REPRESENTING SPATIAL EXPZRIENCB AND SOLVTNG SPATIAL PEORUEMS IN A SIMULATED KOBO' ENVIRUNMENT
by
PETER FOR3ES \&OKAT
M. Sc.. University of British Columbia, 1972

Techincal Report 79-14

A THESIS SUBMITTED IN 2ARTIAL FULFILLAENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE JTHDIES
(Department of Computer Science)

> We accept this thesis as conforming to the required standard.

THE UNIVERSITY OF BRITISH COLOMBIA october, 1979

Abstract

This thesis is concerned with spatial asfects cf perception and action in a simple rcbot. To this end, the problem of designing a robot-controller for a robot in a simulated robct-environment system is considered. The environment is a two-dimensional tabletop with movable polygonal shapes cn it. The robot has an eye which 'sees' an area of the tabletop centred on itself, with a resclution which decreases frcm the centre to the periphery. Algorithms are presented for simulating the motion and collision of tuo dimensional shapes in this environment. These algorithms use representations cf shape both as a sequence of boundary points and as a region in a digital image. A method is outlined for constructing and updating the world model of the robot as new visual infut is received from the eye. It is proposed that, in the world model, the spatial problems of path-finding and object-moving be kased on algorithms that find the skeletcn of the shafe of empty space and of the shape of the moved object. A new iterative algorithm for finding the skeleton, with the property that the skeletcn of a connected shafe is connected, is presented. This is afflied to path-finding and simple object-moving prcblems. Finally, directions for future work are outlined.

.

TARLE OE CONTENTS

I Introduction 1
I. 1 Aims and motivation 1
I. 2 The action cycle 6
I. 3 System overview 10
I. 4 System statụs 22
I. 5 Reader's guide 23
II Background Issues 25
II. 1 Artificial intelligence is a science with goals and paradigms 25
II. 1.1 The paradigms of Artificial Intelligence 26
II. 1.2 AI bas pctentially rich relationsbips with many other fields 29
II. 1.3 Understanding the world is a frerequisite to doing mathematics 34
II. 1.4 A theory of intelligence will be primarily concerned with regresentations of the warld 36
II. 1.5 A theory of intelligence will describe intelligent systems at many differentlevels39
II. 2 Simulating a robot is a promising approach to Artificial Intelligence 41
II. 3 The current $A I$ tradition for the design of planning and problem solving systems is not easily adaptable tc wy purpose 45
II.3.1 An exegesis of some $A I$ planning and 45
II.3.2 Criticisms of the pregean tradition in planning and problem-solving 55
II. 4 A survey of closely related topics 58
II.4.1 previous robot simulations 59
II.4.2 Three analyses of simple organisms 62
II. 4. 3 Simulations based on animal kehaviour 65
II.4.4 Robot simulations based on decision t heory 67
II.4.5 Cognitive maps 69
II.4.6 Spatial flanning systems 71
II.4.7 Systems for simulating the moticn of rigid objects 72
II. 4. 8 Imagery 76
II.4.9 Behavioural theories 77
III The simulated organism-environment system 83
III. 1 The simulated environment, TABLEICP 87
III. 1. 1 An overview of the simulation method 87
III. 1.2 The algcrithms used in the simulaticn 97
III.1.2.1 The overlay problem 117
III. 1.3 An example of TABLETOP performance 122
III. 2 The simulated organisw Utak and his tasks 128
III.2.1 Design considerations 128
III.2.2 The sensory-motor capabilities of Utak 130
III.2.3 Examples of Utak's sensory-motor experience 132
III.2.4 Examples of tasks for Utak 134
III. 3 An extension and two generalizations of
TABLETOP 135
IV Towards the design of a robct-contrcller 143
IV. 1 An analogy 143
IV. 2 The parts of an organism-controller 147
IV. 3 The goal behaviour for an organisir-centrcller 149
IV. 4 a first apprcach to implementation 175
IV. 4. 1 Definiticn of the world model 176
IV.4.2 Perception: accommodation to the first retinal impression 178
IV.4.2.1 Edge and region finding 179
IV.4.2.2 Interpreting the first retinal impression 181
IV.4.2.3 Accommodating the default vorldmodel to the first retinal185
IV.4.3 Percepticn: accommodation to subsequent retinal impressions 187
IV.4.4 Accommodation, another apfrcach 190
IV. 4.5 The spatial planner 192
IV. 5 An alternative approach to implementation 193
IV. 6 Summary 194
V Path-finding and the skeleton of a planar shape 196
\quad. 1 Introduction to path-finding algorithms 196
V. 2 The skeleton 202
V.2.1 Definition and properties 203
V.2.2 Approximating the Euclidean Flane 206
V.2.3 Montanari's algorithm 210
V.2.4 The new algorithm 214
V. 2.5 Ridge-following 219
V.2.6 Using parallelism to compute the skeleton 224
V.2.7 Paths between objects and superfluous branches 224
V. 3 Using the skeleton for path-finding 226
V.3.1 Lescribing a skeletal path 228
V.3.2 Optimizing a skeletal path 230
V.3.3 Ccmparison of skeletal and a* fath finding 233
V. 4 Other applications of the skeleton 233
V.4. 1 Object moving 234
V.4.1.1 Circular shaped object cf radius r 234
V.4.1.2 Other object shapes 234
V.4.1.3 An I-shaped object 235
V.4.2 Finding empty space 236
V.4.3 Finding the shortest distance betueen two shapes 236
V.4.4 Finding nearest neighbourhood regions 237
∇. 5 Summary 238
VI Summary, conclusicn, and future work 240
VI. 1 Summary 240
VI. 2 Conclusion 243
VI. 3 Besearch problems 243
Appendices 246
A. 1 TABLETOP user's manual 246
A. 2 A combinatorial lemma 249
A. 3 On Funt's rigid shape rotation algorithm 251
Feferences 258

LIST OF FIGURES

Figrie I. 1 9
Figure I. 2 12
Figure. I. 3 13
Figure I. 4 18
Figtre I. 5 20
Figure I. 6 22
Figure III. 1 91
Figure III. 2 93
Figure III. 3 96
Figure III. 4 99
Figure III. 5 103
Figure III.6 105
Figure III. 7 107
Figure III. 8 109
Figure III. 9 110
Figure III. 10 112
Figcre III. 11 116
Figure III. 12 120
Figure III. 13 121
Figure III. 14 123
Pigrie III. 15 133
Figure IV. 1 150
Figure IV. 2 151
Figure IV. 3 178
Figure $I \nabla .4$ 184
Figure IV. 5 185
Figure $\nabla .1$ 198
Figure V. 2 201
Figcre V. 3 207
Figure V. 4 208
Figrie V. 5 210
Figure V. 6 211
Figure $V .7$ 214
Figure $V .8$ 218
Figure $\nabla .9$ 221
Figure $V .10$ 223
Figure V. 11 227
Figure $\nabla .12$ 229
Figure V. 13 231
Figure A3. 1 252

Oh the mind, mind has mountains; cliffs of fall Frightful, sheer, no-man-fathomed.

Acknouledqements

I would like to acknowledge $\mathbb{m y}$ enormous debt to Richard Rosenberg, who has supervised me, and who bas given me advice, encouragement and support beyond all expectations of duty throughout the many years I have spent on the Ph.D frogram. I wish to thank alan Mackworth for serving on my thesis committee and for always being ready to listen and to give me advice and encouragement; Harvey Arramson, Ray Heiter, Bot Woodham, and John Yuille for serving on my thesis committee; Gordon McCalla, Bill Havens, Fachel Gelbart, Brian Funt, Mike Kuttner, Boger Browse, Jan Mulder, and Randy Goebel for many helpful discussions; Nona and Gwen for drawing the diagrams; and above all Nona, with Ruby, Lena (and Taku), for standing by me through all these years, supporting me in every imaginable way, and for being their own delightful selves.

CHAPTER I

INTRODOCTION

I. 1 Aims and motivation

This thesis is animated by a desire to understanc the connection between perceftion and action. Every day we do such siafle things as

- avoiding all obstacles in crossing a cluttered rociI
- navigating through an unfamiliar house
- making and executing a mental flan to go to the local shop cr cross a campus
- moving an awkward piece of furniture around a house.
likewise cur pet dogs and cats are good at navigating tbrough their spatial world.

For an organism to do such tasks
so easily, what computational processes are required?

Here you will find the beginnings cf an answer tc this question, which may be refined in any cne of a dozen directicns.

The question as stated is too nebulous to ke given a meaningful answer; to delineate it more precisely I opted to
proceed as follows:

1. Design and implement a simulated robot world which reflects to a certain extent the spatial aspects cf a cluttered room or the floorplan of a house.
2. Specify a class of tasks of a spatial nature which the robot might reasonatly be expected to sclve in this world.
3. Design computational processes which enable the robct to handle these tasks in a reasonably intelligent manner.

This, in summary, has been my research progran.
The simulated robot world is carefully designed tc enforce a ncn-trivial treatment of the interaction ketween perception and action. The robot's sensory input frcm distant parts of the ervironment is either non-existent or very inexact and fuzzy, in accord with real world organisms; yet plans have to be made and acticns executed. I am thus squarely confronted, albeit very crudely, with the problem of acting in the face of incorflete and inexact knowledge. In the simulated robot warld it is possible for the executcd actions to be inexact in a similarly fuzzy manner, just as in the real world. So far, however, I have suppressed this feature, in order to ease the achievement of the overriding concern: the creation of a functicning rckct-contrcller.

This thesis is also animated by the belief that it is of fundamental importance to understard the computational processes invclved in spatial problem solving. There are several lines of
argument to encourage this belief.
First of all, spatial reasoning must be cne of the most fundamental ability we possess, since we inhabit a spatial wcrld and if we couldn't solve spatial problems we would always be buaping into things! We are also superbly good at it. For instance, we control large rectangular shapes on winding roads or in parking lot mazes, and a ball-player contrcls the velocity and spin of a small round object with fine precision.

Second, spatial reasoning satisfies the criteria prcposed by [Marr,1976] to guide the choice of a research problem in AI.
"If one believes that the aim of information-processing studies is to formulate and understand particular information-processing problems, then it is $t t \in$ structure of those prcblems that is central, not the wechanisms through which they are implemented. Therefore, the first thing to do is tc find problems that we can solve well, find out how to solve $t h \in m$, and examine our performance in the light of that understanding. The most fruitful source of such problems is operations that we perform yell, fluently, reliably, (and hence unconsciously), since it is difficult to see how reliability could be achieved if there were no sound underlying method."

Spatial reasoning is a prcblem that we sclve "well, fluently, reliably" and largely unconsciously; therefore it is a worthwhile research objective.

Third, there is an evolutionary argurent. The simple crayfish runs mazes; birds don't bump into forest leaves and branches; an orca whale races through a kelp bed without touching a stalk; a mouse will rarely fail to reach its cheese or a dog its bone; the monkey swings from branch to kranch. So, as "cntegeny recapitulates phylogeny", cne wight well expect

IeIntroduction
spatial reasoning to underly our higher mental faculties. As an aside, the minuscule brain of the hummingbird solves a devastating spatial problem: given a meadow with a profusion of flowers, each variety having different nectar-producing properties, the humming bird appears to maximize net energy input while foraging and simultaneously \mathbb{H} inimizes the time expended [Gass et al.,1c76]. A truly amazing piece of computation by a very small brain.

Fourth, there is a developmental argument. Young children solve spatial problems such as the classical monkey and bananas protlem before they can talk, and the newborn babe, cnly a few hours old, will react appropriately to a moving object, flinching if it comes dangerously close, and continuing to follow it with eye-movements if it passes behind a staticnary object [Bower, 1974].

Fifth, our language is permeated by sfatial retafbors. Consider the word "permeate" just used. Dces it notevcke a visual i匹age consisting of "spatial metaphors", "permeating", in a very physical sense, "cur language"? Does nct a visual image accopany every sentence one utters? Even the most abstract type of language uses spatial metaphors. For instance, one "builds" an argument "on" a firm ${ }^{n}$ foundation"; one "arrives at" a conclusion.

Sixth, there are many anecdotes concerning the use of spatial reasoning and visual imagery in making fundamental scientific discoveries. For instance, the paper models of

Pauling for the alpha-helix, and of Watson and Crick for $t h \in D N A$ mclecule; Faraday's visualization of magnetic lines of force as narron tubes curving through space; Kekule's discovery of the structure of the benzene molecule by his visualization of a ring of snake-like, writhing, chains, each seizing its neightour's tail; and in mathematics, Hadamard bas documented many instances where a problem was apparently solved by visual imagery.

These arguments in favour of spatial reasoning inexorably lead one to propose the bypothesis that the mechanisms required for spatial reasoning may well underly otber abilities that have developed later in evcluticn, for instance the use of language.

The overall structure of my thesis may now be summarized. I lay out a research pregram and describe the frogress mada on several fronts. The overall implementation goal is to build a functioning robot-contrcller for the simulater robot. The iaplemented parts are described in detail. For those parts not yet implemented, their theory and design is sketched in some depth, to the point at which, in scme cases, further progress can only be made through an attempt at implementation. After all is said and done, this is the feature that distinguishes Artificial Intelligence, as actually practised, from all cther intellectual disciplines: the development of theory through program iaplementation.

I. 2 The action cycle

The information-processing component of any organism that physically interacts with the outside world must consist of three distinct parts: sensory receptors, action effectors, and an intermediary that relates the senses and the actions. My main interest is in a sufficient design for the intermediary, which in this thesis will be referred to as the rcbot-ccntroller. The intermediary could of course be null but that results in a very uninteresting organism which could not long survive in its wcrld. In my case, the design of the intermediary, the robot-controller, is ccnstrained by the reguirement that the organism exhibit reasonably intelligent behaviour. (Intelligent behaviour will be taken as a priaitive judguent and analyzed no further.)

The major task of a robot-contrciler, in crder to i凹frove the organism's survival chances, is to build a wcrld model: a model of the cutside world. In information-processing terøs, a world model is a data tase of facts which, together with interpretive procedures, enables the prediction of future sensory input. Equivalently, it is a data structure and procedures for making predictions about the cutside vorld. A good world model makes correct predictions most of the time. The purpcse of a world model is to allow the constructicn of plans and thus to better achieve the organism's goals. Building a world model is an inductive task, using sensory inputs as the
prixitive items of evidence. Thus the world model cf an organism is a function of the design of its receptors, and furthermore can never $k \in$ assumed to be correct - the true nature of the outside world is forever unknowable. As a consequence, different organisms build very different wcrld models. Ic an octcpus, for instance, whose sense of tcuch can cnly signal surface texture and curvature, a swall smooth persfex sphere is indistinguishable from a long smooth perspex cylinder having the same curvature [Wells, 1978].

The interface between an orgarism and the outside world is defined by the organism's sensory receftcrs and action effectors, and is necessarily always sloppy. This may be taken as an intuitively obvious fact, or may be supported by the following information-theoretic arguments. On the sensory side one may argue as follows. First, at any moment in time a finite organism can only receive a finite amourt of information, Whereas there is certainly an unbounded amount of information which could be detected at any one time and moreover, if one believes either that the features of the outside world are continuous, or that the outside world is infinite, or totin, then there is an infinite amcunt of senseable infcration. This is a sfecial case of the more general fact that a small finite organism in a large or unbounded world could neither contain nor receive all the potentially sense-able infcrmaticn available frcm the outside world. A more practical argument: by the very design of natural sensory receptors, all infut is digitized,
hence is an approximation to quantities that are generally taken tc be continucus.

On the action side, cne may argue as follows. The very statement that the result of an acticn was inccrrect, or sloppy, iaflies the existence of a world model which was used as a standard of comparison for the outccme of the acticn. There are two points here. First, a world model is never one hundred percent exact, so the predicted outcome may be simply wrong. Seccnd, supposing the wcrld model is exact, the computaticn of the cutccme of an action may require an unbounded amount of time. But in the outside world life goes on and actions must be taken, so the computation must be cut off in a fixed amount of time - and so mistakes are inevitable.

The discussion so far is summarized in figure I. 1. Our robct-contrcller functions, at the top level, fy the perpetual repetition of the action cycle, a loop containing three farts: perception, planning, and action. In our robot-controller these three processes are performed in serial order, whereas in most living organisms they are presumably performed in parallel.

While I am discussing organisms in general, let me introduce the following terminology: the total sensory (visual, tactile, olfactory, auditory,) input at any instant of time is calleत a sensory (visual, tactile, olfactory, auditory, ...) impression, following David tume.

In summary, then, the action cycle occupies a fundamental position in the information-processing of any organism. The

FIGure I.I. The action cycle.
elucidation of its structure, for the simulated rotot, is the
 chafters IV and V.

I. 3 System overview

The system consists cf three main programs: TABLETOP, that simulates the outside world; uTak, that simulates the robot; and PPA, the robct-ccntrolling program.

TABLETOP simulates a frictionless tabletop with a fciygonal restraining boundary. There way be arbitrary fclygonal shapes on the tabletop, some fixed and some movable. These shapes constitute the objects of the outside world. The tabletop boundary will be referred to as the verge to avoid confusion later. There are never any holes in a fixed or movable object. On this simulated tabletop the everyday laws of physics hold: that is to say, the shape of an object remains invariant during moticn, and if the path of a moving object is obstructed by another object or the verge then the moving object comes to an immediate standstill with a small gap between it and the offending obstruction. The concepts of mass and momentum have not been implemented, though there would be little difficulty in dcing so. Consequently tbere are no "start vF" or "slow down" times associated with robot movements, and when a wide moving object collides with an obstacle near one of its lateral
extremities no terminal rotation of any kind is simulated: the object simply comes to an immediate halt.

UTAK simulates the robot, Dtak¹, who is represented as a dimensicnless point and is free to move anywhere there is empty space. Though dimensionless, he cannot slip between two adjacent objects which have point-to-point, point-to-edye, or edge-to-edge contact. He can grasp an adjacent movable object, and can move with and release such a object. An example task environment including utak is shown in figure 1.2.

Utak senses his environment with an eye having a limited field of view and having a variable resolution: fine in the centre (the "fovea") and progressively coarser towards the periphery. The eye may be thought of as a TV camera, suspended at the top of a stalk sticking vertically up from Utak, with the camera pointing directly downwards at the tabletop and its field of view centered on Otak. Thus the eye gets a two-dimensicnal view of part of the tabletop and an image of otak always appears at the centre of the field of view.

The retinal geometry of the eye is shown in figure I. 3 (a). Each little square constitutes a retinal field, and covers a certain area of the task envircnment defending upon Utak's
${ }^{1}$ Father than always referring to the "rokot" and using the pronoun "it", I will usually refer to "סtak", who may be likened to a semi-intelligent dog, and use the pronoun "him". Of course, no sexual discrimination is intended. Likewise no phylogenetic discrimination is intended either: "Jtak" and "him" are simply more pleasant ways to refer to what is merely an abstract device embodied in a computer frcgram used to probe very gingerly into the principles of cognitive science.

figure I.2. A task environment.

FIGURE I. 3 (a) The retinal geometry.

6	0	0		0	0		0	0		0
6	0	0		0	0		0			
6	1	2		$\begin{array}{l\|} \hline 2 \\ 22 \\ 22 \end{array}$	$\begin{array}{\|l\|l} \hline 2 & 2 \\ \hline 2 & 2 \end{array}$	2	$\frac{2}{2}$	2		2
6	0	-					2	2		
6	0	-					4	1		
6	0	0		$\begin{aligned} & 00 \\ & 000 \\ & 0 \end{aligned}$	00		10	0		
6	O	0		0	0					
7	6	6		6	6	6		6		

FIGURE I. 3 (b) The integers in the squares form the retinal impression corresponding to Utak's position in Figure I. 2.

Fosition. Corresponding to each retinal field there is a retinal cell, wich registers a graylevel, or integer in the range $0-7$, that depends on the ratio of object to total area of the task environment covered by the retinal field. A retinal impression is the structured set of graylevels registered by all the retinal cells at one particular instant in time. The retinal impression received by otak when in the situaticn of figure 1.2 is shown in figure I. 3 (b). Otak alsc has eight "tactile" receptors, one in each of the eight basic capass directions, which allow him to sense the colour of an immediately adjacent crject. A tactile impressicn is the structured set of eight colors registered by the tactile receptors at one particular instant of time.

In sum, then, otak inhabits an outside world which may be likened to a tabletop with confining verges, where he can wander around and move otjects, and where his sensory contact with this world consists of a series of retinal and tactile impressions. It is his problem to make sense of all this sensory input (James' "blccming, buzzing confusion") and create a "world model" for planaing purposes. That is a majcr froblem for Utak's brain, the robot-centrclling program.

The class of tasks given to Utak consists of path finding ("Gc to the north-east corner") and object wcing tasks ("Push the square movable object into the next room"). The statement of a task may require considerable changes tc Utak's world medel. Consider, for instance, the object-moving task just
mentioned. If Utak has sc far seen a square movable object but has cnly explored what he thinks is one end of a single room, his world model before the task statement will simply consist of a room with one square mcrable object in it; but after "understanding" the task statement his world model will include an extra room with a doorway which connects it to the room he's currently in at a position consistent with his accumulated sensory experience to date.

FPA, the robot-controller, is divided intc three parts: ACCCM, SPLAN, and ACT. PPA is an acronym for perceive, plan, act, the three parts of the action cycle. ACCOM accepts a retinal impression and modifies (accommodates) the current world model in the light of this new evidence; SPLAN is the spatial planner and is responsible for always maintaining a valid plan to achieve the current task by creating a new plan or by updating an old one; while $A C T$ simply computes from the current plan the next action to be executed.

A world model, a task, and a plan are defined at all times in FPA, whatever Utak's actual situation, including the mement befcre otak "opens his eye" and receives his first retinal impression. So far, the fcllowing defaults have been used. The world model is taken to be a large empty square centred on Utak's initial position. The default task is to explore the assumed world, which means "collect evidence (i.e. sensory input) tc confirm the current world model". If the default task results in the specific task of, say, "go tc the north-єast
corner", then the current plan would consist cf walk actions to the hyfothesized position of the north-east corner. Other possible defaults are "sleep" or "find food".

I have not considered problems of activation or drive. These are clearly important and involve decision-making and reyards. The archetypal froblem consists of an organism hunting for food in an environment whose food-supplying characteristics are partly known. The organism is getting hungry (focd or fuel runring low); what is the best survival strategy for this organism? There is a large scientific literature devoted to such problems in the fields of decision theory and game theory. For me, these froblems are secondary to the rasic questicrs of representing the spatial world and sclving sfatial froblems.

