
ON THE INTEGRITY OF TYPED FIRST ORDER DATA BASES

by

RAYMOND REITER

TECHNICAL REPORT 80 -6

1980 APRIL

DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER, BRITISH COLUMBIA V6T 1W5

ABSTRACT

A typed first order data base is a set of first order formulae, each quantified
variable of which is constrained to range over some type. Formally, a type is
simply a distinguished monadic relation, or some Boolean combination of these.
Assume that with each data base relation other than the types is associated
an integrity constraint which specifies which types of individuals are permitted
to fill the argument positions of that relation. The problem addressed in this
paper is the detection of violations of these integrity constraints in the case
of data base updates with universally quantified formulae. The basic approach
is to first transfonn any such formula to its so-called reduced typed normal
form, which is a suitably determined set of formulae whose conjunction turns
out to be equivalent to the original formula. There are then simple criteria
which, when applied to this normal form, determine whether that formula
violates any of the argument typing integrity constraints.

This work was supported by the National Science and Engineering Research Council
of Canada through operating grant A 7642.

Key Words and Phrases

consistency, data bases, deductive information retrieval, first order logic,

integrity, type constraints, type data base, typed formulae, typed normal form.

ON THE INTEGRITY OF TYPED FIRST ORDER DATA BASES

1. INTRODUCTION

by

Raymond Reiter
Department of Computer Science
University of British Columbia

It is difficult to conceive of a naturally occuring relation which is

unconstrained with respect to the kinds of individuals which may legitimately

satisfy that relation1 . Thus, in speaking about the relation "x is the

husband of y" we all of us understand that x must be a male human, and y

a female human. At best there is something peculiar about the statement "Mary

is the husband of Susan", presumably because the individual "Mary" violates

the universally accepted constraint that the first argument of the husband

relation must be male.

This simple example illustrates what appears to be a universal character

istic of such argument constraints on relations and that is that each such

constraint is itself either a simple unary relation, for example MALE(•) ,

or a Boolean combination of such simple unary relations, for example

[MALE A HUMAN](•). Given a suitable stock of such simple unary relations,

it is now straightforward to formally represent the argument constraints of

the husband relation as a first order formula:

(x y)[HUSBAND-OF(x,y) J MALE(x) A HUMAN(x) A FEMALE(y) A HUMAN(y)]

1The equality relation appears to be the only exception to this observation.

-1-

In this paper we shall view such formulae as integrity constraints of a

particular kind; they specify the allowable arguments to a relation. Any

attempt to update a data base with a fact which violates such integrity con

straints, for example an attempted update with HUSBAND-OF (Mary, Susan), will

be rejected. For the example at hand it is not difficult to see why the up

date must be rejected since to accept it is to accept, by (1.1), the fact

MALE (Mary). Of course, in order that a data base detect the inconsistency

of MALE (Mary) it must have available some facts about MALEs, Mary etc. At

the very least, it must know ~ MALE (Mary) or, what is more likely, it has

available the specific fact FEMALE (Mary) as well as the general fact (x) ~

[MALE (x) /I FEMALE (x)] from which ~ MALE (Mary) can be deduced. Accordingly,

the entire data base must contain as a subcomponent a data base consisting of

both specific and general facts about the unary relations which enter into the

integrity constraints of the form (1.1). We refer to this sub-data base as the

type data base.

In addition to this type data base, there will be information about the

remaining relations. In a conventional relational data base [Date 1977] this

information can be viewed as a set of ground atomic formulae in a first order

theory, and the domains associated with a given relation R are simply

those unary relations which restrict the allowable arguments of R. In the

deductive first order data bases of the kind treated in [Kellogg et al. 1978,

Kowalski 1979, Minker 1978, Reiter 1978] general facts about data base relations

are also allowed so that one is permitted to store, for example:

(x y)[HUSBAND-OF(x,y) ~ WIFE-OF(y,x)] (1. 2)

Answers to queries are then obtained by a proc·ess of deduction from the first

order data base. In [Minker 1978, Reiter 1977, 1978] the class of formulae

-2-

permitted in a first order data base is generalized to admit typed variables

so that; in the notation of [Reiter 1978] and of this paper, (1.2) would be

represented by:

(x/Y.ALE A HUMAN)(y/FEMALE A HUMAN) [HUSBAND-OF(x,y) ~ WIFE-OF(y,x)] (1.3)

Here the universally quantified variables x and y are restricted to range

over instances of the unary relations (or types as we shall henceforth call

them) MALE A HUMAN and FEMALE A HUMAN respectively.

