still been joined in a structured 1-edge. The 

pairings of ridge and 1-edges are ordered by the number of supporting 

pairings, (i.e., by the extent to which they can be locally extended). This 

strategy can be understood as a generalization of the scheme of determining 

local suH?()rt for linear features employed in the SRI system (Bolles et al., 

1979). 

At this point, a feature (whole or part) is matched to a 1-edge, and a 

set of oompatible pairings has been generated. Each of the elements in this 

set is in turn selected as the second pairing for the matching. By 



selecting other ridges with translation-oompatible pairings as the third 

part of the match, the matching is extended to include three mutually 

translation-cx:,nsistent pairings of features. With the six values from the 

matching, an affine transform can be determined. Each pairing of a ridge 

and an 1-edge provides a point-to-point match for the parameter 

determination. 

3.6 Consistency of the Transform 

56 

When an affine transform is determined for a set of three point 

pairings, the resulting transform will predict the points with no error. 

Hence it is necessary also to test OCM the transform predicts the segments 

passing through the matched points. 'This first estimate of the transform 

con:p.ited from the three pairings is tested for self-consistency. The 

transform is self-oonsistent if, using the new transform, the transformed 

1-edges and their matching ridges overlap (figure 25). Many matchings yield 

inconsistent transforms, which are rejected. This avoids the relatively 

expensive procedure of predicting and verifying feature locations. 

3.7 Verification 

If the transform is self-cx:,nsistent, it is then used to predict the the 

location of the remaining 1-edges in the terrain roc>del. When a 1-edge is 

cx::impared to a ridge, it is examined at the positions for matching as 

described aoove (3.4). If the 1-edge lies within a narrow band of the 

appropriate segment on the ridge, the points corresponding to that match are 

entered as the match points, and the features are matched. The number of 
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(1) 
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Figure 25 

In a self-oonsistent transform (2), the bands of the ridges 
overlgp the transformed l~ges (ootted lines). When the 
transform is not self-oons1stent (1) 1 the 1-edges extend 
outside the bands. A-Care the rnatcned p::,ints. 
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1-edges which overlap existing ridges is used as the measure of th~ quality 

of the matching. Also the average and root-mean-square of the differences 

between points in the 1JlM and their matched 1-edge points are calculated. 

If eoough features can be matched in this way, the set of pairings is usea 

to form an extended matching, from which a least-squares estimate of the 

affine transform parameters is cxmp..1ted. In this extended matching, any 

p:,int pairs whose associated error is larger than the average error are 

rejected. In a good matching nost of the p:,int pairs produce errors less 

than the average. Renoving pairs with large errors and re-oornp..1ting the 

transformation is a heuristic for improving the registration. 'M'le new 

transform is cxmp.ited from the remaining pairs. This transform, in turn, is 

used to predict the location of the 1-edges in the lJIM. If the matching 

improves, a new least-squares estimate of the transform is cx:,mputed. This 

iterative process terminates when error terms are sufficiently small and the 

number of features predicted is sufficiently high. Indeed, if the average 

and RMS errors are less than a pixel, searching stops and success is 

indicated. 



59 

4. Implementation and Testing 

4.1 The Input 

To test the method, a l00xl00 pixel subsection of a Landsat image 

(figure 1) is registered to a digital terrain nodel. Band 7 of the Landsat 

image was used because the effects of terrain relief are rrost apparent in 

that band. The Landsat image was ac-quired on September 14,1976 (frame ID 

11514-17153). The digital terrain nodel was digitized from the 1:50,000 

series contour map, Canadian National Topographic System (NI'S) sheet 82 F/9, 

(St. Mary Lake), oovering an area from latitude 49 degrees, 30 minutes to 

latitude 49 degrees, 45 minutes and in longitude from 116 degrees to 116 

degrees, 30 minutes. This area is northwest of Cranbrcx,k, British C.Olumbia. 

An area, 30 kilaneters by 23 kilaneters, is represented in the TIN digital 

terrain model by approximately 5500 p:>ints. This terrain nodel was utilized 

in other research on nodeling image formation in rerrote sensing 

(WOodharn, 1980) • 

The D'lM was prepared manually by the author. The ridges and channels 

of the area were digitized. Additional p:,ints were included to shape the 

terrain surface between the ridges and channels. The oomplete set of p:>ints 

was triangulated, and automatically edited to include the edges joining 

p:>ints aloog the ridges and channels. When a TIN format IYIM is rot 

available, there exist automatic procedures for converting a IYIM in grid 

format to a TIN (Fc:Mler and Little, 1979). 
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4.2 Prograrrrning Languages 

Implementation of the various parts of the system has been acoomplished 

in several different programning languages. The procedures to extract 

features from a IY.IM and brightness disCX>ntinuities from a Landsat image were 

ooth written in PASCAL-tJBC (Jollife and Pollack, 1979). Brightness 

discontinuities are rot derived on demand during registration, but are 

determined in a preprocessing step. The IY.IM and the image are not available 

during registration matching. Registration matching uses ridge features and 

Landsat features written to ancillary files during the preprocessing steps. 

