
rj

..

* *
* (*
* The CHEF Edit<!>r *
* *
* by *
* *
* M. A. Maclean *
* and *
* J. E. L. p *
* *
* Technica -1 *
* *
* 1980 Octo er 15 *
* *
* *

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia, V6TlWS

A user's Manual
(Second Printing)

The CHEF editor

M.A.Maclean
University of Canterbury

J.E.L.Peck
University of British Columbia

CHEF is a portable text editor written in BCPL. It is a
descendant of the UNIX system editor ED, but has a significantly
different command structure and a number of new features.

The primary field of application for CHEF is computer source
program editing. However there are some simple word-processing
facilities in the form of text justification and centering which
make it usable for document and letter preparation. In fact,
this document was prepared using CHEF.

The editor is 'safe' in the sense that the entire file is
copied into an internal workspace before any editing takes
place. The original file is undisturbed until you explicitly
request that it be updated.

How to use CHEF

The editor is started by entering the system command CHEF
under RDOS or UNIX or $RUN CS:CHEF under MTS. When loaded the
editor displays

Enter H for help (Q for quit)
>

ana is then ready for the first command, entered on the same line
as the prompt character '>' and completed by depressing the
RETURN or ENTER key. Thereafter the editor displays '>' whenever
it is ready for a new command.

is available. To obtain a general On-line documentation
introduction enter 'H'.
operator or special

To obtain details of a particular
character, enter 'H' followed by the

character.

How to edit a file

To edit the file XXX use the command

>EF XXX

which reads the file into the editor's workspace and closes the
disk file. Under MTS or UNIX this may also be done when the
editor is started as in $RUN CS:CHEF PAR=xxx or CHEF -xxx. To

2 The CHEF editor

write the file out again, use the command

>WF. (the dot stands for the 'current file'}

which will write the contents of the workspace to the file whose
name was used in the last E command. To write it to a different
file YYY use the command

>WF YYY

Once a file has been read into the workspace, you can
examine any line of it or print any range of lines. To examine
line 56, for example, enter

and to see lines 50 to 60, enter

>50,60

Often you might not know the exact line number. To print a
line that contains the pattern 'abc', use the command

>/abc/

and to print the range of lines starting with one containing
'abc' and finishing with one containing 'def', enter

>/abc/,/def/

If you want to insert a new line after line 3, enter

>3I

followed by the desired line, followed by a
i.e., a line consisting of a '. 1 only. When you
this way, of course, all succeeding line numbers
To delete line 7 use the command '7D'.

'dot stop' line,
insert a line in
are increased.

To replace part of line 10, use the R operator:

>l0R/abc/def/;P

which replaces the first occurrence of 'abc' in line 10 with the
string 'def'. The ';P' at the end causes the revised line to be
printed for verification. This demonstrates two things: first,
that CHEF commands can be concatenated using ';' as a separator
and, second, that CHEF remembers the 'current line' and uses it
as the location for the P (print} command.

Note that commands begin with a location followed by an
operator. The full syntax of commands will be discussed below.
The above was a quick summary of the simplest basic commands and
a more complete description can be found in the command summary
or in the CHEF on-line documentation.

The CHEF editor 3

Text storage in CHEF

A file being edited is stored in a workspace which can be of
arbitrary size (the maximum varies with the implementation) and
within this workspace the lines of the file are numbered from 1
to some 'last line'.

After each editing operation CHEF remembers the 'current
line'. This can often be used to simplify the following command.
The position of the the current line after each command is
specified in the command summary.

Workspaces may be stacked using the N (new) operator: two
or more workspaces may coexist, although only the most recent is
available for editing. When the most recently created workspace
is finished with, the previous one may be restorea again with the
Q (quit) operator.

As well as the workspace, there are 27 one-line buffers
called 'controls' which are known by the letters A to Zand the
symbol+. These can be used to store text or strings of CHEF
commands or parts of commands and they may be edited in exactly
the same manner as the lines of the workspace. Text can be
transferred in either direction between the workspace and the
controls and there is a macro substitution facility to enable the
content of a control to be included anywhere in a CHEF command
line. The controls are independent of the workspace and do not
disappear when the current workspace is stacked and superseded by
a new one.