For first order data bases containing general facts of the form (1.2)

or (1.3) the enforcement of suitable relational argument typing is not as

straightforward as it is in the case of conventional non deductive relational

data bases. As an example, consider the integrity constraints:

(x y)[MOTHER(x,y) o HUMAN(x) A FEMALE(x) A HUMAN(y)])

(x y) [OFFSPRING(x,y) ~ HUMAN(x) A HUMAN(y)]

(x y)[FATHER(x,y) ~ HUMAN(x) A MALE(x) A HUMAN(y)]

(1.4)

together with a type data base:

(x) ~ [MALE (x) A FEMALE (x)]

(x)[HUMAN(x) o MALE(x) v FEMALE(x)]}
(1.5)

Now consider an update of this kinship data base with the general fact:

(x/HUMAN)(y/HUMAN) [OFFSPRING(x,y) ~ MOTHER(y,x) v FATHER(y,x)] (1.6)

Should this update be accepted? One possible intuition (which we shall see

turns out to be wrong) is that the variable y is constrained by the MOTHER

relation to be FEMALE and by the FATHER relation to be MALE so the update

should be rejected. Another possible intuition (which turns out to be right)

holds that (1.6) is equivalent to the two formulae

-3-

(x/HUMAN)(y/HUMAN A FEMALE)[OFFSPRING(x,y) ~ MOTHER(y,x)]

(x/HUMAN)(y/HUMAN A MALE) [OFFSPRING(x,y) ~ FATHER(y,x)]

so the update should be accepted. Either way, the example hopefully indicates

that the enforcement of correct argument typing poses some difficulties in

the case of first order data bases.

The purpose of this paper is to show, in the case of first order data

bases, how a type data base, representing the known specific and general facts

about types, can be used to enforce integrity constraints of the form (1,4)

thereby ensuring that all arguments to a relation will be of the right type.

The method is not completely general. First, as it is described in this paper,

it applies only to function free data bases, although the approach will generalize

to first order data bases with function signs. Secondly, it applies only to

ground literals, or to formulae whose prenex normal forms involve only

universal quantifiers. Since universally quantified prenex form formulae

(e.g. (1.2), (1.6)) are extremely common in first order data base applications,

the method is of some practical consequence.

2. FORMAL PRELIMINARIES

We shall be dealing with a first order language without function signs.

Hence, assume given the following:

1. Constant Signs: c
1

, c
2

,,. ,,

In the intended interpretation, constant signs will denote individual

entities, e.g., part-33, John-Doe, etc.

2. Variables: x1 , x 2 , ... ,

-4-

3. Logical Connectives: A (and), v (or), ~ (not), ~ (implies), - (equivalence)

4. Predicate Signs: P, Q, R, ...

With each predicate sign P is associated an integer n~ 0 denoting the number

of arguments of P . P will be called an n-ary predicate sign. We assume

the predicate signs to be partitioned into two classes:

(i) A class of unary predicate signs, which will be called simple types.

Not all unary predicate signs, need be simple types, In the intended

interpretation, simple types (e.g. MALE, HUMAN) as well as various Boolean

combinations of these, called types (e.g. MALE A HUMAN) will be used to

restrict the allowable ranges of variables occurring in data base formulae

as well as to specify integrity constraints on the allowable arguments of

predicates.

(ii) The class of remaining predicate signs, which will be called common pre

dicate signs. In the intended interpretation, common predicate signs will

denote data base relations, e.g. FATHER, HUSBAND-OF.

The set of types is the smallest set satisfying the following:

(a) A simple type is a type.

(b) If and are types, so also are T
1

A T
2

We shall have occasion to view types as predicates taking arguments.

Accordingly, we make the following definition: If t is a variable or constant

sign, T a non simple type, and and types then

(i) If T is Tl A Tz, T(t) is T1 (t) A T2(t)

(ii) If T is Tl v t2, T(t) is tl(t) v t2(t)

(iii) If t is -T1 , t(t) is ~t1 (t)

-5-

5. Quantifiers:

If x is a variable then (x) is a universal quantifier and (Ex) is

an existential quantifier.

2.1 The Syntax of Data Base Formulae

We define the following syntactic objects:

1. Terms

A term is either a variable or constant sign.

2. Common Literals

If P is an n-ary common predicate sign and t 1 , ... , tn terms, then P(t
1

, ... , tn)

is a common atomic formula. Both P (t 1 , ... , tn) and ~P (t 1 , ... , tn) are

common literals.

3. Typed Well Formed Formulae (Twffs)

The set of twffs is the smallest set satisfying;

(i) A common literal is a twff.

(ii) If Wl and w2 are twffs, so also are ~Wl , Wl "w2 , Wl v w2 , w1 :, w2

(iii) If w is a twff, and T a type, then (x)[T(x) :, W] and (Ex) [T(x) " W]

are twffs. These will be denoted by (x/T)W and (Ex/T)W respectively.

(x/T) is a restricted universal quantifier and (Ex/T) is a restricted

existential quantifier.

Examples of twffs are (1.3) and (1,6). In this paper we consider only closed

twffs i.e. twffs with no free variables.

