
i
•

* *
* Simulation of a General-purpose *
* - ~icro-programmable fomputer *
* *
* by 'Ttv\--!$"' *
* *
* Elis Lieuson Samuel Chanson *
* Kevin Douglas Mabo Ito *
* Bary Pollack John Peck *
* Cindy Chan *
* *
* SGMC User Manual * ----* *
* 1980 January 21 *
* *
* *

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia V6T lWS

Abstract

Documentation for the Simulator, Monitor, and Assembler of a
General-purpose Micro-programmable Computer (SGMC).

Acknowledgement.
The original design of SGMC is due to s. T. Chanson, M. R. Ito
and B. w. Pollack. Implementation started in the summer of 1977
by Kevin Douglas and completed in August, 1978 by Elis Lieuson
under the supervision of s. T. Chanson. This work has been
supported by the Computer Science Department of UBC and the YEPU
project number 2106.03 of British Columbia. A further rev1s1on
to the Manual and processor was made by John Peck and Cindy Cha
in the summer of 1979.

TABLE OF CONTENTS

A. INTRODUCTION.

B. SIMULATOR

B.1. MS AND I/O OPERATIONS.

B.2. DEVICES.

B.3. MICRO-INSTRUCTIONS
i. NOTATION.
ii. REGISTERS.
0. OPCODE.GROUP.
1. MS INFO.GROUP.
2. OPERANDS.GROUP.
3. SHIFT OP.GROUP.
4. ARITH-FMSK.GROUP.
5. I/O OP.GROUP.

1

1

2

2

3
3
3
4
4
5
5
6
6

6. I/O-FMSK.GROUP.
7. CS OP.GROUP. - - ----- --------- 6

8. MS-OP. GROUP.

B.4. REMARKS ON THE SHIFTER.

B.S. PICTURE OF INSTRUCTION FIELDS.

C. MONITOR

C.1. MONITOR COMMANDS.

C.2. ATPOINT DEFINITION.

D. ASSEMBLER.

E. HOW TO USE.

7
8

8

9

11

11

13

14

20

CONTENTS

1

A. INTRODUCTION.

SGMC is a package containing:

1. the Simulator which simulates a ~eneral-purpose
micro-programmable computer (It provides arithmetic and
logical operations on 32-bit 2's complement integers. It
also supports control storage, main storage, and I/O
operations),

2. the Monitor which provides facilities to monitor microprogram
execution, and

3. the Assembler which translates symbolic microprograms into
object codes.

B. SIMULATOR

The simulated machine consists of:

1. the CENTRAL PROCESSING UNIT (CPU) which executes the
microporgram. The CPU in turn consists of:
a. 64 high-speed general-purpose registers,
b. the ARITHMETIC-LOGIC UNIT (ALU) which performs operations on

the high-speed registers,
c. the SHIFTER which shifts the results of ALU operations,
d. the MICROPROGRAM CONTROL UNIT (MCU) which conditionally

alters flags, control storage, and microprogram flow, and
e. the STORAGE CONTROL UNIT (SCU) which handles all MS

accesses,

2~ the CONTROL STORAGE (CS) where the object codes of the
microprogram are stored, and

3. the MAIN STORAGE (MS), which has a slower cycle time than the
CS. At any time, the microprogram may reset the word and
byte sizes (1-32) and the MS addressing mode (word or byte
addressing). SGMC keeps everything in 32-bit 2's complement
form. The address 'n' (0<=n) refers to the (n+l)st word if
the current addressing mode is by word; the (n+l)st byte if
the mode is by byte. In a byte I/O operation, the left-most
byte of the word referenced is used if the current addressing
mode is by word.

B. SIMULATOR

Simulation of a §eneral-purpose ~icro-programmable fomputer 2

B. l. MS AND I/O OPERATIONS.

MS and I/O device operations require more than 1
micro-instruction cycle to complete. Flags are provided to
indicate the status of these operations. These flags enable the
CPU to perform other operations in the mean time. The CPU
should not refer to or alter any register used by the MS and
device operatiqns while they are in progress. YOUR MICROPROGRAM
MAY NOT WORK PROPERLY IF YOU DO NOT TAKE THIS INTO ACCOUNT.
Flags available are: memory done' flag for MS operations;
interrupt flag for all the I/O devices; and interrupt enabled
flag which allows or disallows the interrupt flag to be set. If
a MS or I/O operation is initiated before the iast similar
operation is completed, the CPU is halted until that operation
is done.