The ACCOM program, responsible for understanding inconing sensory impressions, divides into two parts, ACC-INIT and ACC-SOE. ACC-INIT accomodates the initial default wcrld model tc the very first retinal impression while ACC-S历B carries out all subsequent accomodations of the world medel tc incouing sensory impressions.

The spatial planner SELAN depends on a subsystem called SHAPE to solve path-finding and object-moving froblems. sHAPE makes extensive use of the world model. The tasic world aodel is maintained in a format of points and lines specified by atans of Cartesian coordinates and will sometimes be referred to as the Cartesian world model or the Cartesian representation. SHAEE functions by projecting and re-projecting all or part of
the Cartesian world model onto a digital array (the screen). Path-finding and object-moving problems are solved in simple cases from one projection on the screen; more interesting cases require several projections. A projection of the Cartesian representation onto this digital array will scmetimes be referred to as an image representaticn.

The most important part of SHAPE is the collecticn of algorithms for solving path-finding and object-moving problems. These, are based upon the concept of the skeletcn of a two dimensional shape. A more descriptive but more cumbersome term for it is the symmetric axis transform of a shape. To get an idea of what the skeleton of a shape looks like, examine the shape and its skeleton drawn in figure I.4. I found that the skeleton was a useful tocl for path-finding protlems, and would be a useful heuristic for object-moving froblems provided algorithms could be devised to ccmpute it. It turned out that, for reasons given in chapter ∇, the published skeleton algorithms were unsatisfactory. Luckily, cne of these provided a gcod base from which I was able to derive a satisfactory skeleton algorithm.

There is a very nice mathematical definition of the skeleton of a shape. Consider the set of all circles that lie totally within the shape and partially crder the by inclusion; the skeleton is then defined to be the locus of the centre of all maximal circles in this set. In addition, each point of the skeleton has asscciated with it the radius of the maxiral circle

FIGURE I.4. The skeleton of a shape.
with centre at that point; this is known as the guench function. However, the skeleton algorithm that I use does nct ccupute exactly the skeleton as I have just defined it. This is because the circles used in the mathematical definiticn are drawn using the familiar Euclidean metric for the distance between two points in a plane, whereas my algorithm uses a quasi-Euclidean metric to approximate the Euclidean distance. Using this quasi-Euclidean metric, the skeleton can be computed in a very "local" manner. Consequently I shall, when necessary, distinguish between a Euclidean skeletcn, as defined above, and the digital skeleton, as computed by my algorithm. The difference between the two can be observed by overlaying the Euclidean skeleton of 1.4 on the digital skeleton of figure 1.5 . The skeleton of a shape is the key idea behind the spatial planner. It has a very intuitive appeal and $c a n d e u s \in d$ to solve more than just path-finding and object-roving problems. For instance, it can also be used to sclve the following problem, otherwise known as the findspace prcblem [Sussman, 1973]. Given a two dimensional shape that ycu want to put down on a cluttered surface, where do you place it? The thecry and algorithms concerned with the skeleton of a shafe are worked cut in chapter ∇.

To complete this overview of PPA, the third and final component is $A C T$, the executive program that computes the next action for Utak from a completed plan. This is not entirely trivial because the size of the next acticn has to ke a function

of the confidence otak has in the details cf the world model in the vicinity of his current position and of the accuracy with which he can execute an action. The speed at which one runs through a rocm cluttered with furniture defends both cn how well one can register the positions of the items and on how well one can control one's movements.

To summarize this section: I have outlined the ajar comfcnents of $P P A$, the robot-controller, and I have presented an important underlying concept, the skeleton cf a two dimensional shape. The accompanying figure I.6, which illustrates this stage of pPA's design, may be regarded as a first crder elaboration of the action cycle of figure I. 1.

I. 4 System status

All parts of the system have been designed, to varying degrees of detail, and some parts have been iaplemented. The TABLETOP and OTAK simulation programs, which execute actions and produce tactile and retinal impressions, have been implemented and are described in chapter III. The current status of the other parts of the system, namely ACCOM, SPLAN, and ACI, is described in full in chafter IV. Of the twc subparts of accom, ACC-SUB has been designed while ACC-INIT has been designed and implemented. A full inplementation of the spatial planner SPLAN has not been attempted, but the overall design of SPLAN and its majcr subpart SHAPE is complete. SHAPE's most fundamental

$$
\text { FIGURE I. } 6
$$

operation, the skeleton-finding computation, is complete and implemented; that is the main algcrithmic contribution of this thesis.

Taking the engineering view towards $A I, I$ make two contributions in this thesis. One is an efficient system for simulating the motion of rigid two dimensional shapes, the other is the design and partial implementaticn of a spatial planner that finds paths and produces flans for moving two dimensional shapes arcund on a flat surface.

I. 5 Reader's guide

Chapter II, consisting of twc parts, is concerned yith background issues. The first part concentrates on giving an overall view of the whole AI enterprise while the second part reviews numerous pieces of work from AI and its sister disciplines that are closely related to my own. Chapter III describes the design considerations and algcrithmic details of the simulated robot world, while chapter IV covers the whcle rcbct-ccntroller design. I include in chapter IV a number of task scenarios that my robot-contrcller, when fully irflemented, is designed to be able to execute. Chafter ∇ describes the thecry and algorithms for computing the skeleton of a two dimensional shape, and its usefulness for pathfinding and cbject moving problems. The concluding chapter ∇I recapitulates the foregoing, discusses my contributicn to the $A I$ enterprise, and
describes future directicns of research.
The appendices include a user's manual for the TABIETOP simulation, a combinatorial lemma required in chapter ∇, and scme proofs concerning the simulaticn system of funt [1976] required in section II. 4.7.

If gou want to see a $n \in w$ iterative algorithm for ccmputing the skelfton read section V.2.4. For a new afflicaticn of the skeleton, to pathfinding, read section $\nabla .3$. If you want to see algcrithms for siaulating the TABLETOP world read section III. 1 . The overall design of a robot-contrcller is cutlined in chapter IV. Finally, if you want a general review of Artificial Intelligence, read the first three secticns cf chapter II. The last section of chapter II contains a literature review.

CBAPTER II

BACKGECUND ISSUES

In this chapter my purpose is to briefly sketch the nature of Artificial Intelligence and then to review related rork in Artificial Intelligence and other fields.
II. 1 Artificial Intelligence 1 is a science with goals and

paradigms

Artificial Intelligence is the computer age expressicn of man's eternal urge to understand his mind and consciousness. Less poetically, it is a scientific discipline whose goals are to wake compoters more useful and to discover and understand in computational terms the theories and principles that underly intelligence, irrespective of whether the intelligence is disflayed by man, animal, or computer. The reader will note a schizophrenic tendency bere: on the one hand it is an engineering discipline - [Michie, 1978] defines it as "tre
${ }^{1}$ The name is unfortunate, for it is not the current end-point in a progression that goes animal intelligence, human intelligence,
 think on first hearing the name. Neither is it concerned with computer based support systems for men in space, as one schclar seemed to think. (How about computer cognology?) Also, since one cannot denote a practitioner by the usual scheme of appending "-ist" to the subject's name, one is forced to use cumberscme terms such as "researcher in Artificial Intelligence".
pursuit of engineering goals through machine processing of complex information in terms of human concefts" - while on the other hand it is an intellectual discipline, concerned with understanding intelligence in ccmputaticnal terms, and so perbaps is more akin to philoscphy and fsychclogy than cther areas of study.

II.1.1 The paradigms of Artificial Intelligence

If Artificial Intelligence is a science tren what are its paradigms [Kuhn, 1962]? As [Masterman, 1970] gcinted out, Kuhn used the word "paradigm" in many different senses, so we shall intycduce each sense as necessary.

In a social sense, Artificial Intelligence has been around as a clearly defined group of communicating workers since a 10 perscn summer school was held on the subject in 1955. So artificial Intelligence is a young science and perhaps still a bit self-conscious as a result.

As for the existence of a generally accefted view of the subject (metaphysical paradigms or "Heltanschaung"; these are what get overthrown in scientific revolutions) initially there was hardly one at all except for the basic belief that an understanding of intelligence would be achieved through computational studies. This has now been stated as the physical SyIfbcl System Hypothesis by [Newell and Simon, 1976]: "a physical symbcl system has the necessary and sufficient means for general
intelligent acticn". Very soon the central imfortance of search was generally accepted, and this too has been enshrined by Newell and Simon as the Heuristic Search typothesis: "The solutions to froblems are represented as symbcl structures. A physical symbol system exercises its intelligence in problem-solving $k y$ search - that is, by generating and progressively modifying symbol structures until it produces a solution structure." Nov the generally accepted core topics of Artificial Intelligence can be summarized as [Nilsson, 1974]: representation of knowledge, search, commen-sense reasoning and deduction, and computer languages and systeas apprcpriate for investigating the first three topics.

Going down one level, what are scme of the instrumental paradigms, or generally accepted tools of Artificial Intelligence? The computer and programming languages are, of course, the sine qua non of Artificial Intelligence. There are however some more specific, widely used, tools in the ar'ers tcclkit. One such is the production system style of program design. A production system consists of a collecticn cf situation-action rules plus a scheme for choosing which rule to afply next. Any production system can be viewed as a generalization of a behaviouristic stimulus-response system. Another is the semantic net apprach; here a systew is designed as a data structure of labelled nodes and connecting arcs together with arc-traversal algorithms. This approach is, historically, directly derived from associationist fsychology.

The last tool we will mention is the most well establisbed of them all, with a long intellectual history behind it, and the object of some controversy: first crder fredicate calculus, which is taken directly from traditional mathematical logic.

What are some of the defining frcblews cf Artificial Intelligence? As examples, anyone who uses a computer in attempting to: understand natural language, play games such as chess, control a robot, understand a TV image of a real world scene, or understand speech, is considered to be working in Artificial Intelligence.

What are some of the current hot problems in artificial Intelligence? Here is a list, culled from [McCarthy, 1977] and [Simon, 1977].

- the problem of cooperating with cthers, cr cuercoming their cffosition - this is a task which even the youngest infant handles very well [Donaldson, 1978].
- the acquisition of knowledge [Winston, 1970], [Winston,1978].
- reasoning about concurrent events and actions.
- expressing knowledge about space, and the lccaticns, shapes and layouts of objects in space.
- the relation between a scene and its two dimensional image this is the vision problem, currently being attacked by many workers, for instance, [Barrow and Tenentaum, 1978].
- reasoning with concepts of cause and can.
- finally, the problem of representation - what knowledge enables a system to create a representation and oferators for
a new and unfamiliar problem? This representation knowledge is to be distinguished from knovledge of how to solve a problem.

In summary, I have outlined this scientific field known as "Artificial Intelligence" by describing it frcm several kuhaian viewfints.

II.1.2 AI has potentially rich relationships with many oth \in r

fields

There are many relations between Artificial Intelligence and other fields of study. For example, one might expect that work on getting a machine to understand language wculd form a subfield of linguistics proper, whereas in fact this field of research has a somewhat contentious relationship with traditional linguistics. This relationshif is the tcpic of an enduring, acrimonious debate - an example of competing paradigms, a la Kuhn, due to differing research frcgrams.

As another example, psychology and artificial Intelligence have enjoyed a somewhat lopsided relationshic. The more vocal advocates of Artificial Intelligence believe that Artificial Intelligence research is of monumental importance for psychclogy [Minsky and Papert, 1972], whereas most of the psychological community has simply ignored Artificial Intelligence. The reasons for this schism seem to stem largely from differences in methodology [Miller, 1978] - another example of competing research paradigms. In order to keep his science well fcunded
on facts, and hence scientifically respectable, the psycholcgist is concerned to produce falsifiable thecries, that is, theories with demonstrably true empirical consequences. On the cther hand, the Artificial Intelligence researcher is concerned to produce falsifiable computaticnal theories, mechanisms and computations with demonstrably true empirical consequences. The difference is that the latter is not so much concerned with the empirical facts of human mental abilities, which by and large are taken as intuitively obrious, but with the empirical facts of computation. For instance any profosed mechanisa which encounters a combinatorial explosion or otherwise runs intolerably slowly on any actual or fotential computer is unacceptable. Thus an algorithm that is exponentially slow in the domain of interest is unlikely to be acceptable in the long run. To conclude: Artificial Intelligence is not so artificial after all - it is grounded on the empirical, natural, facts of computation.

One might expect there to be some contact betwef arimal behaviour studies and Artificial Intelligence, for at least two reasons. Pirst the behaviour of animals is simpler and therefore the construction of computational processes sufficient tc duplicate it should be easier. (When I say that the behaviour of B duplicates the behaviour of A. I mean that there is no significant observatle difference between the behavicur of B and of A, as in the Turing test or in Eridgeman's operationalism.) Second, the evolution of huran behaviour (i.e.
intelligence) $c a n$ be traced through many grades of animal behaviour [Jerison, 1973]. Consequently one might exfect that sutsystems that had already been shown to duplicate aspects of animal behavicur occurring earlier in the evcluticnary record could be used as building blocks in the construction of systems that duplicate aspects of human behaviour. In fact, apart from a $v \in r y$ few studies reviewed later, there has been essentially no contact between the two fields. In passing, let me descrive a traditional problem for problem-sclving systems that does come frci animal behaviour studies - the monkey and $k a n a n a s ~ p r c b l e m . ~$ A hungry monkey is in a room with a bunch of bananas hanging frow the ceiling and a box in the corner; how does the fonkey get his food? This problem was sclved by kchler's chimpanzees [Kohler, 1925]; typically the chimpanzee piled up three or four boxes in a marginally stable file to get the bananas. Artificial Intelligence and neurophysiclcgy have also, perbaps surprisingly, almost no relationship at present. To Artificial Intelligence researchers, neurons are simply ancther way of implementing algorithos. Scme very early work on neural nets by [Kleene, 1956] and [Moore, 1956]. which was tased on the now outdated McCulloch-Pitts model of the neurcn, branched off from artificial Intelligence and developed into automata theory. More recent work by [Marr, 1976] on vision is clearly relat C_{d} to the known facts about the visual cortex, while scme aspects of the "Intrinsic Images" of [Barrow and Tenentaum, 1978] are very similar to the structure of the columns in the visual cortex.

The neural net idea has reen develofed further by a physiclcgist [Brindley,1969] and by mathematical biologists, e.g. [Ermentrout and Cowan,1978]. Since buman neurophysiology has alsc evolved, the comments about evclution of behaviour in the preceeding paragraph can be taken over almost word for word, with neurophysiology substituted for behavicur throughcut.
on a deeper level one might expect a rich two-way relationship between Artificial Intelligence and neurophysiology or its very close cousin, neurobiology. Take the case of vision. If certain computations are found to ke sufficient for vision, then the question facing neurophysiclogy is "Where and how are these computations being carried out in the CNS? Conversely, if the human visual system is found to compute certain functions, the questicn facing Artificial Intelligence is "Why is the CNS computing these functions?" As another example, consider the phencmenon of habituaticn. Habituaticn is a gradual decrease in the amplitude or probability of a resconse to repeated presentation of a particular stimulus. Habituation is ubiquitous in nature and is the simplest type of learning. It has features in common with other kinds of learning and is sometimes a component of more complex learning. Consequently, an understanding of the mechanisms of habituation could be used tc build mechanisms for other types of learning. Its ticlogical mechanisms are being slowly teased out by neurobiclogists [Kandel, 1978]. On the one hand, it is easy from the Artificial Intelligence viewpoint tc propose many methods of implementing
habituation; the olverse of this is that in Artificial Intelligence one should prefer a learning mechanism which, at scme level of description, is consonant with the known facts of habituation.

There is a strong relation between Artificial Intelligence and philosophy. This is nct surfrising in view of the fact that Artificial Intelligence has to consider scme of the wajor traditional problems of philcsphy. In designing almost any Artificial Intelligence system commitments have to be made about the nature of knowledge, how knowledge is obtained, how it is represented and used, and the relaticn between knowledge and action. The connection between philosophy and Artificial Intelligence is considered by \{S1cman, 1978], [Dennett, 1978a], [Burks, 1978], and others. [McCarthy et al., 1978] have described a formalism for expressing "knowing that" and used it to sclve two riddles involving knculedge about knowledge. McCarthy, in scme recent papers [McCarthy, $1977 \mathrm{a}, \mathrm{b}, \mathrm{C}]$, has made inroads on philosophy by approaching many traditicnal philosophical problems from the Artificial Intelligence viewfint. In summary, it seems that whereas the influence of philosophy is slight, the artificial Intelligence viewfoint fromises to have an enormous influence on philosophy.

I have sketched the actual or potential interactions between Artificial Intelligence and linguistics, psychclogy, arimal behaviour, the neurosciences, and philosophy. Thus does Artificial Intelligence tread its cwn well-defined path through
the maze of modern science, with the potential fcr enriching and being enriched by many other fields of the scientific endeavour.
II. 1. 3 Understanding the world is a prerequisite to doing mathematics

An early dream of Artificial Intelligence researchers was to prove significant mathematical theorems. There was, it seemed, a perfect tool just waiting to be used: predicate calculus, a formal system which can express all of mathomatics, and in which frocfs proceed by the mechanical applicaticn of deduction rules. Put the formal system in a computer, and let it run! The ensuing combinatcrial explosion was uncontrcllable, and it is now clear that any direct use of a formal system in the traditional manner of mathematical logic is doomed to failure. Moral - a new tool is useless until one has learnt how to use it.

In retrospect, one can say that it was quite unreasonable to expect such a scheme to succeed. Consider the words of Hilbert, who was personally responsible for several

No more than any other science can mathematics be founded by logic alone; rather, as a condition for the use of logical inferences and the ferfcrmance of logical operations, something must already be given to us in our faculty of representaticn, certain extralogical concrete objects that are intuitively present as immediate experience pricr to all thought. If logical inference is to be reliable, it must be possible tc survey these objects completely in all their parts, and the fact that they differ from one another, and that they fcllow each cther,
or are concatenated, is immediately given intuitively, together with the objects, as scmething that can neither $r \in r \in d u c e d$ to anything else nor requires reduction.

Clearly Hilbert had no illusions about the use of a formal system for discovering mathematical theorems. My own intuition is that the objects of one's thought - noeses - which are being "surveyed" yhen proving a mathematical theorem, are essentially the same as the noeses involved in manipulating objects in the external world, or in making mundane plans for action in the world. This is said by [Kleene, 1952, p.51, using a quote from Heyting]:
"There remains for mathematics no other source than an intuition, which places its concepts and inferences before our eyes as immediately clear. This intuition is nothing other than the faculty of considering separately particular concepts and inferences which occur regularly in ordinary thinking."

Consequently my guess is that no really significant achievenents in mechanical theorem proving are likely to cocur until we know how to get machines to handle the real world.

It is well known that there are problems with using a formal system to model mathematical truth. one fossible approach right be to use two formal systems, each of which can refer to and hence approximate the other. In cne direction this leads to a reconsideration of Minsky's "models of models" problem [Minsky, 1969,p.426], in another direction to practical proposals for representation theory. [UCCarthy, 1977a, p. 5] suggests how an approximating formal system might be
constructed.
II.1.4 A theory cf intelligence kill be primarily concerned with representations of the world

As is already clear, any theory of intelligence will above all be concerned with representations. At a very gross level, [MCCarthy and Hayes, 1969] classify representations of the world by their adequacy. A representation is called metaphysically adeguate if the world could have that form without contradicting the facts of the asfect of reality that interest us. For instance, a quantum theorist could, in princifle, represent it by a giant quantum mechanical wave equation. But such a representation cannot even express a practical fact such as "this book is red". A representation is eristemclogically adequate if it can express all the practical facts about the world. First order logic - a formal syster - is a candidate epistemologically adequate representation. It can express propositional knowledge but fails on scme cther kinds of knowledge, such as notions of cause and ability. A representation is heuristically adequate if it represents the practical facts and can be used to compute answers to frotlems. Only representations cf the world that are fotentially beuristically adequate are of direct interest to Artificial Intelligence, and hencefcrth I consider only these.

The amount of search involved in solving a problem defends critically on the representation of that problem. For example II-Background Issues
[Amarel, 1968] considered the Missionaries and Cannibals prcblem [MEC] and worked through several different representations. The most powerful representation could solve a considerably more general problem than the original problem, and the scluticn to the simplest MEC problem dropped out of it with almost no search at all. The question arises, how could a system be frogrammed to find a new representation for a protlem, in which the solution will be found with cnly a little search? This is what hapfens when one "sees" the solution to a problem. It could be said that this is merely moving the focus of the search from finding a solution of the problem to finding a good representation of the problem. However, the advantage of a good representation is that it may $b \in$ applicable to many cther problems. Moral - develop as many different viewfoints as possible. Humans have a remarkably good representaticn for the three-dimensional world surrounding us: the result of an ecns-long evclutionary search.

Any competent problem solver will have access to several representations for a problem. [Minsky, 1975] cites the example of an auto-mechanic repairing a car, whc uses electrical, mechanical, and visual representations to sclve a problem. We are also endowed, through evolution, with several representations of the outside world, witness the different parts of the cortex devoted to visual, auditory, and tactile representations of the world. There is alsc psychological evidence for these multiple representaticns. Fcrinstance,
［Ecsner，1972］presents evidence based on reaction time experiments for the existence of distinct representations corresponding to different modalities．［Bower，1974］suggests that an infant is born with an wholistic，multimcdal cbject concept which in the course of development differentiates into many distinct representations．For a problem solving system， the question is，what interactions should occur between different representations？This is largely an unexflored question．

Minsky suggested that an intelligent system be organized as a collection of interacting schemataz．A schema consists of a bundle of＂slots＂，one for each member of a ccllection of closely related features．In the absence of evidence to the contrary，the slots of a schema assume default values．a schema is also likened to a mini－theory for a small part of the rorld． If one vishes to handle schema theory in first order logic，it might be worth pointing out that the relaticn between a schema and its default values is similar to the relation between a formal system and its standard model in logic，just as the integers are the standard model for any formalizaticn of arithmetic．

In view of the requirement of multiple refresentations for
－ーーーーー－
2 Minsky used＇frame＇，but I prefer to follcw［Simen，1977］，who fointed out that＇schema＇is a more appropriate term，for two substantial reascos．First，the term has been widely used in the $A I$ and psychological literature in the sense with which it was introduced by Bartlett in 1932；second，＇frame＇already has a well－defined technical meaning in the AI literature．
a problem solver, Minsky's schema theory should perhafs be augmented by allowing every schema to have many different representations. This might be done as follcws. Each small aspect of the world may have distinct verbal, visual, auditory, tactile or olfactory schema. There are asscciations between vertal schema, between visual schema, etc.; in additicn the vertal schema for one small aspect of the world may evoke its visual schema, which may evoke its auditory schema, etc.

