
SOME REPRESENTATIONAL ISSUES IN 
DEFAULT REASONING 

by 

Raymond Reiter 
and 1 

Giovanni Criscuolo 

TECHNICAL REPORT 80-7 

1980 AUGUST 

DEPARTMENT OF COMPUTER SCIENCE 

THE UNIVERSITY OF BRITISH COLUMBIA 

VANCOUVER, BRITISH COLUMBIA V6T lWS 

ABSTRACT 

Although most commonly occurring default rules are normal when I viewed 
in isolation, they can interact with each other in ways that lead to the deri­
vation of anomalous default assumptions. In order to deal with such anomalies 
it is necessary to re-represent these rules, in some cases by introducing non­
nonnal defaults. The need to consider such potential interactions leads to a 
new concept of integrity, distinct from the conventional integrity issues of 
first order data bases. 

The non-normal default rules required to deal with default interactions 
all have a common pattern. Default theories conforming to this pattern are 
considerably more complex than normal default theories. For example, they need 
not have extensions, and they lack the property of semi-monotonicity. 

Current semantic network representations fail to reason correctly with 
defaults. However, when viewed as indexing schemes on logical formulae, 
networks can be seen to provide computationally feasible heuristics for the 
consistency checks required by default reasoning. 

This paper was written with the financial support of the National Science and 
Engineering Research Council of Canada under grant A7642. 

1 Present address: Istituto di Fisica Teorica 
University of Naples 
Naples 80125 
Italy 





SOME REPRESENTATIONAL ISSUES IN DEFAULT REASONING 

1. INTRODUCTION 

by 

Raymond Reiter 
and 

Giovanni Criscuolo 

In an earlier paper [Reiter 1980a] one of us proposed a logic for 

default reasoning. The objective there was to provide a representation 

for, among other things, common sense facts of the form "Nost A's a!:'e 

B's", and to articulate an appropriate logic to characterize correct 

reasoning using such facts. 1 One such form of reasoning is the 

derivation of default assumptions: Given a particular A, conclude 

that "Th.1 s particular A is a B" Because some A's are not B's 

this conclusion must be treated as a default assumption or belief about 

the world since subsequent observations in the world may yield that 

"This particular A is not a B". The derivation of the belief that 

"This particular A is a B" is a form of plausible reasoning which 

is typically required whenever conclusions must be drawn from incomplete 

information about a world. 

It is important to note that not all senses of the word "most" 

lead to default assumptions. One cun distinguish two such senses: 

1. A purely statistical connotation, as in "Most voters prefe1;_ Carter." 

Here, "most" is being used exclusively in the sense of "the majority of". 

1other closely related work with much tl1e same motivation is described 
in [McCarthy 1980], [McD2rmott 1980] and [McDermott and Doyle 1980 J. 
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This setting does not lead to default assumptions: given that Maureen is 

a voter one would not want to assume that Maureen prefers Carter. Default 

logic makes no attempt to represent or reason with such statistical facts. 

2. A prototypical sense, as in "Most birds fly." There is a statistical 

connotation here - the majority of birds do fly - but there is also the 

sense that a characteristic of a prototypical or normal bird is being 

described. Given a bird Polly, one is prepared to assume that it flies 
I 

1 -.mless one has reaso~s to the contrary. It is towards such proto-

typical settings that default logic is addressed. 

The concept of a prototypical situation is central to the frames 

proposal of [Minsky 1975] and is realized in such frame inspired 

knowledge representation languages as KRL [Bobrow and Winograd 1977] 

and FRL [Roberts and Goldstein 1977]. That these are alternative 

representations for some underlying logic has been convincingly 

argued in [Hayes 1977a]. Default logic presumes to provide a formal-

ization of this underlying logic. 

The approach taken by default logic is to distinguish between 

prototypical facts, such as "Typically mammals give birth to live 

young", and "hard" facts about the world such as "All dogs are mammals." 

The former are viewed as rules of inference, called default rules, which 

apply to the latter "hard" facts. The point of view is that the set of 

1one way of distinguishing between these two senses of "most" is by 
replacing its setting using the word "typically". Thus, "Typically 

voters prefer Carter" sounds inappropriate, whereas "Typici:llly birds 
fly" feels correct. In the rest of this paper we shall use "typically'' 
whenever we are referring to a prototypical situation. 



all "hard" facts will fail to completely specify the world - there 

will be gaps in our knowledge - and that the default rules serve to 

help fill in those gaps with plausible but not infallible conclusions. 