The MS or I/O operations are done on the start of the:
1. 5th instruction after the command for the MS operations.
2. 10th instruction after the command for the CHAR READER.
3 . 10th instruction after the COllil'lland for the CHAR-PRINTER.
4. 10th instruction after the command for the NUM READER.
5. 10th instruction after the command for the NUM-PRINTER.

B.2. DEVICES.

1. Device number 5 is CHAR READER which reads a character at a
time to the given register.

2. Device number 6 is CHAR PRINTER which writes a character at a
time. A write 'eof' will terminate the program.

3. Device number 7 is NUM READER which reads in a decimal
integer at a time.

4. Device number 8 is NUM PRINTER which writes a decimal integer
at a time.

5. Initially, the interrupt enabled flag is off, all devices'
done flags are on and the busy flags are off. The interrupt
flag is set whenever a device done flag and the interrupt
enabled flag are both . on. Warning: if a device done flag is
altered by a CNTL field operation, the interrupt flag will no
longer work correctly.

B.2. DEVICES.

.. .

Simulation of a General-purpose ~icro-programmable Computer 3

B.3. MICRO-INSTRUCTIONS

All arithmetic operations are done in 2's Complement integers.
The fields in a micro-instruction are executed from left to
right. The shifter and destination sizes are determined by the
opcode •

i. NOTATION.

<X> = The contents of register x.

"X" = The effective value of X with respect to the format of
x. See A and AFMT fields for examples.

X* = The register pair [X,X+l].

X$ = The register triple [X,X+l,X+2].

(X, Y) = The value of the concatenated fields X & Y.

ii. REGISTERS.

FLAGS are the status flags (see FMSK field). The
flags: L, Cl, C2, ov, M, P, & EV are affected
SUB, AND, OR, XOR, CUM, & SHIFTER. The
affected only by the MS operations.

arithmetic
by: ADD,

MD flag is

r0-r63 are 32-bit general-purpose circularly linked registers.
r0 always contains zero. When r0 is the destination of
an instruction, no destination is assumed. r0 to r63 are
initialized to Oto 63 respectively when the simulator is
started.

RBASE contains a register number which is the user designated
target machine's r0 (see AFMT, BFMT, DFMT fields).

PC is the CS program counter. If the current instruction
contains a long immediate register format field, the PC
is increased by 2. Otherwise, it is increased by 1.

B.3. MICRO-INSTRUCTIONS ii. REGISTERS.

Simulation of a Qeneral-purpose ~icro-programmable Computer 4

0. OPCODE.GROUP.

OP ALU operation code. Mnemonics are given in upper-case.
= 0 = NOP: no operation.
= 1 = ADD: put "A"+ "B" in the shifter.
= 2 = SUB: put "B" - "A" in the shifter.
= 3 = MPY: multiply "A" by "B" and place the double

length result in the shifter.
= 4 = DIV: put "A"*/ "B" in the shifter. The result

is two single-length integers given as a
double length result (remainder, quotient).
The ov flag is set if the quotient is too
large.

= 5 = AND: put "A" AND (logical bitwise) "B" in the
shifter.

= 6 =OR: put "A" OR "B" in the shifter~
= 7 = XOR: put "A 11 EXCLUSIVE-OR "B" in the shifter.
= 8 = CPY: place "A" in the shifter.
= 9 = CPD: place "A"* in the shifter.
=10 = CUM: collapse under mask. The bits of "A"

correspondTng to l's bits in "B" are placed
in the lower order bits of the shifter.
The higher order bits are cleared.

=11 = OUT: initiate output operation.
=12 =IN: initiate input operation.
=13 = TIO: test I/O operation status.
=14 = SSM: set the system MS definition (i.e., set the

byte and word size, and indicate byte or
word addressing). The size must range from
1 to 32 bits long.

