AUTOMATIC RECTIFICATION OF LANDSAT IMAGES
USING FEATURES DERIVED FROM
DIGITAL TERRAIN MODELS

by
JAMES J. LITTLE

Technical Report 80-10
December, 1980

Department of Computer Science
University of British Columbia
Vancouver, B.C., Canada V6T 1W5

ABSTRACT

Before two images of the same object can be compared, they must be
brought into correspondence with some reference datum. This process is
termed registration. The reference can be one of the images, a synthetic
image, a map or other symbolic representation of the area imaged. A novel
method is presented for automatically determining the transformation to
align a Landsat image to a digital terrain model, a structure which
represents the topography of an area. Parameters of an affine
transformation are computed from the correspondence between features of
terrain derived from the digital terrain model, and brightness
discontinuities extracted from the Landsat image.
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1. Introduction

There are many image analysis tasks where the objects in the scene are
known beforehand. Often industrial inspection and manipulation tasks
involve determining the position and orientation of a known part within a
given image (Hsieh and Fu,1979; Agin,1980; Myers, 1980). Similarly,
biomedical applications, such as chest X-ray interpretation (Ballard et al.,
1979), often deal with images whose general content is known. The
interpretation of images acquired via satellite or aerial photographv is
facilitated by knowledge of the scene given in form of maps and other
geographic data. Once the position and orientation of objects in a scene is
determined, image analysis simplifies. Thus, registering the image to the
scene model is an i.t@rtant first step in automatic image interpretation.
In remote sensing, the spatial relations between the objects in the scene
are precisely known, and the geometric relation between image and scene
model can be characterized by a fixed mathematical transformation of known
form but unknown parameters. In contrast, the number of ribs in a chest
x-ray, for example, is given, as well as their general spatial
relationships, but their precise size and position are not precisely known.
The importance of registration has been demonstrated in the domain of
Landsat images. When a new image has been brought into correspondence with
surface data, the interpretation of ground cover is improved. For example,
the effect of shading due to variations in surface topography and shadows
can be estimated (Woodham, 1980). Thus far, registration has eluded
complete automation. The object of this thesis is to present a method for
automated registration of Landsat images.

A Landsat MSS image measures scene radiance in each of four spectral



bands, at a nominal ground resolution of 79 x 79 meters. The position and
attitude of the Landsat MSS platform is known with limited precision. After
systematic corrections based on the estimated platform position and
attitude, the ground location of an image point may differ from its true
position by as much as 10 kilometers. Since each picture element (pixel) of
a Landsat MSS image has a nominal ground spacing of 5 meters in the across
track direction and 79 meters in the along track direction, this represents
an error of up to 179 pixels. Further processing is thus required to relate
the image coordinate system to other coordinate systems.

A digital terrain model (DIM) represents surface elevation as a
function of ground coordinates. A DIM can be accurately located in a
geographic coordinate system. A Landsat image registered to a digital
terrain model can be directly compared with other sources of geographic
information, and other images.

An automatic method for registering Landsat images to digital terrain
models is developed. As an example, figure 1 shows a 100 x 100 section of a
Landsat image. Figure 2 shows a contour plot at 100 meter intervals of the
digital terrain model. 1In the method presented here, a set of curvilinear
features is determined from both the Landsat image and the DIM. Features
from the Landsat image are shown in figure 3 while those selected from the
DIM are depicted in figure 4 . A correspondence between the elements of the
two sets of curvilinear features is established which satisfies both
geometric (shape) constraints and topological (adjacency) constraints. The
matching between elements determines point pairs input to a least-squares
estimator for the parameters of an affine transform. The image registration
problem is transformed into the problem of matching sets of curves in the

plane. The points on the features used for calculating the transform are



Figure 1

100 X 100 pixel subsection of Landsat image (band 7) from

September 14, 1976, frame ID 11514-17153. Photographed from
the screen of the COMTAL Vision 1.
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Figure 3

Features derived from Landsat image subsection
acquired on September 14, 1976.
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Figure 4

Features derived from D™ using the sun's p051t10n at the
time of image acquisition on September 14, 1976.



labelled 1-6 in figures 3 and 4. The registered Landsat image is shown in
figure 5 . The derived affine transform is:

xl
yl

ax+by+c
dx+ey+f

where (x,y) are Landsat image coordinates, (x',y') are DIM coordinates, and

where

0.555292
0.131612
1.944259
-0.143495
0.773612
2.197464

o O T

Chapter 2 reviews previous work in registration, feature detection,
digital terrain models and matching methods.

Chapter 3 develops the method for registering images to digital terrain
models. Knowledge of sun position is used to select features for
registration. Geometric constraints are used to guide the registration
process.

Chapter 4 presents the particular implementation used to realize the
method.

Chapter 5 discusses the results and their relevance to other image

understanding tasks.



Figure 5

Registered Landsat 2iJn:.-xgosz for September 14, 1976. The white square
outlines the 10 km“ area covered by the DIM. Photographed from the
screen of the COMTAL Vision 1.






24 Previous Work

2.1 Registration and Rectification

Image registration is the process of determining the correspondence
between elements of two or more images and applying a transformation to one
image to align it with the other. Two satellite images would first be
registered in order to proceed with change detection. However, it is often
necessary to register images not just to each other but also to absolute
ground coordinates. Registering an image to absolute ground coordinates is
called image rectification. Often the term registration is used for both
image-to-image registration and image-to—ground registration (i.e.,
rectification).

Commonly, two images are registered by manually selecting ground
control points (GCP's) from each image (Bernstein, 1976). A ground control
point is a distinctive ground feature detectable in an image. Typical GCP's
are airports, land-water boundaries, field patterns and highway
intersections. Parameters of an appropriate transformation are calculated
from a subset of the selected GCP's. For each GCP in one of the images, the
corresponding GCP must be located in the second. Manual selection of GCP's
is time-consuming. Several techniques have been developed to automate
partially the selection of ground control points.

As an initial improvement to the manual method, correlation techniques
can be used to improve the estimates of the GCP locations. For each GCP in
the reference image, a small m X n subsection of image surrounding the GCP

is used as a template. The best matched position of the template determines
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the location of the corresponding GCP. The best position is that at which
the correlation of the template with the image is maximized. The
correlation between an m x n template S1 and a subsection of an image S2 at

(x,y) is:
™ n

E E S1(i,j) = S2(x+i,y+j)

=l =l
High output of this operation may result if one of the subsections has a

high average gray level. For this and other reasons, it is oconvenient to

normalize the correlation, resulting in the following formulation:

m
Z z (S1(i,j) - SI) - (S2(x+i,y+]j) - S2)

ooyl

4
\/ll ZI(SI(LJ) - §I) E (S2 (x+i,y+j) - E‘Tf)
3 2 iv}
where
1/(m n}'i ism,j)
and o2t 5L
n
1/(m n)'E E S2 (x+i,y+7)
i:

izl

]
H
n

<l
o
L}

Then a perfect correlation corresponds to a value of 1. Sequential
similarity detection algorithms (SSDA's) can be used to speed up template
matching (Barnea and Silverman,1972). This correlation process is repeated
for each GCP. The refined GCP locations are used to determine the
parameters of the registration transformation. This refinement technique
can be embodied in a fully automatic registration procedure if a library of
GCP templates is maintained for use in the registration of subsequent images
of the same area.