To summarize this section: any functioning robot-contrcller must use a heuristically adequate representation of the world, that is, a world model which reduces to a minimum the search time required to produce a plan or to solve cther frequently encountered problems.

II. 1. 5 A theory of intelligonce will describe intelligent systems at many different levels

A closely related issue concerns how to describe a cmplex infcruation processing system. Marr and Poggio[1976] argue that the information processing of a system such as the central nervous system needs to be understood at four nearly independent levels of description:
(1) that at which the nature of a computaticn is expressed;
(2) that at which the algorithms that implement a computation are characterized;
(3) that at which an algorithm is comxitted tc farticular
mechanisms; and
(4) that at which the mechanisms are realized in hardware. In general, the nature of a computation is determined by the problem to be solved, the mechanisms that are used depend upon the available hardware, and the particular algorithws chosen depend upon both the nature of the computation and $c n$ the available mechanisms.

For example, consider the Fourier transform. The thecry of the fourier transform is well understood, and is expressed independently of the particular way in which it is computed. One level down, there are several algorithms for implementing it. For instance, the Fast Fourier Transform, which is a serial algorithm based upon the mechanisms of the digital computer, and the algorithms of holography, which are parallel algorithms based on the mechanisms of laser optics, can toth be used to implement the Fourier transform. The meta point to be made about describing a complex system, is that while the gory details of algorithms and mechanisms are of great importance, the essential thing is to understand the nature of the ccmpotation enforced by the problem that is being solved.

To summarize this secticn, I bave:
a briefly outlined Artificial Intelligence by examining it from II.Eackground Issues
several Kuhnian viewfoints;

- argued that it is necessary to know how to understand the world before one can hope to $k n c w h o w ~ t o ~ d o ~ m o r e ~$ sophisticated tasks such as mathematics;
- pointed out that any theory of intelligence must be primarily concerned with representations of the world, and secondarily will describe any intelligent system in many different ways.
II. 2 Simulating a robot is a promising approach to Artificial Intelligence
A lot of work in Artificial Intelligence is devoted to problems which people find intellectually challenging, that is, protlems which require extensive use of one's conscious reascning abilities. Thus almost by definition they are problems that people are not in general gocd at. But there are many problems that people solve easily and unconsciously every day - and therefore solve $w \in l l$ - and it is the frinciples lying behind the solution of these "easy" problems which are of most fundamental interest to any budding theory of intelligence. So one has the somewhat paradoxical conclusion that only those problems that are intellectually uninteresting to cne's conscious awareness are of fundamental interest to Artificial Intelligence. But therein lies the greatest hope for optimism, for then it is much easier to be objective about the surject
matter and not be led astray by intuitive ideas about the functioning of one's own consciousness, a devilishly fallible source of guidance. After all, the greatest scientific progress has occurred in the "hard" sciences, ghere it is very easy to be objective about the subject matter. vision and speech-understanding are examples of "uninteresting" problems which are now major subfields of Artificial Intelligence.

Since the whole human mind is such an impressive and unfathomable a phenomencn, most work in Artificial Intelligence has been devoted to scme small aspect of it. But it is guite likely that there are basic principles of intelligence inrclved in $h o w$ the various aspects, e.g. perception, memory, planning, action, or speech, are woven together. Further, these might reasonably be expected to appear in simpler crganisms in simpler form. Thus the complete simulation of some very simple organism would be a worthwhile study in Artificial Intelligence, for instance, a simulation of a starfish, or crayfish, or turtle. However there is a problem here, in that even though a great deal is known about many aspects of many different crganisms, nc-one has put together all the information about one single organism. It should be added that there are simple creatures, most notably Aplysia, or sea hare, which have been extensively investigated by neurobiologists [Kandel,1976] and would therefore be good candidates for the first sericus simulation of a complete living creature. The other suggesticn is to invent scme simpler world and organism and work out all the details of
the organism-controlling frogram. Toda[1962] carried this out from the psychologist's point of view, and more recently Dennett[1978] suggested this in the context cf a philosfhical critique of Artificial Intelligence. This is the path I have followed, with emphasis not so much cn problems of control but rather on problems of spatial representation.

This approach involves methodclogical frctlems. One has to make many arbitrary decisions in constructing both the simulation and the organism-controlling frogram. In the simulation, the world and the robot should on the one hand satisfy some criteria of "naturalness" or "animal-like-ness", and on the other hand be computationally feasible to simulate and cheap enough that extensive experimentaticn can be done to cbserve the performance of the bug using various organism-controling programs. The design of the organism-controlling program should on the one hand reflect ideas derived from observation of actual creatures, frow the analysis provided by psychclogy, as far as it goes, from studies in animal behaviour, and from intuition based on one's own introspection, while on the other hand it cannot avoid being constrained by the material being used to construct it, namely the architecture of the machine in which the frogram runs, and by the concern that it, too, should be computaticnally feasible to run. In fact the most one can do is to settle upon scre arbitrary design for the rokot world based $c n$ some unstated criteria of "naturalness" and proceed with the design of the

controlling frogram.

And when that is designed and built, how is it to be judged? Again, given an arbitrarily designed simulated robot yorld this is, strictly, an impossible task since there is notbing to compare it with. one has to rely on intuitive notions of "naturalness", "interest", or "elegance". This position would be improved if two cr more different designs for the organism-controlling prcgram vere built, for then at least an inter-design comparison could be made. Or even better if the simulated robot world could te seriously compared with an actual organism in its natural environment, as proposed above, for then the performance of the contrcller could $k \in c o m p a r e d$ with the behaviour of a real organism.

And finally, even if some interesting principles are uncovered in the course of building a whole series of controlling programs for various simulated rcbot worlds, there is always the possibility that a qualitative discontinuity principle is at work which would say roughly that the simulated robot worlds used are so much simpler than the whole human/environment system that no interesting principle true at the level of complexity of the simulated robot worlds is going to carry over to the highly complex human/environment system.

In conclusion, the road to knowledge via robot simulation studies is strewn with methodological potholes; tut the route is obvious and promises to lead to new vistas!
II. 3 The current $A I$ tradition for the design of clanning and problem solving systems is not easily adaptable tc my purpose

My research is, in part, a reaction against the usual AI apprcach to the design of planning and problem-solving systems. This approach is so widespread that it may justifiably be called a tradition. Extending the terminology of [Slcman,1971], we call it the fregean tradition. The series of programs LT [Newell, Shaw, \& Simen,1957] - GPS [Newell \& Simon, 196〕] BLCCKS [Winograd, 1972] - STRIPS [Fikes, Hart, \& Nilsscn,1972] HACKER [Sussman, 1975] - NOAH [Sacerdoti, 1977] - EL [Stallman E Sussman, 1977] - DESI [McDermott, 1978] TMS [Dcyle,1978] epitomizes this tradition. one's everyday behaviour is intimately related to one's ongoing perception and actions, yet these systems say nothing about perception and only very little about action, i.e. executing a plan. The purpose of this section is to amplify and justify this complaint, suggest a remedy, and show why, temporarily, I shun this traditicn.

II.3.1 An exeqesis of some AI planning and prcblem-solving

Systems

LT, the logic theorist, was given the task of proving the first 52 theorems in the Principia Mathematica of whitetead ε Russell. All these are theorems in the sentential calculus. To generate subproblems it used substitutions, detachment, and II』Background Issues
forward and backward chaining, and to reduce the search space size it used matching and similarity tests. It proved 38 of the 52 theorems and failed on 14. Most of these failures were due tc time and sface limitations.

LT is, historically, very important in AI. The techniques introduced in $I T$ are widely used in $A I$ and are incorporated into most modern $A I$ frogramming languages. Its importance lies, however, not so much in the techniques invented by Nenell, shaw, and Simon, - these are undeniably important technical contributions - but rather in the type of protlem attempted, and in the type of sclution which was found acceptable. In Kohnian terms, Newell. Shaw, and Simon established a paradigm which was fcllcwed by mainstreal $A I$ for the greater part of $a \operatorname{decade}$, and which still casts a significant shadow in the current al scene.

The following year [McCarthy. 1958] publisked a proposal for an Advice Taker frogran. This program was to be able to reason vertally and be able to accept advice. To illustrate its functioning be considered the everyday type problem of constructing a plan to get from the desk in one's home to the airport. The basic idea was that for a program to be capable of learning scmething it must first be capable of being told it. That may seem like a respectable basis, but there are reascns to belifve it is not quite the right may to develop an intelligent system. One often becomes very competent at scme skill without being able to express it in words or being able to accept verbal advice about it. Verbal expressicn of a skill comes after, not
before, the acquisition of competence at the skill. To give a very personal example, I have two daughters aged 6 and 8 who can now ski proficiently - yet they have been told, verkally, nothing about technique; their only instruction has consisted of having their hands held for several hours on beginners' slopes.

The Advice Taker proposal influenced several later programs. The program of [Black,1964], the program QA3 of \&Green, 1969], the MICBOELANNEE language of [Sussman, Winograd, ε Charniak,1971I, and STRIPS all leaned heavily on the advice Taker. Indeed the functioning of MICROPLANNEf closely fcllows the cutline on pp.406-409 of [McCarthy, 1958].

GPS, another landmark in Artificial Intelligence [Newell and Simon, 1963], is a program whose design goal was to simulate human thought. It handled a variety of intellectual tasks, such as the wissionaries and cannibals task, scme integration problems, proving theorems in the first-crder predicate calculus, and the monkey and bananas problew. GFS deals with a task environment consisting of objects which car be transformed by various operators; it detects differences between cbjects; and it organizes the information about the task environment into goals. Each goal is a collection of information that defines what constitutes goal attainment, makes available the various kinds of information relevant to attaining the goal, and relates the information to other goals. There are three types of geals:

Transform object a into object B,
Reduce difference between object A and cbject B, Apply operator Q to object A.

Basically, GPS achieved a goal by using a means-ends heuristic to recursively set up subgoals whose attainaent would lead to the attainment of the initial goal.

Meanyhile there was another line of work emanating from studies in mathematical logic. The contrivutions from [Gilmore,1960], [Prawitz,1960], [Davis,1963], and others, all aimed to mechanize mathematics. This effort was consolidated by the resolution principle of [Bobinson, 1965].
at its simplest, in propositional logic, the resolution
 deduce BvC. EvC is called the resolvent of $A v B$ and $\neg A v C$. The full resolution principle may be succintly described in teras of this example as follous. Generalize it by allowing extra disjunction and predicate symbcls and lift it to the first crder predicate calculus, so that free variables may appear as arguments of the symbcls A, B, C, \ldots... Introduce a matching algorithm - known as unification - to compute substituticns for variables such that the arguments of A in the first clause beccme identical with the arguments of A in the second clause, if this is possible at all. The resulting rule of deduction is the resolution principle, and can be proved to be complete for the first order predicate calculus - that is, any provable well for \mathbb{E} f formula (uff) can be deduced by sufficiently wany
applicaticns of the rescluticn principle.
The resolution principle thas reduces mechanical theorem-proving to one rule of inference which subsumes, by the mathematically elegant unification algorithm, the substitutions, matching, and similarity tests of $L T$. However, there remains considerable choice in deciding what pair of clauses and what pair of predicate symbcls (technically, literals) to resolve together. The question of search strategy was studied by [Kowalski, 1969]. He derived search strategies for resolution that generalized the A^{*} algorithm of [Hart, Nilsson, \& Raphael, 1968]. and stated conditions under which these strategies were admissible and optimal. However, bis strategies are independent of the semantics of the clauses and literals under consideration, and consequently the search space is not significantly reduced despite the mathematical elegance of the strategies. Hopes of being able tc control the size of the search space rose when the frogramming languages MICFORLANNER, CONNIVER, and QA4 appeared. In these, it is possible to recommend that, in trying to prove a wff of a certain type. other facts of certain restricted type should be tried first. However this facility does not, in general, sufficiently reduce the search. 【Reiter, 1972] profosed the use of models in theorem prover to help control the search, basing his approach on the gecmetry theorem proving machine of [Gelernter,1959]. His profosal was to present to the theorem frcver a model cf the axicmatic system involved. In addition he frcposed a set of
procedures for extracting information about the model when reguired by the thecrem prover, and a flexible, general, interface between such a semantic subsystew and the furely syntactic logical system. So far, this has not led to any startling breakthrough. There still seems to be no generally accepted way of using semantics to control the size of the search space in a thecrem frover. In summary, the resolution principle may be somewhat negatively characterized as eleçanty expcsing the combinatorial explosion which seems to be inherent in any straight-forward attempt to do mechanical mathematics tased on Fregean formalisøs.

The frame problem arises whenever a theorem prover is used to reason about actions. This was first done by [Green, 1969] in the QA3 program, a resolution theorem prover. Suppose pou have a system of axioms that describes a situation in the world - a world model - and perhaps have deduced scme facts about this situation. For example, if A, B, and C are blocks, two axioms might be (ON A B) and (CN B C), and an obvious deduction is (ABCVE A C). If the effect of an action is modelled ky changing the system of axioms then after the action one cannot be sure, formally, which of the previous deductions are still true and which are now false. One seems to need axicms saying that certain facts remain unchanged when the effects of an acticn are modelled. This is exactly what Green did. Every predicate had an extra argument position for a state-variable - a situational fluent in the terminology of [McCarthy \& Hayes,1969] - wtich
assumed a new value whenever an action was executed in the world model. An action was modelled by at least two axioms. one axicm described the direct effects of an action and the cthers said, lccsely, that thcse axicas describing attributes of objects of the world model that are not directly affected $t y$ the action, are still true after the action. Houever, between the multiplicity of axioms describing the world model, the ayioms describing both the effects and non-effects of each action, and the inherent inefficiencies of a resolution theorem prover, QA3 was cnly able to handle the simplest of froblexs. In any but the wost trivial tasks, it would be quickly overcme $5 y$ the combinatorial explosion.

Let us call MICROELANNEB, CONNIVER, and ¢A4 the crocedural languages. They represent an advance over QA3 as follows. They do not use state variables. In CCNNIDER and cal each collection of axioms that describes a particular situaticn in the world is maintained as a context, and whenever the effects of an action are modelled, a new context is sprouted from the old. So far, the only devices used for modelling the fffects of an action in cther words, for sprouting a new context - have been the addition and deletion of facts (axioms) from a contelt, even though more poverful methods are available in the frocedural languages.

STRIPS [Fikes and Nilsson, 1971] can be described as the successful marriage of GES and the theorem froving approach. The problem space consists of an initial world model, a set of
operators which affect the vorld model, and a goal staterent. STAIPS attempts to find a sequence of operatcrs wich will transform the initial world model into a model in which the goal statement is true. A world model is represented as a set of wffs in the first-order predicate calculus. In the robot problems to wich STBIPS was initially applied, an operator corresfonds to an action routine whose execution causes changes in the surrounding real world. An operator consists cf a precondition wff, which wust be satisfied in a world model for the operator to be applicable, and a function which describes how the world model is to be changed when the operatcr is applied. This function is specified by two lists, the add list and the delete list. The effect of apflying an apflicable operator to a given world model is to delete from the model all those clauses specified ly the delete list ard to add all those clauses specified by the add list.

STAIPS begins by applying a resolution theorem frover to attempt to prove that the geal wff Go follows from the initial world model MO. If the proof succeeds then $G 0$ is trivially true in the inital world model. Otherwise the unccmpleted procf is taken to be the "difference" between MO and GO. Next, operators that might be relevant to "reducing" this difference are scught. These are the operators whose effects on world models would allow the proof to continue. The precondition wffs of the relevant operators are then taken to be new subgoals, and SIRIPS is applied recursively tc these. A search strategy is used to
control the order in which relevant oferators are applied. STEIFS terminates when a sequence of operators has teen found which transforms mo into a world acdel in which $G O$ is true.

STRIES was later extended by storing generalized plans in a triangle table format [Fikes, Hart, Nilsson, 1972]. This was used in two ways: to allov similar problems to be solved without re-planning, and to assist in monitoring the progress of the robot in the course of executing the plan.

An interesting question arises concerning the abilities of STEIPS. There are problems STBIPS can solve and there are very similar froblems STRIPS cannot sclve; at the same time STRIPS has a perspicuous structure. This naturally suggests the question: is there an interesting and useful way to characterize thcse prcblems - world medel plus goal wff - actually solvable by STEIPS?

HACKER [Sussman,1975] is also concerned with producing plans but works by a process of debugging almost right plans, or skill acquisition. HACKEF is endowed with several databases of assertions. One contains all the ELOCKS world knowledge reguired in the course of solving a 酎OCKS type problem, while others contain information about programming techniques, types of bugs, types of patches for bugs, and techniques for summarizing bugs. HACKFB starts with a dumb initial trial procedure for the task. The trial procedure executes, and if it fails a "process model" of the state of the ccmputation at the point of failure is constructed. $A A C K R R$ then examines this to
discover why the procedure failed．That is tc say，$A A C K E R$ atterfes to classify the rug into one of several kncun types． If the attempt is successful them HACKER＇s built－in knowledge about bug－types is used to propose a modification to the trial procedure．The process of＂trial and patch bug＂is then repeated，iteratively，until a satisfactory procedure is obtained．If an attempt to classify a bug fails，then \quad a $A C K B R$ basically resigns．Othervise，$⿴ 囗 十 ⺝ 丶 ⿸ 厂 干$. procedure that can successfully sclve any of a certain general class of tlocks world tasks．Locsely speaking，\quad ACKBR compiles a Frocedure from a database of all the necessary facts and advice．

The important contribution of HACKER was not its planning ability－it wasn＇t good－nor even its learning ability－which was of a distinctly new type－but the technical idea of retaining the reasons why a certain action was performed or why a new piece of code was added to a procedure．This is the idea underlying the dependency－directed back－tracking of the system EL of［Stallman ε Sussman，1977］，and was developed further in the TMS system of［Doyl \in ，1978］．

Neither STRIPS nor EACKER could obtain the optimal solution to the following problem in the ELOCRS world．There is a tabletop and three blocks A, B, C ．A and E rest on the table and C lies on A ．The goal is to build a tower A on B on C ，with C on the table．These systems fail because the goal is stated as（AND（ON A B）（ON B C）），and both STBIPS and HACKEZ procéd
to attack each subgcal independently. Achieving either of the $C N$ subgoals interferes with achieving the other. If you first put a on B, you can't put B on C; if you first put B on C (which is cna), ycu can't put A on B. This is an example of interacting subgoals.
[Sacerdoti, 1975]. [Tate,1975], and [Warren, 1975] all wrote systems to handle such problems; I will briefly sketch NOAH, Sacerdoti's system. NOAH builds a network of goals and subgoals, represented as a procedural network. The subgcals required to achieve a geal are stored in a partial order; a temporal order is imposed cnly when necessary to resclive a conflict ketween brother subgoals. NOAR constructs a plar to achieve a goal in a layered fashion by expanding one subgoal at a time, keeping a careful watch for possible interactions, until primitive actions are reached. In this way a fully detailed plan is constructed before execution begins; errors are handled by re-planning to achieve the failed subgoal and patching the new flan into the original procedural net. Tc summarize: NOAH is a very elegant system which represents a current peak in the technology of planning systems for a BLOCKS type world.

II. 3.2 Criticisms of the Fregean tradition in flanning and prcblem-sclving

The AI tradition, based upon pregean fcrmalisms, can be criticised on two levels: cne is furely technical, the other is philcsophical. On the technical level there are at least three
criticisms. First, there is the difficulty encountered in reascming abcut actions. This is the frame Eroklem, described previously. Second, there is the difficulty encountered in handing a continual inccming stream of possibly contradictory facts, an ability required of any organism that receives $s \in n \in o r y$ input from a changing outside world. This wight well be termed the accommodation problem: how to accommodate a database of axicms to an incoming stream of evidence about the perpetually changing outside world. Third, there is nc known semantics for a changing database of axioms - Tarski-krifke semantics only apply to static axicm systems. In additicn, if one is interested in reasoning atout the natural ourters -- which is presumably the case if c ne is trying to autcmate mathematics -it would be well to recall the well-known fact that nc fregean formal system can fully capture the concept of the natrial numbers. Lastly, there are many difficulties encountered in trying to reason about causes, abilities, and knowledge about knowledge in a Fregean fcrralism.

On a more philosophical level, the act of writing down a Fregean formula implies an attempt to capture a timeless, actionless aspect of the world; yet in AI one is above all concerned with action and change. It's as though the "dimension" cf a Fregean formula is of the wrong type for the problem being tackled - just as in physics, dimensicn theory demands that the dimension type of a formula watch the dimension type of the pbencrenon described by the formula.

At this point I must call a halt. A continuaticn of this line of argument leads to deeper waters3 than I care to enter at this point, and, to do it justice, would take far wore space and time than can be afforded in this thesis.

In developing a robot-controller one is, primarily, concerned with reasoning about actions and with continually accommodating the world model tc the sensory input stream of evidence; secondarily one desires computationally efficient, or at least tractable, algorithms for carrying out these processes.

Throughout the exegesis I pointed out that, in effect, the combinatcrial exflosicn has nct been brought under control. por scme special proof procedures, [Cook ε Reckow, 1974] and [Tseitin, 1968] have given this a more precise stateuent. Without introducing any special terminology, their result theorem 10 in [Cook \& Reckow, 1974] - can be re-stated as fcllows:

For infinitely many n, there exists a theorea with n clauses for which the number of steps in its shortest proof is at least exponential in $(\log (n)$ squared).

Thus one may conclude that the evidence, sc far, from studies of complexity suggests that the computational requirements of ------
3 Because it leads to the conclusicn that the metaphysics of platonism, as found in the philosophical tradition which starts with Platc and continues with Descartes, Kant, Frege, Russell, and modern analytic philosophers, is suspect. A new metaphysics can be kased on the noticn of "process" as in Whitetead's Process and reality. This is part of another great tradition, largely ignored by modern philoscphers, which can $b \in$ traced from Aristotle through medieval philosophers to Eergson, Whitehead, Husserl, and others.
resolution theorem-proving are of an intractarle nature.
There is, however, an impcrtant open problem here. As already mentioned, [Kowalski,1969] derived heuristic search algorithms for theorem-proving that were generalizaticns of $A *$. But [Martelli, 1977] analyzed the worst case behaviour of $A *$, found it was $2 * * n$, and replaced $A *$ by a new algorithm B whose worst case behaviour vas n**2, a significant improvement. The obvious open questicn is: can Martelli's analysis and improvement of A^{*} be carried over to Kowalski's search algcrithms?