The registration system is written in LISP-MI'S (Wiloox and Hafner, 1976) and 

reads the files from the Pascal procedures. LISP was chosen for the major 

cx:mponent of the implementation because of the ease of experimentation with 

control structures and the simplicity of dynamic storage allocation. 

4.3 Data Structures 

The curvilinear features of the IY.IM and the Landsat image are 

represented in the piecerwise linear awroximation described in section 

3.1. 5. They are structured as lists when written to the feature files. A 

curve is represented as a 3 element list, as follows: 



first-point 
last-point 
internal-structure 

where internal structure is a 5 element list defined recursively as: 

or 

( left-point 
right-point 
internal-structure between first-point and left-point 
internal-structure between left-point and right-point 
internal-structure between right-point and last-point 

NIL when the perpendirular distance of all points between 
first-point and last-point is less than the detail level. 

Points are represented as a list of the~ c:xx>rdinates. At lower levels in 

the structure, internal-structure is expanded using the endpoints of the 

enclosing segment as the first- and last-point. For example the line A-Fin 

figure 17 is represented in the list structure for a generalized rurve as: 

( A F ( B D NIL (C NIL NIL NIL NIL) (E NIL NIL NIL NIL))) 

The ootted lines in figure 17 show the approximating segments for various 

portions of the rurve. Figure 17 also shows a tree representation of the 

generalized rurve. This representation can easily be oonverted into the 

original line structure, a list of points, by a pre-order traversal of the 

tree. 

Because it is necessary to search the area around a feature, a data 

structure was added to the system which \\Ould succinctly represent spatial 

relations. A ooarse mesh is placed over the region in the plane oontaining 

the features. Each cell defined by this mesh is termed a bucket. On inp..it, 

the features are cx,mpared with this mesh and the names of all features 

passing through a given bucket are added to the list of features in the 

bucket. When it is necessary to find all features within a certain distance 
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of a feature, a region of the ai:propriate shape around the feature is 

generated, and the list of buckets which this shape overlaps is derived. By 

merging the lists of feature names associated with this list of buckets, it 

is J)Ossible to determine the names of all features which may lie within the 

oorrect region. 

4.4 Estimating the Affine Transform 

If the change in the satellite's attitude during image acquisition is 

ignored, the parameters of the transform are: 

where 

a= (M zO S) oos (H + y) 
b = (OR L) sin H + (ERL) oos G 
C = xO - (r oos H + p sin H) zO 
d = -(M zO S) sin (H + y) 
e = (OR L) oos H 
f = yO - (-r sin(H) + p cos(H)) zO 

M is the angular velocity of the scanning mirror 
zO is the distance of the satellite from the surface of the 

earth at reference time tO 
S is the sampling interval along the scan 
O is the angular velocity of the satellite in its orbit 
R is the radius of the satellite's orbit 
L is the time interval between scan lines 
G is the geocentric latitude at the sub-satellite point 
H is the heading of the satellite - the angle its orbit makes 

with a meridian 
r,p,y are the roll, pitch and yaw angle of the satellite 

platform measured with respect to x,y,z axes 
E is the angular velocity of the earth 
xO,yO are the image coordinates of the :i;x::,int directly 

below the satellite at reference time tO 

'l'ile a priori estimate of the affine transform used in registration was 

cx:mp.1ted using the following substitutions to the equations for the 

transform: 



M = 6.21 rad/sec 
zO = 900 kilometers (a rrore accurate altitude is oontained in 

the image annotation) 
S = 9.958e-6 sec 
O = 1. 014e-3 rad/sec 
R = 6370 kilometers 
L = 12.237e-3 sec 
G = 49 deg 35 min 
H = O. 246 rad 
r,p,y = 0,0,0 rad 
E = 72. 722e-6 rad/sec 
xO,yO = 0,0 

Using these parameters, the resulting affine transform is: 

a = 0. 539797 
b = 0.236592 
C = 0.0 
d = -0.13550 
e = 0.766666 
f = 0.0 

4.5 Examples of Registration and Results 
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The IX>Si tion of the sun for the September 14, 1976 image was determined 

using a version of the method of (Hom, 1977) implemented by R.J. W::xxfuam. 