A default theory then is a pair (D,W) where D is a set of default 

rules applying to some world being modelled, and W is a set of "hard" 

facts about that world. Formally, W is a set of first order formulae 

-+ -+- + 

while a typical default rule of D is denoted 
Cl (x) : MSl (x), ••• ,Men (x) 

-+ 
w(x) 

+ + ➔ + 
where a(x), s

1 
(x), ... ,Sn(x), w(x) are all first order formulae whose 

➔ 
free variables are among those of x = x

1
, ... ,xrn. Intuitively, this 

default rule is interpreted as saying "For all individuals x
1

, ... ,xm, 

if 
➔ 

a (x) is believed and if each of is consistent 

with our beliefs, then 
-+ 

w(x) may be believed." The set(s) of beliefs 

sanctioned by a default theory is precisely defined by a fixed point 

construction in [Reiter 1980a]. Any such set is called an extension 

for the default theory in question, and is interpreted as an acceptable 

set of beliefs that one may entertain about the world being represented. 

It turns out that the general class of default theories is 

mathematically intract.J.ble. 1,ccorclingly, many of the results in 

[Reiter 1980a] (e.g. that extensions always exist, a proof theory, 

conditions for belief revision) were obtained only for the class of 

so-called normal ·aefaul t theories, namely theories all of whose defaults 
->- + 

have the form cx(x) : Mw(x) Such defaults are extremely common; for 
-+ 

w(x) 

example "Typically dogs bark." 
OOG(x) : M BARK(x) 

BARK (x) 
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"Typically American adults own a car.": 

AMERICAN(x) A ADULT(x) M((Ey).CAR(y) A OWNS(x,y)) 
(Ey) .CAR(y) A OWNS(x,y) 
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Many more examples of such normal defaults are described in [Reiter 1980a]. 

Indeed, the claim was made there that all naturally occurring defaults 

are normal. Alas, this claim appears to be true only when 1nteractions 

involving default rules are ignored. For normal default theories such 

interactions can lead to anomalous conclusions. 

It is the purpose of this paper to describe a variety of settings 

in which interactions involving defaults are important, and to unifonnly 

generalize the notion of a normal default theory so as to correctly 

treat these interactions. The resulting semi-normal default theories 

will then be seen to have some interesting properties: for example they 

need not have extensions, and they lack the semi-monotonicity property 

which all normal theories enjoy. We shall also see that the interactions 

introduced by default rules lead to a new concept of data base integrity, 

distinct from the integrity issues arising in first order data bases. 

A final objective of this paper is to analyze current network 

representations with respect to their ability to correctly reason with 

defaults. On this count such representations will be found deficient. 

However, when viewed as indexing schemes on logical formulae, networks 

will be seen to redeem themselves; they can provide cornputationally 

feasible heuristics for the consistency checks required by default 

reasoning. 



2. INTERACTING NORMAL DEFAULTS 

In this section we present a number of examples of default rules 

which, in isolation, are most naturally represented as normal defaults 

but whose interaction with other defaults or first order formulae 

leads to counterintuitive results. In each case we show how to "patch" 

the representation in order to restore the intended interpretation. 

The resulting "patches" all have a uniform character, which will lead 
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us in Section 4.2 to introduce the notion of a semi-normal default theory. 

2.1 "Typically" is not Necessarily Transitive 

Consider: 

"Typically A's B's": 
A (x) : MB (x) 

are 
B (x) 

(2.1) 

"Typically B's C's": 
B (x) : MC (x) 

are 
C (x) 

( 2. 2) 

These are both normal defaults. Default logic then admits the conclusion 

that "Typically A's are C's" in the following sense : If a is an 

individual for which A(a) is known or believed, and if ~B(a) and 

~c(a) are not known or believed, then C(a) may be derived. In 

other words, normal default theories impose transitivity of "typically". 
is 

But this need not be transitive, · for example: 

"Typically high school dropouts arc adults." 

"Typically adults are employed." } (2.3) 



From these one would not want to conclude that "Typically high school 

1 dropouts are employed." Transitivity must be blocked. This can be 

done in general by replacing the normal default (2.2) by the non-normal 

default 

B (x) 

C (x) 
(2.4) 

To see why this works, consider a prototypical individual a which 

is an A i.e. A(a) is given. By (2.1) B(a) can be derived. 

But B(a) cannot be used in conjunction with (2.4) to derive C(a) 

since the consistency condition -A(a) A C(a) of (2.4) is violated 

by the given A(a) . On the other hand, for a prototypical individual 

b which is a B (i.e. B(b) is given) (2.4) can be used to derive 

C (b) since presumably nothing is known about b' s A-ness - we do 

not know that A(b) - so that the consistency condition of (2.4) is 

satisfied. 
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The introduction of non-normal defaults like (2.4) is a particularly 

unpleasant solution to the transitivity problem, for as we shall see 

in Section 4.2, the resulting non-norlllal default theories lack most 

of the desirable properties that normal theories enjoy. For example, 

they sometimes fail to have an extension, they lack semi-monotonicity, 

and their proof theory appears to be considerably more complex than 

that for normal theories. Accordingly, to the extent that it can be 

done, we would prefer to keep our representations "as normal as possible." 