-6-

2.2 The Type Data Base

The type data base is where all inforrnation about ty.pes resides. Forrnally,

we define a type data base (TDB) to be any finite set of closed first order

forrnulae all of whose predicate signs are simple types and which satisfies

the following T - completeness property:

For each simple type

TDB t- ~T(c) .

T and each constant c , either
1

TDB t- T(c) or

This T - completeness property is the appropriate forrnalization of the re

quirement that for each data base individual and for all simple types, we

know to which type that individual belongs and to which it does not belong.

For the TDB (1.5) of Section 1, if HU11AN (Maureen) were all we are given about

Maureen then the TDB would not be T - complete since neither TDB t- FEMALE (Maureen)

nor TDB t- ~FEMALE (Maureen). If instead we were given FEMALE (Maureen) then

the TDB would be T - complete since HUMAN (Maureen), FEMALE (Maureen) and

~MALE (Maureen) are all derivable.

We are not seriously proposing that, in an implementation of a question

answering system, the TDB be represented as a set of first order formulae.

There are far more efficient and perspicuous representations of the same facts.

One such representation involving sematic networks is thoroughly discussed in

[McSkimin 1976, McSkimin and Minker 1977]. A different approach is described

in [Bishop and Reiter 1980]. Since such representations, and their associated

procedures, are beyond the intended scope of this paper, we do not discuss

them here. Regardless of how the information of the TDB is represented, there

is one central observation which can be made:

Forrnally, the TDB is a set of forrnulae of the monadic predicate calculus. As

1 In general, if
formula, then

A is a set of first order formulae and W is a first order
ArW means that W is provable from the formulae of A .

-7-

is well known [Hilbert and Ackermann 1950], the monadic predicate calculus

is decidable i.e. there exists an algorithm which determines, for any formula

W, whether or not TDB t- W. This must remain true regardless of how the TDB

is represented. Henceforth, we shall assume the availability of such a decision

procedure for the TDB. An efficient decision procedure for a large and natural

class of TDB's is described in [Bishop and Reiter 1980].

If 1 is a type, defined l1ITDB = {clc is a constant sign and TDB t- 1(c)}

When the TDB is clear from context, we shall write 111 instead of l1ITDB .

The notion of a type data base as applied to deductive question-answering

has been independently proposed in [McSkimin 1976, McSkimin and Minker 1977].

What we have been calling simple types and types, McSkimin and Minker call

primitive categories and Boolean category expressions respectively. While

McSkimin and Minker do not explicitly make the 1 - completeness assumption it

appears to be implicit in the ways they use the type data base.

2.3 Predicate Argument Type Constraints

We shall assume that with each n-ary common predicate sign P there is

an associated predicate argument tvpe constraint of the form:

(x1 , ... , xn) [P(x1 , ... , xn) :::i 1!(x1) " ... " 1;(xn)] (2.1)

where 1
1

n
Tp , •.. , p are types. This will be viewed as an integrity constraint

specifying that the i - th argument of P must always satisfy the type

The formulae (1.4) of Section 1 are examples of such constraints.

-8-

3. Updates with Universally Quantified Twffs

Our objective in this section is to show how a universally quantified

prenex normal form twff may be tested for integrity with respect to the set

of predicate argument type constraints of the fonn (2.1).

3.1 The Formula INT(W)

We begin by noting that

Hence, if W is a twff, and INT(W) is obtained from W by replacing each

common atomic fonnula P(t
1 , ... , tn)

then

PATC r W = INT(W)

by

where PATC is the set of all predicate argument type constraints of the form

(2.1) associated with the common predicate signs of the data base. This means

that instead of updating the data base with a twff W, we can choose instead

to update with the equivalent (as far as the integrity constraints are concerned)

fonnula INT(W) .

Example 3.1

(i) With reference to the predicate argument type constraints (1.4), if W is

MOTHER (Mary, John) then INT(W) is

HUMAN (Mary) A FEMALE (Mary) A HUMAN (John) A MOTHER (Mary, John).

If W is ~MOTHER (Bill, Mary) then INT(W) is

~[RUMA.~ (Bill) A FEMALE (Bill) A HUMAN (Mary) A MOTHER (Bill, Mary)].

-9-

(ii) If W is

(x/T)(y/0) [P(x,y) ~ ~Q(a,y) v R(x,x)]

then INT(W) is

2 1 2
A Tp(y) A P(x,y) ~ ~[TQ(a) A TQ(y) A Q(a,y)]

A R(x,x)]] .

Clearly, INT(W) imposes on W the integrity constraint that each predicate

argument satisfy the corresponding argument types for that predicate. Our ap

proach to data base integrity will be to consider the effects of updating the

data base with INT(W)

to the data base

This update will be rejected if the addition of INT(W)

(i) leads to an inconsistency with respect to the TDB or

(ii) provides no new information, in a sense to be defined below.