The GCP method can be further automated by introducing automatic
selection of the GCP's. As a first step toward this, the reference image

can be regqularly subdivided into overlapping subimages, each of which is
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used as a template in the correlation technique. This automatic method has
difficulties. There is no guarantee, for example, that the GCP templates
can be located by correlation in other images. The GCP's produced by
reqular subdivision are random with respect to the content of the image.
Davis and Kenue (1977) describe a method for automatically selecting ground
control points in a reference image. Ground control points are selected
where there is a strong connected set of brightness discontinuities. The
algorithm thresholds the gradient of the image and finds connected sets of
pixels in the thresholded gradient image. GCP's are selected from the
resulting set so as to be as evenly scattered about the image as possible.
This method improves upon reqular subdivision of the reference image into
templates, but it also suffers two major shortcomings:

1) Since the GCP's are chosen on the basis of image features, the GCP's

have no necessary relation to ground features whose appearance can be

expected to remain oonstant in other images.

2) In particular, no attempt is made to take acoount of possible

changes in illumination between the images, which will systematically

affect the appearance of the templates.
In the absence of a scene model, not much more can be done. However,
digital terrain models, when available, can be used to select and verify
GCP's for registration.

Horn and Bachman (1978) use synthetic images generated from digital
terrain models to register Landsat images. The synthetic image represents
the appearance of the terrain under the illumination conditions
corresponding to the sun position at the time of image acquisition. Their
published work assumes that the transformation between the synthetic image
and the Landsat image can be described in terms of rotation, translation and
scale change. A correlation of the real and synthetic images is used as
measure of goodness of fit to guide the adjustment of rotation, translation

and scaling. The ocorrelation of the entire image is ultimately used. This
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is computationally expensive. The authors avoid some of this expense by
first using low resolution images to produce rough estimates of the
transformation parameters. The full resolution of the data is used to
compute the final refinements to the transformation parameters.

The method presented in this thesis follows the spirit of the work of
Horn and Bachman. The known position of the sun is used to predict the
terrain features which will appear as distinct image features. The symbolic

features themselves are used to determine the transformation parameters.

2.2 Digital Terrain Models

A digital terrain model (DTM) represents the surface of the earth in a
particular region. This is usually taken to mean that the DIM can be used
to determine the elevation of the surface at any point in the region.
Besides providing height information, a digital terrain model also
represents the surface orientation since slope and aspect can be derived.
Slope information is crucial for accurate calculation of the synthetic
image. Because the DM is defined in a ground coordinate system, an image
registered to a DM can be directly compared to other sources of geographic
information.

A common representation of terrain is as a discrete grid of terrain
elevations. Slope is determined in a grid representation by local
differencing. Alternatively, terrain can be modelled as a set of contiguous
non-over lapping triangular facets (figure 6), in a Triangulated Irregular
Network (TIN) (Peucker et al., 1978). In the TIN, slope information is
directly computed from the surface facets. Efficient procedures exist for

converting the grid to a TIN and vice-versa (Peucker et al., 1978; Fowler



Figure 6
A Triangulated Irregular Network (TIN)

13
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and Little, 1979). The digital terrain model used for the work described
herein was constructed in the TIN format.

The structure of terrain can be modelled by the network of ridges and
channels (divides and streams). The ridges are convex linear surface
features which, theoretically, connect passes (saddle points) to peaks
(relative maxima). In practice the set of ridges on a surface also includes
convex linear features which connect to the main ridges that do join passes
to peaks. Channels are concave linear features connecting passes to pits
(relative minima). In addition, the surface behavior of the terrain between
ridges and channels is modelled. This surface behavior includes lines along
which the surface changes slope. These are termed breaks of slope. Actual
production of a DIM, whether a grid or a TIN, often involves recording the
terrain structure of ridges and channels.

Several methods exist for deriving the the location of ridges and
channels from the grid representation (Peucker and Douglas, 1975; Toriwaki
and Fukumaru,1978). The TIN model is advantageous for feature selection
since ridges, channels and breaks of slope are explicitly represented as the

boundaries of triangular facets.

2.3 Synthetic Images

2.3.1 Reflectance Functions

Image irradiance at a given point depends on the object material imaged
at that point and its orientation in space with respect to the light

source (s) and viewer. Following Horn and Bachman, one model of image
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formation uses a surface reflectance function:

PHI(I,E,G) = P * QOS(I)

where I, E, and G are the incident angle(I), emittance angle(E), and the
phase angle(G) (figure 7). 1In the above equation, P is an albedo factor
depending on the surface composition, which, without additional a priori
knowledge, is assumed to be constant. This reflectance function models a
lambertian surface which, as a perfect diffuser, appears equally bright from
all viewing directions. The incident angle(I) is the angle between the
surface normal and the illumination direction. 1In the case of Landsat
imagery, the principal light source is the distant sun, so that the
illumination direction is effectively constant for all surface points.
Diffuse illumination from the atmosphere and possibly from other scene
elements is ignored in the synthetic image.

The DIM provides accurate estimates of the surface orientation for the
test area. A synthetic image is produced under the assumption of an
orthographic projection and a single light source at the known sun position.
The brightness in the synthetic image at each picture element (pixel) is a
function of the surface orientation at the appropriate point in the DIM.
Figure 8 shows a synthetic image produced from a digital terrain model,
using the simple reflectance function described above, with the sun from the

northwest at 45 degrees elevation, as in standard cartographic convention.
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Figure 7

The geometry of light reflection from a surface element
is governed by the incident angle, T t.he emittance angle,
E, and the phase angle, G. (after Horn and Bachman, 1978
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Figure 8

Synthetic image of the DIM, The light source is positioned in the
northwest at 45 degree elevation as in cartographic convention.
Photographed from the screen of the COMTAL Vision 1.
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2.3.2 Sun Position

In order to produce a synthetic image corresponding to an actual
imaging situation, it is necessary to determine the sun's position at the
precise time of image acquisition. Fortunately, the time of acquisition of
each Landsat scan line is accurately determined and recorded as part of the
image annotation data. Standard tables or formulae can be employed to
determine the position of the sun at a given date, time, latitude and
longitude. Sun position is described in terms of azimuth, the angle of
rotation about the vertical axis, in degrees clockwise from north, and
elevation, the angle of rotation above the horizontal (figure 9) . In this
description, standard cartographic convention situates the light source at

azimuth 315 degrees, elevation 45 degrees.

2.4 Feature Selection

The literature in image analysis abounds with techniques for
determining the position and orientation of brightness discontinuities in
images (Davis, 1975). An operator which performs this task is called an
"edge detector". Generally, edge detectors perform well in locating sharp
boundaries where the relative brightness difference is large and the
boundary is locally linear. For the purpose of the method presented in this
thesis, the features to be found in Landsat images are restricted to
discontinuities between relatively bright and dark regions. The intensity
differences between regions are known to be large and the transitions

between the regions sharp. The focus of the research is not on the design



Figure 9
Definition of the position of the sun in terms of
azimuith @ , and elevation ¢ .
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of an optimal filter for detecting such features. Rather it is assumed that
most edge-detecting operators will be robust enough to detect the required
boundaries.