1 
Nor would we want to conclude that "Typically high school dropouts are 
not employed." Rather we would remain agnostic about the employment · 
status of a typical high school dropout. 



Fortunately transitivity can be blocked using normal defaults whenever 

it is the case that in addition to (2.1) and (2.2) we have "Typically 

B's are not A's". This is the case for example (2.3): "Typically 

adults are not high school dropouts". Under this circumstance, the 

following normal representation blocks transitivity: 

A (x) : MB (x) 

B (x) 

B (x) : M - A (x) 

~ A(x) 

B(x ) A ~ A(x) 
C(x) 

(2. 5) 

(2.6) 

MC(x) 
(2. 7) 
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Notice how, when given that B(a) , a simple back-chaining interpreter 

would establish the goal C(a) . Back-chaining into (2.7) yields the 

subgoal B(a) A~ A(a) . This splits into the subgoal B(a) , which 

is given and hence solved, and the subgoal ~ A(a) This latter 

back-chains into (2.6) yieldi~g the subgoal B(a) which is solved. 

There remains only to verify the consistency requirements associated 

with the defaults (2.6) and (2. 7) entering into the proof i.e. to verify 

that {c(a), - A(a)} is consistent with all of the first order 

formulae in force. Such a back-chaining default reasoner is an incomplete 

realization of the complete proof procedure of [Reiter 1980a]. The 

reader might find it instructive to simulate this back-chaining 

.. 
interpreter for the case that A(a) is given, in order to see how a 

derivation of C(a) is prevented. 

Notice also that the representation (2.5), (2.6) and (2.7) yields 
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a very interesting prediction. Given an individual a which is 

simultaneously an instance of A and B, nothing can be concluded about 

its c-ness. This prediction is confirmed with respect to example 

(2.3): Given that John is both a high school dropout and an adult, 

we do not want to assume that John is employed. Notice that the 

non-normal representation (2.1) and (2.4) yields the same prediction. 

We shall have more to say about defaults with common instances of 

their prerequisites in Section 2.3. 1 

A somewhat different need for bloc.:king transitivity arises when 

it is the case that "Typically A's are not C's" i.e. in addition 

to (2.1) and (2.2) we have 

For example, 

A (x) : M - C (x) 

- C (x) 

"Typically university students are adults." 

"Typically adults are employed." 

( 2. 8) 

"Typically university students are not employed." 

(2. 9) 

Under these circumstances, consider a prototypical instance a of A. 

By (2.1) and (2.2) C(a) can be derived. But by (2.8) - C(a) can be 

derived. This means that the individual a gives rise to two 

different extensions for the fragment default theory (2.1), (2.2) and 

-------~------ ➔ ➔ 1 a(x): MS
1

(x), •.. ,MS (x) 
If n is a default rule then a(~) is its 

➔ 
w(x) 

prerequisite. 



(2.8). One of these extensions - the one containing C(a) - is 

intuitively unacceptable; only the other extension - the one containing 

- C(a) - is admissible. But a fundamental premise of default logic is 

that any extension provides an acceptable set of beliefs about a world. 

The problem then is to eliminate the extension containing C(a) • 
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This can be done by replacing the normal default (2.2) by the non-normal 

(2.4), exactly as we did earlier in order to block the transitivity of 

"typically". Now, given A(a) , B(a) can be derived from (2.1), 

and - C(a) from (2.8). C(a) cannot be derived using (2.4) since 

its consistency requirement is violated. On the other hand, given a 

prototypical instance b of B, C(b) can be derived using (2.4). 

Once again a non-normal default has been introtluced, something 

we would prefer to avoid. As before, a nonnal representation can be 

found whenever it is the case that "Typically B's are not A's". This 

is the case for example (2.9): "Typically adults are not university 

students". Under this circumstance the following normal representation 

will do: 

A (x) : MB (x) 

B(x) 

B(x) : M ~ A(x) 
~ A (x) 

B (x) II ~ A (x) 

C (x) 

A (x) : M ~ C (x) 

~ C (x) 

MC(x) 

Notice that this repres'entation predicts that any individual which 
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is simultaneously an instance of A and B will be an instance of 

not C , rather than an instance of C . This is the case for example 

(2. 9) : Given that Maureen is both a university student and an adult 

one wants to assume that Maureen is not employed. 

Figure 2.1 summarizes and extends the various cases discussed 

in this section. The first three entries of this table are unproblematic 

cases which were not discussed, and are included only for completeness. 

2.2 Interactions Between "All" and "'l'ypically" 

Phenomena closely related to those stemming from the non-transitivity 

of "typically" arise from interactions between normal defaults and 

certain universally quantified first order formulae. Consider 

"All A's are B's". 