In conclusion, I hope that the knowledgeatle reader has scue notion of why I feel that the Fregean tradition in AI planning and problem-solving systems is, perhaps, on the wrong tracks, and consequently can understand why, in my research, I have chosen to take ancther approach.

II. 4 A survey of closely related tcpics

The purpose of this section is to frovide a fairly comprehensife survey of closely related work, and a brief descripticn cf two related topics, namely imagery and behavioural theories.

I start with the literature on analyses and simulations of organisms. There are many such studies, all more or less independent, and each with its own particular orientation. I have tried to classify them according to their emphasis, bet no IInBackgrcund Issues
mutually exclusive classification seems possitle. The beadings I have chcsen are:
a functioning robot simulations;

- analyses of simple organisms, without simulaticn;
- studies based on animal behavicur;
a applications of decision theory;
a cognitive mafs.
The inclusion of cognitive maps here may $s \in \in \mathbb{m}$ a little out of place, but a moment's consideraticn, of the fact that all such studies are concerned with how an animal cr man finds its way around its environment, shous that it is quite appropriate.

I then proceed to the literature on spatial representation and reascning. This falls easily into two classifications:

- spatial flanners conceived as fotential tcols for architects and others;
= systems for simulating the motion of rigid bodies.

There is, in addition, one published system for path-finding [Thcason, 1977], which I do not include here since it is more appropriately cevered in my section $V .1$ on path-finding. Similarly I do not review the literature on the skeleton here since that is done in section V. 1.

II.4.1 Previous Iobot simulations

[Nilsson ε Raphael,1967] simulated a robot and its envircnment in order to study the key probleas in designing and
controlling a robot. Their later design of Shakey, the SRI robot, was based on this preliminary exploration. Their simulated robot resides on an arbitrarily large checkerboard containing both movable and nonoovable objects. The robot can move forward, turn right or $l \in f t$, and sense when it "bumps into" an object. It stores information about the location and proferties of objects in its envircnment and uses its sensory inputs to establish, correct, or update this information. The robot can make specified changes tc its envircnment by pushing the appropriate movable objects.

The design of the simulated system contained several important basic features that any real robct in much richer environment gould need. These include the rcbot's model of its envircnment, a problem-specification language for communicating with the robot, a heuristic problem-solving frogram, and a robot executive program for cuerall control. The tasks consisted of "goto" and "pushto" problems. Plans to solve these tasks were constructed by using Moore's maze-sclving algorithm on the array of locations. The robct could sense the contents of the square immediately in front of it, and use this to correct the vorld $m c d \in 1$.

Of the published studies that I kncw of, theirs is the closest to mine in terms of overall aims and design. However, my simulated world, Utak's sensory equifment, and Utak's robot-controller are all more sophisticated than the corresfonding parts cf their syster.

Becker and Merriall ([Becker, 1972], [Becker \& Merriam, 1973], [Merriam, 1975]) simulated a robot cart in a two dimensional world which used a sophisticated eye with a fovea to pick up information about its surroundings. Initially a city street environment was used but subsequently a "Martian" landscape was used. This eye could either gather coarse information from a large area or could "zoom" down and obtain detailed infcrmation from a small area, and could change its fccal point. Thus the eye could be used for two conflicting tasks: keeping a lockout for new cbjects, and focussing down on one cbject tc get more detailed information. This conflict was resolved by the eye-controlling program which took into account such factors as drive, salience of an object, progress, effort.... and which produced a natural-looking scan path when lccking at a street scene. The design of the eye-controlling program was unfcrtunately not specified. The eye could also track a fixed object when the robot moved. The later simulaticn of the envircnaent took into acount the finite size of the robot chassis and simulated the visual occlusion of for instance, Martian hills by Martian mountains. A long term memory was used which stored no spatial information.

Theirs is a more sophisticated simulaticn of the world and a different eye, but no design of the robot executive, or refort of the simulated robot executing a goto or pushto task, affears to have been published.

II. 4 . 2 Three analyses of simple organisms

Each of these analyses approach the tehavicur of an organism frcm a distinct foint of view. Simon's paper is a game theoretic analysis of the survival of an organisa in an environment in which he derives one equation relating organism to environment; Toda's paper is in the same vein but uses decision theory; while Becker is concerned with the structure of a representation for external events ard how this structure shculd develof over time.
[Simon, 1956] considered a simplified organism with circular vision, with a single need - food - and only three kinds of activity: resting, explcration, and obtaining food. It has to survive on a plane with isolated point sources of food. He derived an equation shoving how the chances of survival of the organism depended cn fur parameters, two describing the environment and two describing the organism, assuming the organism behaved in the cbvious "rational" way. Thus he found that an organism in its natural environment reguires only very simfle perceptual and choice mechanisms to satisfy its several needs and to assure a high probability of its survival over extended periods of time. He also showed how multiple goals cculd $b \in$ satisfied with a very simple choice mechanism. This analysis was achieved without the use of utility functions as in decision theory. Simon's analysis cast serious doubts upon the usefulness of then current eccnoric and statistical theories of rational behaviour as kases for explaining the characteristics
of buman and other organismic rationality. (And frem this dissatisfacticn sprang forth LT \& GPS?)

As a device to unify the various ways in which psychclogy views man (perception, learning, motivaticr, emotion,), [Toda, 1962] studied the design of a solitary robot on a distant planet. The robot's job is to collect uranium randomly distributed on the surface, and the robct ortains energy from eating a certain fungus that grows at randcm locations on the surface. The bodily design, perceiving frogram, and choice program were all considered. The choice frogram has to choose what direction to travel in at each moment. Extending Simon's approach, a decision-theoretic analysis tasfd cn maximizing the amonat of uraniun collected is given and a choice strategy specified. The effect of obstacles on the choice strategy and how various approximations could reduce the computational effort required are also considered. The robot uses no stcred refresentation of the environment.
[Becker, 1973] analyzed a simple robot world in what 1 call "Eaconian" terms. The rokot observes events as they happen and then tries to induce, in true Baconian style, representations to predict such events in the future. My syster may be said to function in "pcpperian" style.) He proposed a representation and a system of processes by which the robot could store and manipulate the experience it gained through interacting with its envircnment. The world consists of a smooth shelf on which coloured blocks may be placed and manipulated, a simple movable
square eye with 9 square retinal ficlds, and a hand that apfears in the eye as a 1×1 red square. The world cbeys the laws of physics. A history is kept of motor commands and of query commands with their sensory answers. Frem this histcrical reccid the robct tries to induce a semantic-net-like representation, which it uses to predict the outcome of future actions.

Eecker's approach is based on one simple idea: that if B followed A in the past, an organism should remember that fact, so that the organism can expect B to follow a in the future. Becker's approach is very interesting not because it succeeds, but because it clearly illustrates the difficulties associated with a Eaconian approach. These appear right at the start of his analysis. First, given the continual stream of kernels (motor commands and sensory input), there is the froblea of deciding which kernels are significant. If this decision is attempted at too low a level cf representaticn, as, I claim, Becker does, it ends up keing based on quite arbitrary criteria. (Just as a hypothetical Eaconian scientist could make a million observations in a situation, but since that is not Eeasible, must decide somehow which ones are of interest.) Second, suffosing a significant kernel has been chosen, there is the problem of deciding how many nearby kernels \mathbb{E} ay have a causal relation to the chosen one and should therefore be stored as part of this 'event'. What if tro causally related kernels are separated by large periods of tire, as might occur in okject
occlusion problems? Becker has no satisfactcry solution to this problem, which might be termed a 'windowing' problem. Third, several numerical scales are introduced and maripulated on an ad hoc kasis tc provide measures cf criticality, confidence, cost etc., which are used to enable rules (derived from everts) to be generalized, or differentiated into distinct subrules. These apparently arbitrary numerical scales are a very unsatisfactory featore. In sum, a very interesting proposal, but mainly for its faults and nct for its successes.

II. 4 - 3 Simulaticns based $c \underline{n}$ animal behaviour

[Ludlow, 1976] describes a model animal which was designed to simulate aphid behaviour. This model is crly concerned with alternations between several different types cf behaviour, e.g. walking, feeding, probing, flying, wingspreading. The model is based on the concepts of centres, drives, and reciprocal inhibiticn between centres. For each activity there is a separate centre. The centres inhibit each other. \quad when a particular centre is active the inhibition from it is sufficiently strong to suppress an equally stimulated rival; but the centre fatigues. In such a system only one centre is active at a time (although it is fossible for several centres to be active concurrently, such a configuration is unstable). The system exhibits hysteresis: once an activity is started it will persist for a period even when the drive level necessary to
elicit the activity has been reduced by the ferformance. This would seem to be a necessary feature of any crganisw which can execute rany different tehaviours, to prevent thrashing. This approach might usefully be incorporated in an aI system controlling several different behaviours.
[Friedman, 1967] analyzes and extends the Lorenz - Tinbergen thecry of instinctive animal behaviour by adding "Selecticn of Eeleaser Mechanisms" to the executive contrcl hierarchy. The computer simulation of a small animal (ADROIT) that moves in a plane with a small number of circular obstacles was programmed, with a control program designed along the lines of the afore-mentioned theory. ADBOIT avoids obstacles when en route to a goal by reading the angles and ranges to the edges of cylinders. The structure of the "Eehavioural Unit" tc carry out a "go to" ccmmand was exhibited. No representation of the world was involved.
[Arbib ε Lieblich, 1977] are concerned tc bridge the gap between human memory studies and the psychological literature on animal learning and conditioning. The major reason for the huge research effort on animal behaviour has been the Thorndike Favlov - Eitterman theory that the underlying frocesses of learning are the sare in all animals, including man [Eitterman, 1975]; consequently this is an imfcrtant direction of research. They propose a theory of how an organism couples its memory structure to its sfecific action routines so that it may operate in its spatial environment in an intelligent manner.

They adopt a world model in the form of a graph with nodes containing drive-related information and edges containing sensorimotor features. The theory specifies the general drive dynamics, the way in which the world model is updated, and the way in which the rat decides where to move next in the world. Their theory explains some experimental results that relate rat learning and spatial behaviour.
II. 4 - 4 Robot simulations based on decision theory
[Jacobs \& Kiefer,1973] consider the decision-making component of a robot that operates in a foorly known envircnment, where each action may have many fossible outcomes. An approach based on maximizing the expected utility resulting frcm each decision is developed. The decision to execute a particular action is $v i \in w \in d$ as a move in a game against the environment; the outcome of an action is the environment's move in the game. The estimated utility of a decision is evaluated by backing up from the terminal stages of a plan, using the fact that the utility assigned to a set of uncertain outcomes is the expected value of their utilities. The decision that maximizes the expected utility is chcsen. This approach is used to control a simulated insect-like robot which seeks food, collects material for a nest, and may be stung by an eremy. The robot's task is tc build a nest. The task is not explicitly represented to the rokot but is specified through the utility functions for eating, adding material to the $n \in s t$, finding a aterial, and being
stung. Likewise, eating is not represented as a goal except through its utility function and in fact with the utility used eating will never occur if the time since the previcus meal ever exceeds a certain bound - so the foor rcbot will starve. However, the (negative) gcal of starvation is not represented either. No stored representation of the envircnment is used.
[Ccles et al.,1975] and [Peldman \& Sproull, 1977] apply decision theory to symbclic problem solving. Their respective examples are essentially equivalent and can be stated as a modified version of the monkey and bananas problem. In this version several boxes are available to be pushed under the bananas but not all are suitable, and the monkey is prcvided with a device for sensing "suitability" from a distance. Unfortunately the device is not reliable and way give false positive and false negative answers. All the actions of the monkey - ualking, pushing, climbing, sensing suitability - have energy costs. The techniques of decision theory are used to find the best scluticn strategy, using a utility function defined in terms of energy cost. The utility furcticn is used to reveal tradecffs arcng various strategies for achieving various goals, taking intc account such factcrs as reliability, the complexity of steps in the strategy, and the value cf the goal. It is alsc used to formulate solutions to the problems of how to acquire a world model, how much planning effort is worthwhile, and whether verification tests shculd be performed. Feldman ε Sproull discuss many other possible applicaticns of
decision theory in robot problem solvers.
Feldman and Sproull's paper supforts their claim that "a combination of decisicn-theoretic and symbolic artificial intelligence paradigms offers advantages not available to either individually". Hovever, although I can't yet pinpoint it exactly, I confess to a queasy feeling when afflying frobability theory to symbolic reascning. The basic definition of the theory is the probability of an event, defined as "the liaiting value of the relative frequency of occurrence cf the event in a long sequence of observations of randomly selected situaticas in which the event may occur" [Parzen, 1960]. Philosophically this is very unsatisfactory. Bayes' theorem, an important rule for computing conditional probabilities, is even more unsatisfactory. The task of clearly delineating these difficulties and proposing a new definition of probability is beycnd the scope of this thesis. All that can be said is that there are many inklings around, and in chapter IV I will give scae indication $c f$ the direction required.

These simulations serve to confirm Simen's conclusicn that traditional decision theory is not appropriate to the analysis of $b \in h a v i o u r a l$ systems.

II.4. 5 Cognitive maps

A traditional field of psychology is concerned with cognitive maps [[Trowbriage,1913]. [Tclman,1948], [Moore ε

Gclledge, 1976], [Kuipers, 1978]) : A person's cognitive map is the knouledge a person has about the spatial structure of large-scale space. Thus the topic of cognitive maps is relevant tc $\boldsymbol{H y}$ wCIk.

The functions of a cognitive map are to assinilate new information about the envircnment, to represent one's current fosition, and to answer route-finding and relative-position protlems. It is built up from cbservations made as one travels through the environment. [Kuipers,1978] presents a ccmputational model (the Toun model) of the cognitive maf that uses multiple (5) representations for the cognitive map, and builds up knowledge by observations and by interacticns betveen the separate representaticns. Whereas TOUR gains new knowledge by discrete observations at a small number of fixed places, Utak gains new knowledge by receiving a $n \in W$ retinal impression at a new positicn and resclving the differences between the actual impression and the predicted retinal impressior by modifying the hypcthesized shape of the envircnment. Otak's skeleton of the environmental empty space is very similar to Kuiper's coynitive map when regarded as a network of routes. hhereas TOUR is cnly concerned with city-street networks and not at all with shape, FFA explicitly represents the two dimensicnal shape of the environmental sface. In sum, Kuiper's work is somewhat complementary to mine.

II. 4.6 Spatial planning systems

[Eastwan,1973] reviews current programs and describes a new program, GSP, for solving two dimensional spatial arrangement tasks. Given a space S (e.g. a large rectangular rcoi), several saaller rectangular design units (DUs) (e.g. the parts of a computer), and several s-relations between the DUs (e.g. an edge-adjacency requirement or a sight-line requirement for the oferator's desk), the problem is tc find an arrangement of the DUs in the space S which satisfies all the S-relations. The overall design of GSP is as a backtracking depth-first search. Various heuristics are described which iafrove the search, derived frcm the S-relaticns. An imfortant part of GSP is the location profoser which, when given an arrangement of some of the DUs in S, proposes locations for a $n \in W$ DU uhich are consistent with the arrangement already made. Only arrangements in which the sides of the DUs are aligned with the sides of S are considered.
[Pfefferkorn, 1975] described ancther sfatial planner, DPS, which relaxed the restriction that all shapes te rectangular by allcwing non-convex folygonal shapes, and which allowed a new type of spatial constraint on an arrangement: a path constraint, which says that all the empty space in the arrangement must be connected. DPS uses a representation of space occupancy of an arrangement in which convex polygons are the primitives. Some are marked empty and some are marked occupied. These convex
polygons are called space blocks. Bach space block is in turn represented as a set of sides, and each side as a set of points. Then a new shape is added to an arrangement every space block intersected by a side of the new shape is broken into two separate space blocks and the occupancy marked accordingly. The locaticn proposer essentially proposes all the corners of empty space blocks. As in GSP the constraints are used to guide the search.

Both systems explore a search tree of space layouts where the branching factor at each node is contrclled by the location proposer and by cther heuristics which decide in what order to try fitting new shapes. The priaitive shape concept used is a convex pelygon represented as a list of boundary points. Their main fault from my point of viev is that these systers are concerned only with object placement, not with path-finding or cbject meving.
II.4.I Systems for simulating the motion of rigid objects
[Baker, 1973], dissatified with conventional methods for spatial simulation, desired one in which the spatial relaticnships of points were explicit. To this end he presented the design of an iterative array of logic circrits which could simulate the continuous rigid translation or rotaticr of arbitrary shapes, and implemented a simulaticn of this array. The system consists of a rectangular array of logical circuits,
each representing a unit square. Each circuit has a local ccordinate system to keep track of a single pcint as it crosses the square. Its path may be a straight line cr a circular arc. on reaching the side of a square, contrcl and modified local coordinates of the point are passed to the neighbouring square. An object is represented as a collection of points (where for technical reasons the minimum distance between points must be greater than the square root of 2 (root2)), and its wction simulated by following the paths of all the constituent peints. The system was not developed to handle ccllisicns.
[Funt,1976] argues that a computer frcgram can derive benefits from the use of analogues in the sare way that fecple do. To this end, he implemented a system WHISPER. The purpose of this system was to solve two dimensicnal blocks world stability problems by the use of a so-called analogue. I will not comment on his arguments concerning the ose of analcgues; fIcri my fcint of vien WHISPER was intended tc be a performance system for simulating rigid cbject motion under the influence of gravity.

The input to WHISPER is a two dimensional array of cclored squares on which the side ∇ iew of a configuration of distirctly cclcured, arbitrarily shaped, blocks bas been drawn. Typically the corresponding real world situation contains many instabilities and under the influence of gravity would immediately collapse in a flurry of blcck motions and interactions: rotation, collision, sliding, and free fall.

WHISFER simulates this collapse on the input array and produces as output the same array but with the blcck pcsitions updated to display their predicted final resting places. The simulation makes extensive use of a retina which resembles the human retina in some respects. Under control of the main program which knows akout gravity, the block motions and interactions are computed through the use of several cperations on the retina, including finding centre cf area, finding contacts betyeen blocks, visualization of rotation, and firding symatry. The retina consists of a circular array of non-overlapping circular retinal fields, or bubbles. The tubble size increases with distance from the retinal centre. Each bubble has an asscciated processor, so that the whole retina is conceived of as a fixed number of processors operating in parallel and communicating only with their ixmediate neightcurs. Funt's retina is similar in this respect to Baker's iterative array of automata. Only the color of an object becomes knoun to WHISPER's main program, while an object's shape and cther proferties reside in the diagram.

MHISPEA's movement primitives are simple and after a few simulated motions the depicticn of an object on the array disintegrates into a multitude of small isclated pieces. A precise demonstration cf this fact appears in appendix A.3. The conclusion is that the simulation of rigid motion provided by WHISEEB is not suitable for my purfose.
[Howden, 1969] considers the sofa-moving task; that is,
produce a plan for moving a two dimensional shape from one place to another when constrained to remain within the walls of a surrcunding, and in general non-convex, two dimensional shape. The edges of the walls and of the sofa are represented as lists of foints using chain-encoding [Freeman, 1974]; consequently it is easy to simulate rigid object motion. It is not, however, so easy to detect the intersection of the sofa and the walls. I am not convinced that the algorithm as described in this faper will work, thcugh it can be extended to do so. Fresumably the author used such an extension, since he reforted on a running program. In a pre-execution step, the points of the wall are sorted into an array of buckets, which, in the extended algorithm, must be probed twice for every point on the perimeter of the sofa. So the wall array is usually referenced

2 * (length of sofa periaeter)
times for every intersection test performed. A sofa-moving flan is produced as follows. At any (integral) point within the walls there is a small number of possible actions of trarslation or rotation which may be applied tc the sofa; the permissible actions are those for which the intersecticn test fails. The plan is produced by executing an undirected, looking kackwards, heuristic search through the state space entailed by the set of permissible actions at each point. That this scheme performed at all is somewhat surprising - apparently it did, on some poorly specified examples. It would perform farticularly bady in the simplest case - a small sofa within a large empty IInEackground Issues
containing space.

Mental imagery is relevant because the shape subsystem of PRA can be viewed as a model of mental imagery even though that was not the goal of SHAPE's design. Mental imagery has been discussed in the psychclogical literature by [Bartlett, 1932], [Hebb,1968], [Piaget,1954], [Shepard,1978] and many others. This is how shepard, in the conclusion of his recent review, presents the current statos of mental imagery in psychology:

I subrait that there are both logical and analogical processes of thought, and that processes of the latter type, though often neglected in psychclogical research, may be comparable in importance to the former. Ey an analogical or analog frccess I uean just this: a process in which the internal states have a natural one-to-one corresfondence to appropriate intermediate states in the external world. Thus, to imagine an object such as a complex molecule rctated into a different crientation is to perform an analog process in that half way through the process, the internal state corresfonds to the external object in an orientation half way between the initial and final orientations. And this correspondence has the very real meaning that, at this half-way point, the perscn carrying out the process will be esfecially fast in discriminatively responding to the external presentation of the corresponding external structure in exactly that spatial orientation. The intermediate states of a logical computaticn do not in general have this property. Thus, a digital computer way calculate the coordinates of a rotated structure by performing a matrix multiplication. But the intermediate states of this row-into-column calculation will at no point correspond to - or place the rachine in readiness for - an intermediate orientation of the external object.

Tc summarize: thanks to the searching reaction time experiaents of shepard and his colleagues, the notion of analogical thought process now has a firm piece of evidence to rest on.

I have already menticned the apparent importance of mental imagery in scientific and mathematical discovery: in addition one could justifiably interpret Hilbert's "concrete objects" (p. 34) as visual imagery.

There is currently a debate over ybetber the noticn of $\boxplus \in n t a l$ imagery $c a n$ be used as a scientifically respectable explanatory construct. The main protagonists have been [Pylyshyn, 1973, 1976] and [Kosslyn and Pcuerantz,1977]. This cannot be discussed here. The latest yord in this debate, and a review, is prcvided by [Anderscn,1978].

II. 4 -9 BEhavioural thecries

In attempting to design a robot contrcller one is, essentially, developing a behavioural theory. Thus it is worth taking a brief lock at work in this area.
[Hebb, 1949] developed a cell-assembly thecry of behaviour, which has been extended by [Good,1965], [Bindra,1976], and others. It is intended to be a physiolcgical theory of thought. He afproaches his theory from two directions: the psycholcgical facts cf attenticn and orientation, and the then current facts of neurology. Hebb describes a cell-assembly as a "tridimensional lattice-like assembly of $c \in l l s$, that I have supfosed to be the basis cf perceptual integration." Again, he
yrites, assemblies are "diffuse, anatomically irregular structures that functicn $⺊$ fiefly as closed systeas, and do so cnly by virtue of the time relations in the firing of constituent cells... An individual cell or transmissicn unit may enter into more than one assembly, at different times... At any one moment, the action of an assembly may be considered to be on an all-or-none basis" [p.196-7].
[Bindra, 1976] extends and diversifies the cell-asseirbly theory and introduces a new concept, the pexgo. A fexgo underlies the "currently excited, distinctive nevral organization that underlies the identifying resfonse made in relation to a stimulus entity, as well as the avareness (subjective experience descrited as percept or image) of that stimulus entity." Though suggestive, the cell-assembly/fexgo theory is at an insufficiently precise stage of development to be of any direct benefit.