Similarly, the choice of method for joining pixels which display edge
activity into lines is not critical. Portions of the image features sought
will be relatively straight, and connecting these into curves is
straightforward. Any rule for connection which prefers extending existing
lines along the general line tendency is acceptable. It is presumed when
the features are used that there will be gaps in the curves, so the degree
to which a line—growing method is able to bridge these gaps is not critical.
In sum, feature selection techniques were chosen from existing methods in
the literature.

Feature selection in the domain of the digital terrain model derives
from an investigation of the production of synthetic images (discussed in
section 2.3). The method for DIM feature selection will be elaborated in

section 3.1.1.

2.5 Matching

In the automatic registration method presented in the thesis, a
one-to—-one correspondence is derived between symbolic features of an image
and a digital terrain model. This correspondence between features can be
modelled as a matching of the features, depending upon the similarity of
their descriptions. If the matching between features based on their
symbolic descriptions is reliable, then matching methods can be used for
automatic registration. Other researchers have considered the problem of

matching an image to a model of the scene. Research on matching
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descriptions of an image to models of the scene can be divided into those
which handle symbolic descriptions only, and those which also manipulate
geometric relations. The topics of interest in this work are both

representations of object and image relations and the control structures

used in matching.

2.5.1 Symbolic Matching

Barrow and Popplestone (1971) describe the adjacency relation of
picture regions by a region adjacency graph (RAG). This graph is
necessarily planar. A description of a model scene is also represented in
terms of a RAG. Recognition of elements in the picture is performed by
matching a region with a model component. Both region adjacency graphs are
augmented by edges indicating relations between regions such as relative
size, position (above-below, left-right), shape and convexity. The match is
incrementally increased, one region at a time. The search space can be
represented as a tree; nodes represent matchings and descendants of a node
represent developments of the matching at the node by adding another region.
The search space is probed for a solution using best-first search.

Barrow and Burstall (1976) use maximal matching of graphs for matching
relational structures, such as image and scene descriptions represented as
graphs. A graph is defined as a set N of nodes, and a relation R, a subset
of NxN. A matching from Gl to G2 is a subset S of NIxN2 which preserves the
relations in each graph; for all pairs (a,A) and (b,B) in S, a is connected
to b in Gl if and only if A is connected to B in G2. A matching is maximal
when no other matching has higher cardinality. Under this definition, a

node in Gl may be matched to more than one node in G2 and vice versa. Two
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pairs are 'compatible' if the pairs are in S. A graph is derived as
follows: the elements of the graph (the set X) are elements of S and the
relation (H) between elements of the graph is that of compatibility between
pairs. Given a graph so constructed, a maximal matching of the original
graphs can be obtained by finding a maximal clique (complete subgraph) of
(X,H). It is clear that in such a clique all pairs are compatible, by
definition, and that its order is maximal. If the restriction that a=»>b
iff A =B is added to the definition of compatibility, the correspondence
generated by the maximal matching is one-to-one. To our dismay, however,
this merely reduces a difficult problem to an NP-complete problem. However,
the best clique-finding algorithms seem to perform efficiently in most
cases.

Tanimoto (1976) offers an excellent discussion of the motivation for
using graph matching and develops an algorithm for enumerating all maximal
matchings of two graphs. A matching assigns labels to regions in the
segmentation of an image. The labels form one set of nodes in a bipartite
graph, and the regions the other set. Edges represent the compatibility of
descriptions of a region with a label and hence restricted to a yes-no
decision. A maximal matching of the bipartite graph so formed is the
maximal set of edges from one set of nodes to the other, where a node occurs
at most in one edge. Tanimoto notes that methods for constructing such
bipartite graphs are 'neither usually obvious nor necessarily possible’.

One approach is to allow edges which satisfy many constraints such as degree
restrictions. Usually these are determined by local constraints, that is,
those which only require examining the neighbors of a node. A maximal
matching can be generated in O(e * sgrt(n)) time, where e is the number of
edges in the graph, and n the number of nodes. An algorithm is presented by
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Tanimoto which can list the set of maximal matchings of the graph. A note
of caution: the number of maximal matchings is potentially exponential in n.
A recent paper by Itai, Rodeh and Tanimoto (1978) also characterizes the
cases when matching problems with restrictions are NP-complete (Aho et
al.,1974), and provides a discussion of the applicability of graph-matching
vis-a-vis constraint propagation.

Maximal matching techniques are appealing because once the
compatibility relation is constructed, generation of matchings is efficient.
However, the effectiveness of maximal matching methods depends upon the
extent to which the compatibility relation can constrain matchings to
appropriate ones. If the compatibility relation is too general, many
matchings will be generated which are incorrect. Computing compatibility
becomes expensive when the interrelation of features extends more than just
to local features. 1In the registration problem, in particular, the solution
must satisfy global constraints, while compatibility testing must be rather
local to allow maximal matching to be a successful alternative method. 1In
addition, it is not clear that the relations among features can easily be
characterized by descriptions such as 'left-right' or 'near-far'. Rather,
metric relations such as angle and distance are appropriate in this domain,
especially as they are precisely known for the DITM. Using metric relations
becomes more important when matchings between intrinsic aspects of features,

such as shape, length or position, are less reliable.

2.5.2 Geometrically Constrained Matching

Fischler and Eschlanger (1973) detail a method for matching a reference

image in raster format to a reference image which is described by a graph
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composed of components (coherent pieces of the model). For each of these
components, a local evaluation array (LEA) is computed. The LEA measures
the goodness of fit of each component of the model at each point in the
image, rather like the goodness of fit of a template at all points in the
image. The model components are assumed to be joined together by springs.
The cost of a matching is the amount of tension in the springs joining the
components. This method is compatible with a 'rubber-sheeting’
transformation of the image, in which direction is not globally preserved
and scaling can vary across the image.

Dynamic programming is used to solve the matching problem. Using the
1EA, the cost of orienting the constituent component subassemblies can be
computed, recorded in tabular form, and used to find a global minimum, cost
matching. The oost of this method increases exponentially as the degree of
interconnection of the components rises. As an alternative, the authors
suggested an incremental method, very similar to Barrow and Popplestone's
technique. The work is of note in two respects: first, it constructs a full
transformation from one image to the other, and second, it uses geometric
constraints as well as semantic constraints in the matching. The
registration method presented in this thesis uses an incremental method.

Bajcsy and Chance (1975) studied the problem of establishing the
correspondence between images of brain slices before and after chemical or
physical operations in which there is appreciable shape distortion of the
brain. The images are processed to extract the veins in the images. The
nodes (vein junctions) are ordered by degree. A matching is generated by
comparing the degree of junctions from the two images. Because it is likely
that an edge in one graph will show up in another, this seems an appropriate

strategy. The graphs are not totally matched in this process; rather, the
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initial matching is used as a 'seed' to a registration procedure which
perturbs the initial mapping slightly in order to reach an optimal match.
The authors state that without such an initial match, the hill-climbing
method of the registration is not sufficiently constrained and might 'walk
off the edge of the image’.