"Typically B's are C's". 

(x) .A (x) => B (x) 

B(x): MC(x) 
C (x) 

(2.10) 

(2.11) 

Default logic forces the conclusion that "Typically A's are C's" in the 

sense that if a is a prototypical A then it will also be a C . But 

this conclusion is not always warranted, for example: 

"All 21 year olds are adults." 

"Typically adults are married." } ( 2 .12) 

Given that John is a 21 year old, we would not want to conclude that 

he is married. To block the unwarranted derivation, replace (2.11) by 

B (x) M(- A(x) /\ C(x)) 
C (x) 

(2 .13) 



Typically A's are B's. 

Typically B's a re C's. 

No A is a C . 

All A's are C's. 

Figure 2.1 

Typically A's are C's. 

It is not the case that 
A's are typically C's. 
Transitivity must be blocked 

Typically B's are not 
A's. It is not the case 
that A's are typically 
C's. Transitivity must be 
blocked. 

Typically A's are not 
C's . 

Typically B's are not 
A's. 
Typically A's are not 
C's . 

Default Representation 

(x) • A (x} ::> ~ c (x) 

A(x) : MB(x) 

B (x) 

B(x) : MC(x) 
C (x) 

(x) • A(x) ::> C(x) 

A (x) : MB (x) 

B (x) 

B (x) : MC (x) 

C(x) 

A (x) : MB (x) 
B (x) 

B (x) : MC (x) 

C (x) 

A (x) : MB (x) 

B (x) 

B ( x ) M(~ A(x) A C(x)) 

C (x) 

A(x) : MB(x) 
B (x) 

B(x) : M ~ A(x) 

~ A (x) 

B (x) II ~ A (x) MC (x) 
C (x) 

A( x ) : MB(x) 

B (x) 

B (x) M(~ A(x) fl C(x)) 

C(x) 

A (x) M ~ C (x) 

~ C(x) 

A(x) : MB(x) 

B (x) 

B (x) M ~ A (x) 

~ A (x) 

B(x) fl~ A(x) MC(x) 
C (x) 

A(x) M ~ C(x) 

~ C(x) 
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As was the case in Section 2.1 the introduction of this non-normal 

default can be avoided whenever it is the case that "Typically B's 

are not A's"
1 

by means of the representation (2.10) together with 

B (x) : M - A (x) 

- A(x) 

B(x) A - A(x) 
C (x) 

( 2 .14) 
MC(x) 
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Notice that th.is representation, as well as the representation (2.10) 

and (2.13) predicts that no conclusion is warranted about the C-ness 

of any given common instance of A and B . 

A related problem arises when it is the case that "Typically A's 

are not C's" so that, in addition to (2.10) and (2.11) we have 

A (x) M ~ C (x) 

- C(x) 
(2.15) 

For example: 

"All Quebecois are Canadians." 

"Typically Canadians are native English speakers." 

"Typically Quebecois are not native English speakers." 

As in Section 2.1, a prototypical instance a of A will give rise 

to two extensions for the theory (2.10), (2.11) and (2.15), one 

containing C(a) ; the other containing - C(a) . To eliminate the 

1 
Note that example (2.12) seems not to have this character. One is 
unlikely to include that "Typically adults are not 21 years olc;i" in 
any representation of a world. 



extension containing C(a) , replace (2.11) by (2.13). 

As before, the introduction of the non-nonnal default (2.13) can 

be avoided whenever it is the case that "Typically B's are not A's", 

by means of the representation (2.10), (2.14) and (2.15). 

Figure 2.2 summarizes the cases discussed in this section. The 

first three entries of this table are unproblematic cases which were 

not discussed, and are included only for completeness. 
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2.3 Conflicting Default Assumptions: Prerequisites with Common Instances 

In this section we discuss the following patten1, in which a pair 

of defaults have contradictory consequents but whose prerequisites may 

h 
. 1 s are common instances : 

A (x) : M ~ C (x) 
~ C (x) 

B (x) : MC (x) 

C (x) 

(2.16) 

The problem here is which default assumption (if any) should be made 

when given an instance a of both A and B i.e. should C(a) be 

assumed, or ~ C(a) or neither? Two cases have already been considered: 

1. If it is the case that all A's are B's, then row 6 and possibly 

row 7 of Figure 2.2 provide representations; in both ~ C(a) 

-------~--------~ ➔ 1 a(x) : Mf\ (x), ••• ,MB (x) 
If n 

➔ 
w(x) 

is a default rule, then 

· · d w c-x►) prerequisite an its conseque nt. 

➔ 
a (x) 

.. 
is 

is its 
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Figure 2.2 

All A's are B's. 
Default Representation 

Typically B's are C's. 