If you give CHEF a single non concatenated command that
alters the workspace, the content of the special control+ is
executed immediately afterwards. This provides an automatic
verification facility. The control + initially contains a V
(view) command, but you may change this to any other command
string, including the null string.

The term 'location' is used to mean the
where the action of a CHEF command is to occur.
be:-

i) a line of the current workspace,

line or lines
A location may

ii) a 'range', i.e., a group of contiguous lines of the
current workspace,

iii) a control.

Some CHEF commands
locations, some are more
summary for details.

admit all three possibilities as
restrictive. Consult the command

4 The CHEF editor

Workspace line and range specification

A line is specified by a 'finder', an arithmetic combination
(using+ and - only) of 'terms' such as the following:-

10 line number 10,

$

/abc/

\abc\

'A

the current line,

the last line,

(a 'search pattern') the first line containing the
pattern 'abc' found by a forward search from the
current line (the search 'wraps around' from the
last line to the first if necessary),

the first line containing the pattern 'abc' found
by a backward search from the current line
(With EBCDIC machines use 'I' for '\'),

(a 'tagger')
search, that
I A I,

the
has

first
been

line, found by a forward
tagged with the character

"A the first line found by a backward search that has
been tagged with the character 'A',

~;abc/, ~\abc\, -,A and -"A, the negated forms of the
four previous types, which require the absence of a
match.

Some example of finders are:-

10 .+1 $-5 /abc/+3 'X-1

A 'range' is specified with two finders separated by a comma
or a colon. Thus, '1,5' specifies the range of lines 1 to 5
inclusive. The difference between the comma and the colon is
only significant when a search has to be carried out to evaluate
the finders. If the comma is used, both finders are evaluated
from the point of view of the current line. If the colon is
used, the current line is set to the value specified by the
finder preceding the colon before the next is evaluated. The
following are examples of ranges:-

.-5,.+5 \BEGIN\,/END/ /abc/+3:/def/

A range may be specified with three or more finders
separated by commas or colons. In this case the string of
finders is evaluated from left to right and the current line is
set by each finder that is followed by a colon. The final value
of the range is determined by the last two finders. For
example:-

/END/:/BEGIN/:/END/

"

The CHEF editor 5

specifies the ALGOL compound statement following the one
containing the current line.

In the command summary, the term 'region' is used to mean
either a single workspace line or a range of lines.

Default values in finders and ran9es

To reduce typing, various components of finders and ranges
may be elided. The rules are:-

i) in a finder, if no term precedes a leading '+' or
'-', then an elided '.' is assumed,

ii) in a finder, if no term follows a '+' or '-' then
a 'l' is assumed,

iii) in a range, one or more finders may be elided,
leaving only ',' or ': '. The last finder, if
elided, defaults to '$', the last but one to 'l',

iv) in a range, the comma or colon may be elided if no
ambiguity results,

v) if a complete location specification is elided the
current line '.' is assumed.

Examples of the use of these rules are as follows:-

Entered Meaning Rules
------- ------- -----

+l .+l i
+ .+l i, ii
++ .+l+l i,ii

, 10 1,10 iii
-,+ .-1,.+l i,ii . , . , $ iii

/abc//def/ /abc/,/def/ iv
1,$ iii

V

Controls as locations

A control may be specified as a location in many, but not
all, situations where a line can be specified. To specify the
control 'A' in the context of a location, the form '@A' is used,
(e. g • , in ' @AD ') .

There is no concept of a range of controls, so the form
'@A,@G' is not permitted.

6 The CHEF editor

Patterns

A pattern is a sequence of elements enclosed by delimiters.
In a 'search pattern' the delimiters must be '/' (for forward
search) or '\' (for backward search), and the pattern may be
preceeded by ,~, if you wish it to match by exclusion. This type
of pattern is used in finders and as the operand of X (execute).

Patterns are also used by the R (replace)
operators to specify a substring of a line.
delimiter may be any character except ';'.

and S (segment)
In these cases the

CHEF attempts to match the pattern against all substrings of
a line starting with the 'left margin' (initially column 1) and
finishing at the 'right margin' (initially the last column). You
may alter these margin settings with the L (load) operator to
force the search to take place within restricted column limits.