The sun's IX>Si tion so determined was azimuth 134. 5 degrees, elevation 34. 4 

degrees. Figure 26 slx>\..~ a synthetic image generated using the calculated 

fOSition of the sun. 'The IYIM features selected using this sun fOSition are 

depicted in figure 27. All of these ridge lines are longer than 250 

meters. The curves are generalized using a detail level of 80 meters. 

For the Landsat image, the same length and generalization parameters 

were used. '!be top 20 percent of the feature cells were used in the 

construction of the 1-edges. The IX>Sition of the sun was input as well, so 

that shadow edges oould be rejected. 





Figure 26 

Synthetic image for September 14, 1976. The sun's position is azimuth 
134.5 degrees, elevation 34.4 degrees. The white box outlines the 
portion of the DIM used in feature selection. Photographed from the 
screen of the mlTAL Vision 1. 
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r:YIM features for September 14, 1976, with the matched 
:EX)ints (1-6). 



In the test case, the location of the Landsat image in the D'lM was 

estimated by hand to within 0. 75 kilometers, or awroximately 10 pixels. 

This reduced the search region size a:, as to reduce the expense in 

developing the system. The affine transform for this image was determined 

to be: 

a = O. 555292 
b = 0.131612 
C = 1. 944259 
d =-0.143495 
e = O. 773612 
f = 2.197464 
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The errors associated with a transformation are determined by comparing the 

positions of transformed Landsat :p::,ints with the :p::,sitions of the 

oorresponding D'lM points. The p:,int pairs are derived from the features 

which overlap using the transformation being evaluated. The registration 

determined from the matching found by the system resulted in the following 

errors: 

Average error= 30.9 meters or 0.3862 pixels 
Root mean square error= 53.5 meters or 0.66875 pixels 

Figures 27 and 28 show the D'lM and Landsat features with the matched points. 

There are 33 ridges and 18 1-edges in this example. Twenty-five matchings 

(three pairings each) were examined before a matching was accepted. Of 

these matchings, 14 produced transforms which were self-consistent. The 

remaining were rejected on the grounds of the inconsistency of the 

transform. Two of the six pairings in this matching are at junctions 

between features in the D'IM. 

A second image of the same region (figure 29) obtained January 8, 1979, 

(frame ID 30309-17575), was registered. The a priori estimate of the affine 

transform used for this case was the same as that used for the first image. 

The position of the sun for this image was calculated as above to be azimuth 



67 

...-
\ 

I I / 

r // 
/ I 

............ 

/ -.. 

/ I 

\ 
--/ 

I 
Figure 28 

Features from Landsat image, 
matched p:,ints (1--(i). 

September 14, 1976, with 
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Figure 29 

100 X 100 pixel subsection of Landsat image (band 7) from 
January 8, 1979, frame ID 30309-17575. Photographed from the 
screen of the CI:'MI'AL Vision 1. 
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153.1 degrees, elevatioo 13.8 degrees. Many of the ridges selected from the 

IY1M using surface orientation alone were in shadow. The portion of the 

terrain in shadow can be detected by using a standard 'hidden-surface' 

algorithm (Woodham, 1980) in which the viewing point is located at the 

JX)sition of the light source. The portion of the surface which is invisible 

to an observer thus situated is in shadow. Any part of a ridge which is in 

shadow is 'cliwed' to the toundaries of the shadow. Shadow calculation was 

not implemented for feature selection. Instead, the program of R.J. ~ham 

for producing synthetic images (figure 30) was used to determine the 

locations of regions in shadow. Features lying in those regions were 

reroved manually. 

be: 

The affine transform for the January 8, 1979 image was determined to 

a = 0. 537147 
b = 0.150337 
C = 1.620489 
d =-0.132218 
e = 0.694722 
f = 2. 330885 

'!he error terms were: 

Average error= 38.5 meters or 0.48125 pixels 
Root mean square error= 56.9 meters or 0.71125 pixels 

Figures 31 and 32 show the IY1M and Landsat features with the matched points 

indicated. There are 15 ridges and 22 1-edges. In this example, the first 

matdling develo:ped yielded this good set of matches with an acceptable 

error. Four of the seven pairings in this matching occur at ridge 

junctions. Figure 33 shows the registered Landsat image. 
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Figure 30 