=15 = HLT: stop the CPU.
Note: if the value of "A" to be used in a DIV or CPD
operation- is a short immediate value (from -32 to +31),
then an "*" must append "A" to indicate that its long
immediate equivale.nt should be used in the operation~

1. MS INFO.GROUP.
{be careful ·with the timing!)

MSBY

MSBS

MSWS

indicates that 'the MS is addressed BY: 0=byte l=word.

is the MS Byte Size. The size must range from 1 to 32
bits long: The actual field value is equal to the size
less· 1.

is the MS Word Size. The size must range from 1 to 32
bits long: The actual field value is equal to the size
less 1.

B.3. MICRO-INSTRUCTIONS 1. MS INFO.GROUP.

Simulation of a General-purpose ~icro-programmable Computer 5

2. OPERANDS.GROUP.

A is the First operand definition (i.e, the register
field).

AFMT is the Format of A (determines the value of "A")•
0 - <rA>. = =

= 1 = ~<rA>.
= 2 = -<rA>.
= 3 = the value in bits 0-31 of the next micro-word.
= 4 = A. The result ranges from -32 to +31.
= 5 = <r(<rA>+<RBASE>)>.
= 6 = ~<r(<rA>+<RBASE>)>.
= 7 = -<r(<rA>+<RBASE>)>.

B is the Second operand definition (i.e, the register
field).

BFMT is the Format of B. Interpretation is the same as AFMT
except - for- code 3, where bits 32-63 of the next
micro-word are used instead.

3. SHIFT OP.GROUP.

SHFT indicates the number of bits to shift (0-63) (see SIMM).

SIMM indicates to shift by: (0=<rSHFT>, 1= SHFT) amount.

STYP indicates that the shift operation is:
0=no shift, !=logical, 2=arithmetic, 3=rotational.

SDIR indicates to shift to the: (0=left, !=right).

SLNK indicates wether to include(if 1) or not(if 0) the link
during a shift (does not apply to arithmetic shifts).

SFIL specifies the bit supplied to vacated positions (applies
only to logical shifts).

SCOM Shifter output: (0=as is, l=l's complement the result).

D is the destination register definition.

DFMT is the format of D.
= O = rD or rD*.
= 1 = r(<rD>+<RBASE>) or r(<rD>+<RBASE>)*.

B.3. MICRO-INSTRUCTIONS 3. SHIFT OP.GROUP.

Simulation of a Qeneral-purpose ~icro-programmable £omputer 6

4. ARITH FMSK.GROUP.

FMSK is the Flag MaSK. A bit 1 indicates the corresponding
flag is-selected.

L = link - same as Cl but can be altered in shift.
Cl = primary -logical high bit- carry.
C2 = secondary -BCD (low 4 bits)- carry.
ov = overflow (arithmetic).
z = zero: result is zero.
M = minus: result is negative.
p = plus: result is positive.
EV = even: result is even.
IR = interrupt requested.
MD = memory done.
uo = user-programmable flag o.
Ul = user-programmable flag 1.
U2 = user-programmable flag 2.

5. I/0 OP.GROUP.
(be careful with the timing!)

DEV is the device number.

DCS is the Data, or £ommand, or Status
interpretation depends on the value
example: move disk arm to cylinder s.

register. The
of CTL. Command

CTL is the ConTrol pulse Lines. Issues a CPU-DEVICE
communication related command. At most one line can be
on at any·time.

ADR = device ADdRess.
RD = ReaD strobe (read into register 11 DCS").
WR = WRite strobe (write from register "DCS").
ST = put detailed device STatus in register "DCS".
CD = execute the CommanD In register 11 DCS 11

•

IA = Interrupt Acknowleaged.
SCLR= clear the device's status flags.

6. I/O FMSK.GROUP.

IOF is the I/O flag mask.
IR= interrupt requested.
IE= interrupt enabled.
D = device done (operation completeq).
B = device busy (operation underway)."

B.3. MICRO-INSTRUCTIONS 6. ·I/O _FMSK. GROUP.

Simulation of a General-purpose Micro-programmable fomputer 7

7. CS OP.GROUP.

FLOAD is the Flag Load ,~ontrol. (0=nop, l=load FLAGS to r63).

LMD is the Link register, iMmediate operand, or micro-Data
register. The interpretation is determined by CNTL.