The fault of the $H \in b b-B i n d r a ~ t h e o r y ~ i s ~ p e r h a p s ~ t h i s: ~ i t ~$ tries to explain human thought directly in terms of the forly kncwn neuronal structure, which might be likened to trying to explain a big computer program such as an operating systell or Wincgrad's SHRDLU directly in terms of machire code, by-passing all tenticn of PLANNER, PFOGRAMMER, LISP, stacks, assemblers and all the other wonderful descriptive vocabulary cf ccrputer science. In other yords, the difference in descriptive level, the gap between neuron and thought, is too great to be bridged by cne single reductionist theory. Artificial Intelligence,
using the language of computer science, is in ar ideal position to tuild the requisite intermediate theories.
[Miller, Galanter and Fribraष,1960] alsc sketched out some ideas on behaviour; their most specific suggestion was the impcrance of "TOTE" units (test, operate, test, exit) in executing plans. The TOTE concept is related to the notion of a FAP (fixed action pattern), which is used by ethologists to describe animal behaviour and to trace the evolution of behaviour.

In pondering why computers have had so little success in carrying out human information processing tasks, [Miller, 1974] concluded, first, that the reason is because there is no satisfactory theory of cognitive organization, and second, that the test hope for progress is to develop a theory to handle the structure of the physical world. My work is a small step ia the direction of Miller's second conclusion.

So what can I conclude from our survey of the literature? I will start with the negative conclusions and proceed in a positive direction. First of all, though wany cf these studies lcok superficially similar to our project, few have any positive content from our viewpoint. The lessons to re learnt are wainly "don"t"s. Here they are.

- Hebb - Bindra - don't try to do too much with one theory
- Jacobs ह Kiefer - don't try to apply decision theory directly to behaviour
- Ccles, Feldman E Sprcull
decision theory and Artificial Intelligence don't really wesh together
- Ludlon, Priedman - irrelevant because they model behaviour without a world model
a Becker \& Merriam - they get bogged dcun in simulation details; no functional robot-contrcller designed or implemented.
- "Eaconian" Becker - don't use the Baconian approach to representing experience.
- Simon, Toda - interesting high level analyses of rational bebaviour, but irrelevant at our level of synthesis.
a Imagery - this is an acceptable nction: any model of it is of interest. My model of it arises as a side effect of a spistem designed for spatial reasoning. Of the three studies on the simulaticn cf rigid metion, Baker's is prorising but not carried far enough, font's simulation is not satisfactory after the first fey moves, wile Howden's is computaticnally rather expensive for use as an experimental tool. Hhen it comes to spatial planning, Eastman and ffefferkorn get bogged down in heuristic search because
their underlying representation of space is inadequate, and Howden's affrcach results in a combinatorial explosicn. More fositively, Nilsson ε Baphael's is interesting, but only as a precursor of $m y$ own work. This leaves only Kuipers, who medels common-sense knowledge of large-scale sface, and arbib ε Lieklich, who model a rat's cognitive maf.

Kuipers showed how fragmentary pieces cf informaticn asout cne's spatial envircnment can be integrated in the course of experience tc form a grafh-like cognitive map. arbib ε Líblich used a graph for their world model and showed how it could be modified as a result of innate drives and of external rewards. The lesson to be learnt bere is that a world model in the form of a graph is a promising idea. This is not incorporated in the design of pPA but obviously should be taken up as soon as possible.

I will now sumarize this chafter on backcrcund issues. I first delineated the nature of this modern science, Artificial Intelligence; then I described the imfcrtance of, and interaction between, representaticn and search in any theory of intelligence; then I presented $\mathbb{M} Y$ $c w n$ approach to the subject. The next section sketched the traditional Artificial Intelligence approach to planning and problem-sclving, and found
it $t c$ be wanting for mpurfoses; while in the last section I reviewed the literature on similar projects but found there to be a notable lack of positive content, only cautionary tales. All told, the reader should now have a good feeling for the background to my work; let me now advance to the first embattlement.

CHAPTEE III
TEE SIMULATED OEGANISM－ENVIRONMENT SYSTEM

This system is the basic experimental tocl for my research． It frovides sensory input for，and accepts motor output frcm，a simulated organism that I call utak．only the functional input－output characteristics of this system are directly relevant to the rest of $⿴ 囗 十 y$ thesis．For this purpose you aeed only read the rest of this introductory section and section III．2．2，and peruse the examples in secticns III．1． 3 and III．2．3．The aim of this chapter is to describe the simulated organism－environment system and to describe the tasks that such an crganism，if endowed with a competent organism contralling program．might reasonally be expected to solve．

The system is called tablemop．It simulates the physical motion on a smooth tabletop of objects which have the form of folygonal planar shapes．The tabletop is bounded by a verge so that an cbject can never fall off．An object moves only when Utak is both holding this object and executing a pushtc or turn ccmand．The physics invclved is essentially trivial：
（a）The shape of an object is invariant under translation and rotaticn．
（b）If a motor command to go a certain distance in a certain direction would result in utak colliding with an object or the verge，then he halts a short distance before the first IIImThe siqulated organisa－ervircnment system
intersection of his path with suck an obstacle.
(c) Similarly, if otak is grasping an object and is execoting a push command that would result in the cbject or 0 tak cclliding with some obstacle, then otak and the orject come to an immediate halt a small distance refore the point at which the this collision would have occurred.
(d) When Jtak is grasping an object he and the cbject are, temporarily, considered as one new object.
(e) Otak can go between two neighbouring objects only if the width of the gap between them is greater than a certain ninimum value.

To put it in a nutshell, tabletop simulates the permanence and impermeability of the shafe of physical objects.

In building the tabletop system I aimed to produce an experimental tool that was inexpensive tc use. I was not concerned to find exact solutions to collision problems. Thus, the approximate solutions to collision problems that the TABLETOP system computes are quite sufficient for my purfoses. In section III.3.1 I sketch one way that TABLETOE could be exterded tc compute exact solutions.

Previous simulaticns of the physics of planar pclygonal shafes (reviewed in II. 4.7 above) have either keen incomplete, incorrect, or computationally expensive to nse, whereas my TABLETOP system is complete, correct to within certain limitations which I specify later, and efficient. By complete I mean that both motion and collisions are handed. TAELETCE is IIIaThe simulated organism-environment system
cheap to use, has been used extensively, and has proved to be a viable experimental tool.

The design of TABLETOP is kased on the use of two representaticns for objects, the Cartesian and the digital. The Cartesian representation of an object specifies the shape of the object by a list of points where each point is sfecified by two positive real numbers. The points are the points of inflection on the bcundary of the shape. An edge in the Cartesian representation of an object is a pair of consecutive points in the list. Utak himself has a Cartesian refresentation, or pcsition, consisting of a single pair of fositive reals. In addition, Otak has an absclute orientation. Note that I am bere referring to the simulation of Utak, not the robot-ccntrcller for Utak.

The TABLE is a two dimensional array where each entry corresponds to a square in a two dimensional grid of squares covering the surface of the simulated tabletof. Each cbject has an associated colcur, one of the letters A,B, ... Z. Two objects may have the sane cclour, and the verge always has the cclcur 'B'.

Now imagine the Cartesian representation of an object with cclcur c suferimposed $c n$ the TABLE grid. The digital representation of the object is defined to be the set of squares of $T A B L E$ that lie within, or are intersected $k y$ the edges of, the Cartesian representation of the object. All squares in the digital representation of an object are assigned the object's IIImTh simulated organism-envircnment system
cclcur c. The digital representation of an object is also called the projection of the cbject cnto the TABIE. Utak bas a digital representation, or projecticn, consisting of the square of TABLE that contains his position. The colour assigned to this square is the B \quad GMABR, an asterisk on the CBT display of TABLE. His Cartesian position lies outside the Cartesian representations of all the cbjects on the tabletop. Normally his frojection, also, is outside all the digital representations of all the objects, but it can happen that it lies vithin the projection of an object that he is currently grasping or has recently letgo.

Utak, all the objects, and the verge are frcjected onto the TABLE array when TAELBTOP is in operation. The TABLE array can be displayed on a screen for a buman user to watch. Remember that Utak does not "see" this display; his visual infut is described in subsection III. 2. 2 .

This chapter is crganized as follows. section III. 1 describes the TABLETCP simulation system. This includes the method used, the problems encountered, and the specificaticn of the requisite algorithms. Section III. 2 discusses the design and capabilities of otak, and includes examples of his sensory-motor experience. In the final section (III. 3) an extension and generalizations of TABLETOF are considered. It is shown that an impertant part of the TABLETOP simulation is easily adapted for parallel computation, and that the TAELETOP method generalizes to three (or more) dimensions. Also, it is III*The simulated organism-environment system

Abstract

shown how to extend TABLETOP to obtain exact answers to ccllisicn probleas.

III. 1 The sigulated envircnment, TABLETOP

This is an independent system that simulates the effect of motor commands issued by utak. It is instructive for a user to sit down with TAELESOP and attempt a task such as manipulating an 'I' shaped object thrcugh a narroy doorway.

The L-shaped object problem is the archetypal task for Utak. Indeed, in Kuhnian terminology, this is the paradigm problem for this approach to understanding spatial intelligence. When, or if, progress in the construction of the organism-controlling program for Utak has adyanced to the point where Utak is able to solve this problea autonomously then I believe that non-trivial advances will almost certainly have been made towards understanding the nature cf some computations that are of fundamental importance for successful organisms. At that point it will be cf great interest to interpret the known facts about biological trains in terms of these computations.
III.1.1 An overview of the simulation method

A slide is the simplest action of Utak. This is the moverent of Utak along a line segment. It is simulated by seguentially checking each square of the TARLE grid that is intersected by utak's position as he woves along the line III-The simulated organism-environment system
segment. If a non-empty (coloured) square of table is encountered before the end of the line segment, then first the fcint of intersection with the obstructing square is found, second the halting position of otak is obtained $y=$ backing off slightly from this pcint. This is done by taking a point a small distance $€$ back along the line segment frou the pcint of intersection. If the cartesian representations of two neighbouring cbjects are sc close that no empty square of TABLE lies between their digital representations then utak is urable tc slide between the two objects.

When Utak is not grasping an cbject he can only execute a slide action or a grasp action. Utak can grase an object if he is not already grasping some cbject and if his digital representation is adjacent to a square in the crject's digital representation. Two squares are adjacent if they are horizontally, vertically, or diagonally adjacent. Thus there are eight TAELE squares adjacent to otak's digital representation.

When otak is grasping an object he can only execute pushto, turn, or letgo actions. In this state the relative pcsiticn of Utak's Cartesian representation and the cbject's Cartesian representation remains invariant under translation -- caused by pushto actions -- and rotations -- caused ky turn actions. However, whereas Utak's digital representation is always a single square, an object's digital representation may appear to Change rather drastically if the size of the TAELE squares is of

tbe same crder of magnitude as the size of the object. The simplest example of this effect is given by an object whose Cartesian representation is a square of exactly the sare size as the TABLE squares. If this cbject's Cartesian representaticn is exactly aligned with a TABLE square ther its digital representation is just that TABLE square, but if the object is moved diagonally a small distance then its digital representaticn becomes a larger square consisting of four TABLE squares.

Supfose that the user of TABLETOP requests a fushto action whose intent is to move the grasped object in a straight line through distance d in direction θ. The angle θ is measured clockwise from some fixed direction. The fcllowing method is used to compute the distance d' actually traversed before a collision, if any, occurs. d is the intended distance, d' is the achieved distance. Easically the method is to scan the area of TABLE that would be swept out by the object in the course of the translation. The distance to the nearest obstacle found, if any, detersines the achieved distance.

First the current digital representations of Utak and of the object are erased. Then the achieved distance for Utak is ccmputed, just as for the slide action. The achieved distance for the grasped object is computed as follows. First the leading edges relative to the direction e are determined. These are the edges of the Cartesian representation whose outward ncrmal has a direction in the range $\left(\theta-90^{\circ}, \theta+90^{\circ}\right)$. As the IIImThe simulated organism-egvircnment system
object is moved, each leading edce sweeps cut an area in the shape of a parallelogram. Each such parallelogram is tc be imagined as superimposed on the TABIE grid. The parallelcgrams for an L-shaped object subjected to a particular pushto action are shown in figure III. 1. Por each leading edge E a scanning process is started that scans those squares of TABLE that lie within or intersect the parallelogram PE generated $k y E$. For any scanned square that is ncn-empty (coloured), the minimum distance from the edge E to the $n \in a r e s t$ point of the subpart of the square lying within $P E$ is compoted. Then distance fy is defined. to $b \in d$, if no non-empty squares are found in the scan, CI else to be the minimum over the minimum distances for each scanned square. The minimum of the $D E \cdot s$ for each leading $\in d g e$ E, less a swall quantity ϵ, is returned as the achieved distance for the cbject. Finally the overall achiəved distance d' is the uinimum of the achievable distances for the object and for utak. Then both Utak and the obfect are re-projected cato the TABLE grid at the computed final position. By construction, these new projections never overlap the projection of an orstacle.

Now suppose that the TABLETOP user requests a turn action, whose intent is to rotate the object grasped by Jtak by ϕ radians about otak's fositicn 0. Two methods will be described for computing the angle ϕ^{\prime} actually rotated before a collision, if any, occurs. \varnothing is the intended rotaticn, ${ }^{\prime}$ is the achieved rotation. Both methods scan for obstacles in the area that would be suept out by the object in the course of rotation. The IIImThe simulated organism-environment system

angle to the nearest obstacle, if any, deteraines the achieved rotaticn. The first method finds all the obstacles whereas the second may miss a small cne. Although the second method is the one currently implemented, the first method, since it parallels the nethcd used for translation and may be of indeperdent interest, is described first.

First the projections of otak and the grasfed cbject are erased. Since Utak's positicn does not change in a rotation, his motion does not directly contribute to the ccllision computation. Then the leading segments of the edges of the object, relative to the centre of rotation 0 , must be $d \in t \in I a i n \in d$.

Definition. For a clockwise rotaticn of an cbject about 0 , the leading segment of an edge E is found as follows. Consider the line L collinear with E. Compute on the line L the $n \in a r e s t$ point N to the centre of rotation D and draw an outward normal to E at the point N. Now take the semi-infinite half-line of L that lies to the left of the outward normal at N, and form the intersection of it with F. The resulting segment of E is the leading segment of E. Note that the leading segment of an edge may consist of all or part of the $\in d g e$, or $b \in$ null. The leading segments for a specific triangle and points of rotation are shown in figure III. 2.

Lemma. For a clockwise rotation of an object about 0 , the leading segment cf an edge E of the object has the frcferty: for any point x on the interior of the leading segment, there is a III角he simulated organisu-environ@ent system

FIGURE III. 2

This figure shows the leading segments of the triangle $A B C$ for two points of rotation. If a clockwise rotation about P is intended, then the leading segments are $\mathrm{AN}_{\mathrm{E}}, \mathrm{BN}_{\mathrm{F}}, \mathrm{CN}_{\mathrm{G}}$. If an anti-clockwise rotation about P is intended, then the leading segments are $N_{E} B, N_{F} C$, and $N_{G} A$. If a clockwise rotation about Q is intended, there is only one leading segment: $B C$. If an anti-clockwise rotation about Q is intended, there are two leading segments: $C A$ and $A B$.
rotation about U such that if x^{\prime} is the new fosition of x, the arc $x x^{\prime}$ lies in the exterior of the object.

Eroof. Fick a disc centre x, small enough that it intersects no cther $\in d g e$ of the object, and so that it does not contain ar end point of the leading segment. Consider a rotation so small that the new position x^{\prime} of x lies within the disc centred on x_{0} Because x lies to the left of the outward normal to E the direction of motion of x is perpendicular to $U x$ and points into the exterior of the shape. Thus, the arc xx' lies ir the exterior of the cbject. QRD.

In other words the leading segment of an $\in d g e \mathrm{E}$ always sweeps out a new area of the TABLE in the course of a rotation. Depending on the angle of rotation and the exact overall Cartesian shape of the object, there will in general be considerable overlap between the areas swept out by each leading segment. I have ignored the problem of eliairating multiple scanaing of areas of TABLE in a turn action.

As the object rotates each leading segment sweeps out a four-sided area of space. The sides distal and proximal tc the point of rotation are circular arcs, the cther two sides are straight lines. Hence I call this shape a doughnut slice. Note that if A, B are the original end-positions of the leading segment and A^{\prime}, B^{\prime} are the final end-positicns of the leading segment, then triangles $A E U$ and $A^{\prime} E^{\prime} \mathrm{J}_{\mathrm{D}}$ differ crly by a rotation about 0 . Each doughnut slice is to be imagined as superimposed ufon the TABLE grid. The doughnut slices for the rotation $f f$ an IIIm T द simulated organisa-environment system

L-shaped object subjected to a particular turn action are shown in figure III. 3. For each leading segment S the TaRIE squares that lie within or intersect the corresponding doughnut slice are scanned. For any ncn-empty scanned square the rinimum angle of rotation sufficient to cause a ccllision between the leading segment S and the square is computed. \{This is not a trivial computation. 3 For each leading segment S, the rinimum is taken over the angles computed for each cbstructing square, and then the rinimum of all these minimums, taken over all leading segments, gives the achieved rotation ϕ^{\prime}. Finally, both Utak and the rotated object are re-projected crtc the table grid. That, in cutline, is the simulation method used in TABLETOP.

The basic problems faced in an implementation of this simulation method are as follows.

- Tracing a line -- the intended path in a slide act
-- the sides of a parallelcgram in a pushto action
-- the straight and curved sides of a doughnut slice in a turr acticn
ascanning a shape -- the Cartesian representaticn of an cbject, for frojecting or erasing the object's digital representation
-- the parallelogram swept out by a leading edge in a pushto action
-- the doughnut slice swept out by a l eading
IIIaThe simulated organisu-ervircnment system

Features of the doughnut slice generated by rotating the leading segment $A B$ about the centre of rotation U by angle \emptyset.
segment in a turn action

Abstract

aComputing minimum distance from a leading edge to (a sutpart of) an obstructing square

Abstract

aComputing minimum angle from a leading segment to (a subpart of) an obstructing square.

III.1.2 The algorithms used in the simulation

In this subsection I describe the algorithms used to sclve the problems specified in the previous subsection. There are two line-tracing algorithms, one for straight lines and one for circular arcs. I first describe how to trace a straight line. As a prerequisite for this one has to know the squares of the TAELE grid containing the initial and terminal points of the straight line in order to initialize and terminate the tracing process correctly. This seemingly innocucus requirement is a little tricky to program because of the special cases that can occur such as alignment of the line with the axes and coincidence of the line with the grid lines. The code for tracing has to handle four cases, one for each quadrant of the direction of the line; I will only describe the northeast quadrant case. Let the current square be the square currently under consideration in the line-tracing procedure. The next current square can either be one $u p$, one right, cr diagonally up and right from the current square. This chcice is made by IIIaThe simulated organism-envircnment system
computing whether the northeast corner of the current square is left of, right of, or on the line. A ccmparison of the slopes of $S P$ and $S D$, involving two multiplications and one comparison, suffices (figure III.4).

A circular arc is traced in a similar manner. If the arc traverses more than one quadrant it is broker into subarcs each traversing all or part of a single quadrant. When the arc or subarc traverses the northwest quadrant almcst the same procedure is used as for the case of a line whose direction is in the northeast quadrant (figure III.4). As for the line case, the next current square is either one $u f$, one right, or one diagonally up and right from the current square, and this choice is made by computing whether the northeast corner of the current square is inside, outside, or on the arc. This requires two multiplications, an addition, and a compariscn.

There are several operations which may te applied tc the squares that a line passes through. The square coordinates may be added to a scan table for a scanning routire or, if the square is non-empty and hence represents an obstructicn, an intersection computation may be executed and the line-tracing procedure abandoned.

For the purfose of projecting the Cartesian representation of a concave object into its digital representation on the TABLE (briefly, drawing the cbject), and erasing it later, the Cartesian representation is deccmposed into convex subparts. This is done manually when the object is first specified. When IIIThe simulated organismeenvironment system

FIGURE III. 4

Tracing a straight line in the north-east quadrant.

Tracing an arc in the north-west quadrant.
the object is drawn or erased each convex subpart is drawn or erased separately.

The digital representation of a corvex (sutpart cf an) ofject is constructed rcw by row. First the edges in the Cartesian representation are traced, and the coordinates of the squares encountered are used to update a scan tatle that records the coordinates of the squares at the left and right extramities cf each row. Since the size of the scan table is sufficiert to cover only the vertical extent of the convex shape, an offset is alsc stored that specifies the row of TABLE that corresponds to the first pair of (left and right) scan table entries. The scan table is then used to draw the digital representaticn rov by row. If the cbject is fixed the scan tables are then discarded. If the object is movable, the scan tables and offsets are stored for later use when, or if, the object is erased for a pushto or turn action. A new scan table has to be constructed for each convex subpart every time the object is redrawn.

The parallelcgram swept cut by a leading edge in a pushto action is scanned in almost identical fashion (see figure III.1). The edges of such a parallelogram are traced in the sequence: leading edge $A B$, left constraining edge aA', right constraining edge $B B^{\prime}$, destination $\in d g e A^{\prime} E^{\prime}$. No okstructing square can occur along the edge $A B$. If an cbstructing square is enccuntered while tracing the edge AA', then the minimum distance in the direction θ frow the leading edge $A B$ tc the nearest part of the obstructing square that lies withir the III The simulated organism-environment system
parallelogram is computed. This is taken as the new value cf d, the ancunt of the translation. Similarly if an obstacle is enccuntered while tracing $B^{\prime \prime}$. If either or both of these cases occur then the position of the destination $\in d g \in$ is effectively meved closer to the original pcsition $A B$. Now the destination edge, at its possibly new position, is traced and the scan table for the parallelogram is complete. The TABIE squares within the parallelogram are now scanned and if an cbstructing square is found the distance from the leading edge $A B$ in the direction θ to the nearest corner of the cbstacle is computed.