On the other hand, if INT(W) leads to no integrity violations, then the

data base will be updated with INT(W) .1 Thus, in the process of creating or.

updating a data base, the user will enter a twff W. A subsystem responsible

for maintaining the integrity of the data base will transform W to INT(W)

If INT(W) violates no integrity constraints, the data base will be updated

with INT(W) . There is a strong analogy here between our proposal for data base

integrity and compilers for strongly typed programming languages like PASCAL

or ALGOL 68. In such languages, all variables must be typed, just as all

variables in twffs are assigned types. Furthermore, in typed programming

languages, the formal parameters of a procedure must be typed, and any attempt

1Actually, as we shall see, the data base is not updated with INT(W) , but with
a set of simpler, but logically equivalent formulae.

-10-

to bind an argwnent of conflicting type to a fonnal parameter will be rejected

by the compiler. Under our approach to integrity, predicates correspond to

procedures, and predicate argument types to parameter types. At "compile time"

i.e. when an attempted update of the data base is made, the integrity "compiler"

will seek out conflicting "argument-parameter" types. Should any be found, the

update will be rejected.

3.2 Updates Involving Constants

With no loss in generality, assume that the "data base is to be updated with

a twff I in prenex normal form, so that I has the form
➔ ➔ 1

(x/T)W, where W is

quantifier free. Assume further that W is in conjunctive normal form·. Thus I

is of the form

where each Ci is a disjunct of common literals. This, in turn, is equivalent

to

➔ ➔
(x h) c .

m

Thus, the original update is equivalent to the m updates
➔➔

(xh) C. , i = 1 , ..• , m
l.

Our position will be that if any of these m twffs violates an integrity const

raint, then the original twff I will be rejected. Thus, again with no loss in

➔➔
generality, we consider updates of the form (x/t)C where C = L1 v ••• v Lk is

a disjunct of common literals. By ~irtue of the discussion of Section 3.1 we

can equivalently consider the effects of updating the data base with
➔➔ ➔➔

INT((x/T)C) = (x/T)INT(C)
➔➔ = (x/T)[INT(L1) v ••• v INT(Lk)]

(x /T)W n n
We admit the case n = 0 in which

case the twff is quantifier free.

-11-

We consider first the case where some literal, say 1
1

, contains a

constant c

Case 1. 1
1

is positive, say 1
1

is P(c,t
2

, ..• ,trn) for tenns t 2 , ..• , trn •

Then

INT(C)

Suppose TDB t- ~T;(c) . Then

TDB t- INT(C) = [INT(12) v ••• v INT(1k)]

i.e . . the infonnation about 1
1

in C is irrelevant! We interpret this as

an integrity violation. Notice in particular the case k = 1 , namely when

C is a single literal 1 1 . In that case TDB t- INT(C) = false so that an

➔➔
attempted update with (x/T)INT(C) would lead to a genuine data base inconsist-

ency.

Case 2. 1
1

is negative, say 1
1

is rvP (c, t
2

, ... , tm) for terms t
2

, ..• , tm

Then

INT(C)

Suppose Then TDB t- INT(C) i.e. INT(C) is vacuous; it contains

no new information. This we treat as an integrity violation.

These observations lead to the following:

Integrity Rule 1

Reject any attempted update of the data base with a twff

is a disjunct of common literals whenever

➔➔

(x/T) C where C

(i) a constant sign c occurs in C , say as the i- th argument of a common

-12-

predicate sign P , and

As we shall see, an attempted update which passes Rule 1 may still violate

further integrity constraints. However, notice that, in Case 1 above, if

6~!1)c passes Rule 1 then TDB tf~t;(c) . By the t - completeness of the

TDB, this means TDB ~-T;(c) so that

If
-+ -+

(x/t)C passes Rule 1 by virtue_ of Case 2, then we similarly obtain

In either case, INT(C) is equivalent to a formula which is independent of the

type literal 1 Tp(c) , so that an update with
-+ -+

(x/T)INT(C)

one in which all literals in INT(C) of the form

3.3 Typed Normal Form

is equivalent to

have been deleted.

For subsequent integrity tests, we require the following propositional

identity:

where

wi = w if i = 1

= ~W if i = 0

-13-

V , •• V ~M
r

and

iL = L if i = 1

= 0 (false) if i = 0 .

In particular, if u
1

, ••• , Ur , w
1

, ••• , Wk are types in the variable x , then

i1 ik + +
(x/T A ul A ••• A Ur A wl A ••• A wk) (y/8)

[~M1V,,,V~MrVilLlv ... VikLk].

Now our concern is with attempted updates with twffs of the form

(x/T)(y/0)C where C is a disjunct of common literals, say

with the A's and B's positive literals. Thus INT(C) has the form

(3.1)

where U. is a conjunct of the those predicate argument types corresponding to
l.

an occurrence of x in A.
l.

(and hence U.
l.

is a type), and M.
l.

is

joined with type literals corresponding to occurrences of constants or of

con-

variables other than x in Ai Similarly for W. and L. respectively.
l. l.