(x) . A (x) => ~ C (x) 

No A is a C . (x) . A(x) :i B (x) 

B(x) : MC (x) 
C (x) 

(x) . A (x) :i C (x) 

All A's are C's . (x) . A (x) :i B (x) 

B (:x:) : MC(x) 
C (x ) 

(x) . A(x) :i B (x) 

Typically A's are C's . B (x) : MC (x) 
C (x) 

It is not the case that A's (x) . A (x) :i B (x) 
are typically C's Transiti- B (x) M{~ A(x) I\ C (x)) vity must be blocked. : 

C (x) 

Typically B's are not A's. (x) A (x) :i B(x) 

It is not the case that A's B(x) : M ~ A (x) 
are typically C's. Transi- ~ A (x) 
tivity must be blocked. B(x) I\ ~ A (x) : MC (:x:) 

C (x) 

(x) . A (x) :> B (x) 

B(x) : M(~ A(x) A C(x)) 
Typically A's are not C's. C (x) 

A (x) : M ~ C (x) 
- C(x) 

(x) • A (x) :i B (x) 

B (x) : M ~ A (x) 
Typically B's are not A's. ~ A(x) 
Typically A's are not C's. B (x) A ~ A (:x) MC (x) : 

C (x) 

A (x) : M ~ C(x) 
~ C (x) 



derivable whenever A(a) and B(a) are simultaneously given. 

2. If it is the case that "Typically A's are B's" then row 6 and 

possibly row 7 of Figure 2.1 provide representations in both of which 

~ C(a) is derivable given A(a) and B(a) . 

The problematic setting is when there is no entailment relationship 

between A and B • For example: 

"Typically Republicans are not pacifists." 

"Typically Quakers are pacifists." } (2.17) 

Now, given that John is both a Quaker and a Republican, we intuitively 

want to make no assumptions about his warlike nature. This can be done 

in the general case by replacing the representation (2.16) by the 

non-normal defaults 

A(x) M(~ B(x) A~ C(x)) 
~ C (x) 

B(x ) M( ~ A (x) A C( :x )) } (2.18) 

C (x) 

I 

This representation admits that a typical A is not a C, a typical B 

is a C , but a typical A which is also a B leads to no conclusion~ 

When it is the case that "Typically A's are not B's" and 

"Typically B's are not A's" the non-normal defaults (2.18) can be 

replaced by the following normal ones: 

A (x) : M ~ B (x) 

~ B(x) 

B(x) : M '~ A(x) 
- A (x) 
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A(x) A - B(x) : M - C(x) 
- C (x) 

B(x) A~ A(x) MC(x) 
C(x) 

This appears to be the case for example (2.17): 

"Typically, Republicans are not Quakers." 

"Typically, Quakers are not Republicans." 

It is not always the case that the pattern (2.16) should lead to 

no default assumptions for common instances of A and B . Consider: 

"T'Jpically full time students are not employed." 

"Typically adults are employed." 

Suppose that John is an adult full time student. One would want to 

assume that he is not employed. So in general, given the setting (2.16) 
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for which the default assumption - C is preferred for common instances 

of A and B , use the following nou-nonnal representation: 

A(x) : M ~ C(x ) 

~ C (x) 

B(x) M(~A(x) AC(x)) 

C(x) 

Whenever, in addition, it is the case that "Typically B's are not A's," 

use the following normal representation: 

A(x) M ~ C(x) 
~ C (x) 



B (x} : M ~ A (x) 
~ A(x) 

B (x) A ~ A (x) 
C (x) 

MC (x) 

3. DEFAULT INHERITANCE IN HIERARCHIES: NETWORK REPRESENTATIONS 

We have focused, in Section 2, on certain fairly simple patterns of 

default rules. Our choice of these patterns wns conditioned by their 

frequent occurrence in corranon sense reasoning, and by the fact that 

they are typical of the kinds of default knowledge which various 

"semantic" network schemes presume to represent and reason with. Most 

such networks are designed to exploit the natural hierarchical 

organization of much of our knowledge about the world and rely heavily 
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for their inferencing power upon the inheritance of properties associated 

with a general class "down the hierarchy" to more restricted classes. 

Networks usually provide for defaults and their inheritance, although 

they do not all distinguish in their graphical notation between default 

rules and exception-free statements about the world. 112 In any event 

those systems which deal with defaults appear to rely exclusively on 

a shortest path heuristic, embedded in the network interpreter, for 

1so that the representations often appear to be inconsistent. See 
[Winograd 1980). Of course, once a proper semantics is defined for 
the network ([Schubert 1976), [Woods 1975)) the apparent incohsistency 
evaporates. Advocates of the need to reason from inconsistent 
information are, in part, confusing default rules with first order 
facts about a world. 