The doughnut slice swept out by a leading segment in a turn action has one concave bounding line -- the inner constraining arc. However, since a shape is scanned row-by-row this is cf no conseguence provided the arc does not cross the vertical line through the point of rotation. If this condition holds then the doughnut slice is cut along this vertical line fline 00^{\prime} in figure III. 3) and each part formed is scanned separately. The edges of a doughnut slice are traced in the sequence: leading segment $A N$, inner constraining arc $N \mathbb{N}$, outer constraining arc A^{\prime} ', destination segment $A^{\prime \prime} N^{\prime}$. Nc obstructing square can cccur alcng $A N$. If an obstructing square is encountered while tracing the arc $N N^{\prime}$ then the minimum angle of rotation arout 0 to the nearest part of the cbstructing square within the doughnut slice is computed. This is taken as the new value cf $\$$, the intended rotation. Similarly if an obstacle is encountered while tracing AA'. If $\in i t h \in r$ cr both of these cases occur then the position IIInThe simulated organisw-envircnafnt system
of the destinaticn segment is effectively rotated back closer to the criginal position $A N$. Now the destinaticn segment at its possibly new position is traced and the scan table for the dougbrut slice is complete. The TABLE squares within the doughnut slice are scanned and collision computations carried out if any obstructing squares are found.

Finally I must specify the ccllision computations. First I describe them for a pushto action, then for a turn action.

The simplest case is thiss when scanning the farallelcgran swept out by a leading edge $A B$, an obstructing square is encountered. The amount of movement of the object befcre $A B$ ccllides with the nearest point P of the square must be calculated (figure III.5). This is the distance to collisicn for this edge. The nearest point of a square is one of the corners of the square. This mearest corner depends only on the quadrant of the leading edge so a simple table lcokup is used to find it. For instance, for a leading edge in the northeast quadrant the nearest corner of an cbstructing square is the southeast corner. Let n be a unit vector in the directicn of the outward normal to $A B$, let d be a unit vector in the direction of motion, and let p be the vector ap. Then the distance to ccllisicn is given by the formula

$$
\begin{equation*}
(\underline{p} \cdot \underline{n}) /(\underline{\alpha} \cdot \underline{n}) \tag{A}
\end{equation*}
$$

If an obstructing square is encountered while tracing a IIImThe simulated organism-environment system

FIGURE III. 5 - A formula for the distance from a leading edge to the nearest point of an obstructing square.

$A B$ is a leading edge $\Longleftrightarrow|x|<\frac{\pi}{2} \Leftrightarrow \cos x>0 \Leftrightarrow \alpha n=\cos x>0$ $P B=$ perpendicular distance from $A B$ to $P=p \cdot n$
$\frac{P B}{d^{\prime}}=\cos \boldsymbol{X} \Rightarrow \mathrm{d}^{\prime}=(\underline{p} \cdot \underline{\mathrm{n}}) /(\underline{\mathrm{d}} \cdot \underline{\mathrm{n}})^{\prime}$
constraining edge of a parallelogram, more care is required to find the distance to collision. The nearest corner of the obstrocting square may lie outside the parallelcgram or even on the opposite side of an extension of the leading edge. When tracing the left constraining edge of the parallelcgram, four cases arise (figure III.6).
(1) The nearest ccrner P of the obstructing square lies between the left and right constraining edges. The distance to collision is the same as before, using equaticn (A).
(2) The nearest corner lies $c n$ the left constraining $\in d g e$. The distance to collision is the distance frcx A tc the nearest corner.
(3) The nearest corner lies to the left of the left constraining edge. The distance to ccllisicn is the distance frcm A along the left constraining edge to the point F where the left constraining edge intersects the side of the square.
(4) The nearest corner lies to the right of the right constraining edge. The distance to collision is the distance from B along the right constraining edge to the point Q where the right constraining edge intersects the III=The simulated organism-environment system

FIGURE III. 6

Cases in computing distance to collision along a constraining edge.
$A B=$ leading edge.
$\mathrm{NC}=$ nearest corner of obstructing square.
$\mathrm{P}=$ nearest point of obstructing square.
side of the square. There are really two surcases involved here depending on whether P and Q lie on the same or adjacent edges of the square. However, it is not necessary to go to the trouble of figuring out the distance $B Q$ since this will be computed under case (3) when the right constraining edge is being traced. $S c$ it suffices to return the distance AP.

Notice that, when tracing the right constraining edge BB', case (4) [with right and left transposed] could not occur (figure III. $6(5)$). This is because the distance AP would have been returned from an occurrence of case (3) when tracing the left constraining edge, and so the right constraining edge would cnly be traced as far as B''.

There are four cases when tracing the left constraining edge, three cases when tracing the right constraining edge, and these are all repeated for each of the other three guadrants in which the leading edge may lie. These 28 cases can be handled by one $2 \times 4 \times 4$ decision table with one row of four null entries.

Now I describe the collisicn computations for a turn action. Suppose that an obstructing square is encountered wen scanning the doughnut slice swept out by a leading segment. The amount of rotation of the object before $t b \in l e a d i n g$ segment $A N$ of an $\in d g e A B$ collides with scue pcint of the square must be calculated (figure III.7). This is the angle to ccllisicn for this edge. The point of the square at which the cclision III.The simulated organism-envircnment system

$$
\begin{aligned}
\mathrm{AB}= & \text { object's edge. } \\
\mathrm{AN}= & \text { leading segment. } \\
\mathrm{U}= & \text { centre of rotation. } \\
\mathrm{P}= & \text { obstructing point. } \\
\mathrm{P}^{\prime}= & \text { point which coin- } \\
& \text { cides with } \mathrm{P} \text { at the } \\
& \text { nearest moment of } \\
& \text { collision. } \\
\mathrm{r}= & \mathrm{UP}=\mathrm{UP} . \\
\mathrm{Q}= & \text { angle to collision. } \\
\underline{\mathrm{n}=}= & \text { unit outward normal } \\
& \text { to } \mathrm{AB} .
\end{aligned}
$$

$$
\theta=\beta-\gamma
$$

$$
\cos B=\left(\frac{\theta}{r}\right) \cdot(-n)=-(P \cdot n) / r
$$

$$
\cos \gamma=x / r
$$

$$
g=\cos ^{-1}[-(p \cdot n) / r]-\cos ^{-1}[x / r]
$$

FIGURE III.7. The diagram shows the point P^{\prime}, on the edge $A B$, which coincides with the point P at the moment of collision. The formula shows how to compute PUP', the angle to collision.
occurs is the collision point. I also call this the collision corner since it is clear that the collision point must be a corner of the obstructing square. Difortunately it is not trivial to determine which corner of the square is the collision corner. For instance, as the obstructing square varies over the squares within a doughnut slice the collisicn corner varies too. If the rotation is clockwise and the obstructing square is moved clockwise then the collision corner of the obstructing square moves in a clcckwise direction relative to the centre of the obstructing square. It is possible to specify sets of candidate collision corners as a function of the position of the centre of rotation U relative to the obstructing square. The set of candidate ccllision corners for a specific leading segment contains either two or three corners. Suppose axes are taken at the centre of the obstructing square and aligned with the grid lines. If σ is on one of the axes there are two candiate collision corners and if U is in a quadrant between the axes there are three candidate collisicn corners (figure III.8). For instance, if u lies in the southyest quadrart the candicate ccllisicn corners are the southwest, northuest, and northeast corners, and if 0 lies on the scuth vertical axis the candidate collision corners are the southwest and ncrthost corners. Pigure III.9 shows cocurrences of each of the candidate ccllisicn corners, for U in the southwest quadrant.

The angle to collision with an obstructing square is deterrined by finding the angle to ccllision with each of the III*The simulated organisu-environment system

FIGURE III. 8

This shows, for a clockwise rotation, how the set of candidate collision corners of an obstructing square varies as a function of the position of the centre of rotation relative to the axes of the square. This is the set of collision corners that must be considered if the obstructing square is encountered during the scan of the doughnut slice.

Along the arcs are shown the edges or corner that may be involved if the obstructing square is encountered when tracing a constraining arc.

For a clockwise rotation about the point U in the southwest quadrant relative to the axes of an obstructing square, this shows how each of the candidate collision corners could actually occur. Leading segment $A B$ collides with the southwest corner, $C D$ collides with the northwest corner, and EF collides with the northeast corner. A'B', C'D', and E'F' are the positions of $A B, C D$, and $E F$, respectively, at the moment of collision.
collision corners separately and taking the $x i n i m u m$ of the three (or two) angles. The collision corner of the cbstructing square is the corner with the smallest angle-to-collision.

Given a leading segment $A N$ of an edge $A E$ being rotated about a point U, the angle to collision with a point F is found as follows. Let n be the unit vector in the direction of the outward normal to $A B$, let x be the perpendicular distance from J to $A E$, let r be the radius $U P$, let p be the $v \in c t c r$ OP, let E^{\prime} be the point on $A N$ which coincides with P at the moment when the collision occurs, and let alpha be the angle to collision (figure III. 8). Then the following holds.

$$
\begin{align*}
\text { alpha } & =\angle P U N-\angle \underline{P}^{\prime} O N \\
\cos (\angle \underline{P} O N) & =(\underline{I} / r) \cdot(-\underline{n})=-(\underline{p} \cdot \underline{n}) / r \\
\cos \left(\angle \underline{P}^{\prime} O N\right) & =x / r \\
\text { alpha } & =\operatorname{arccs}[-(\underline{x} \cdot \underline{n}) / r]-\operatorname{arcos}[x / r] \tag{B}
\end{align*}
$$

If an obstructing square is encountered while tracing the inner or outer constraining arc, the collisicn computation is slightly simpler. Instead of rotating the candidate ccllision corner backwards to where its arc intersects the leading segment as in the usual case, here one has to rotate the endpoint of the leading segment forwards to where its arc intersects a side of the obstructing square. The computation is siafler because the sides of the square are aligned with the cocrdinate axes.

I describe this collision computation cnly for an example invclving the cuter constraining arc (figure III. 10). Surfose the point of rotation U lies in the southwest quadrant relative

FIGURE III. 10

$$
\begin{aligned}
& A B=\text { object's edge. } \\
& A N=\text { leading segment. } \\
& U=\text { centre of rotation. } \\
& A^{\prime}=\text { point of collision with obstructing square. } \\
& r=U A=U A^{\prime} . \\
& \frac{a}{}=\text { vector } U A . \\
& \alpha=\text { angle to collision }=\angle A U A^{\prime} . \\
& U W=\text { perpendicular from } U \text { to collision side of square. } \\
& \underline{n}=\text { unit outward normal from collision side. } \\
& x=\text { distance UW } \\
& y=B-\gamma \\
& \cos B=\left(\frac{g}{r}\right) \cdot(-n)=-(\underline{a} \cdot n) / r=-\frac{U V}{r} \\
& \cos \gamma=\frac{U W}{r} \\
& \alpha=\cos ^{-1}(-(\underline{a} \cdot n) / r)-\cos ^{-1}(x / r) \\
&\left.=\cos ^{-1}\left(-\frac{U Y}{r}\right)-\cos ^{-1} \frac{U W}{r}\right) .
\end{aligned}
$$

FIGURE III. 10 - The diagram shows the intersection A^{\prime} of an outer constraining arc with an obstructing square. The formula shows how to compute the angle of collision.
to the axes of symmetry of the square, and the endpoint A of a leading segment an collides with a side of the square. The side involved is the collision side, and is sfecified ky the arc tracing routine. In the example shown the ccllision side is the best side of the square. Instead of dropping a perpendicular from 0 to $A N$, for this computation one drcps a perpendicular from 0 to the collision side, meeting it at $\%$. Let ∇ be the perpendicular projection of A onto 0 . Then alpha, the angle to collision, is given by

$$
\begin{equation*}
\operatorname{alpha}=\operatorname{arccs}[-\sigma \nabla / r]-\operatorname{arcos}[\sigma \hbar / r] \tag{C}
\end{equation*}
$$

The arc tracing routine may, instead, specify that the arc Enters the cbstructing square at the corner P. The cocrds of P are known so the angle to ccllision is then simply given by

$$
\begin{equation*}
\text { alpha }=2 * \operatorname{arcos}[A P /(2 * r)] \tag{D}
\end{equation*}
$$

When tracing the ccnstraining arcs of a doughnut slice at most two obstructing squares are encountered, since an arc-tracing routine is abandoned as soor as an obstacle is found. For such an cbstructing square there are four distinct relative positions of the centre of rotation 0 , and for each of these there are three different ways in which the arc may intersect with the square. Each of these twelve cases reduces to one or other of the computations specified y y equations (C) and (D). A 4×3 decision table specifies the correct procedure.

III:The simulated organism-environment system

To sum up this secticn so far, I have guided you thr cugh a collection of algorithms sufficient to solve the basic problems invelved in an implementation of TABLETOP. These include algcrithms for scanning an object's shape, for scanning the parallelograms and doughnut slices sweft out in the course of pushto and turn actions respectively, algorithas for tracing straight lines and circular arcs, and algorithms for computing the exact distance to collision, or angle tc collision, for these two basic acticns.

The algorithms given above for the turn action in TAELETOP requires inverse cosines and extensive case analysis. The former are not computationally cheap, the latter requires careful and time-consuming coding. Consequently I used a quicker, but dirtier and ccmputaticnally more expensive, qethod of implementation. This is the second method referred to on page 92. Namely, when an object is to be rotated the turn procedure actually imflemented does the following. The digital representation is erased, the Cartesian representaticn rotated by 10°, and its new projection onto TABLE scanned for obstructing squares (without actually drawing the digital representation). This is repeated until ar cbstructing square is encountered or the intended angle is achieved. If an obstructing square is found, a binary search is carried out over the last sub-angle of rotation until the achieved fositicn is located tc within 2° accoracy.

This method leaves open the possibility that scme small III*The simulated organisu-environment system
obstacle may be jumped over between the 10° test positions. This has not yet happened in practice, partly because only very simfle tablemp environments have been used that do not contain small isclated obstacles, and partly because the size of the wovable objects bas not been sufficiently large for an obstacle to be missed in a 10° rotation. The simplest configuration in which such an incident could occur would have otak grasping the narrow edge of a 1×14 movable object or "stick", an obstacle whose digital representation occupies a single square of TABLE at a distance of about 13.5 from 0 tak, and 0 tak executing a turn acticn of more than 10° towards the obstacle (figure III. 11).

An important implementation problem arises in practice. When many pushto and turn actions are apflied to movable object, the Cartesian representation of the object beccmes deformed due to cumulative floating point inaccuracies. Thus what was originally a square may at some later time look like the end view of a squashed cardmoard box.

To overccie this problem three Cartesian style representations are used for an object, not just cne. When the object is first specified a base representaticn is set up. This is its original Cartesian representation. After any arbitrary seguence of acticns the current Cartesian representation can always be represented as one rotation and one translation applied to the base representaticn. since rotations are relatively uncommon, and are computaticnally expensive, a Ictated base representation is also used. This consists of the III*The simulated organisu-ervironment system

FIGURE III. 11

This shows the simplest kind of situation in which a potential obstacle (marked 'B') could be missed by the algorithm actually implemented. Utak is holding a long stick and when he executes a turn action to the right of at least 10°, the obstacle is missed by the algorithm.
base representation rotated by the angle betveen it and the current Cartesian representation. During a sequence of translations ketween two rotations, the Cartesian representation at the end of each translation is derived frcif the rotated base representation that was computed at the last rotation. When a rotation occurs a new rotated base representaticn is computed directly from the base representation. The current Cartesian representaticn at this fcint is then obtained by one translation from the nev rotated base representation. With this scheme iaplemented the Cartesian representation of a movable object cannct deform, however many poshto and turn actions are applied to the object.

One final problem remains to be considered.
III.1.2.1 Tbe overlay problem

A froblem involving the interaction of Cartesian and digital representations crops up occasionally wher utak is hclding and moving an object. I refer to the system formed by Otak and a held object as a sum object. When he first grasps an object his digital representation is necessarily outside and contiguovs with the object's digital representation. at that time, the Euclidean distance d between his Cartesian positicn 0 and the nearest point N on the object's Cartesian representation must have a value strictly between 0 and $2 * r o o t 2$. The distance
d remains invariant over all further movements of the sum object until otak executes a letgo action fcllowed by a slide action. When $d<$ root2 it is clearly possible to fosition the sum object such that the pcints \mathbb{U} and N in the Cartesian representations lie in the same square of $T A B L E$. Consequently it is possible for the digital representation of $U t a k$ to coincide vith a square in the held object's digital representation. This is cf no ccicern while \quad tak continues to hold the object since it does not affect the computations involved in pushtc and turn actions. The problem arises if this situation occurs imediately before Otak lets go of the object. Suppose he lets go and then tries to execute a slide action. The slide routine finds that Utak's starting point lies within a square belonging to the digital representation of an obstacle, and therefore fails! If there are empty $T A B L E$ squares next to Utak's square then the following procedure bandles the problem.

1. Let the value of EUGSQUARE be the coordinates of the TABLE square currently cccuried by Utak, let OLDEDGSQUARE be the value of BUGSQUABE at Utak's previcus position, let BUGषARK be the colour assigned tc utak's digital representation on TABLE, and let OVERIAY be the overlying colour of the EUGSQUARE. The value of OVERLAY is the cclour empty except when the BUGSQOARE is within the held object's digital representation.
2. After a pushto or turn action, first draw the grasped object, then set

OVERLAY = COLOUE-OF (BUGSQUARE)
COLOUR-OF (EEGSCUABE) = BUGMARK
3. If Utak is about to execute a slide and if OVEFLAY \neq empty, then do: COLOU E-OF (EUGSQUARE) = ERFty OLDBUGSQUARE = BUGSQUARE
Compute the result of the slide.

> If achieved position still lies within OLDEUGSQUARE then \quad COLOUR-OF (OLDBOGSCOABE) = EUGMARK else \quad COLOOB-OF (OLDBUGSQOARE) $=$ CVEBLAY

This procedure has proved sufficient in fractice but does not solve the problem in general. In fact the digital representation of Utak can lie arbitrarily far within the digital representation of the held object. This can arise if there is a long straight "canal" of width strictly 上etween 1 and 2 units in the object's Cartesian representation. Let the canal have length $n+1$. In one position of the object the canal may lie astride a column of squares. Then utak could slide to the head of the canal and grasp the object there. In another position of the object the canal may not straddle any whele TABLE squares, so that the canal does not appear in the digital representation. Noŋ suppose that Utak has grasfed the object in the first type of positicn and has let it go in the second type of fosition. When he wants to execute a slide, Utak is hopelessly trapped with n squares of the object's digital representation between him and the empty TAEIF squares outside. This is illustrated in figure III. 12.

One solution that immediately springs to mind and can be easily iapleqented within the current TABIETOP philosophy is the following. Before a grasp action can be exfcuted the 20 clcsest squares to Utak's square must be empty and some square in the ring of 24 next closest squares must belong to the object's digital representaticn. This is shown in figure III. 13. This ensures that no point of the subsequent held cbject lies within III*The simulated organism-environment system

FIGURE III. 12 - (a) The Cartesian representation of an object, with a canal of width 1.5.
(b) The object positioned so that the canal is open in the digital representation. Utak is able to slide to the head of the canal and grasp the object there.
(c) The object positioned so that the canal is closed. If Utak now lets go the object, no slide action can get Utak beyond the borders of his current digital representation. He is trapped.

FIGURE III. 13 - One solution to the overlay problem is shown here. Before Utak can successfully grasp an object, two conditions must hold. (1) The 20 squares of TABLE closest to Utak must be empty. (2) At least one of the 24 squares forming a ring around the 20 closest squares must belong to the object's digital representation.-
root2 units of Utak's position, and thus that the aoove "overlay" frcblea cannct arise.

Ancther solution would require that, in the Cartesian representation of \quad tak and the object tc be held, utak was not within root2 units of any edge of the object. This however would require closest edge calculations in Cartesian coordinates, a type of calculation that $I w i s h t c t r y$ and avoid as ruch as fcssible.

Now I shall show some examples of the TABLETOP prograr in acticn.
III.1.3 An example of TABLETOP performance

The following pages, figure III. 14 , shcw excerpts ficm a session with TABIBTOP recorded during oBC's Open House 1979 . slightly edited. It shows the state of the TABLE array as a human user solved the L-shaped object problem. The first snafshot includes a statement of the task, which is read by the user, not Utak! The subsequent snapshots show:

- an action command issued by the user
- the resulting state of the TABLE array, with the BOGMARK '*' showing otak's digital representaticn
- the contents of the nine table squares in the 3×3 array centred on Utak. (Thus the centre square shows the contents of the OVERLAY variable.)
- the typed response from TABLETOP.
\{I have added comments within braces like thise\}

FIGURE III. 14
(GRASP)

BBB
-A.
> GOT IT:
(POSHTO 6.0 N)

BAA

- A A
$>$ HIT:

(PUSHTO 5.0 N)

III. 2 The sigulated organism Utak and his tasks

III-2.1 Lesign considerations

Now that I bave described the simulated envircnment, what kind of crganism should be built to live there, and what kind of tasks should the organism be required to execute? These two questions are closely linked since, for example, you cannot expect a colour blind human to respond tc traffic lights correctly unless other cues such as light fosition are available. Mcre precisely, what kind of actions should the organism be capable of executing and what kind of sensory input should the organism receive frcm its environment? The kinds of input/output alloged to the organism, and the kind of task he is reguired to solve, both mould to a certain extent the design of the rediating mechanism, or organism-ccntrcller, that lies betseen input and output.

Asking these questicns of design imutdiately raises many factual and methcdological questions. How animal-like should the organism be? If so, what animal? If not, by what criteria are the design decisions to be made? If the simulated organism is to be like some specific animal, exactly what sensory input and motor output messages does that animal's brain receive and send?

Since I am interested in the principles of behaviour of animals and humans, the organism should definitely be III.The simulated organism-environment system
animal-like. The sutsequent questions about sersory-匹otor I/O are, unfcrtunately, virtually unanswerable; in no case are all the relevant facts for cne interesting animal known. one ight, instead, fall rack upon the gross behaviour of an arimal, but again, in almost no case are all the relevant facts known!

This situation has recently improved. M.J. Hells has collected a mealth of information about the physiclogy and behavicur of the cotopus \{Wells, 1978], and E.B.Kandel has published a comparable collection of information about an even simpler creature, the marine snail Aplysia [Kandel, 1978]. With a view to receptor design, I have ferused various known facts about receptors in mammals, including visual receptor densities, receptive field sizes, and magnification factors in the brain.