For example, if the formula is (x/T)(y/0)C where

C = ~P(x,a,y) V ~Q(x,y) V P(b,y,y) V Q(x,x)

then

1 2 3 1 INT(C) = ~[Tp(x) A Tp(a) A Tp(y) A P(x,a,y)] V ~[TQ(x)

1 2 3 1 2
V [Tp(b) A Tp(y) A Tp(y) A P(b,y,y)] V [TQ(x) A TQ(x) A Q(x,x)]

so that

-14-

1 2 3 P(x,a,y) Ul = Tp Ml = Tp(a) /\ Tp(y) /\

1 2 /\ Q(x,y) u2 = TQ M2 = TQ(y)

1 (true) 1 2 3 "P(b,y,y) Wl = 11 = Tp(b) /\ Tp(y) /\ Tp (y)

w2
1 2

12 Q(x,x) = TQ /\ TQ =

In general, using (3.1), it follows that (x/t)(y/0)C can be represented

by the right side of (3.1) i.e. as a conjunct of 2k formulae such that no

M or 1 involves a type literal in x. For the example at hand, we obtain

4 such formulae whose conjunct is equivalent to the original:

(x/T /\ T! /\
1 /\ 1 /\ 1

TQ TQ /\
2 TQ)(y/0)[~M1 V ~M2 V 1l V 12]

(x/T 1 1 1 2
V 1

2
] /\ Tp /\ TQ I\ 0 I\ TQ I\ TQ)(y/0) [~Ml V ~M2

(x/T /\ 1 1 /\ 1 /\ 1
/\ T~)) (y /0) [~l\ 11] Tp I\ TQ ~(T V ~M

2
V

Q

(x/T 1 1 1 2
V ~M] /\ Tp I\ TQ I\ 0 I\ ~(T I\ TQ))(y/0) [~M1 Q 2

Now for each of the 2k fonnulae obtained by applying (3.1) to

(x/t)(y/0)C we can repeat this process with respect to the y's until finally,

we obtain a conjunct K of formulae with restricted universal quantifiers, and

in which the only occurrences of types are in the restricted quantifier, or

as type literals of the fonn T(a) where a is a constant sign. Assuming

that the original twff (x/T)(y/0)C has passed the Integrity Rule 1 of Section

3.1, we can, by the remarks following that rule, delete all occurrences of

type literals t(a) from K. The resulting set of twffs in this conjunct

is called the typed normal fonn of (x/T)(y/0)C .

-15-

Example 3.2

1. (x/T)[~P(x,x) v Q(x,a)]

has typed normal form

1 2 1 (x/T A Lp A Tp A TQ)[-P(x,x) V Q(x,a)]

1 2 1
(x/T A Tp A Tp A ~TQ) [~P(x,x)]

2. (x/T)[P(x,x) v Q(x,a)]

has typed normal form

(x/T 1
A Tp

2 1
A Tp A - TQ) [P(x,x)]

(x/T 1
A ~(Tp

2
A Tp)

1 A TQ)[Q(x,a)]

(xh
1

A ~(Tp A 2
Tp)

1
A ~TQ) FALSE

3. (x/T) [~P(x,x) v ~Q(x,a)]

has typed normal form

4. (x/T)(y/0)[~P(x,y) v Q(x,y)]

has typed normal form

(x/T A 1 1 2 2
Tp A TQ)(y/0 A Tp A TQ) [~P(x,y) V Q(x,y)]

(x/T 1 1 . 2 2 A Tp A TQ)(y/0 A Tp A ~TQ) [~P(x,y)]

(x/T 1 ·1 2
A Tp A ~TQ)(y/0 A Tp) [~P(x,y)]

-16-

5. (x/T)(y/8) [~P(x,y) v ~Q(x,y)J

has typed normal form

1 1 2 2
(x/T A Tp A TQ)(y/9 A Tp A TQ)[~P(x,y) V ~Q(x,y)]

6. (x/T)(y/8) [P(x,y) v Q(x,y)]

has typed normal form

(x/T 1
A Tp

1
A TQ)(y/8 AT;

2 A TQ) [P(x,y) V Q(x,y)]

(x/T A 1
A T~)(Y/8

2
A ~T~) [P(x,y)] Tp A Tp

1 1 (x/T A Tp A TQ)(y/8 A ~ 2 Tp A 2
TQ) [Q(x,y)]

(x/T A 1
Tp

(x/T 1
A Tp

(x/T A 1
Tp

1 (x/T A ~Tp

1
(x/T A ~Tp

1 (x/T A ~Tp

1 2 2 A TQ)(y/8 A ~T A ~TQ) FALSE p

1 A ~TQ)(y/8 2 A Tp) [P(x,y)]

1 A ~TQ)(y/8 A
2

~Tp) FALSE

1
A TQ)(y/8

2 A TQ) [Q(x,y)]

1 2
A TQ)(y/8 A ~TQ) FALSE

1 A ~TQ)(y/0) FALSE

Now notice that if an update is attempted with
➔ ➔

(x/T)C where C is a

disjunct of literals, then each twff in its typed normal form is of the form

(;/0)C where C is disjunct of some, or all, of the literals of C. Hence,

C contains no types so that
➔ ➔ "

(x/S)C is a twff and thus a respectable candidate

for inclusion in the data base.