2The SNePS system [Bechtel and Shapiro 1976] does make this distinction 
through the introduction of an "almost-all" "quantifier". 



computing default inheritances in hierarchies [Shapiro 1978], 

[Winograd 1980]. To see what this device is and why it is deemed 

necessary, consider: 

"~rpically, students are full time." 

STUDENT(x) : M FULL-TIME(x) 
FULL-TIME(x) 

"Typically, night students are not full time." 

NIGHT-STUDENT(x) : M - FULL-TIME(x) 
- FULL-TIME(x) 

"All night students are students." 

(x). NIGHT-STUDENT(x) J STUDENT(x) 

A network representation for these facts might look something like that 
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of Figure 3 .1.. (We have slightly modified the notation of [Sha.piro 1978].) 

Now suppose that John is a night student. We want to conclude that he 

is not full time, not that he is full time. But what is to prevent a 

network interpreter from traversing the MEMBER and ISA link from 

John to NIGHT-STUDENT to STUDENT anl'l thence via the default PROP link 

to 11.lLL-TIME? Enter the shortest path heuristic. Basically this says 

-that an individ1.1al, e.g. John, will inherit a property P provided 

there is a path from the llOde "John" to the node "P" and there is no 

shorter or equal length path from John to "not P". This is a slightly 

more precise statement of that in [Winograd 1975]: 

"Any property true of a concept in the hierarchy is implicitly true of 



FULL-TIME 

STUDENT 

ISA 

NI GHT- STUDENT 

MEMBER 

John 

Figure 3.1 

~ FULL-TIME 

default 
PROP 
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anything linked below it, unless explicitly contradicted at the lower 

level." 

It is easy to see that this principle, as applied to Figure 3.1, will 

prevent the unwarranted assumption that John is full time. 

Unfortunately, except in the simplest of cases, the shortest 

path heuristic is wrong. For example, consider a slightly embellished 

version of the Quaker-Republican defaults: 

"Typically, Quakers are pacifists." 

"Typically, Republicans are hawks." 

"No hawk is a pacifist." 

Suppose that John is a Quaker Republican. Then there is a path from 

"John" to "PACIFIST" as well as one from "John" to"- PACIFIST" and the 

former path is shorter than the latter. 'l'he shortest path heuristic 

would thus predict that John is a pacifist whereas intuitively no 

default assumption is warranted. 
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Despite our criticism of the shortest path heuristic, we nevertheless 

feel that there is a profound implem3ntation principle lurking here. 

One of the most serious corr~utational difficulties afflicting default 

logic is the requirement that one test for the consistency of all of 

the default assumptions entering into a derivation. For example: 

"Typically birds fly except for penguins, ostriches, oil covered birds, 

dead bi:r:ds, etc. etc." 



BIRD(x) : MFLY(x) 
FLY(x) 

(x) PENGUIN(x) ~ - FLY(x) 

(x) OSTRICH(x) ~ - FLY(x) 

etc. 

Now suppose given BIRD (tweety), and nothing else about tweety. Then 

FLY (tweety) can be derived provided that FLY (tweety) is consistent 

with all of the first order facts in the data base. One way of 

establishing consistency is by failing to derive a contradiction from 

all of the consequences of the formula FLY (tweety). Of course, the 

detection of an inconsistent set of formulae is undecidable in general, 
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but let's try anyway. From FLY (tweety) one can derive - PENGUIN (tweety), 
1·---- -:-

- OSTRICH (tweety), -DEAD-BIRD (tweety) etc. etc. So wit.~ this method 

of performing the consistency check, one must consider all of the 

possible exceptions to the default rule about flying birds~ Since 

the exceptions to flight are legion we are faced with a potentially 

overwhelming computation. Ideally, we do not want even to entertain the 

possibility of an exception unless the given facts naturally compel us 

to do so. The only way of testing consistency which avoids "conscious" 

consideration of all of the exceptions to flight is to begin with the 

given fact BIRD (tweety), and using only the first order facts in the 

data base derive·· all consequences of this; if - FLY (tweety) is not 

one of these consequences then consistency .is guaranteed. 

Now consider Figure 3.2 which is a network representation of this 

same setting. We can tell at a glance that FLY (tweety) is consistent 

with our knowledge: ~ FLY (tweety) is not derivable because there is no 
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default PROP 

➔ FLY 

IS - FLY 

tweety DEAD-BIRD OSTRICH PENGUIN 

FIGURE 3.2 
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directed path from "tweety" to "- FLY". Potential derivation chains in 

the logical representation are explicit as directed paths in the network 

representation. Now the consistency check which began with BIRD (tweety) 

and derived all consequences of this corresponds in the network to an 

exploration of all paths from "tweety". If there is no such path to 

"~ FLY" then the consistency of FLY(tweety) is assured. Now computation­

ally the exploration of all directed paths beginning at node ••tweety" 

might not appear very promising since the search will get m.ired in all 

of the links in that part of the hierarchy lying above the node "BIRD". 