The following are examples of elements that can be used in
constructing patterns:-

A

[A-Z]

[A-Z0-9+)]

~ro-9J

matches the character A,

matches any character at all,

matches any character in the range 'A'-'Z'
(With EBCDIC use '<', '>' for ' [', 'J 1

} ,

matches any character in the ranges 'A'-'Z',
'0'-'9', or the characters '+' or '} ',

matches any character that is not in the
range '0 ' - '9 ' ,

matches any character except 'A'.

Any of these elements may be followed by a '*' to signify
that the element may be present zero or more times. Thus the
pattern '[A-Z] [a-z]*' matches any word having an initial capital
followed by zero or more lower case letters.

The following special elements may be used:-
,.,

$

matches the start of the line,
(with EBCDIC use '@' for 1

"'
1

)

matches the end of the line.

The forms '//' and '\\' are used to signify a pattern that
is the same as the one last specified.

The CHEF editor 7

Replacements

In the command 'R/abc/def/', the 'def' is the replacement.
The characters 'A', '$' and so on have no special significance in
a replacement, but the character '&' specifies the matched
string. For example, the command ',RA/Pago/&-&/' will replace
all occurrences of 'Pago' by 'Pago-Pago'.

Note that the command 'R/abc//' specifies a null replacement.

CHEF command syntax

A CHEF command consists of some or all of the following
elements, in the order given:-

i) a location, specifying the scope of action of the
command,

ii) an operator specifying what action is required,

iii) a modifier for that action,

iv) an appropriate operand.

The location preceding the operator indicates where a text
modification is to be made, or the source of text to be printed
or copied to a file. Some commands restrict the type of location
that may be specified. For instance, the I (insert) operator
requires that its location be a workspace line - one cannot
insert new text after a control. The E (edit) operator, and a
number of others, permit no location at all.

The
for the
for some
modifies

operator is a single upper or
query operator which is '?'.
operators, is a single letter
the action of the operator.

lower case letter, except
The modifier, permissible

or other character that

A variety of possible operands may follow the operator and
its modifier. These include locations, file names, integers,
text patterns and so on.

Extra spaces may be used to separate the above four elements
of a command, but may not be used within each element.

Several commands may be concatenated on one line, if
desired, separated by the character ':'.

Default commands

A command consisting simply of a location,
following it, is treated as a P (print) command.
as a quick means of specifying a line or range to
the location is elided as well, i.e., only a

with nothing
This is useful

be printed. If
null line is

8 The CHEF editor

entered, the command is treated as

>.+lP

and the line that follows the current line is printed. This can
be used to step quickly through a region of the workspace,
printing one line at a time.

If CHEF commands are concatenated, these default
interpretations do not apply when the location specifies a region
of the workspace. Thus the effect of '·· ;10; .. ' is merely to set
the current line to 10. However the form ' .. ;@A; •. ' causes
control A to be printed.

File names

File names may be used as operands for many commands.
are always preceded by the F modifier.

They

Each workspace has a current file name. When an E (edit) or
N (new) command is used to copy a file into the workspace, the
current file name is set. To refer to the current file name use
the symbol ' ' Thus the command 'WF.' copies the workspace to
the current file.

The current file name may also be set with the L (load)
operator (including the null value) and it may be interrogated
with '?F'.

Console protocol

CHEF displays the character '>' to request command input. A
number of commands, separated by ';', may now be entered and
execution starts when the line is terminated by RETURN (or
ENTER).

The command C (change) and I (insert) without modifier,
cause CHEF to enter input mode. When input is to a control line,
a single line of text will be accepted (terminated by RETURN or
ENTER)~ When input is to the workspace, you may type as many
lines as you wish but the input must finish with a line whose
only non blank character is a '·' in the first position (a 'dot
stop' line).

CHEF signals errors by printing '?'. With experience you
will find this sufficient in most cases, but you can obtain a
diagnostic message by replying with '?'.