Work at SRI (Bolles et al., 1979) models the transformation from the
test image to the reference as a function of camera parameters, such as
focal length, position, yaw, pitch and roll. The reference is a 'database'
of highways and features of highways. An essential part of the SRI method
is that there is a good 'a priori' estimate of the camera parameters and of
the errors in these parameters. These estimates are used to predict the
location and extent of the region in the image which is to be searched for
an element from the reference image. The predicted search region for an
element is termed its 'uncertainty region'. Once an element is located
within its search region, the search regions for other elements are
constrained in location and size. The pairing of reference element and
image element provides new information which is used to improve the camera
parameters and reduce the errors. Both linear and point features are
hand-selected from the reference image for registration. Because highway
structures, such as the boundaries of lanes, are locally very similar, it is
possible to mistake a feature for one offset from the proper match. To
prevent this situation, the system identifies features nearby which can be
used to verify a match, and searches for them in the image. For example,
highways are composed of several parallel lanes; in detection of a highway
the system searches for locally offset lanes to confirm the matching of
others. This notion is termed 'local support' for a feature match. The

matching of elements provides information for the correspondence refinement



process which solves the nonlinear camera parameter estimation problem.
Bolles (1979) describes a further use of the maximal clique method for
matching features in an image with a model. Nodes in the feature graph
represent labellings of nodes. Arcs represent compatibility relations
between the labellings of features. These relations are based on distance
and orientation measures computed in the image and compared with model
descriptions. A maximal clique in this graph represents a maximal match of
the features of the image with the labels in the model. As with all maximal
matching methods, there are difficulties with the combinatorial behavior of
the problem and the inordinate size of the graphs; generating graphs for
reasonable problems in itself is time-consuming. Bolles (p. 144) suggests

several ways of improving the method:

1) Restrict the model to key features
2) Use geometric limits with respect to some feature to exclude
unnecessary features.

3) Iteratively apply the maximal clique method to refine the

assignment.

With respect to the last point, Bolles further states "the benefit of this
approach is derived from the fact that the structural constraints are
applied sequentially instead of all at once" (p.145).

In general, methods for maximal matching suffer from the difficulties
encountered in Bolles's method. Explicit oonstruction of the relations
which may hold between elements of the model and the features of the image
is itself an expensive task. The registration method presented here follows

the spirit of Bolles's work. The method depends upon an analysis of the
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model to find promising features of the model. These are found in the
image. Nearby features of the model are used to confirm the initial
matching. Then additional features are selected for matching, from the
restricted set constrained by the previous matches. Local support for a
feature acts as a breadth-first look-ahead to select promising matches,
following which a depth-first search is conducted for further matches. In
addition, once an estimate for the matching has been constructed, it is
locally adjusted to improve the registration.

These facets of the method anticipate the suggestions of Bolles. The
illumination conditions at the time of image acquisition are used to
determine the features. Key features are selected based on the structural
complexity of their components. The geometric constraints of the transform
derivation guide its development. Lastly, the inspection and rejection of
choices at early stages of the search deliver the benefits of sequential

exploration of the possibilities.
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3. The Registration Method

The registration method proceeds in several stages. The data consist
of the raw Landsat image and a digital terrain model (DIM) for the area
imaged. The time at which the image was acquired is known. In the first
stage, features of the digital terrain model and the Landsat image are
derived. The second stage considers matchings of three features from both
the D™ and the image. Each match determines the parameters of an affine
transformation. When one of the derived transforms predicts other
ridge-to-Landsat feature pairings, with a sufficiently small total residual

error, the transformation is accepted. Otherwise, registration fails.

3.1 The First Stage: Feature Extraction

3.1.1 Extracting Features from Digital Terrain Models

Since the sun's position corresponding to the Landsat image is known,
it is possible to determine the location of convex breaks of slope which
will appear in the image with strong brightness discontinuities, as follows:
The slope of each surface facet is derived and the brightness of the facet
determined using the reflectance function. For every location in the TIN
where surface slope changes (represented by the junction of facets), the
brightness of the surface facets adjoining is computed. The difference
between these values indicates the relative magnitude of the brightness
discontinuity to be expected at that position. 1In testing the method, only

those edges are selected which are bounded, on one side, by a self-shadowed
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facet (one which receives no direct illumination), and, on the other side,
by a facet whose predicted brightness is relatively high (figure 10) . This
restricts the features to a small subset of all edges which will generate
brightness discontinuities. Many ridges will not be self-shadowed on one
side, but will nevertheless appear as sharp discontinuities in the image.
However, areas in self-shadow, if present, will be very dark in the image,
and their appearance will be less sensitive to ground cover variation.
Self-shadowed ridges tend to lie perpendicular to the azimuthal direction of
the sun. This leads to strong constraint along the direction parallel to
the azimuthal direction of the sun, but little constraint in the orthogonal
direction. Pairings of features at junctions or endpoints of features
provide the needed constraint in the orthogonal direction. Edges satisfying
this criterion are merged into curves when their endpoints are adjacent and
merging them does not cause the resulting curve to loop back upon itself.
Only those curves are output which represent a strong brightness
discontinuity. These curves will be termed "ridges" in the following
discussion of the registration method, while r'bting that the curves can be
generated both by terrain ridges as well as other convex breaks of slope.

The features extracted from the DIM are shown in figure 4.

3.1.2 Extracting Features from the Landsat Image

In the Landsat image, some surface slope breaks appear as boundaries at
transitions between bright and dark regions. Desirable boundaries are those
formed by convex breaks of slope oriented perpendicular to the azimuthal
direction of the sun's illumination. Shadow boundaries also appear as

transitions between bright and dark regions, but, since the direction of the
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incident illumination is known, they can be distinguished from the
transition features formed by ridges. Shadows are dark on the side of the
edge nearer the light source. Figure 11 shows the Landsat image subsection

used for the registration tests.

3.1.3 Selecting Feature Points

The Landsat image is correlated with an edge detector composed of two
orthogonal components. The 5x5 Sobel operator (Iannino and Shapiro, 1979)
was used because it had been reported to yield acceptable results, in the
literature. The ratio of the outputs of the components of the operator
provides an estimate of the direction of the boundary element passing
through the pixels tested.

The edge detector gives high values not only at discontinuities, but
also at pixels offset from the discontinuities. This produces secondary
lines, called echos, lying parallel to the original (figure 12). In order
to eliminate these as early as possible a scheme of Nevatia and Babu (1979)
is used. An edge element is judged to exist at a pixel if :

a) the magnitude of the filter output is above a threshold

b) its magnitude is higher than that of its two neighbors in the

direction normal to the estimated edge direction, and

c) the edge directions of these neighboring pixels are within 45

degrees of the direction at the central pixel.

If any of these conditions do not hold then no edge element is judged to
exist. The effect of this process is to suppress the echo elements at an

early stage, eliminating the need for later curve thinning procedures

(figure 13).
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100 X 100 pixel subsection of Landsat image (band 7) from

September 14, 1976, frame ID 11514-17153.
the screen of the COMTAL Vision 1.

Photographed from
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3.1.4 Line Growing

The output of the Sobel operator is used to construct the linear
features, following the method of (Bajcsy and Tavakoli, 1976). The process
is divided into two steps. First, pixels are connected into curves
represented as sets of pixels. Next, a piecewise linear approximation is
derived for these curves, and curves are merged when possible. 1In the
discussion which follows, the terms "line" and "curve" will be used
interchangeably to refer to a string of points connected by straight line
segments.