COND

PATN

CNTL

CSB

CSX

is the branch/control Condition.
= 0 = no operation.
= 1 = unconditional.
= 2 = true if at least one flag selected (see FMSK or

IOF) is equal to the desired value (see PATN).
= 3 = true if all the flags selected are equal to the

desired values.

indicates the flags bit values (Pattern) testing for are
= 0 = l's.
= 1 = the bits corresponding to the lower order 13

bits of the MS OP.GROUP field (the MS OP.GROUP
is not executed).

indicates the action to be performed when COND is true.
= 0 = NOP: no operation.
= 1 = SRB: set RBASE to LMD.
= 2 = RCS: read control storage.

<rLMD$> := micro-word at <rCSB> + <rCSX>.
= 3 = WCS: write cs from <rLMD$> to <rCSB> + <rCSX>.
= 4 = BAL: branch-and-link. No link done if LMD=O.

<rLMD> := <PC>; <PC> := <rCSB> + <rCSX>.
= 5 = RET: subroutine Return. <PC> := <rLMD>.
= 6 = EXC: execute instruction at <rCSB> +.<rCSX>.
= 7 = EXL: execute single word instruction in <rLMD$>.
= 8 = JMA: jump absolute to (CSB,CSX).
= 9 = JMI: jump indexed to <rCSB> + <rCSX>.
=10 = FF0: set the selected Flags {corresponding to

the 1 bits in Fmask) to 0. ,
=11 = FFl: set the selected Flags to 1.
=12 = FFC: Complement the seTected Flags.
=13 = FLO: set the Flags correspondTng to the 1 bits

in <rLMD> to 0.
=14 = FLl: set the Flags-corresponding to the 1 bits

in <rLMD> to 1.
=15 = FLC: Copy from <rLMD> to the Flags.

Note: EXC & -EXL executTon is part of the current
instruction cycle time.

is the CS address ~ase register.

is the CS address index register.

B.3. MICRO-INSTRUCTIONS 7. CS OP.GROUP.

Simulation of a Qeneral-purpose ~icro-programmable ~omputer 8

8. MS OP.GROUP.

MEMOP indicates the Main memory operation.
no operation. = 0 =

= l =

= 2 =

= 3 =

= 4 =

NOP:
RDB:

WRB:

RDW:

WRW:

read the l eft- most byte at location <rMA>
to the lowe r ord~bits of the register
specified by MD.
write the byte in the lower order bits of
register MD to the left- most bits at
location <rMA>. -- --
read word. Addresses must be alligned on a
word boundary.
write word. Addresses must be alligned on
a word boundary.

MA is the MS ~ddress register.

MD is the MS · Data register.

B.4. REMARKS ON THE SHIFTER.

bits involved in
of the result of

word size, and

1. The number of relevant
determined by the length
operation, the current MS
included in the shift or not.

the shift is
the current

whether Lis

2. The number of bits shifted is "SHFT" mod the number of
relevant bits.

3. The maximum number of relevant bits cannot exceed 64 bits.
This restriction implies that when the MS word size is
32-bits, and the resultant size of an operation is a double
word, then L cannot be involved in the shift.

4. If the SCOM field is set, it will be done only if the shift
type is not 'no shift'.

B.4. REMARKS ON THE SHIFTER.

Simulation of a General-purpose Micro-programmable fomputer 9

B.5. PICTURE OF INSTRUCTION FIELDS.

0 • • 3
0 I OP I

4 5 .•. 9 10 ••• 14
1 I_Ms_B_Y~I __ Ms_B_s _ _._l __ Ms_w_s __ j

4 • . • • 9 10. 12 13 • . . . 18 19 • 21
2 A

I
AFMT

I
B

I
BFMT I

2 2 •••• 27 28 29 30 31 32 33 34 35 •••• 40 41
3

I
SHFT

I
SIMM! STYP SDIRI SLNKI SFILI SCOMI D DFMTI

42 54
4

I
F M S K

L Cl C2 ov z MP EV IR MD uo Ul U2

4 •••• 9 10.12 13 •••• 18 19.21 32 . . . 38
5 DEV

I

I
DCS

I

IADR
C T L

SCLRI ### #### RD WR ST CD IA

51 • . 54
6 I O F

IR IE DB

55 56 •••• 61 6 2 6 3 64 6 5 •• 68 69 •••• 74 75 •••• 80
7 FLOADI LMD

I
CONDI PATNI CNTL

I
CSB

I
CSX

81 • 83 84 . . 89 90 • . . . 95
8 I MSOP

I
MA

I
MD

I

B.5. PICTURE OF INSTRUCTION FIELDS.