Synthetic image for January 8, 1979. The sun's position is azimuth 153.1 
degrees, elevation 13.8 degrees. 'Ihe white box outlines the portion of 
the D'IM used in feature selection. Photographed from the screen of the 
<XMl'AL Vision 1. 
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Figure 31 

rYrM features for January 8, 1979, with matched 
p:,ints (1-7). 
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Fi~ure 32 
Landsat features for January 8, 1g79 with matched 
roints (1-7). 
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Figure 33 

Register~ Landsat image for January 8, 1979. The white square outlines 
the 10 km area covered by the rtIM. Photographed from the screen of the 
a::MTAL Vision 1. 
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5. Discussion and Cbnclusions 

5.1 Discussion 

The results of the tests irrl.icate that feature matching can be an 

effective procedure for registering images. Registration errors for the 

examples are well within accepted standards. The automatic registration 

procedure presented relies upon the existence of a detailed terrain nodel 

for its use. Currently, such IYIM's are rot generally available. Ibwever, 

in Canada, the Department of Energy, Mines and Resources is oornnitted to 

production of such IYlM' s for nost of Canada. It has been shown (\'b:>dharn, 

1980) that registration of an image to a digital terrain nodel is helpful in 

determining shading effects which affect image analysis. Benefits such as 

this can sanetimes justify manual generation of a IYlM for a particular study 

area. 

Insofar as the metl'xx:! is based upon determining terrain features which 

will awear distinctly in an image, the method is restricted to application 

in areas of nountairous terrain. There is little possibility that the 

method as it stands w:>ula be useful in registering images of prairie land. 

The benefits of registering an image to a IYlM in such a situation are 

minimal also. Nevertheless, the principle of using known illumination 

oonditicns and a scene m:rlel can find ai:plicability elsewhere. The features 

selected can be water-land b:>undaries, roads and other distinctive scene 

elements. The a:i;:.plicatioo to IYIM's and Landsat images is particularly 

awealing since the imaging geometry is simple. There is no need to solve 

hidden surface problems. Funt (1980) has proposed using synthetic images in 
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interpreting irrloor scenes. Features extracted from any scene IOOdel 

containing information on surface orientation and position can be used with 

the metl'm presented. 

The representation of curves by generalization simplifies the process 

of analysing the relations between curves. By matching portions of curves 

to each other in varying positions, distinctive matchings are determined. 

Alt.rough the notion of representing a curve by its band has existed for some 

time, its use in curve matching is new in this a:i;,plication. By permitting 

looser matching between curves and segments of curves, the band 

representation facilitates curve matching. 

Determining local su:i;:port for a match appears to disambiguate false 

matches readily. In images of rrountairous terrain, it is tmlikely that 

local sur:p:,rt will be insufficient for detecting oorrect matches. However, 

in scenes of urban landscapes, or in irrlustrial a:i;,plications, regularity is 

intrinsic. I.Deal su:i;:port will be very necessary in distinguishing false and 

true matdles. In addition, these situations will require rrore careful 

selection of distinct subsets of matching features. The representations for 

curves advanced in this thesis is advantageous for such feature selection. 

Difficulties with the method will occur in areas of low relief or 

strongly regular terrain, what georrorphologists call "strongly controlled" 

terrain. Clooos, depending upon the sun's position, can be problematic. 

The boundaries of shadc:Yv,rs of clouds will appear in images as strong 

brightness discontuities arrl will not be discriminated from the images of 

ri03es. Clouds themselves will generate brightness discontinuities. The 

method may prove itself robust enough to meet this challenge. 
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5.2 Further w:>rk 

The handling of curve matching where both curves are structured was 

eliminated in this implementation of the registration method. By 

subdividing 1-edges into simple segments, some of the power of the 

representation is lost. The junctions at which the 1-edge segments meet are 

then unavailable. H::Mever, the implementation is simplified. By including 

a facility for manip.ilating and assessing structured-to-structured feature 

matching a significant improvement oould be made. Davis (1979) has 

developed one such method. 

The oontrol of matching developnent is very simple. All 

translation-consistent triples are examined for self-consistency. If a 

matching is self-oonsistent with respect to its derived transformation, the 

transform is used to predict the location of image features in the I:YIM. The 

result of this test of the transform is binary: either accept or fail. When 

a set of predicted 1-edge to ridge overlaps is generated, the structural 

relations between the overlapping 1-edges and ridges oould be used to guide 

further adjustment of the parent matching. This upward flow of information 

is very important in image analysis in general. 

5.3 Conclusions 

This work dem::nstrates the effectiveness of matching features derived 

fran digital terrain models with image features for solving the registration 

problem. It is roped that the techniques presented here and the principles 

underlying them can find application elsewhere. 
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