It is natural, therefore, to consider updating the data base with all the

twffs in the typed normal form of
➔ -+

(x/T)C Before doing so, let us consider a

-17-

typical twff (;/0)C in this typed normal form. Suppose, for some component

0 , that TDB r-(x) ~ e. (x) .
1

In that case, the twff is

vacuously true; it contains no new information, and hence is irrelevant to

the update. We define a twff (;/0)C to be vacuous iff for some component

0i of 0 it is the case that TDB r-(x)~0i(x) . Given a typed normal form,

its r educed form is obtained by deleting all vacuous twffs. Our approach to

data base updates, then, is as follows:

++
Given an attempted update with (x/T)C, form its reduced typed normal form.

Assuming that this reduced form satisfies certain integrity constraints, to

be described below, we then update the data base with all of the twffs in

this reduced form.

Before we discuss integrity constraints as they apply to reduced type

normal forms, it is worth taking a closer look at the notion of a vacuous twff.

In particular, notice that TDB r-(x)~0i(x) is not equivalent to I e. I = <ti •
1

The former implies the latter (assuming a consistent TDB) but not conversely.

For example, suppose the TDB consists of the following facts:

(x)HUMAN(x) ~ ANIMATE(x)

ANIMATE (fido)

~HUMAN (fido)

Then \HUMAN\ =~,yet it is not the case that TDB t- (x) ~HUMAN(x) . On the

other hand, TDB r- (x)~(HUMAN(x) A ~ANIMATE(x)) and indeed !HUMAN A ~ANIMATE! = $.

Now we were careful, in defining the notion of a vacuous twff, to require the

stronger condition TDB r- (x)~0i(x) rather than the weaker leil = ~ • To

see why, consider an attempt to update with "Everyone likes Fido":

(x/HUMAN)LIKE(x,Fido)

-18-

Assume 1
TLIKE = HUMAN. Then this has typed normal form:

(x/HUMAN)LIKE(x,fido) (3.2)

(x/HUMAN A ~HUMAN) FALSE

The latter is clearly vacuous and is deleted in forming the reduced typed

normal form. Under the definition of vacuous twff, the former is not vacuous

and hence is retained. However, had we defined the notion of a vacuous twff

to require jeij = ¢, then (3.2) would also be deleted in forming the reduced

form of the original update i.e. the entire update would be rejected. Now

it is indeed true that for this TDB, the twff (3.2) contains no information.

But this is so only because currently the TDB knows of no humans. Should

the TDB be subsequently updated with a new fact, say HUMAN (John), (3.2)

would no longer be information-free. In other words, jHUMANj = ~ is contingent

on the extension of the TDB, and is not a universal fact about the world.

Furthermore, any rejection of (3.2) because it is currently information-free

would not be immune to subsequent updates of the TDB with facts like HUMAN (John);

once the TDB contains such a fact, the rejected formula suddenly becomes re

levant. For these reasons, we defined the notion of a vacuous twff as we did.

Any such twff is indeed information-free, but only by virtue of general rather

than contingent facts about the world.

Now, consider an attempted update with
➔➔

(x/T)C . As we remarked earlier,

each twff in its reduced typed normal form is of the form (~/S)C where e is

a disjunct of some, or all, of the common literals of C. Suppose that C

contains a common literal L which appears in none of the twffs in this reduced

typed normal form. Then L is irrelevant to the attempted update. We interpret

this as an integrity violation; at best there is something questionable about

the attempted update. Finally, suppose that the reduced typed normal form

-19-

contains a twff of the form (;/6)FALSE. By (3.1) this is possible iff C is

a disjunct of positive literals. In this case asserting (~/0)FALSE is equiv

alent to updating the TDB with

(3 .3)

Clearly, we cannot permit the original update if (3.3) is inconsistent with

the TDB. On the other hand, if (3.3) is consistent with the TDB, but not

provable, then it is a new fact for the TDB and, since this is a subtle con

sequence of the attempted update, the user should be asked about the relevance

of (3.3) for the TDB.

Integrity Rule 2

Suppose the data base is to be updated with
➔➔

(x/T)C and that C contains

a common literal L which occurs in none of the twffs of the reduced typed

normal form of
➔➔

(x/T) C . Then reject the attempted update. Otherwise, there

are two possibilities;

(i) The reduced typed normal form contains no twff of the form (1/S)FALSE.

Then update the data base with all of the twffs in this reduced typed

normal form.