But recall that we are testing consistency only with respect to all of 

the first order facts about the world, not the de f ault rules. Hence no 

path containing a default PROP link need be considered, and most network 

links are of this kind. Moreover, hierarchies tend to be shallow. Hence ~ 

the search for a path from "tweety" to"~ FLY" in the hierarchy above 

"BIRD" appears feasible. It follows that a good strategy is to perform 

a unidirectional search from "tweety"; if"~ FLY" is not encountered, 

then the default assumption FLY (tweety) is acceptable. This strategy 

has the computationally important consequence that the myriad possible 

exceptions to flight are never "consciously" entertained. 

Now what is really going on here? The answer is apparent from the 

observation that a semantic network reflects a particular choice of an 

indexing scheme on formulae. 1 The indexing scheme is such that whenever 

an entailment relation logically holds between two nodes, then those 

1 The fact that networks are notational variants of logical formulae is 
by now a truism in Artificial Intelligence circles. See [Hayes 1977b], 
[Schubert 1976]. 



nodes are connected by a directed path; network paths correspond to 

derivation chains in the underlying logical representation. The 

nonexistence of a path in Figure 3.2 from "tweety" to"- FLY" guarantees 

that - FLY (tweety) cannot be derived i.e. that FLY (tweety) is 

consistent with the first order formulae of the data base. 

Now there exist far more sophisticated indexing schemes on formulae 

than any provided in the literature on semantic networks. See, for 

example, [Kowalski 1974], or the indexing on clauses in PROLOG [Clark 

and HcCabe 1979]. Normally such schemes are used to improve the 

efficiency of theorem provers although they can be used for the 

construction of plans in deductive search [Kellog et al. 1978]. ~'he 

discussion of paths in networks and their relationship to consistency 

suggests another use of indices on formulae: the path structure of 

the index scheme can provide a powerful and computationally feasible 

heuristic for the consistency checks required in default reasoning. 

An example of such an heuristic is the following, with reference to 

our bird example: 

If node"- FLY" cannot be found within a sufficiently large radius r 

of the node "tweety" (i.e. if no directed path of length r or less 

from "tweety" to"- FLY" exists in the index structure) then it is a 

good bet that FLY (tweety) is consistent with the given first order 

data base. 
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It seems to us that an heuristic of this kind is precisely the sort 

of resource limited computation required for common sense reasoning 

[Winograd 1980]. Moreover, there is a very good theoretical justification 

-:: 



for appealing to a resource limitation in this setting; consistency is 

not even a semi-decidable property of first order theories so that some 

sort of heuristic must be applied. What is interesting about this 

formal analysis is that the nature of, and reasons for, at least one 

form of resource limited computation can be theoretically articulated. 

Notice also that this consistency heuristic is simply a path 

finding procedure for directed graphs. No deductions are performed. 

Rather, the non existence of a sufficiently long pat.~ of a certain 

form strongly suggests the consistency of some set of formulae. 

4. DISCUSSION 

In this section we discuss some issues raised by the results of 

the previous sections. Specifically, we address the question of data 

base integrity arising from default interactions, as well as some of 

the formal problems associated with the non-normal default rules 

introduced to correctly represent these interactions. 

4.1 Integrity of Default Theories 
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A very nice feature of first order logic as an Artificial Intelligence 

representation language is the extensibility of any theory expressed in 

this language. That is, provided that some axiomatization of a world has 

that world as a model (so that the axiomatization faithfully represents 

certain aspects of that world) then the result of adding a new axiom about 
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the world is still a faithful representation. It is true that specialized 

deduction mechanisms may be sensitive to such updates (e.g. adding a 

new "theorem" to a PLANNER-like data base); but semantically there is 

no problem. Unfortunately, as we have seen, default theories lack this 

semantic extensibility; the addition of a new default rule may create 

interactions leading to unwarranted conclusions, even though in isolation 

this rule appears perfectly correct. 

This observation leads to a new concept of data base integrity, one 

with quite a different character than the integrity issues arising in 

data base management systems [Hammer and McLeod 1975] or in first order 

data bases [Nicolas and Yazdanian 1978, Reiter 1980b]. For such systems 

an integrity constraint specifies some invariant property which every 

state of the data base must satisfy. For example, a typical integrity 

constraint might specify that an employee's age must lie in the range 

16 to 99 years. Any attempt to update the data base with an employee 

age of 100 would violate this constraint. Formally one can say that a 

data bas.e satisfies some set of integrity constraints if the data base 

is logically consistent with the constraints. The role of integrity 

con~traints is to restrict the class of models of a data base to include 

as a model the particular world being represented. Now the objective of 

the default representations of Section 2 had precisely this character; 

we sought representations which would rule out unwarrauted default 

assumptions so as to guarantee a faithful representation of real world 

common sense reasoning. But notice that there was no notion of an 

integrity constraint with which the representation was to be consistent. 