Simulation of a Qeneral-purpose ~icro-programmable Computer 10

OPCODE: CORRESPONDING GROUPS:
######### #####t##################t

HLT 0

SSM 0~ 1

TIO,OUT,IN o, 5, 6, 7,8

(REMAINING) o, 2, 3, 4, 7,8

LONG IMMEDIATE FIELDS:
##########t#t################t#############t##################

A B

B.5. PICTURE OF INSTRUCTION FIELDS.

fl: t # # fl: t # #
fl: # #

t # fl: # # #

Simulation of a Qeneral-purpose Micro-programmable Computer 11

C. MONITOR

C.l. MONITOR COMMANDS.

Commands may be abbreviated by using only the characters
underlined. Commands must be separated by ';' or end-of-line.
For a numeric parameter (i.e, n, adr, nl, & n2) use a decimal or
hex ('#'-prefixed) integer, an identifier from the assembler
code, or a combination of the above with '+' or '-' operators in
between without blanks. Note: nl <= n2. Addresses are
displayed in base 10. Main storage, control storage and
registers are displayed in hex. The time printed out is in the
form: <number of micro-instruction cycles>.<number of CS
instructions done>.

MTS

9TOP

.QUIT

"EOF"

STEP

GOTO n

returns to MTS without unloading the simulator.

executes a MTS command.

stops the simulator.

same as STOP •

signals error and stops the simulator immediately.

reverses the step switch (initially off). When on,
control is returned to the monitor after each
micro-instruction execution.

starts the CPU at the CS address n.

CONTINUE starts the CPU at the location indicated by' the current
<PC> (initially O)~

AT n

RESTORE n

CLEAR

begins an Atpoint definition at the CS address (see
Atpoint commands).

deletes the Atpoint definition previously set at n.

deletes all the Atpoint definition currently set. ·

LOAD CS filename
loads from the MTS file called filename starting from
location O (see the Assembler for the file format).

C.l. MONITOR COMMANDS.

Simulation of a ~eneral-purpose ~icro-programmable fomputer 12

LOAD MS filename
loads from filename to MS (starting from loc 0). The
file format is a sequence of integers. The 1st
integer, in decimal, specifies the number of 32-bit
words to reserve for the MS. The following inteqers
are in hex and are the values to be stored in . MS,
starting from location O. Note: the current MS
definition (which defaults to 8-bit byte, 32-bit word,
byte-addressing) may be set by the SSM instruction. If
the wordsize w is set to be< 32, then the left-hand 32
- w bits of MS are not accessed.

SET CS adr = n n n
places (n n n), each n for each 32-bit part, into CS
location adr.

SET MS adr = n
places n into MS location adr.

SET REGISTER r = n
places n into the register r.

DISPLAY SYSTEM
-displays FLAGS, PC, RBASE, MS definition, and the

internal time.

DISPLAY CS nl n2
-displays the CS from nl to n2. Only nl is shown if n2

is omitted.

DISPLAY MS nl n2
-displays the MS from nl to n2. Only nl is shown if n2

is omitted.

DISPLAY REGISTER nl n2
-displays the registers from nl to n2. Only nl is shown

if n2 is omitted.

C.l. MONITOR COMMANDS.

Simulation of a General-purpose Micro-programmable Computer 13

C.2. ATPOINT DEFINITION.

Atpoints are used to define a set of commands to be executed
after the instruction at the given CS address is executed. The
effect of an atpoint definition is to store and replace (by a
'STOP') the CS instruction. If a 'STOP' is encountered and the
current CS address has an atpoint defintion, the corresponding
stored instruction and definition are executed. Note: do not
set an atpoint at a location that a EXC references.

Legal commands are:

DISPLAY same as the monitor DISPLAY commands.