In the first stage, a histogram of the values of the filter output is
derived. This density histogram is used to direct the process so that lines
are 'grown' from those points which had the highest output from the
filtering step. A cumulative distribution function is derived from the
density histogram. At each step in the line growing process, the threshold
is relaxed so that five percent more pixels are above it. Initially the
threshold is set at the 95 percent level.

At each stage in the line construction process, the threshold is set at
the proper level and all points in the image above the threshold and not
already in a line are processed. The threshold is then lowered a level, and
the process repeated, until the minimum level is reached. Lines are
constructed incrementally in this first stage; at first a line consists of a
single point. When an adjacent point lies above the current threshold, and
cannot be joined to any existing line, it is joined to the single point and
forms a two-point line. To ensure that the lines found have less than a
certain maximum curvature, points are added to an existing line only if they

are adjacent to the endpoints of the line and the segment connecting the new
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voint to the endpoint lies within 45 degrees of the direction of the nearest
segment in the line.

The result of the first stage is a set of lines each consisting of a
set of connected pixels. Figure 14 shows these lines; at each pixel the
last digit of the curve to which that pixel belongs is printed. In the next
stage, these lines are merged into larger connected lines when two
conditions hold: first, the lines are adjacent at their endpoints, and,
second, the segment directions are compatible, that is, joining the two
lines at their endpoints does not cause the resulting curve to loop back
upon itself. The segments are compatible in direction if the dot product of
the segments, considered as vectors originating at the common endpoint, is
less than or equal to zero (figure 15). Figure 16 shows the curves after
merging. To aid in curve merging, a piecewise linear approximation is

derived for each of the curves.

3.1.5 BApproximations to Lines

A piecewise linear approximation to a digital line (Ramer,1972;
Pavlidis, 1977) approximates a line to a given precision by a set of linear
segments oonnecting points on the line. In its construction, the first and
last points in the line are connected by a straight line segment. The
extreme points lying farthest in perpendicular distance from the line
segment are determined, B and D in the example shown in figure 17 . The
extreme points are included in the approximation if their distances from the
segment are above the specified threshold, which will be termed the "detail
level” of the line. The line is then subdivided into the three sets of

points to the left, between and right of the selected points. The three
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Figure 15

Two lines can be merged if the dot product of the segments
at the join point is negative.
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Figure 17
A curve and the tree representation of its generalized form.
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subsets of the line are processed recursively in a similar fashion. In
figure 17, these subsets are AB, BCD and DEF. If the point farthest from
the segment in a particular subset is within the threshold distance, then
processing of that subset of the line is stopped, and only the endpoints of
the line segment retained. The process of finding such an approximation is
termed 'generalization'. The tree-like structure derived in this fashion is
useful in cartographic computations (Ballard,1979). A tree for a
generalized form of a curve is also shown in figure 17.

By varying the detail level used in computing the curve approximation,
a family of approximations is generated (figure 18) . Alternatively, the
perpendicular distance of a point in the curve from the next highest level
segment can be recorded in the approximation. The distance so found is a
measure of the significance of that point in the approximation of the curve.

By constructing two lines, parallel to and offset from a given segment
of a curve, and at a given perpendicular distance, a region in the plane is
described which is called the 'band' of that segment of the curve. When the
segment connects the endpoints of the curve, the region is the band of the
curve (figure 19). The detail at which the curve is examined can be varied
by altering the perpendicular distance at which the band is constructed.
The band of a curve will be used to determine whether a curve overlaps
another, in curve comparison and in testing of the registration.

Since most of the lines in the Landsat image contain many colinear
points, the line approximations contain significantly fewer points than the
the original lines represented as oconnected sets of pixels. Using the
approximations, directional decisions involving the orientation of line
segments are less affected by perturbations at the end of curves caused by

quantization. The output of the feature-detector is the set of lines in
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Figure 18

Varying the detail level in generalization. The dotted
llngslrepfesent the generalized form of the curve at
each level.



Figure 19

The band of a curve.

43




44

generalized form, which are longer than a specified minimum length (figure
20). These curvilinear features derived from a Landsat image will be termed
"l-edges".

Since the ridges are derived from the TIN representation, they are
represented as a string of contiguous line segments. It is natural to
convert this form to the piecewise linear approximations used for curves
found in the Landsat image. If a DIM feature is represented by a single
straight line segment, then it is 'simple'. Any curve whose representation
includes interior points is said to be 'structured'. The ridges and l-edges

are input to the second stage.

3.2 The Second Stage: Matching

The basic approach in the second stage is to locate the known features,
the ridges, in the image. Features are located sequentially, and the
location of a feature in an image will constrain search for other features.
Ridges will be located by structurally matching ridges with l-edges. A
ridge matched to an l-edge is a "pairing". A pairing locates a ridge in the
image and provides a pair of matched points which are used as ground control
points (section 3.4). Because of the sequential nature of the algorithm, it
is useful to introduce an ordering.

The ridges are considered in the order of their structural complexity.
This is because it is assumed that the more strongly an element differs from
a straight line the less likely it is to be matched incdrrectly. The goal
of the matching process is to pair a sufficient number of ridges and l-edges
to compute transform parameters. Features in the DIM are ordered as

follows:
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Landsat image features for subsection in figures 11-16,



1. All structured ridges are considered before simple ridges (figure

T strength of a ridge is the product of its length and the

estimated brightness discontinuity across it. Structured ridges and

simple ridges are each ordered according to the ridge strength.

The relation of structured feature to structured feature is potentiallv
a many-to-many relation. A portion of a ridge may be represented by two or
more line segments while the corresponding l-edge is represented as a single
line segment, or vice versa. To consider all possible relations between two
structured curves means examining the relations between all powersets of
both. Representing and manipulating such relations significantly
complicates curve matching. Consequently, all structured features in the
Landsat image are broken down into simple elements, represented by single

line segments.

3.3 The Affine Transformation

Horn and Woodham (1979) demonstrate that, if small, second-order
effects are ignored, an affine transformation is sufficient to register
small subsections of a Landsat image to a plane tangent to the earth's
surface. The parameters of this transformation can be expressed in terms of
the parameters of the satellite's orbit and other fixed quantities. An

affine transform has 6 degrees of freedom and can be written as:

x'=ax+by+c

y'=dx+ey+f

where X,y are image ocoordinates and x',y' are DIM coordinates. A subset of



Figure 21
Structured ( A ) and simple ( B ) ridges.
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affine transformations can be expressed as a composition of rotation,
translation and scaling of the coordinate axes. However, the fully general
affine transform does not admit this simple decomposition.