(ii) There is a twff of the form (;/8)FALSE, so that C is a disjunct of

positive literals. If (3.3) is inconsistent with the TDB, reject the

update. If (3.3) is provable from the TDB, ignore it. Otherwise ask

the user whether (3.3) is an appropriate update for the TDB. If so,

make that update. If all such TDB updates are acceptable, update the

data base with the remaining twffs of the reduced typed normal form.

-20-

Example 3.3

Consider an attempted update with example (1.5) of Section 1, namely

with:

{x/HUMAN)(y/HUMAN)[OFFSPRING(x,y) ~ MOTHER(y,x) v FATHER(y,x)]

Assume

1
TOFFSPRING

2
= TOFFSPRING

1
TMOTHER = HUMAN A FEMALE

1
TFATHER =HUMAN" MALE

and assume further that

2
= TFATHER =

TDB I- (x)-[MALE(x) A FEMALE(x)]

2
TMOTHER = HUMAN

After some simplification, and using (3.5), we obtain the reduced typed

normal form of (3.4):

{x/HUMAN)(y/HUMAN A FEMALE)[OFFSPRING(x,y) ~ MOTHER(y,x)]

{x/HUMAN)(y/HUMA.~ A MALE) [OFFSPRING(x,y) ~ FATHER(y,x)]

(3.4)

(3. 5)

(3. 6)

(3. 7)

These satisfy Integrity Rule 2, so the original twff (3.4) is acceptable, and

we update the data base with (3.6) and (3.7).

Notice, incidentally, how the reduced typed normal form decomposes the

original twff (3.4) into just the right conceptual "chunks" with respect to

the types of the TDB. Thus (3.6) and (3.7) are clearer, and more to the point

than the original twff. Notice also that while the original twff is not a

Horn fonnula, the twffs of its reduced typed normal form are Horn. Since

there are many representational and computational advantages to Horn represent

ations in data base theory (See e.g. [Kowalski 1979]) this Horn decomposition

-21-

is a fortunate consequence of reduced typed normal forms. Of course, reduced

typed nonnal forms do not always yield Horn fonnulae, but it is comforting

to know that they do on occasion. Moreover, it is easy to see, from (3.1),

that Horn formulae never yield non Horn components in their typed normal

form, so that reduction to normal fonn preserves the Horn property.

Example 3.4

Consider an attempted update with

(x/HUMAN A MALE)(y/HUMAN A MALE)[BROTHER(x,y) ~ SISTER(y,x)]

Assuming

1
TBROTHER =HUMANA MALE

1
TSISTER =HUMANA FEMALE

2 2
TBROTHER = TSISTER = HUMAN

the typed nonnal form is

(x/HUMAN A MALE)(y/HUMAN A MALE A FEMALE) [BROTHER(x,y) ~ SISTER(y,x)] (3.8)

(x/HUMAN A MALE)(y/HUMAN A MALE A ~FEMALE)~BROTHER(x,y) (3.9)

(x/HUMAN A MALE A ~HlJMAN)(y/HUMAN A MALE)~BROTHER(x,y) (3.10)

(3.10) is clearly vacuous. (3.8) is vacuous by (3.5). Hence, the reduced

typed nonnal form consists of (3.9) so by Integrity Rule 2, the update is

rejected.

Example 3.5

Consider an attempted update with

-22-

(x/HUMAN)BROTHER(x,John)

where the BROTHER relation satisfies the same predicate argument type constraints

as in Example 3.4. This has typed normal form

(x/HUMAN A MALE)BROTHER(x,John)

(x/HUMAN A ~MALE)FALSE

This latter formula is equivalent to a TDB update with

(x) [~HUMAN(x) v MALE(x)] (3.11)

By Integrity Rule 2, if (3.11) is consistent with the TDB, then the user

should be asked whether to update the TDB with (3.11); presumably it will be

rejected whence so also will be the original update. On the other han~, if

the TDB contains

(x)~[MALE(x) A FEMALE(x)]

HUMAN (Mary) FEMALE (Mary)

then (3.11) is inconsistent with the TDB and the system would automatically

reject the original update.

4. Discussion and Conclusions

We have focussed in this paper upon a special class of integrity constraints,

namely those which specify, for every data base relation, the allowable argu

ments to the relation. The primary vehicle for the analysis of these con

straints is the notion of a type data base, together with the reduced typed

normal form of a universally quantified twff. This normal form enjoys a number

of desirable properties:

1. There is an algorithm for obtaining it.

-23-

2. There are simple criteria which, when applied to a formula's typed normal

form, determine whether that formula violates any argument typing integrity

constraints (Integrity Rule 2).

3. The conjunction of the formulae in the reduced typed normal form is logically

equivalent to the original formula (modulo the TDB and integrity constraints).

4. As discussed in Example 3.3, the reduced typed normal form often decomposes

the original formula into just the right conceptual "chunks". Moreover,

non Horn formulae may decompose into Horn "components", while Horn formulae

never yield non Horn formulae in their normal forms.