One has to resort to criteria of elegance, naturalness, and finally, in the AI approach, on the critericn of computational feasibility. This is in contrast to most cther experiaental sciences, where the final arbiter is experimental feasibility.

My attitude was well put by the philoscpher Caniel Dennett When he wrote [Dennett, 1978, p. 104]
" cne does not want to get bogged down with technical problems in modeling the cognitive eccentricities of turtles if the point of the exercise is to uncover very general, very abstract principles that will apply as well to the cognitive crganization of the most sophisticated human beings. So why not then make up a whole cognitive creature, a Martian three-wheeled iguana, say, and an environmental niche for it to cope with? I think such a project could teach us a great deal about the deep principles of human cognitive psychology, but if it could nct, I am quite sure that most of current d. I. modeling of familiar human mini-tasks could not

IIImThe simulated organisw-environment system
either. "

Utak is my three-wheeled Martian iguana and TABLETOP is his niche.
III. 2 - 2 The sensory-motor capabilities of Utak

Utak can move in a straight line, he can grasp a movable object, and he can push, turn, and letgo a held object. Ef has five motor outputs, only one of which is active at once. Thus the design of his motor output immediately contradicts cne of the chvious features of the design of natural motor output. This is the fact that exactly one output has to be active to execute an action, whereas large numbers of output lines are active when a biological system acts. Indeed, an alert biclogical system could be described as a fattern transducer that transforms a never-ending series of input patterns on millions of input lines into another never-ending series of patterns on a similarly large number of outfut lines. This, of course, is very different from a typical present-day comfuter which channels all information through a bcttleneck forutd by the single high-speed CPO. It seems unlikely that we can get close to understanding the computations occurring in biological systems if we allow the "bottleneck" design cf current computers to influence our thinking.

The visual sensory infut is scmewat more realistic, consisting of 160 input lines from 160 retinal receftcrs. Utak IIImThe simulat \in d organisu-ervircnment system
gets a bird's eye view directly down on his immediate environment as though his eye were on a stalk. The retinal fields are arranged as fcllows: 64 in a central fovea, 48 fields each 4 times the size of a foveal field in an intermediate zone suricunding the forea, and 48 fields each 16 times the size cf a foveal field in an outer, peripheral, zcne. Each retinal cell registers a 3-bit graylevel, or integer in the range 0 - 7 , that reflects the ratio of object to total area in the part of the tabletop covered by the cell's field (figure I.3). The colour of an object is ignored. A set of 160 graylevels constitutes cne retinal impression. object colours can te sensed via a tactile impression, which consists of the colours of the 8 adjacent squares tc Utak.

The Utak simulation computes a new retinal and tactile impression each time Utak comes to a halt. To do sc it superimposes the array of retinal fields cn TABLE, centred on Utak's digital representation, and computes the graylevels directly from the TABLE array. An action by otak will be reflected by a change in the retinal impression only if the digital representation of, Jtak or of an object held bi him changes. More scphisticated visual sensory systems are easy to propose, but this one is computationally cheap and has sufficed sc far.

The concepts of speed, mass, acceleraticn, ard mcrentum have not betn implemented. As the reader will see, the attempt to design an organism-controller for this simple world raises an IIImThe simulated organisw-environment system
ample range of interesting and fundamental probleas in perception and action without the additior of these extra features. Nonetheless, the distance between successive retinal impressions may be viewed as a measure of sfeed if one assumes that retinal impressions are received at a constant rate.

III-2.3 Examples of Utak's sensory-motor experience
Figure III. 15 shows the retinal and tactile impressions received by Utak immediately prior to the first few actions in the perfcrmance of secticn III. 1.3.
III.2.4 Exameles cf tasks for Utak

Here I present a list of tasks, in English, which I would expect a competent organism-controller for Utak to be able to handle. Their method of presentation to otak's organism-controller will te described in secticn IV. 2 .

```
    "Go to the northeast corner"
    "Go to the nert rccm"
    "Go to the square"
    "Go round the square and return"
    "Push the square into the northeast corner"
    "Push the square into the next rocm"
    "push the brick through the door"
    "Push the brick around the corner"
    "push the L-shaped object into the next roor"
        III*The simulated organis\mathbb{Empironment system}
```


\checkmark

When a compass directicn appears in the task statement this refers to Otak's cwn local orientation system, which need not coincide with the TABLETOP orientation. It is initialized vhen the first retinal impression is received. Whatever directicn be facing at that time becores north in his orientation system. I do not claim to have a system or even the cutlines of a system that can handle all these tasks; I am presenting this list here to shom the ultimate design goals for a rotot-controller for Utak.

III. 3 An extension and twc generalizations of TAELETOE

The purpose of this section is to discuss issues that arise from the design of tabletop. These are not gerane to the main argument of my thesis but are of scme interest in their own right. They are also relevant to questions in autcmatic assembly.

The first issue concerns exactness. How accurate is the TABLETOP simulaticn, and how, if at all, could it be extended to achieve exactness? For the woment I will assume that the referent for the terms "accuracy" and "exactness" is the usual Cartesian representation of shapes, using real numbers represented to a limited precision in some ccmputer. The wction of an cbject way, in the worst case behavicur of TABLETOF, be halted if a point of the moving object comes within roct2 of a potential obstruction, whether or not a collisicn would occer in IIInThe simulated organism-environment system
the Cartesian representation. This can cocur if an edge of the otstacle intersects a TABLE square arbitrarily close tc one corner and if the path cf Dtak, or a point of a held orject, intersects the same TAELE square but arbitrarily clcse tc the diagcnally offosite corner. The TABLETOP cellision point may be arbitrarily far from the cartesian collision foint, or even worse, the TABLETOP collision point may not correspond to a Cartesian ccllisicn point. These cases can arise if the line of approach of Utak, or an object, makes a near-zero angle with a fctential cbstructing edge.

How can this state of affairs be remedied? In describing the possible cures I restrict attention to the case of moving pcint (otak) approaching an object.

The first cure is this. In the course of projecting cbjects cnto the table array, whenever a TABLE square is entered by an edge a fointer back to the traversing edge is stored at that square. If a square is entered by several edges a pointer is stored for each edge. Then each time the path of Utak encounters an obstructing square on the TAELE, the Cartesian representation (s) of $t h \in \in d c \in(s)$ which caused this square to be marked as an cbstruction is (are) retrieved. Then the Cartesian coordinates of the collision point, if any, are ccaputed by any standard line intersecticn algerithm.

The second cure is based on the idea of repeatedly projecting Cartesian representations onto the TABLE at higher and bigher scales of magnification, each time re-determining the IIIThe simulated organisu-envircnment system
obstructing squares. The process halts when the collision fcint, if any, has been found to within the required accuracy. I call this the focus method. To explain it I need some terwinclogy.

A C-representation (B, C) is a collection E of Cartesian representations of one or more distinct objects, using some coordinate system C. A coordinate system C is cbtained by the afplicaticn of a sequence of rotation, translation, and scaling operations to some fixed initial coordinate system. Let a WindcW W on a C-representation (R, C) be a rectangle of any size or crientation. Say that a C-representation (R, C) has been tabled with resfect to a given window 月 if
a) All parts of B that lie wholly outside W are removed and any line segment of R that intersects an edce of W is replaced by a line segment that terminates at that $\in d g e$. In computer graphics terms, B is clipfed.
b) The coordinate system C is transformed into a new system by
a rotating it intc alignment with the edges of W,
a moving the origin to the centre of W,

- apflying scale factors, one in each coordinate direction, so that the sides of W coincide with the sides of table.
c) The C-representaticn (R, C) is projected onto TABLE.

Suppose the coordinate system C^{\prime} is the result of applying IIIaThe simulated organisa-envircnment system
to a coordinate systell C a series of several rotation, translation, and scaling oferations as in k) above. Such a series can always be reduced to one rotation, cne trarslation, and two scalings. Let G be a unit square in C^{\prime}. Let Q^{\prime} be the rectangle in C that is obtained by applying to Q, in reverse order, the inverses of the operations in the series. Then the rescluticn of the cocrdinate system C : is defined to $b \in$ the maximum of the lengths of the sides of Q in the original system C.

I can now describe more precisely the focus method for finding as accurately as desired the collision foint, if any, between Utak's intended path and an obstacle. Let R $\mathrm{f} \in \mathrm{the}$ collection $R O$ of the original Cartesian representations of all the objects and the verge in the envircnaent, let C be the original coordinate system $C 0$, and let W coincide with $W 0$, the sides of table. Let \in be the resclution required.

CP1. Table the C-representation (B, C) with respect tc the window $\begin{aligned} & \\ & \text {. Let }\left(B^{\prime}, C^{\prime}\right) \text { be the new } C \text {-representation. }\end{aligned}$

CP2. Find all potential obstructing TAELE squares alony Otak's intended path. If there are none then exit with the message "no collision found". Otherwise, if the resolution of C ' is less than ϵ, then compute the pcint cf collision of the intended path with the first obstructing square encountered. Find the coordinates of this point in the original coordinate system $C O$ and exit IIImThe simulated organism-environment system
with these coordinates for the foint of collision. Otherwise, continve.

CP3. Take the smallest rectangle \boldsymbol{W}^{\prime} that is aligned with the direction of motion of Utak and that contains all the Fctential cbstructing squares found in step CP2. Let $(B, C)=\left(R^{\prime}, C^{*}\right)$, the window $h=$ 月 $^{\prime}$, and go to step CE1。

A magnification always occurs at step CP1 if the new vindow W^{\prime} is smaller than the frevicus window W. The rectangle w' vill always be aligned with the coordinate axes except, possibly, the first time that CP3 is executed. Thus a rotation is executed in stef CP1 at mest cnce.

This rotation, permitted by allowing the window \boldsymbol{W}^{\prime} in CP3 not to be aligned with the axes, is necessary to handle one sfecial type cf case. Namely, the case where the potential obstructing squares form a diagcnal across the TABLE array, as can happen if an edge and otak's path both extend approximately corner-to-corner and both lie approximately parallel tc each other. A window aligned with the axes mould nct, in this case, be smaller than the current yindoy, and consequentiy no magnification could occur. As a result of this single rotation, the intended path of Utak is alvays parallel to one of the axes, say the vertical.

Suppose the TABIE grid has n unit squares along each side. Then the rectangle W^{\prime} of CP3 will have horizcrtal width one in every execution of CP3 after the first, since all the squares IIIm The simulated organism-envircnment system
intersected by a vertical line lie in a single column. The herizcntal scale factor in CP 1 will therefore be n in every execution of CP1 after the second. Since n is an integer greater than 1 , a horizontal magnification occurs in every execution of CP1 after the second.

This may seem like a computationally expensive methcd to use. One reason I have sketched it out is because, if the C-representation consists only of convex shapes, the projection onto table can be done very fast with scme simple parallel hardware. If such hardware was available, this magnification method might become feasible. Another reason is that this same method, in simpler form, can be used to solve linear programing problems in any dimension. A final reason is that an extension of the focus method is used in SHAPE, the spatial planner in the organism-controller of Dtak.

The parallel hardware required consists of one compenent for each TABLE square. Given a line L, its coordinates are brcadcast to every component. Each component computes whether its corresponding TABLE square lies to the right of, to the left of, or is intersected by, the line L. Let this computation take one time unit. Then the projecticn of a convex shape s bounded by m lines takes m time units, one for each line, flus the time for cofe extra $A N D$ operation by each coagonent. The AND operation is this. If a TABLE square lies to the right of, or is intersected by, every line of the shape S, then the corresfonding component signals "inside $S^{\prime \prime}$; otherwise the IIIaThe simulated organism-environment system
compcnent signals＂outside S＂．
One cther question naturally arises．Can the design of TABIETOF be generalized to three or higher dimensions？The answer is qes，provided the projection of an n－dimensional convex polytope onto a generalized TABLE array can be computed． The generalized TABLE consists of an n－dimensicnal array of unit hyper－cubes．The scan－table technique used in TAELETOF for projecting a convex polygon onto the TaBIE does not easily generalize to n dimensions．To apfly the scan－table technique it must be easy to ccmpute which hyper－cubes a hyper－plane passes through．In three dimensions this is the groble⿴囗十⺝ of determining，for each face of a polyhedron，which unit cubes the face intersects．When the face is cblique to all the coordinate axes there is no simple algorithm corresponding to the line－tracing algorithm in two dimensions．Thus the scan－table technique does not seem to generalize．However，the wethod sketched above for computing in parallel the projection of a convex polygon onto TABLE generalizes easily．for each hyper－plane one simply computes in parallel，for each unit hyper－cube of the n－dimensional array，whether the hyper－cube lies to the left of，to the right of，or is intersected by，the hyper－plane．One final $A N D$ operation for each hyper－cube ccufletes the ccmputaticn．

This method can also be used to corfute the hypercubes sweft cut by a leading hyper－plane in the course of a translaticn，or to compute the segment of a hyper－sphere III：The simulated organisu－envircnafnt system
(generalization cf a doughnut slice) suept out ky (a part of) a hyper-plane in the course of a rotation. In this latter case one has to compute whether a hyper-cube is inside, cotside, or intersected ky the surface of a hyper-sphere. Thus the tasic TABLETOP method can te generalized to higher dimensions.

In this chafter I have described the design of the TABIETOP simulation syster, and gone into sufficient detail that the essential problems to be handled in an implementaticn are clear. I have alsc shown how this design could be extended to ctain more accurate collision pcints, and how the two dimensional tabletop could be generalized to three or more diaensions. In particular I introduced the focus method for obtaining more accurate collision points. This will reappear later in the design of SHAPE, the spatial flanner.

In conclusion, considerable programming effort is required to simulate an envircnment as simple as a tabletop. The advantages of such a system are that some of the problems associated with real world slcppiness are avcided, no additicnal hardware is required, and the sensory-motor experience cf a prototype organism-ccntrcller is easily reproducible. In the next chapter I describe a class of algorithms fundamental to the functicning of the organism-controller.

CHAPTER IV

TOWAEDS TEE DESIGN OF A FOBOT-CCNTBOLLEE

The purpose of this chapter is to present an apfroach to the design and implementation of a robot-controller for otak. As described in the introductory chapter, any such design seems tc require two parts, a data part called the world model or cogritive map and a process part called the action cycle. This latter consists of a loop containing the three subprocesses of percepticn, flanning, and action.

The chapter is structured as follows. In the first section I present an analogy that is useful in appraching the prctem. In the second secticn I present the garts required of any robct-controller and in the third I present a scenaric of the behaviour which any complete robct-contreller for utak should disflay to be acceptable. In the fourth section I describe the progress made in one approach to the design and iaplementation of a robct-contrcller, and in the last secticn i descrite an alternative approach to this problem.

1V.1 An analogy

I start with a thumbnail sketch of the well-known aralogy betwen the scientific method and the process of perception IVATovards the design of a robot-conticller
since this was the starting pcint for my design of the organism-controller. Consider an experimenter investigating scme fhencmencn. He or she wants to understand the phenomenon and proposes an hypothesis. To test its validity this hypothesis is used to predict what will be observed if certain acticns are done - an experiment. He or she carries out the experiment and makes observations. If the cbservations are almost exactly as predicted then the experimerter's degree of confidence or belief in the bypothesis increases. One then says that the hypothesis explains the observations. If the observations are not as predicted but the hyfcthesis can easily be x cdified to accommodate the observations, e.g. by changing a parameter, then the degree of confidence remains as before but in an improved hypothesis. If the observations are not as predicted and cannot be accommodated by simple parameter adjustment then the experimenter makes a structural change, if possirle, to enable the hypothesis to acccmmodate theme If there is still an observation which the exferimenter cannot currently explain by an hypothesis then it is noted but otherwise ignored. With this new hypothesis, or old hypothesis with higher confidence, the experimenter designs ancther experiment and makes more observations, accommodates the hypothesis to these, and so on. Eventually the bypcthesis will, in principle, be so vell adjusted to the observations that the hyfothesis will te generally accepted as a cseful description of one aspect of Nature. Tke bypothesis will be consistent with IV-Towards the design of a robot-contrcller
all the observations so far, or in cther words may be regarded as the truth at that particular time and place.

Note the pragmatic nature of science: whatever theory is most satisfactory at a particular time is used as a basis for acticn. For instance, Newtonian mechanics was an acceptable and immensely successful theory even though it was known that it could nct explain the precession of the perihelion of Mercury.

Now return to Utak in his simulated world. At all times Utak maintains an hypothesis about the world, called the vicrld model. Each part of the world model has an associated degree of confidence, and these degrees of confidence ray vary from time tc time. In general the degree of confidence associated with a particular part will increase with time; only the cocurrence of scme quite unusual event yill cause it to decrease. The experimenter is otak; the phenomenon to be explained is the external wcrld; the observations, or pieces cfevidence, are provided by the series of sensory impressions impinging on utak; and any hppothesis or world model must be ccnsistent, as far as possible, with the series of sensory imfressions. At the very least, the current world model must be consistert with the most recent sensory impression.

In this analogy, percepticn is the act of accommodating the world model to explain the current sensory impressicn, vile maintaining consistency as far as possible with previous sensory impressions. When there is no externally impcsed task, planning is deciding on an experiment to gather more evidence to IV Towards t be design of a robot-contrcller
corfoborate the current world model. Acting is simply carrying out the planned actions. Each act will be executed with a speed dependent $c a$ the degrees of confidence associated with the farts of the current world model most relevant to this particular act. If all parts of the hypothesis have been corrctorated to a high degree of confidence then it may seem to 0 tak that be knows the whole world, even though in actual fact there may be considerable difference between his byfothesis and the current state of TABLETOR. In other words he may still be mistaken even wher he seems to know otherwise.

If there is an externally imposed task which utak wust perform then provided the current hypothesis has scme overall minial degree of belief, ttak will construct a plar to acccmplish the task on the basis of this hypothesis. Any sensory impression received while carrying out this flan mest be accommodated by the hypothesis. This continual cycle of perception, planning, and acting is, of ccurse, the action cycle. When otak is given a task he first assumes a default wcrld model, then opens his eye and receives the first retinal impression. He interprets this first sensory iffressicn and modifies the default world model to accommodate it. Then he interfrets the task statement in terms of this morld model, and passes contrcl to the planner which makes an initial plan to accerflish the task. An act is decided on ky examining the first few actions of the plan, and executed. Then ancther retinal impression is received, interpreted and accommodated by
the world model, the plan modified if necessary, and the rext act produced and execoted.

This analogy with science constrasts with a naive Map-in-the-Head design. In this, spatial knculedge resides in a structure isomorphic to a printed map and spatial reascning occurs when the "mind's eye" examines this structure. Such a proposal begs answers to many guestions, the wost important of Which is, Ferhaps: Who draws the map? This is answered by the analcgy with the scientific rethod: Ey a process of hypothesis assumption and modification, using partial evidence presented thrcugh the senses.
IV. $\underline{\text { The parts }}$ of an organism-ccntrcller

Any complete organism-controller for Utak must contain at least the following program steps. These can be stateci bere without sfecifying data structures or processes. All that is needed is a world model, a way to receive a retinal impression, and an action effector.

INITIALIZATION SIEPS

1. Set the current world model equal to some default porld model.
2. Receive the first retinal impression.
3. Analyze the retinal impression into regicns and bcrders.
4. Interpret the regions in the retinal impressicn and identify the image of \quad otak $i n$ the retinal impression. IV-Tówards the design of a robot-conticller
5. Modify the default world model to be consistent with the interpreted retinal impression.
6. Accept a task and interpret it in terms of the world acdel. This may require substantial modificaticn of the world model, for instance the addition of an chject if ore is mentioned in the task but no object is "visible" in the current retinal impression.

ELAN

7. Construct a plan to achieve the task, using the spatial planner.

TBE ACIION CYCLE

ACT

8. Test whether the task is complete. If so, STOP.
9. Decide on the next action to take, by exarining the initial forticns of the plan and the degrees cf confidence associated with those parts of the vorld model close tc the planned actions.
10. Execute the next action and receive the next retinal impression.

PERCEIVE

11. Interpret the $n \in \mathcal{H}$ retinal impression on the basis of the current world model, and modify the world model as necessary to wake it consistent with the current retinal impression.

ELAN

12. Is the plan still viable? If so go to 8 . IVatowards the design of a robot-contrcller
13. Otherwise, re-ccmpute all or part of the plan, as in stef 7, and go tc 8.

The parts of the action cycle correlate with figure I. 6 as fcllcws.

Steps 8, $9, \varepsilon 10$ are carried out by ACT.
Step 11, "perceive", is carried out by accom.
Steps 12 \& 13 are carried out by SPLAN.
A task statement as required in step 6 is assumed to be presented as two parameterized world models, a starting and a gcal world model. For example the world models corresponding to the task "push the square object into the next rcom" will have two rocms, a square object, and a connecting doorway, the only difference between the start and goal world models being in the fosition of the square object. The problem in step 6 is to reconcile the currently assumed default world model with the world model implied $k y$ the task statement. I \mathbb{r} ake this assumption to circumyent the handing of natural language input.

IV. 3 The goal behavicur for an organism-contrcller

The intended meaning of some of the task statements of III. 2.4 (page 134) is illustrated in figure IV.1. This shous the intended situations before and after each task but does not indicate how the world model of Utak might change while executing a task. A detailed scenario of the intended behaviour of Dtak as he carries out one task appears in figure IV. 2. It IV.Tcwards the design of a robot-contrcller

FIGURE IV. 1 The meaning of task statements.

"PUSH SQUARE OBJECT TO NORTH EAST CORNER"

"PUSH L-SHAPED OBJECT INTO NEXT ROOM"
starts with a summary on the first page (a), showing hov the many pages cf this figure relate to execotions of the action cycle.

In the initial TABLFTOP situation $S-1$ (5). Otak is located in the area cf the scuthest corner, a square object lies in the ncrtheast corner, and twc thin horizontal obstacles separated by a siall cap are in the east half of the tatletof. The actual takletof or "rcom" dimensions are 40×40.