Finding the tranformation parameters requires at least three matched
points. These can be determined manually by identifying ground control
points in both the DIM and the image. ILet the coordinates of the image
points be (x,,¥,), (X,,¥;) and (xy,y5) and the DIM coordinates be (x",yl‘),
(xz'rY") and (xs',y..,"). Then

% Wy 1 ad X' ¥y "
Xgya 1l |+ | be = x,'y"
Xy ys 1 ct x!'y"
SO

=l ' Y]
ad x'y‘l xl‘yl
b e = x;y‘l . Xa y‘-‘
ct Xgvgl x,‘y,‘

If more than three GCP's are supplied, a least~squares estimate of the
transform can be computed. If

xlyli
X, ¥
M = 1‘1

-

x,‘ynl

Then the least-squares estimate with equal weighting to all points for the

transform parameters is:

g ot

a X Iy '
¥ =l 2

bel|l = oM M &

(o3 3 »

x" Ya

Once three feature pairings have been established, the affine transform
can be estimated. A set of three pairings will be termed a 'matching' and a

set of more than three pairings an 'extended matching'. Exhaustive
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examination of all matchings is too expensive. The number of triples grows
as n . Hence the number of matchings grows as n , where each of the feature
sets is of cardinality n. Knowledge of the constraints imposed on the
problem is used to limit the search space. An estimate of the affine
transform is derived (following Horn and Woodham, 1979) from orbital
parameters included in the image annotation, and other fixed parameters of
the scanner. Section 4.4 presents the analytic expressions for the
parameters of the affine transform and describes the parameters of the
satellite orbit. Because this estimate of the transform is available, it

can be used to eliminate the generation of some incorrect matchings.

3.4 Construction of a Pairing

Initially, the location of an image feature in the DIM is known only to
within 10 kilometers. This delimits a search region for a feature. The
system begins by selecting a ridge and finding the l-edges in its search
region. Each l-edge is transformed according to the 'a priori' transform
estimate, and compared with the candidate ridge. The basis of the
comparison is the representation of a curve as a piecewise linear curve.

The construction of i-_his representation, as described in section 3.1.5,
involves determination of the direction of the curve, which is the direction
of the vector connecting its endpoints. The band about the curve is a
region in the plane bounded by two lines parallel to the direction vector
and offset from it by a fixed amount. The width of the band is the distance
between the parallel lines. Assessment of a pairing of features proceeds as

follows:



a) If the ridge is simple, the transformed l-edge is translated so that

one of its endpoints coincides with an endpoint of the ridge segment.
The perpendicular distance D from the ridge to the other endpoint of
the l-edge is computed. There are three cases:

1) D is less than or equal to the band width. The positions at
which the l-edge can be matched include all points in the ridge
segment. In practice, three positions are used (figure 22): at
either endpoint, or at the centerpoints, the averages of the
endpoints of the segments.

2) D is less than twice the band width. The l-edge is constrained
to match its centerpoint to the centerpoint of the ridge (figure
23).

3) Otherwise, the pairing is rejected.

In cases 1 and 2, the measure of goodness of the match is the cosine of

the angle between the two curves. 1In case 3, the measure of the match

is arbitrarily set to 0. The translation vector for the pairing is
constructed from the difference of the matched points.

b) If the ridge feature is structured, then the l-edge is compared with

each of the line segments in the ridge as above. The result of the

comparison is a list of matchings of the l-edge with each of the
segments in the ridge.
If structured l-edges were used in pairing development, endpoint matches
could be confirmed on the basis of the relative orientation of the segments
meeting at that endpoint. Local context is provided by the adjacency of
segments. In the present system, local support for a pairing serves this
purpose.

The result of a match determines a point-to-point correspondence which
is used in estimating the affine transform. The list of pairings of ridge
and l-edges, sorted by value, is associated with the ridge. Pairings whose
value is too small are not allowed to enter into the construction of a
matching. This acts to eliminate pairings which can only arise from

combinations of rotation, scaling and skewing inconsistent with the known

imaging geometry.



Figure 22
Close fit in a pairing, with the three matching positions.
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/
Figure 23

Ioose fit in a l:gair:i.ng. Matching is permitted only at
centerpoints, the average of segment endpoints.
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3.5 Support for a Pairing

A pairing specifies a translation vector. The residual error in
position of an image feature after transformation can be modeled as a
translation. Hence the translation needed to bring a transformed l-edge
into correspondence with a ridge is used to guide the development of
matchings. Each subsequent pairing must be consistent with the previous
pairings, that is, the translation required to construct the pairing must be
similar to those previous. Similarity between translation vectors is
measured by treating each translation as a point in the plane and finding
the distance between the points. If the distance is too large, the
translations are incompatible. Otherwise, the translations are considered
consistent. Testing translation consistency eliminates the generation of
many incorrect matchings.

Experimentation with the feature sets has shown that translation alone
is not a sufficient constraint. For example, the location and orientation
of ridges is often controlled by the underlying geological structure of the
region. Ridges are often parallel or nearly so, and the spacing between
ridges can be very regular. Hence, a pairing of a ridge to an image feature
may be correct in orientation, but offset by the inter-ridge spacing.

Consider the following example: The problem is to register the image
resembling the numeral 4 represented in figure 24 to a model of the numeral.
Image segments are referred to by their endpoints, ABCDEF, and the model
segments by the same letters, with quotes, A'B'C'D'E'F'. In this example,
if segment A-C is compared with B-D, the match will be high in value,

assuming an identity a priori transformation. Orientation and length of the
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segment do little to distinguish A-C and B-D. To eliminate incorrect
matchings cause by this phenomenon, the local spatial structure of both the
ridges and the l-edges must be used to guide the matching. 1In terms of the
example, note that when A-C is registered to B'-D', C-D overlaps D'-E',
partially confirming the match with B'-D'. But when A-C is paired with
A'-C', all segments in the image will participate in a pairing consistent
with that involving A-C.

When an initial pairing of features is made, nearby ridges are examined
and a tally is kept of the number of nearby ridges which can be paired with
l-edges in a matching consistent with that under construction. Consistency
here is again measured by comparing the translations necessary to bring a
feature into alignment, under the a priori transform, with a given l-edge.
If a structured ridge is being considered, the tally is formed by counting
the number of segments in the ridge which can be paired with l-edges under
mutually compatible translations. Developing a pairing of the elements of a
structured ridge with several simple l-edges compensates somewhat for the
decomposition of structured l-edges into separate simple features. The
simplé l-edges can be paired with the elements of a structured ridge as they
would have been had they still been joined in a structured l-edge. The
pairings of ridge and l-edges are ordered by the number of supporting
pairings, (i.e., by the extent to which they can be locally extended). This
strategy can be understood as a generalization of the scheme of determining
local support for linear features employed in the SRI system (Bolles et al.,
1979).

At this point, a feature (whole or part) is matched to a l-edge, and a
set of compatible pairings has been generated. Each of the elements in this

set is in turn selected as the second pairing for the matching. By



selecting other ridges with translation-compatible pairings as the third
part of the match, the matching is extended to include three mutually
translation-consistent pairings of features. With the six values from the
matching, an affine transform can be determined. Each pairing of a ridge
and an l-edge provides a point-to-point match for the parameter

determination.

3.6 Consistency of the Transform

When an affine transform is determined for a set of three point
pairings, the resulting transform will predict the points with no error.
Hence it is necessary also to test how the transform predicts the segments
passing through the matched points. This first estimate of the transform
computed from the three pairings is tested for self-consistency. The
transform is self-consistent if, using the new transform, the transformed
l-edges and their matching ridges overlap (figure 25). Many matchings yield
inconsistent transforms, which are rejected. This avoids the relatively

expensive procedure of predicting and verifying feature locations.