The 'escape' character

The escape character is '#'. The most common use for it is
when you want the special characters used· in pattern or

r

The CHEF editor 9

replacement strings to have their ordinary meanings. This
applies to characters such as 'A', '$', '/' ana so on. To escape
the special meaning, precede the character with '#'. Thus '#*'
is equivalant to an ordinary'*' in a pattern. The character '#'
can itself be escaped. Thus to express the pattern element 'any
number of#', use the combination '##*'·

In most cases, special characters used in situations where
their special meaning does not apply do not have to be escaped.
Thus a '$' at the beginning of a pattern is not treated as the
end-of-line symbol (unless it is the only pattern character).

A second use for '#' is to express a character in a pattern
or replacement string by means of its octal code. Thus '#012' is
equivalent to the ASCII character 'linefeed'. There must always
be exactly three octal digits. Implementations in a hexadecimal
environment (e.g., MTS) are likely to use two hexadecimal digits
instead.

Macro substitution

A control line may be copied into the command line using the
special character '%'. For example, if control A contains the
string 'abc', this string will be substituted for each occurrence
of the combination '%A' in the command line.

Text from the console may be included in like manner, using
the combination '%%'. Each occurrence of '%%' in the command
line calls for one line of text from the console, terminated by
RETURN (or ENTER). No prompt character is printed.

As an example of the use of the macro substitution facility,
the command 'R/%A/%%/' fetches the pattern to be matched from
control A and the string to be substituted from the console.

The substitution mechanism is quite general: macro
expansion takes place incrementally as the commands are
interpreted and you may nest macro calls to an arbitrary depth.

'Programs' of commands may be constructed with macro
substitution: the string of commands stored in control A, for
example, may invoke further commands in control B with the macro
call '%B'. You may even create an indefinite loop by invoking
the commands recursively with '%A'. The K operator is available
for terminating such loops as demonstrated by the following
example. This program prints the contents of selected controls
and is started by the command '%C':-

control content

A Enter list of controls (form GHI ••)
B @DK; @DS/[A-Z]//-ED; @FC@%E; @FR/A/%E - /; @F; %B
C @A; @DC; %B

D,E,F {working space)

10 The CHEF editor

The justification operator (J)

This operator justifies the line s of the given range within
columns which are the 'left verge' (initially 1) and the 'right
verge' (int ially 6 5) . It takes its source text from the left
margin (initially column 1) to the right margin (initially the
last column). Text justification assumes the following simple
rules:-

i) an indented line remains indented,

ii) a blank line remains blank,

iii) a line indented beyond the threshold (initially
column 6) is frozen~

iv) a line indented beyond the threshold and having the
centering symbol (initially':') in column one is
centered (deleting the ': '),

v) a sentence ending in '. ', '! ', ':' or '?' and followed
by an extra blank has that extra blank preserved,

vi) otherwise the text of the current line together
with that of the preceding line is justified.

As an example, the commands

/" *$/;/"

justify the following paragraph.

The segment operator (S)

This operator copies segments of the specified line to
controls. If there is no modifier, these segments are the head,
match, and tail substrings defined with respect to the first
occurrence of the pattern that forms part of the operand. If the
modifier is A then the segments are defined by all occurrences of
the matched pattern. If you do not wish to save all the
segments, you may replace any of the controls with an invalid
control character such as 1

-
1 or ' 1 For example, if the

current line is 'axbcxdefxghi':-

>S/x/ABC causes controls A, Band C to contain 'a', 'x'
and 'bcxdefxghi' respectively and

>SA/x/A.B.C causes controls A, Band C to contain 'a', 'be'
and 'def' respectively.

The CHEF editor 11

The undoing operator (U)

You can recover from certain editing mistakes with the U
operator. The action of u, which takes no location or operands,
is to retore the workspace to the state it had before the last
command that altered it. Only certain 'willing' operators (C, D,
I, J, R, T) can be undone and you must not have used any
'unwilling' operators (E, N, Q, QQ, U, X) in the intervening
time. CHEF acknowledges your U command, in favourable cases, by
printing the command string it uses to restore the workspace.

The execute command (X)

If you use an F modifier after the X operator, the editor
opens the file, whose name follows F, and executes the commands
in it. Nested XF commands are not permitted.