Indeed, consistency of the representation cannot be an issue at all since 

any default theory will be consistent provided its first order facts 

are [Reiter 1980a, Corollary 2.2]. It follows that, while there is an 

integrity issue lurking here, it has a different nature than that of 

classical data base theory. 

We are thus led to the need for some form of integrity maintenance 

mechanism as an aid in the design of large default data bases. The 

natural initial data base design would involve representing all default 

rules as normal defaults, thereby ignoring those potential interactions 

of the kind analyzed in Section 2. An integrity maintenance system would 

then seek out possible sources of integrity violations and query the user 

as to the appropriate default assumptions to be made in this setting. 

Once the correct interpretation has been determined, the system would 

appropriately re-represent the offending normal default rules. For 

example, when confronted with a pair of default rules of the form (2.16), 

the system would first attempt to prove that A and B can have no 

common instance i.e. that Wu {(Ex) .A(x) ~ B(x)} is inconsistent, 

where W is the set of first order facts. If so, this pair of defaults 

can lead to no integrity violation. Otherwise the system would ask 

whether a common instance of A and B is typically a C , a - c, 

or neither, and depending on the response would suitably re-represent 

the pair (2.16) ,.if necessary by non-normal default rules. 

4.2 Semi-Normal Default Theories 

In Section 2 we had occasion to introduce certain non-normal default 
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rules in order, for example, to block the transitivity of "typically". 

Inspection of the representations of that section will reveal that all 

such non-normal default rules share a common pattern; they all have the 

form A(x) : M(~ B(x) A C(x)) 

C (x) 
Accordingly, it is natural to define 

a default rule to be semi-normal iff it has the form 
-+ 

a (x) 
-+ 

w(x) 

where a, S and w are formulae of first order logic with free 

variables among A default theory is semi-normal iff 

all of its default rules are semi-normal. Normal default rules are a 

special case of semi-normal, in which S(~) is the identically true 

proposition. 
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[Reiter 1980a] investigates the properties of normal default theories. 

Among the results obtained there are the following: 

1. Every normal th~ory has an extension. 

2. Normal theories are semi-monotonic i.e. if n1 and n
2 

are sets of 

normal default rules and if E
1 

is an extension for the theory 

(D
1

, W) , then the theory (D
1 

u o2 , W) has an extension E
2 

One consequence of semi-monotonicity is that one can continue to 

maintain one's old beliefs whenever a normal theory is updated with new 

normal defaults. Another is a reasonably clean proof theory. 

Unfortunately, semi-normal dafault theories enjoy none of these 

nice properties. For example, the following theory has no extension: 



M(A /\ B) 
B 

To see that semi-monotonicity may fail to hold for semi-normal theories 

consider the theory 

M(A /\ B) 
B 

This has unique extension Th({B}) where, in general, Th(S) is the 

closure of the set of formulae Sunder first order theoremhood. If 

the new default rule M - A 
- A 

is added to this theory a new theory is 

obtained with unique extension Th({- A}) and this does not contain 

Th({B}) • 

Most of the formal properties of semi-normal default theories 

remain unexplored. Two problems in particular require solutions: Under 

what conditions are extensions guaranteed to exist, and what is an 

appropriate proof theory? 

5. CONCLUSIONS 

Default theories are complicated. Unlike theories represented in 

first order logic, default theories lack extensibility. Whenever a new 

default rule is to be added to a representation its potential 

interactions with the ot.~er default rules must be analyzed. This can 

lead to a re-representation of some of th~se defaults in order to block 

certain unwarranted derivations. All of which leads to a new concept 

of data base integrity, distinct from the integ~ity issues arising in 
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first order data bases. These observations also suggest the need for 

a default integrity maintenance system as a tool for aiding in the 

design of large default data bases. Such a system would seek out 

potentially interacting defaults during the data base design phase 

and query the designer about the consequences of these interactions. 
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Default theories are computationally intractable in principle because 

of the consistency checks required by their proof methods. Semantic 

networks provide an indexing scheme on first order formulae, but many 

other schemes are possible. An important role of indexing is the 

provision of an efficient heuristic for consistency checking without 

the need to perform deductions. Such consistency checks are prime 

examples of the kind of resource limited computation:, required in common 

sense reasoning. 

Semi-normal default theories are complicated. They have none of the 

nice properties that make normal theories so appealing. Most of their 

formal properties are totally unexplored. At the very least a proof 

theory is needed, as well as conditions under which extensions are 

guaranteed to exist. 
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