STOP stops the system.

QUIT same as STOP above.

END ends the atpoint definition.

BREAK ends the definition, stops the CPU, and returns to the
monitor.

C.2. ATPOINT DEFINITION.

Simulation of a Qeneral-purpose ~icro-prograrnrnable fomputer 14

D. ASSEMBLER.
The line numbers printed in the compilation are not MTS line
numbers but the line position relative to the start of the file.

0. NOTATION:

1. [x y z]
- ignore it or choose one.

2. {x y z}
- one must be chosen.

3. <X>
- the value of the 'variable' <X>.

4. <N>
- a decimal integer or
- a hex integer prefixed by the '#' character.

5. [x]
- zero or more occurrence of x.

6. {{x y zl}
- example statements to illustrate the syntax.

1. <STATEMENT>:

1. < ID> = { [% + -] <N> l [;]

2. [<UNIQUE_LABEL>:] [<INSTR>]

{{ 1. COUNTER= R7; ZERO=R0
1. M TWO= -2; MASK= #FFFF
2. AND MASK,%10 TO %10
2. LOOP: CPY ZERO TO COUNTER }}

2. <INSTR>: (fields order similar to their real positions)

1. HLT

2. SSM {BYTE WORD},<BYTESIZE 1-32>,<WORDSIZE>

3. { IN OUT TIO} <N>, %<N>, <CTL> [FLOAD] [<CSOP>] [<MSOP>]

4. [<NOP>] [FLOAD] [<CSOP>] [<MSOP>]

5. <REM> <OPRNDS> [<SHIFT>] [<D>J [FLOAD] [<CSOP>) [<MSOP>]

D. ASSEMBLER.

.l

Simulation of a Qeneral-purpose ~icro-programmable fomputer 15

{ { 2. SSM BYTE,8,16
3. IN S,INPUT CHAR,RD
3. TIO 8,, ST IF (D) JMA LOOP
s. ADD 1,%2 TO %2
s. OR MASK,PATTERN SRL 4 IF (EV) JMA EVEN
s. CPD O* TO LONG.ZERO } }

3. <REM>:

1. {ADD SUB ~PY DIV AND OR XOR CPY CPD CUM}

4. <OPRNDS>:

1. [- -] [%] <N> [*] [, [- -] [%] <N> [*]]

2. If an operand refers to a label or contains an integer
too large to fit in the register field, the long
immediate format is used.

{{ 1. ~MAsK,PATTERN
1. 10,-10
1. RS* ,R6*
2. #FFFF,LABELl }}

5. <SHIFT>:

.1. <SHIFT-OP> [, ([0 1] [,] [L])] [%] <N>
- O or 1 specifies the filler bit.
- L specifies link inclusion.

{ { 1. S RL (1, L) R6
1. SRRC 0
1. SLA TWO } }

6. <SHIFT-OP>:

1. S{L R}f L A R} [C]
- {LR}= (Left Right)
- {LA R} =- (LogTcal Arithmetic Rotational)
- [C] = (Compiement) -

D. ASSEMBLER.

Simulation of a Qeneral-purpose Micro-programmable fornputer 16

7. <D>:

1. TO %<N>[*)

{{ 1. TO SUM
1. TO %6
1. TO R30* } }

8. <CSOP>:

1. [{ <IF> WITH} (<FLAGS>)]

{{ 1. IF (Z) JMA FETCH
1. IF &(OV, P) JMA ERROR
1. WITH (M) FFC }}

9. <IF>:

1. IF

10. <FLAGS>:

c I ,1

{<NOP-FF> <JMA> <REMAIN>}

1. The list of the appropriate flags, separated by commas,
that one is interested in. In the case of 'IF', each
flag can be preceeded by ,-, to indicate testing for 0.
In this case, PATN=l and no MS-OP can appear in the
instruction.

11. <NOP-FF>:

1. {NOP7 FF0 FFl FFC}

12. <JMA>:

1. Jrna {<LABEL> [+ -]<N>}

{ {

- if [+ -]<N> is u~ed, the address is <PC> [+ -] <N>.