3.7 Verification

If the transform is self-consistent, it is then used to predict the the
location of the remaining l~edges in the terrain model. When a l-edge is
compared to a ridge, it is examined at the positions for matching as
described above (3.4). If the l-edge lies within a narrow band of the
appropriate segment on the ridge, the points corresponding to that match are
entered as the match points, and the features are matched. The number of
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(1)

(2)

Figure 25

In a_self-consistent transform (2()5O the bands of the ridges
overlap the transformed %es ( tted lines). When the
transform is not self—oon51s ent (1), the 1—~edges extend
outside the bands. A-C are the matched points.



l-edges which overlap existing ridges is used as the measure of the quality
of the matching. Also the average and root-mean-square of the differences
between points in the DM and their matched l-edge points are calculated.

1f enough features can be matched in this way, the set of pairings is used
to form an extended matching, from which a least-squares estimate of the
affine transform parameters is computed. 1In this extended matching, any
point pairs whose associated error is larger than the average error are
rejected. In a good matching most of the point pairs produce errors less
than the average. Removing pairs with large errors and re-computing the
transformation is a heuristic for improving the registration. The new
transform is computed from the remaining pairs. This transform, in turn, is
used to predict the location of the l-edges in the DIM. If the matching
improves, a new least-squares estimate of the transform is computed. This
iterative process terminates when error terms are sufficiently small and the
number of features predicted is sufficiently high. 1Indeed, if the average
and RMS errors are less than a pixel, searching stops and success is

indicated.
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4. Implementation and Testing

4.1 The Input

To test the method, a 100x100 pixel subsection of a Landsat image
(figure 1) is registered to a digital terrain model. Band 7 of the Landsat
image was used because the effects of terrain relief are most apparent in
that band. The Landsat image was acquired on September 14,1976 (frame ID
11514-17153). The digital terrain model was digitized from the 1:50,000
series contour map, Canadian National Topographic System (NTS) sheet 82 F/9,
(St. Mary Lake), oovering an area from latitude 49 degrees, 30 minutes to

latitude 49 degrees, 45 minutes and in longitude from 116 degrees to 116

degrees, 30 minutes. This area is northwest of Cranbrook, British Columbia.
An area, 30 kilometers by 23 kilometers, is represented in the TIN digital
terrain model by approximately 5500 points. This terrain model was utilized
in other research on modeling image formation in remote sensing

(Woodham, 1980) .

The DIM was prepared manually by the author. The ridges and channels
of the area were digitized. Additional points were included to shape the
terrain surface between the ridges and channels. The complete set of points
was triangulated, and automatically edited to include the edges joining
points along the ridges and channels. When a TIN format DIM is not
available, there exist automatic procedures for converting a DIM in grid

format to a TIN (Fowler and Little, 1979).
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4.2 Programming Languages

Implementation of the various parts of the system has been accomplished
in several different programming languages. The procedures to extract
features from a DITM and brightness discontinuities from a Landsat image were
both written in PASCAL-UBC (Jollife and Pollack, 1979). Brightness
discontinuities are not derived on demand during registration, but are
determined in a preprocessing step. The DIM and the image are not available
during registration matching. Registration matching uses ridge features and
Landsat features written to ancillary files during the preprocessing steps.
The registration system is written in LISP-MTS (Wilcox and Hafner, 1976) and
reads the files from the Pascal procedures. LISP was chosen for the major
component of the implementation because of the ease of experimentation with

control structures and the simplicity of dynamic storage allocation.

4.3 Data Structures

The curvilinear features of the DIM and the Landsat image are
represented in the piecewise linear approximation described in section
3.1.5. They are structured as lists when written to the feature files. A

curve is represented as a 3 element list, as follows:
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( first-point
last-point
internal-structure )
where internal structure is a 5 element list defined recursively as:
( left-point
right-point
internal-structure between first-point and left-point
internal-structure between left-point and right-point
internal-structure between right-point and last-point )
or
NIL when the perpendicular distance of all points between
first-point and last-point is less than the detail level.
Points are represented as a list of the two coordinates. At lower levels in
the structure, internal-structure is expanded using the endpoints of the
enclosing segment as the first- and last-point. For example the line A-F in

figure 17 is represented in the list structure for a generalized curve as:

(A F (B D NIL (C NIL NIL NIL NIL) (E NIL NIL NIL NIL)))

The dotted lines in figure 17 show the approximating segments for various
portions of the curve. Figure 17 also shows a tree representation of the
generalized curve. This representation can easily be converted into the
original line structure, a list of points, by a pre-order traversal of the
tree.

Because it is necessary to search the area around a feature, a data
structure was added to the system which would succinctly represent spatial
relations. A ocoarse mesh is placed over the region in the plane containing
the features. Each cell defined by this mesh is termed a bucket. On input,
the features are compared with this mesh and the names of all features
passing through a given bucket are added to the list of features in the

bucket. When it is necessary to find all features within a certain distance
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of a feature, a region of the appropriate shape around the feature is

generated, and the list of buckets which this shape overlaps is derived. By
merging the lists of feature names associated with this list of buckets, it
is possible to determine the names of all features which may lie within the

correct region.

4.4 Estimating the Affine Transform

If the change in the satellite's attitude during image acquisition is

ignored, the parameters of the transform are:

a= Mz0S) cos (H+y)
b= (ORL) sinH+ (ERL) cos G
c=%x0- (rocos H + p sin H) z0
d=-M2z08) sin (H+ y)
e= (ORL) cos H
f=y0 - (-r sin(H) + p cos(H)) 20
where
is the angular velocity of the scanning mirror
z0 is the distance of the satellite from the surface of the
earth at reference time t0
S 1is the sampling interval along the scan
O 1is the angular velocity of the satellite in its orbit
R is the radius of the satellite's orbit
L is the time interval between scan lines
G 1is the geocentric latitude at the sub-satellite point
H is the heading of the satellite - the angle its orbit makes

with a meridian

r,p,y are the roll, pitch and yaw angle of the satellite
platform measured with respect to X,y,z axes

E is the angular velocity of the earth

x0,y0 are the image coordinates of the point directly
below the satellite at reference time tO

The a priori estimate of the affine transform used in registration was
computed using the following substitutions to the equations for the

transform:



63

= 6.21 rad/sec

900 kilometers (a more accurate altitude is contained in
the image annotation)
9.958e—6 sec
1.014e-3 rad/sec
6370 kilometers
12.237e-3 sec

49 deg 35 min

0.246 rad

e,y =0,0,0 rad

E = 72.722e-6 rad/sec
x0,y0 = 0,0

g‘.’!
no

pmmbwom

Using these parameters, the resulting affine transform is:

0.539797
0.236592
0.0
-0.13550
0.766666
0.0

Ffhd O OTWw

4.5 Examples of Registration and Results

The position of the sun for the September 14, 1976 image was determined
using a version of the method of (Horn, 1977) implemented by R.J. Woodham.
The sun's position so determined was azimuth 134.5 degrees, elevation 34.4
degrees. Fiqure 26 shows a synthetic image generated using the calculated
position of the sun. The DIM features selected using this sun position are
depicted in figure 27 . All of these ridge lines are longer than 250
meters. The curves are generalized using a detail level of 80 meters.