5. In view of 3., a formula may be represented in the data base by its reduced

typed normal form. In view of 4., this is a good thing to do.

McSkimin and Minker have independently observed the utility of predicate

argument typing in maintaining the integrity of a first order data base

[McSkimin 1976], [McSkimin and Minker 1977]. Their approach differs significantly

from ours; however, and in some respects is less general. Both approaches diverge

with respect to what constitutes an acceptable update of the data base. For

example, the update of Example 3.3 would be rejected under their approach,

whereas we find it acceptable. Moreover, McSkimin and Minker would not detect

possible TDB integrity violations arising from twffs of the form (;/6)FALSE

in the reduced typed normal form. For example, they would accept the update

of Example 3.5 whereas we find it unacceptable.

There are several directions in which the results of this paper might be

extended:

1. Our approach applies only to universally quantified twffs. Is there a

normal form for arbitrarily quantified twffs?

-24-

2. We have considered only twffs with no function signs. How might the notion

of typed functions be incorporated into the theory?

3. The class of predicate argument type constraints considered in this paper,

namely those of the form (2,1), is not as general as one might like.

Frequently, corresponding to a constraint like (2.1), there is a natural

refinement of the constraint which does not fit the pattern of (2.1), but

which should be enforced. For example, in a personnel world one might define

the constraint

(x y) [EMPLOYED-IN(x,y) ~ EMPLOYEE(x) A DEPT(y))

which is of the form (2.1). This has the natural refinement

(x y) [EMPLOYED-IN(x,y) ~ SALES-PE~SON(x) A SALES-DEPT(y)

v CLERICAL-PERSON(x) A ACCOUNTING-DEPT(y)]

which violates the pattern (2.1) and hence cannot be accommodated by the

methods of this paper. The natural approach here is to seek a normal form

corresponding to predicate argument type constraints of the form:

1
A , , • A T (x)

n n
k

A , , , A T (x)]
n n

4. Related to the refinement problem is the specialization problem. Freq-

uently, a type constraint of the form (2.1) will have various specializations.

For example, in an education domain, we might have the relation ELECTIVE(x,y),

denoting that course x is an elective for the program y:

(x y)[ELECTIVE(x,y) ~ COURSE(x) A PROGRAM(y)) (4 .1)

The computer science program, however, is more particular:

(x) [ELECTIVE(x,CS) ~ SECOND-YEAR-COURSE(x) A MATH(x)

v [THIRD-YEAR-COURSE(x) v FOURTH-YEAR-COURSE(x)] A ARTS(x))

-25-

Similarly, there will be specialization of (4.1) for all of the other degree

programs. How might we simultaneously enforce the general constraint (4.1)

together with all of its specializations?

5. Many relations naturally take sets as arguments. For example, in an

education domain, the relation PREREQUISITES(x,y) would take a set of

courses x as the prerequisites for a course y. This integrity con

straint might be denoted by

(x y)[PREREQUISITES(x,y) ~ SET-OF(COURSE)(x) A COURSE(y)]

How might such constraints be enforced?

One can imagine a similar need for the treatment of sequences.

Acknowledgement

This work was done with financial assistance from the National Science

and Engineering Research Council of Canada, under grant A 7642.

-26-

REFERENCES

Bishop, C. and Reiter, R. (1980). On taxonomies, Dept. of Computer Science,
Univ. of British Columbia, Technical Report, forthcoming.

Date, C.J. (1977). An Introduction to Data Base Systems, Second Edition,
Addison-Wesley, Reading, Mass., 1977.

Hilbert, D. and Ackermann, W. (1950). Principles of Mathematical Logic. Chelsea,
New York.

Kellogg, C., Klahr, P. and Travis, L. (1978). Deductive planning and pathfinding
for relational data bases, in Logic and Data Bases, H. Gallaire and
J. Minker eds., Plenum Press, New York, 179-200.

Kowalski, R. (1979). Logic for Problem Solving, North Holland Publishing Co.,
New York.

McSkimin, J.R. (1976). The Use of Semantic Information in Deductive Question
Answering Systems. Ph.D. Thesis, Dept. of Computer Science, Univ. of
Maryland, College Park, Md.

McSkimin, J,R. and Minker, J. (1977). The use of a semantic network in a de
ductive question-answering system, Technical Report TR-506, Dept. of
Computer Science, Univ. of Maryland, College Park, Md.

Minker, J. (1978). An experimental relational data base system based on logic,
in Logic and Data Bases, H. Gallaire and J. Minker eds., Plenum Press,
New York, 107-147.

Reiter, R. (1977). An approach to deductive question-answering, Tech. Report
3649, Bolt Beranek and Newman Inc., Cambridge, Mass.

Reiter, R. (1978). Deductive question-answering on relational data bases, in
Logic and Data Bases, H. Gallaire and J. Minker eds., Plenum Press,
New York, 149-177.

-27-