1. JMA LOOP
1. JMA -1 } }

D. ASSEMBLER.

Simulation of a Qeneral-purpose ~icro-programmable Computer 17

13. <REMAIN>:

1. <REST-CNTL> %<N>,%<N>,%<N>
- the registers are for the fields: LMD, CSB, CSX.

{{ 1. SRB 10,0,0
1. BAL RET ADDRS,SUBR ADDRS,0
1. RET RET-ADDRS, 0, 0 -
1. JMI 0,BASE ADDRS,INDEX
1. EXC 0,SET.FLAG,0 }}

14. <REST-CNTL>:

1. {SRB RCS WCS BAL RET EXC EXL JMI FLO FLl FLC}

15. <MSOP>:

1. NOP8

2. {ROB WRB ROW WRW} %<N>,%<N>

{ {

- the registers are for the fields: MA & MD.

2. RDW PROG COUNTER,INSTR REG
2. WRB SAVE~AREA,ONE.BYTE- }}

16. <NOP-S>:

1. Since 'NOP' can appear in more than 1 type of operation
fj~~~~ the nearest operation field is taken whenever it
is used. To specify the field explicitly, append the
field's group number to 'NOP'. Eg. 'NOP3' for the shift
operation. Since operation fields defaults to 'NOP',
this restriction should no~ inconvenience anyone.

D. ASSEMBLER.

Simulation of a ~eneral-purpose Micro-programmable Computer 18

17. <ID>:

1. A string of alphanumeric, '_',
starting with a non-numeric char.
255 characters long.

'. ', and '$' characters,
The maximum length is

2. May appear where <LABEL>, <N>, <KEYWORD> can appear, as
long as the <ID-TYPE> is correct.

3. <ID-TYPE> is any one of the following:
Keyword, Register, Integer, or Address.

4. <KEYWORD> is any one of the mnemonic codes (eg. NOP,
ADD, CLR, BYTE, IF, JMA, ...)

5. R0-R63 identifiers are initialized to be registers 0 to
63.

6. Scope is the entire program.

7. Assignment operators are '=' for general assignment and
':' for current address assignment. A <KEYWORD> may not
be redefined as another <ID-TYPE>. All other identifiers
may be assigned any value and type at any time by general
assignment. In current address assignment, an identifier
(i.e, a statement label) may not be assigned an address
value more than once.

8. JMA forward references of labels are resolved at the end
of the assembly!!!

18. REMARKS:

1. ';' terminates a statement.

2. '%' indicates that the · integer that follows it is a
register number.

3. '*' indicates long immediate when used with an integer,
and indicates indirection when used with a register
number.

{{ 1. NUM=R6; CPY NUM TO Rl; ADD Rl,NUM TO Rl
2. CPY %2 TO %4
3. TEN=l0; CPD TEN*
3. DIV 20*,R5
3. ADD Rl*,R2* TO Rl* }}

D. ASSEMBLER.

I' .I

Simulation of a ~eneral-purpose Micro-programmable Computer 19

19. SPACES AND NEWLINES:

1. Can appear anywhere except inside an <ID>'s string name.

20. COMMENTS:

1. Can appear where a space can.

2. Anything between '/*' and '*/'.

3. Anything from'/' (not followed by '*') to end of line.

21. OBJECT MODULE: (as produced by the assembler)

1. Headed by the control storage size in decimal,

2. followed by the symbol table
R=register, and <VALUE> in hex),
<STRING> {AR} <STRING-VALUE>

3. followed by a zero,-

(where A=address,

4. followed by the CS word values formated in 3 32-bit word
per cs word. Each 32~bit word value is in hex.

22. DEFAULTS: (those values that indicate an empty state)

1. For register fields, register O is used.

2. For operation fields, no operation.

3. For switches fields (eg. Link inclusion in shift) the
default is 'off'.

23. ERRORS:

1. The error flagged is in the statement that is on or
'just' before the line indicated by the line number.

2. Undefined identifiers are not handled correctly under
certain circumstances. Eg. When the name of the
destination register in a 'TO' clause is undefined. If
an error message does not make sense to you, check and
see if an identifier is undefined.