For the Landsat image, the same length and generalization parameters
were used. The top 20 percent of the feature cells were used in the
construction of the l-edges. The position of the sun was input as well, so

that shadow edges could be rejected.
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Figure 26

Synthetic image for September 14, 1976. The sun's position is azimuth
134.5 degrees, elevation 34.4 degrees. The white box outlines the
portion of the DIM used in feature selection. Photographed from the
screen of the COMTAL Vision 1.
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Figure 27

DM features for September 14, 1976, with the matched
points (1-6).
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In the test case, the location of the Landsat image in the DIM was
estimated by hand to within 0.75 kilometers, or approximately 10 pixels.
This reduced the search region size so as to reduce the expense in
developing the system. The affine transform for this image was determined
to be:

0.555292
0.131612
1.944259
-0.143495
0.773612
2.197464

LI I | A [ [
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The errors associated with a transformation are determined by comparing the
positions of transformed Landsat points with the positions of the
corresponding DM points. The point pairs are derived from the features
which overlap using the transformation being evaluated. The registration
determined from the matching found by the system resulted in the following
errors:

Average error = 30.9 meters or 0.3862 pixels
Root mean square error = 53.5 meters or 0.66875 pixels

Figures 27 and 28 show the DIM and Landsat features with the matched points.
There are 33 ridges and 18 l-edges in this example. Twenty-five matchings
(three pairings each) were examined before a matching was accepted. Of
these matchings, 14 produced transforms which were self-consistent. The
remaining were rejected on the grounds of the inconsistency of the
transform. Two of the six pairings in this matching are at junctions
between features in the DIM.

A second image of the same region (figure 29) obtained January 8, 1979,
(frame ID 30309-17575), was registered. The a priori estimate of the affine
transform used for this case was the same as that used for the first image.

The position of the sun for this image was calculated as above to be azimuth
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Figure 28

Features from Landsat image, September 14, 1976, with
matched points (1-6).
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Figure 29

68

100 X 100 pixel subsection of Landsat image (band 7) from

January 8, 1979, frame ID 30309-17575.
screen of the COMTAL Vision 1.

Photographed from the
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153.1 degrees, elevation 13.8 degrees. Many of the ridges selected from the
DIM using surface orientation alone were in shadow. The portion of the
terrain in shadow can be detected by using a standard 'hidden-surface'
algorithm (Woodham, 1980) in which the viewing point is located at the
position of the light source. The portion of the surface which is invisible
to an observer thus situated is in shadow. Any part of a ridge which is in
shadow is 'clipped' to the boundaries of the shadow. Shadow calculation was
not implemented for feature selection. Instead, the program of R.J. Woodham
for producing synthetic images (figure 30) was used to determine the
locations of regions in shadow. Features lying in those regions were
removed manually.

The affine transform for the January 8, 1979 image was determined to

0.537147
0.150337
1.620489
-0.132218
0.694722
2.330885

hwuwnnan

Ffh® QL O

The error terms were:

Average error = 38.5 meters or 0.48125 pixels
Root mean square error = 56.9 meters or 0.71125 pixels

Figures 31 and 32 show the DIM and Landsat features with the matched points
indicated. There are 15 ridges and 22 l-edges. In this example, the first
matching developed yielded this good set of matches with an acceptable
error. Four of the seven pairings in this matching occur at ridge

junctions. Figure 33 shows the registered Landsat image.
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Figure 30

Synthetic image for January 8, 1979. The sun's position is azimuth 153.1
degrees, elevation 13.8 degrees. The white box outlines the portion of
the DIM used in feature selection. Photographed from the screen of the

COMTAL Vision 1.
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Figure 31

D™ features for January 8, 1979, with matched
points (1-7).
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Fiqure 32

Landsat features for January 8, 1979 with matched
points (1-7).
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Figure 33

Registereg Landsat image for January 8, 1979. The white square outlines
the 10 km~ area covered by the DIM, Photographed from the screen of the
COMTAL Vision 1.



Rt = — = ——— e e T MR

» v



74

5 Discussion and Conclusions

5.1 Discussion

The results of the tests indicate that feature matching can be an
effective procedure for registering images. Registration errors for the
examples are well within accepted standards. The automatic registration
procedure presented relies upon the existence of a detailed terrain model
for its use. Currently, such DIM's are not generally available. However,
in Canada, the Department of Energy, Mines and Resources is committed to
production of such DIM's for most of Canada. It has been shown (Woodham,
1980) that registration of an image to a digital terrain model is helpful in
determining shading effects which affect image analysis. Benefits such as
this can sometimes justify manual generation of a DIM for a particular study
area.

Insofar as the method is based upon determining terrain features which
will appear distinctly in an image, the method is restricted to application
in areas of mountainous terrain. There is little possibility that the
method as it stands would be useful in registering images of prairie land.
The benefits of registering an image to a DIM in such a situation are
minimal also. Nevertheless, the principle of using known illumination
oconditions and a scene model can find applicability elsewhere. The features
selected can be water-land boundaries, roads and other distinctive scene
elements. The application to DIM's and Landsat images is particularly
appealing since the imaging geometry is simple. There is no need to solve

hidden surface problems. Funt (1980) has proposed using synthetic images in
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interpreting indoor scenes. Features extracted from any scene model
containing information on surface orientation and position can be used with
the method presented.

The representation of curves by generalization simplifies the process
of analysing the relations between curves. By matching portions of curves
to each other in varying positions, distinctive matchings are determined.
Although the notion of representing a curve by its band has existed for some
time, its use in curve matching is new in this application. By permitting
looser matching between curves and segments of curves, the band
representation facilitates curve matching.

Determining local support for a match appears to disambiguate false
matches readily. In images of mountainous terrain, it is unlikely that
local support will be insufficient for detecting correct matches. However,
in scenes of urban landscapes, or in industrial applications, regularity is
intrinsic. Local support will be very necessary in distinguishing false and
true matches. In addition, these situations will require more careful
selection of distinct subsets of matching features. The representations for
curves advanced in this thesis is advantageous for such feature selection.

Difficulties with the method will occur in areas of low relief or
strongly reqular terrain, what geomorphologists call "strongly controlled"
terrain. Clouds, depending upon the sun's position, can be problematic.

The boundaries of shadows of clouds will appear in images as strong
brightness discontuities and will not be discriminated from the images of
ridges. Clouds themselves will generate brightness discontinuities. The

method may prove itself robust enough to meet this challenge.
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5.2 Further Work

The handling of curve matching where both curves are structured was
eliminated in this implementation of the registration method. By
subdividing l-edges into simple segments, some of the power of the
representation is lost. The junctions at which the l-edge segments meet are
then unavailable. However, the implementation is simplified. By including
a facility for manipulating and assessing structured-to-structured feature
matching a significant improvement could be made. Davis (1979) has
developed one such method.

The control of matching development is very simple. All
translation-consistent triples are examined for self-consistency. If a
matching is self-consistent with respect to its derived transformation, the
transform is used to predict the location of image features in the DIM. The
result of this test of the transform is binary: either accept or fail. When
a set of predicted l-edge to ridge overlaps is generated, the structural
relations between the overlapping l-edges and ridges could be used to guide
further adjustment of the parent matching. This upward flow of information

is very important in image analysis in general.

5.3 Conclusions

This work demonstrates the effectiveness of matching features derived
from digital terrain models with image features for solving the registration
problem. It is hoped that the techniques presented here and the principles

underlying them can find application elsewhere.
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