If there is no modifier and the operand is a search pattern
or tagger, the effect of the command is to execute the remainder
of the command string for all lines of the location that match
the specified pattern or tagger (or which do not match, if the
pattern or tagger is negated). Thus the following will print the
line numbers of all lines containing the word BEGIN.

>,X/BEGIN/;PN

and the following will print all lines of the workspace having no
leading blanks

>,x~;A /;P

12 The CHEF editor

Command summary

The following abbreviations are used (examples in brackets).

= control C

ch
f
fO

= character
= finder

(@A

(10 or /abc/+l)
= finder or 0

il i2 = integers
=filename n

p
pcl
pn
r
Sp
t

= pattern (/abc/ or \def\)
= pattern and control list (/abc/PQR or /abc/P-R
= pattern and new string (/abc/def/)
= region (10 or 10, 15)
= search pattern (/abc/ or ~\def\
= tagger ('A or ~ 11 B)

(.)
(6)

= the default location is the current line
= default value for a CHEF parameter.

Locn. Op./Mod Opnd. Action

Change existinr lines (C)
C r (.) C F n lines from a file

D C r (.) lines from workspace

I
C r lines from workspace

lines from console
(. is set to the last line entered)

Delete lines (D)

(deleted)

c r (.) I D - I I delete lines (empty control)
(. is set at next line, or end of workspace)

Edit (E)
n I edit file n, set current name

emtpy workspace, cur. name null
(. is set at end of workspace)

Help (H)
ch

I
help message for that character
general help message

Insert lines after a specified line (I)
f O (.) I F n

D c r (.)
C r

(. is set to last line

lines from
lines from
lines from
lines from

entered)

a file
workspace
workspace
console

(deleted)

,

..

The CHEF editor 13

Locn. Op./Mod Opnd. Action

Justify text to within specified verges (J)
r (.) J - il,i2 left verge, right verge

i2 right verge
current verges (1,65)

(. is set to the last line justified)

Kill current command line if location specifies empty line (K)
cf (.) / K - j cf I take new commands from operand

- no new commands

Load a parameter (L)
L F n current file name (may be null)

L il left verge (1)
R il right verge (6 5)
T il indentation threshold (6)
V I verification toggle . ch centering symbol (:) .
" il left margin(l)
$ il right margin (252 or 128)

New work space (N)

Print

I N : I n I load file, set cur. name
new empty workspace

(. is set at end of workspace)

to the console,
c r (.) PA

C
F
L
N

or a file (P)

n

text with line numbers and tags
byte count only
copy to the file n
print in lucid mode
line numbers of region limits
print to the console

(. is set to the last line printed)

Quit (Q)
quit this workspace
quit all workspaces

Q -
Q
s
s

command execute the system command
temporary exit to the system

Replace a string in one

c r (.) I R ~ I
(. is set to last

or more lines (R)
pn I replace first match in all lines
pn replace all matches in all lines

line in which replacement occurs)

Save segments in control lines (S)
c f (.) S - pcl

A pcl

head, matched, and tail segments
to the control lines in order

save all segments w.r.t pattern

14 The CHEF editor

Locn. Op.lMod Opnd. Action

Tag line with a character (T)
r (.) I T : I ch set tag to specified character

reset the tag
(. is set to the last line tagged)

Undo a willing operator (U)
u - willing - CD I JR T

neutral - HK LP QS S V W Z
unwilling - EN Q QO U X

View a region of the workspace (V)
f (.) I V - I il I window is .-il,.+il (18 or 8)

- - window as previously set

Write the workspace to a file (W)
- I W F I n I copies workspace to file n
(. is not changed)

execute CHEF commands (X)
r (.) X - sp t - executes remainder of command line

repeatedly for matching lines
(I= forwards, \=backwards)

(. set b¥ last command executed)
- I X F I n I executes commands in file n

Query a parameter (?)

JELPlcs:chef

? F
L
R
T

V

$
II

current file name
current left verge
current right verge
current indentation threshold
current centering symbol
state of verification toggle
current left margin
current right margin
current pattern
current error message