D. ASSEMBLER.

Simulation of a ~eneral-purpose ~icro-programmable Computer 20

E. HOW TO USE.

To run the assembler:

$RUN MCRO:ASM SCARDS=sourcef SPUNCH=objectf SPRINT=listingf T=2

- SPUNCH defaults to -LOAD.
- sourcef should not be *source* or *msource*!!!
- SPRINT defaults to *dummy* on terminal, to *msink* on batch.

To run the simulator:

$RUN MCRO:SIM SCARDS=commandf
S=char-reader-f 6=char-printer-f
7=num-reader-f 8=num-printer-f T=2

- commandf file contains the monitor commands to be executed.
char-reader-f defaults to MTS GUSER unit (*source*).

- char-printer-f defaults to MTS SERCOM unit (*sink*).
num-reader-f defaults to MTS GUSER unit.

- num-printer-f defaults to MTS SERCOM unit.
avoid having any 2 files being the same.

- r0 to r63 are initialized to Oto 63 respectively.

- a typical commandf file would contain:
LOAD MAIN STORE ms-file
LOAD CONTROL STORE cs-file
.••• other monitor commands (eg. GOTO 0) •••
STOP

- results of the on-going printer operations are not seen if the
simulator is terminated before the operations are completed.

It is always recommended to put a time constraint on
commands. Since this system has just been completed,
be error-free. The time constraint would avoid
infinite loops due to the system or your program.

E. HOW TO USE.

all $RUN
it may not

possible

Simulation of a ~eneral-purpose ~icro-programmable Computer 21

r0-r63 3 -----------(X, Y) ____________ 3
<X> 3
"EO=F....--------------11
"X" 3 -------------$.. . 11
AT n 11
BREAK 13
CLEAR 11
CONTINUE 11
DISPLAY cs nl n2 12
DISPLAY MS nl n2 12
DISPLAY REGISTER nl n2 12
DISPLAY SYSTEM 12
DISPLAY 13
END 13
GOTO n 11
LOAD CS filename 11
LOAD MS filename 12
MTS 11
QUIT 11,13
~ESTORE n 11
SET cs adr = n n n 12
SET MS adr = n 12
SET REGISTER r = n 12
STEP- 11
STOP 11
STOP 13
A s
~D 4
AFMT 5
AND 4
B 5
ML 7
BrnT 5
CNTL 7
COMMENTS 19
COND 7
CPD 4
CPY 4
CSB 7
CSX 7
CTL 6
CUM 4
D 5
DCS 6 -------------DEFAULTS 19
~v 6
DFMT 5
DIV 4
ERRORS 19
EXC 7
EXL 7
FFC 7

FFO 7 FFl ___________ 7

FLAGS 3
FLC ---------- 7
FLOAD 7
FLO ---------- 7
FLl 7
FMS=K---------- 6

HLT 4
IN 4
IOF 6
JMA 7
JMI 7
LMD 7
MA 8
MD 8
MEMOP 8
MPY 4
MSBS 4
MSBY 4
MSWS 4
NOP 4,7,8
NOTATION 14
OBJECT MODULE 19
OP 4
OR 4
OUT 4
PATN 7
PC 3
RBASE 3
RCS 7
RDB 8
RDW 8
REMARKS 18
RET 7
SCOM 5
SDIR 5
SFIL 5
SHFT 5
SIMM 5
SLNK 5
SPACES AND NEWLINES 19
SRB 7
s~ 4
STYP 5
SUB 4
TIO 4
wcs 7
WRB 8
WRW 8
X$ 3
X* 3
XOR 4
<CSOP> 16

INDEX

Simulation of a Q_eneral-purpose ~icro-programmable Computer 22

<D> __,,, ___________ _
<FLAGS> --- --------<ID> -------- ----<IF> ------------<INSTR> - - ---------<JMA> ------------<MSOP>
<NOP-F=F~>- - --------
<NOP-S> - -------- - -<OPRNDS>
<REM> - ------- --
<REMAIN> <REST-CNT=~L_> _______ _ _

<SHIFT> <SHIFT-=0-P_> ________ _

<STATEMENT> ---------

16
16
18
16
14
16
17
16
17
15
15
17
17
15
15
14

INDEX

Simulation of a General-purpose ~icro-programmable ~omputer 23

J

CONTENTS

. . .