The default world model assumed by Utak before opening his eqe is a square room of dimensions 36×36 centred cr him (c). Tbefirst retinal impression is shovn in (d) with the preferred line-segment interpretaticn superimposed on it. when this interfretation is reconciled with the default world model, MM-1 is cotained (e), containing a single small object object1. Then the task statement is received (f), which really consists of two subtasks. Since there already is a square cbject, objecti, in the current world model wu-1, this is immediately identified as the square cbject of the task statement. Thes no medification to \quad MM-1 is required $k y$ the task statement. If the statement had included, for instance, "go between the square and the l-shape" ther an l-shaped object would have had to be hyfothesized in a fosition beyond the area covered by the retina. A path is planned in the world wodel and a first acticn decided on (g). The size of the action, or equivalently the distance travelled ketwefn retinal impressicns, is proportional to the confidence with which the structure of the vorld wodel is kncwn. This IV=Towards the design of a robot-controller

FIGORE IV. 2 (a) Executions of the action cycle.
(b) Initial situation S-1.
(c) Default world model wM-0
(d) First retinal impression RII-1
(e) First yorld model WM-1
(f) Task statement
(g) First plan, PLAN-1, and first act ACT-1
(b) New situation S-2
(i) Next retinal impression RTI-2
(j) World model MM-2, plan PLAN-2, act ACT-2
(k) Situation S-3
(1) Fetinal inpression RTI-3
(m) Horld model ma-3, completely new plan plan-3, act act-3
(a) Situation S-4
(p) Retinal impression RTI-4
(G) World modal WM-4, plan PLAA-4, act. ACT-4
(r) Situation S-5
(s) Retinal impression RTI-5
(t) Worla model Wia-5, plan MLAN-5, act ACI-5
(u) Situation S-6
(v) Retinal impression RTI-6
(w) World modal WM-6, plan plain- 6 , act $A C T-6$

FIGURE IV. 2 (c) The default world model WM-0.

FIGURE IV. 2 (e) The world model WM-1 after the first retinal impression RTI-1 received.

FIGURE IV. 2 (d) Retinal impression RTI-1.

7	4	0	0	0	0	0	2
7	4	0	0	0	0	0	0
7	4	0	0	0	0	0	0
	0	0	0	0	0	0	0
7	4	0	0	0	0	0	0
	4	0	0	0	0	0	0
	4	0	0	0	0	0	0
7	4	0	0	0	0	0	0
7	7	7	7	7	0	0	7
7	7	7	7	7	7	7	7

This shows the gray levels received by Utak's retina from the TABLETOP world. The central
'7' is the image of Utak. The overlaid dashed lines show the line-segment interpretation.

FIGURE IV. 2 (f) Task statement "Go round the square object to the south-east corner".

This may be translated as:
"Find a square object."
"Keeping the square object on your right, to to a point near the square object on the side away from your current position." "Still keeping the square object on your right, go from this point to the southeast corner."

The thickened lines correspond to the line segment interpretation of RTI-1. The other segments forming the boundary of the tabletop are hypothesized.

FIGURE IV.2(h) Situation S-2

FIGURE IV. 2 (i) Retinal impression RTI-2

The predicted graylevels are inscribed in the top right hand corner of all but the fovea retinal fields. The predicted line segment interpretation is shown by the overlaid dashed lines at the left hand side and at retinal field (α). The only difference between predicted and actual graylevels occurs at (β); this results in a new line segment interpretation overlaying, both fields (α) and (β).

FIGURE IV. 2 (j) World model WM-2, with PLAN-2 and ACT-2.

The position and shape of object 1 have been updated - it is no longer a square object. The previous plan, PLAN-1, had to be modified slightly.

FIGURE. IV. 2 (1) Retinal impression RTI-3.

The actual gray levels differ in several places from the predicted gray levels (in the RH corner of each field). The row of 0 's across the top forces the north verge out by four units. The 2 and 6 in the top RH corner forces the introduction of a new object. Finally, the several differences at middle right force another change in the shape of object 1 .

FIGURE IV. 2 (m) World model WM-3, with PLAN-3 and ACT-3.

The north verge moved out by four units; object 2 is new and is square while the old object 1 can no longer be considered square; therefore, object 2 is assumed to be the square object of the task.

$$
\text { FIGURE IV. } 2(n) \text { Situation S- } 4
$$

FIGURE IV. 2 (p) Retinal impression RTI-4.

The gray level differences on the right-hand side force the east verge to be moved out by two units, and a new object, object 3 , to be introduced.

FIGURE IV. 2 (q) World model WM-4, with PLAN-4 and ACT-4.

The east verge moved out by two units; new object 3 assumed.

$$
\text { FIGURE IV. } 2(\boldsymbol{r}) \text { Situation } S-5
$$

FIGURE IV. 2 (s) Retinal impression RTI-5.

Once again, the gray level differences on the righthand side force the east verge out by two units and a change in the position and shape of object 3 . The gray levels for object 2 (just below centre) were exactly as predicted.

FIGURE IV. 2 (t) World model WM-5, with PLAN-5

The east verge moved out by two units; shape of objects changed.

Figure iv. $2(u)$ Situation $S-6$

FIGURE IV. 2 (v) Retinal impression RTI-6.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline 0 & 0 & 0 & 2 & 0 & 4 & 7 & 7 \\ \hline 0 & 0 & 0 & 6 & 0 & 4 & 7 & 7 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 7 & 7 & 7 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline & 0 & 0 & 1 & 7 & 0 & 0 & 0 \\ \hline 0 & 2 & 4 & 4 & 0 & 0 & 0 & 0\end{array}\right)$

The predicted gray levels are not shown here because only one difference between predicted and actual occurs: in the Fovea at the left hand end of object 3. This forces a very small change in object 3.

FIGURE IV. 2 (w) World model WM-6.

The shape of object 3 changed very slightly.
distance can also be regarded as a measure of speed with which Utak travels, if one makes the assumption that retinal impressions are received at a constant rate.

The TABLETOP situation $5-2$ after the execution of the first action is shown in (h) and the new retinal infression, BII-2, received (i). The two neighbouring graylevel values of 2 in the upper right hand side are not as predicted by $W M-1$; consequently the position and shape of objecti must te changed to be consistent with RTI-2, while maintaining consistency with RII-1. as a result of this change object1 is no longer square and there is some doubt as to whether it should still be identified with the square cbject of the task statement. There is, however, no other visible, potentially square, object with which the task's square object could be identifed, short of hypothesizing one in an arbitrary position beyond the area that is cr has been covered by the retina. Thus the known objecti is retained, for the moment, as the task's square object. The new world model is WY-2 (j). The original plan remains unchanged and ancther acticn is decided on.

The new situation $S-3$ is shown in (k) and the next retinal impression, BTI-3, obtained (1). This differs considerably from the predicted retinal impression. Neu line-segment interpretations are derived and the world model mM-2 modified accordingly to obtain $W M-3$ (m). A new square object, object2, has been found and the sbape of the supfosed square otject object1 turns out to befar from square. Thes the rew object2 IVATowards the design of a robot-contrcller
is assumed to be the square object of the task statemert. Also, the fositicn of the edge of the "room" is nct as expected and has to be moved out by four units. The planner is called and a new plan from the current position of otak going around object2 and rack to the southeast corner is constructed. Since there is a gap between object1 and the side of the rocm, and since a path gcing via the gap should $k \in$ shorter than going on the cther side of object1, the new flan goes through this gap.

Another action is decided on and executed, resulting in situaticn $S-4$ (I) and retinal impression BTI-4 (p). The graylevels of zerc along the right hand side where fours were predicted results in the east side of the rocm being moved out by two units. The graylevel of one is interfreted as a small object object3 against the east side. Frcm the evidence presented in RTI-4 alone it would be consistent to assume a small thin object not quite extending to the edge of the retina; this interpretation is not consistent with the evidence from BTI-3 (which is embedded in the line-segment interpretation obtained from it), so instead object3 is assumed. The new world medel is Wu-4 (g) ; the plan remains uncbanced, and an action decided $c n$ and executed.

The new situation is $S-5$ (5), with new retinal impression RTI-5 (s). Again this is not quite as predicted; the east side of the room has to be moved out by two and the position and shape of object3 changed. In the accommodated world redel mm-5 (t), the plan remains the same. The next situation $S-6$ (u) and IVaTowards the design of a robot-controller
retinal impression RTI-6 are obtained after several intermediate acticns. BTI-6 (∇) shows clearly the gap between objecti and object3 which was only deduced frcm previcus retinal iqpressions and the current world model $W M-6$ (w) correctly reflects situation $S-6$. Thus in this example no more acconmodation $c a n$ cccur, so the remainder of the plan will be executed correctly.

IV. 4 A first approach to implementation

The idea is to take seriously the analcgy between science and percepticn. The world model consists of a collecticn of statements about the shape of the verge, the positicns of objects on the tabletop, and the shapes of the objects. Each statement is to have an associated degree of confidence based on evidence ccllected from a series of retinal impressions. This degree of confidence is to be used in the acccmmodation process, tc help determine to what extent old statements should be modified when new evidence is received. The statements give fositions of end-points of lines and other spatial facts in terms of a cartesian coordinate system centred cn utak. A spatial problem is to be solved by projecting all or part of the world model onto a screen -- Otak's map-in-the-head -- then solving the problem there and translating the sclution -- the Elan -- back into the Cartesian coordinate syster. At all times there is a world model and a plan, even though initially these may be simple defaults.

The iaplementation of these ideas was approached in the order given by the list of program parts in IV. 2. step 6 , reccnciling a world model with a task statement, was initially ignored on the basis that I could get $k y$ with simple path-finding problems that did nct require reccnciliation of two world models. Steps $1-5$ were accomplished and then step 7, the iuplementation of a spatial flanner, was tackled. I found that current techniques for path-finding were not really satisfactory for my purposes and that an approach based $C D$ the use of the skeletcn of a shape fromised to be useful. This work is described in the next chapter.

First I will describe the world model.
IV. 4. 1 Definiticn of the world model

The data structure for a world model corsists of a tree of nodes linked by relaticns. The root of the tree is a node corresponding to Utak, called \$org, which has cne son, \$floor, corresponding to the flcorspace. The sons of $\$ f l o c r$ corresfond tc the isclated objects on the tabletop. The node N corresponding to an object may in turn have scns if the shape of the object is complex and is best described in a hierarchical manner.

A node corresponds to a shape on the tabletop and is a list consisting of the containing rectangle ftte smallest rectangle aligned with the axes that contains the shape), the actual boundary shape as a circular list of straight-line segments, the IV aTowards the design of a robot-conticller
shapes of any holes if present, and a sublist consisting of the relations between this node and its descendants in the tref, if any. Each node has its own coordinate system, and a relation between two objects specifies the translaticn and rotation required to get from the coordinate system of cne node to the other. A relation is simply a list (node1 node2 offset) where the cffset is a triple consisting of the x - and y-translation and the rotation to get frcm nodel's coordinate system to node2's. In the implementation so far, the rctaticn has aluays lefn zerc.

Ey specifying the world model in this manner it is easy to madify the world model tc reflect the meticn of otak or the motion of an object caused by the motion of U tak. All that has tc be done is to modify one relation. This tree representation can also be osed to specify a complicated shape in increasing levels of detail. Figure IV. 3 shows the wcrld wodel tree for a tabletop situaticn.
IV. 4. 2 Rerception: accommcdaticn tc the first retinal impression

When a retinal impression has been received it must be analyzed to find those regions which represent sface and those which represent objects or verge. Then the cbject regions must be distinguished from the verge regions in an interpretation stage sc that finally the world model can be modified to accommodate (explain) ther. The next three sub-sections describe these cferaticns (steps 3,4,5 of IV.2).

FIGURE IV. 3

(a) A world model, drawn on the Euclidean plane.

(b) Tree corresponding to the world model of (a).

Iㅍ.4.2.1 Edge and reqicn finding

A region in the retinal impression is a connected set of retinal cells where all the cells have zero graylevel, or else all have a non-zero graylevel. A connected set $c n$ the retina is defint using edge-adjacency. Two cells are edge adjacent if they have an edge or part of an edge in common. Thus diagcnally adjacent cells are not $\in d g e$ adjacent. A regior is connected $i f$, fcr any two retinal cells in the region, there is a chain of edge-adjacent retinal cells which starts at one of the given cells and finishes at the other. The border between two regions has a direction associated with it, such that a turtle, crasling along the bcrder in this direction, would always find the non-zero region on its right. Thus the (outer) boundary of a region with a non-zero graylevel would be traversed ty the turtle in a clockwise direction and any other koundary fi. \in. a hole) of the region wculd be traversed in a counter-clockuise direction.

The basic building block for finding the $\in d g e s$ of a region is the "inter-cell-edge" (ICE) wich is created between any pair of retinal cells where the graylevel of one is zero and the graylevel of the other is non-zero. A first scan of the retinal impression produces all the connected regions and marks the position of each ICE with a data structure linked to each \mathbb{I} ember cell cf the ICE.

The next operation links the ICFs of one region into one or more disjoint circuits. Since more information is needed for IV \quad Towards $t h \in$ design of a rabct-contrcller
later grouping operations, when an ICE is being traversed several extra pieces of information are added: the directicn of traverse (N E S), the graylevels of the cells of the ICE, and the sizes of these cells, the result being called a chunk. The last two items are $n \in \in \in \in$ later as evidence for the segments of the world acdel. Some ICFs lie along the edge of the retina and special chunks have to be used.

The linking is done by taking one ICE associated with the regicn in question and iteratively finding its successors using the geometry of the retinal impression until a closed circuit is fcrmed. If an $I C E$ associated with the region still remains unlinked in a circuit then another circuit is started. This is continued until all the ICRs are exhausted.

Next, a grouping operatcr traverses each chunk-circuit and groups consecutive chunks having the same ccafass-direction into a $s \in$ gment. A segment is a list
(pt1 pt2 dirn len type evidence)
where pt1, pt2, dirn, len, specify the endpts, direction, and , total length respectively cf a straight line segment. "Type" is EXTE日IOR or INTEEIOR depending on whether the segment coincides with an edge of the retina or is interior to the retina. "Evidence" is a list of pairs (graylevels cell-sizes) derived frem the component chunks, shortened by grouping identical fairs together. The meaning of "evidence" here is how well the line segment was defined ky the graylevels in the retinal impression. It is intended tc provide restrictions on how much the IV a Towards the design of a robot-contrcller
parameters of this line segment could be changed tc accommodate subsequent retinal impressions without losing consistency with the current retinal impression. The end result of this operaticn is a segment-circuit.

Suppose a turtle traverses an arbitrary closed circuit of straight lines that ncwhere crosses itself and counts 1 for every right-handed 900 turn and counts - 1 for every left-handed 900 turn. At the end of the trip the total will be either 4 for a clockwise traverse or -4 for a counter-clockwise traverse. This is alsc known as the Total Turtle Trip theorem. In one final operation, each segmeat-circuit is traversed cnce and the total turtle turns computed. At the safe time, the maximum number of consecutive segments that coincide with an edge cf the retina is found. This is called "max-resegs" below.

The final output of the $e d g \in$ and region finding stage is a list of regions, were each region has on its f-list the grl-class, number of squares, and a border-list of one or more borders. Each border is a p-list with properties name, segment-circuit, turtle-turns, max-resegs, and their values.

IV. 4 .2. 2 Interpreting the first retinal imrressicn

In the fovea of the eqe a retinal cell with zerc graylevel corresponds to flcorspace, and a cell with non-zero graylevel, necessarily 7, corresponds to either an object, the verge, cr to Utak himself. In the feripheral parts of the eye a retinal cell with zero graylevel may correspond to an area of the takletop IV \quad Towards the design cf a robot-contrcller
which is not entirely flcorspace, and sinilarly one with a graylevel of 7 may correspond to an area of the tabletop which is not entirely object or boundary.

In any one retinal impression the regions of zero graylevel are interpreted as floorspace. Since all floorspace is connected, if two or more disconnected regicns of zero graylevel appear in the retinal impression the interfretation must provide that these are connected. If all the floorspace regions have a segment coincident with an edge of the retina then no action needs to be done; it is assumed that they are connected outside the area of the tabletop covered by the retinal impression. If one of the two or more floorspace regions is completely surrcunded in the retinal impression by a ncr-zero regicn then a passage must be hypothesized between the surrounded floorspace region and the nearest neighbouring floorsface region. The natoral place to hypothesize such a passage, in order to keep its length to a minimum, is the line of shortest distance between two floorspace regions. This line of shortest distance can easily be found from the skeleton of the complement of the flocrspace regions: this will be described in section $\begin{array}{r}\text {. 4. } 2 .\end{array}$

The non-zero regions are interpreted as either isolated objects or verge. This is straightforward in two cases. If a non-zero region completely surrounds a zero region, and is not itself surrounded by a zero region, then this is interpreted as the verge of the tabletop. If a zero region completely suricunds a non-zero region then this latter regicn is IV.Towards the design of a robot-contrcller
interfreted as an isclated object with a high degree of certainty.

If neither of these two cases hclds then the max-resegs of the cuter bcundary of the non-zero region the unique torder With turtle-turns=4) is examined. Remember that nax-resegs" records the maximum number of consecutive segments of the bcrder of the region that coincide with edges of the retina. If its value is zero, one or two then the region is irterfreted as an isclated object, ctherwise as part of the verge. Figure IV. 4 illustrates this interpretation scheme. Any interpretaticn made in this way is subject to revision or a "double-take" when subsequent retinal impressions are received. a region initially interpreted as an isolated object may later turn out tc be more correctly interfreted as boundary, and vice versa. Figure IV. 5 illustrates a possible double take.

IV. 4 .2. 3 Accommodating the default wcild model tc the first retinal impression

The default world model with which Utak "wakes up" is the simplest possible: a square floorspace centred on his fosition, and containing nc isolated objects. After the first retinal impression has been received and interpreted, this vorld model must be modified (acccmmodated) to be consistent with this retinal impression.

First the interpreted retinal impression is exarined for what restrictions, if any, the retinal impression places on the IV.Towards the design of a robot-contrcller

FIGURE IV. 4 Examples of region interpretation.

FIGURE IV. 5 A doubletake.

In this initial position the robot thinks it is close to the north edge of its environment.

What the robot previously thought was verge is re-interpreted as part of an isolated object.
actual dimensions of the containing rectangle of the $\$ f 100 r$ of the world model. One restriction is computed from the retinal impression for each side of the ffloor's containing rectangle, and consists cf a value and a type. The type may be INTERICR or EXTEFIOR. If INTFRIOR, the restriction is defined by a segment of the boundary of a floorspace region which is interior to the retinal impression; consequently the position of this side of the containing rectangle of $\$ f l o o r$ must be given by the value of this restriction: If the type is EXTEBIOB, the restricticn is defined by a segment of the bcundary of a floorspace region which coincides with an edge of the retinal impression; conseguently the position of this side of the containing rectangle of $\$ f l o o r$ wust $l i \in$ at or beyond (i.e. further N. $E_{\text {. }}$ S, or W than) the value of this restriction. The default \$org-\$flcor offset, initially $(0,0,0)$, and the sides of the containing rectangle of the default \$flocr, are compared with these retinal restrictions and modified as necessary tc satisfy them.

Now that the coordinate origin and containing rectangle of the \$floor is fixed, other parts of the world medel can be ccmputed. The next item is to derive the actual shape of \$floor. If none of the segments of boundaries of floorspace regions coincide with a retinal edge, or in other words the Whole of $\$ f l o o r$ appeared within the retinal iufression, then the boundaries of the flcorspace regions are taken as the shape of \$flocr. Otherwise, only parts of the shape cf \$floor appeared IV. Towards the design of a robot-contrcller
within the retinal impressicn. These are the sequences of segments of boundaries of regions interpreted as verge, which lie strictly within the current retinal impression. These segment sequences have to be linked up into one continuous segment circuit by creating hypothetical extersions to existing segments and by adding new hypothetical segments. First the end segments of each sequence are extended to the containing rectangle, with the extensions marked as "甘ypo" in the evidence lists attached tc these segments. Second, hyfcthetical segments along the edges of the containing rectangle are introduced between each consecutive pair of segment sequences, also marked "HYFO". The shape of \$floor is then complete.

Lastly, a node has to be created for each isolated-object regicn of the retinal impression, and added to the world model. Given an isolated-object region, its containing rectangle, the cffset cf its cocrdinate system from $\$ f l o o r$, and its shape are all computed. The default world model has now been accommodated tc the first retinal impression.

IV. 4 -3 Eerception: accommodation to subsequent retinal
 imeressicns

Once a world wodel bas been constructed that correctly interprets ("explains" in the analogy with scientific method) the retinal impressions received so far, it is used to facilitate the accommodation of subsequent retinal infressions. An overall view of this accommodaticn process will now be IV=Tcwards the design of a robot-controller
described. Given the decided-on action, a predicted world model is constructed, and from this a predicted retinal impression is produced by projecting the predicted world wodel onto an array structure topolcgically identical with a retinal impression. This retinal impression differs from a normal retinal impression in that every retinal cell has a pointer back tc the segment (s) of the world model which caused it to have its assigned graylevel. After the action is executed the actual retinal impression is compared with the predicted retinal inpressicn and the differences between the two used to indicate what line segments and what parts of the world model must be mcdified to acccmmodate the new retinal impressicn.

Given an action, the predicted world wodel is constructed as follcws. If the acticn is SLIDE(v) then the $\$ 0 r g-\$ f l o o r$ relation (\underline{r}, θ) is replaced by ($\underline{-}-\underline{\nabla}, \theta$). If the acticn is pUS日TO (V) and the object held is objecti, then the \$org-\$floor relation is replaced by $(\underline{-}-\theta, \theta)$ and the \$floor-\$objecti relation (\underline{s}, ϕ) is replaced by ($\underline{s}+\underline{y}, \phi)$. If the action is TURN(曲) then the \$org-\$floor relation becomes ($\underline{\underline{r}, \theta-4 \text {) and if otak is hclding }}$ \$objecti then the \$floor-\$objecti relation beccmes ($\mathrm{s}, \phi+\boldsymbol{\phi}$).

From the predicted world model a fredicted retinal impressicn is computed as follcws. Each line segment in the shafe of the floor, verge, or an object of the fredicted ucrld model is traced across the retinal fields of the eye and a pointer is set from each retinal field intersected back to the intersecting segment. Any retinal cell not intersected by a IVaTowards the design of a robot-contrcller
segment of the bcrder of an object is labelled by the name of the object which encloses it, if any, and given a graylevel of 7, else it is assumed to ke part of $\$ f l o o r$ and given a graylevel cf $z \in I C$.

The next step is to compare the graylevels cf the predicted retinal impression and the actual retinal impression, cell-by-cell, and note any differences. The differences inmediately focus attention on those parts of the world aodel that wust be changed. Scre differences can be accounted for by changing the parameters of line segments in the world model; others require more drastic action. For example if a non-zero region in the actual retinal impression has no overlap with any non-zero region in the predicted retinal impression, then it has to be interpreted and added to the world model as a new isclated object in just the same way as a similar regicn in the first retinal impression is acommodated by the initial default world model. This, in outline, is the accommodation process.

In a "realistic" simulation where an element of randcmaess is allowed in the effect of an action the differences between the actual and predicted retinal impressions way arise frcm two sources of uncertainty:
(1) New parts of the environment coming into viey or old parts seen at higher resclution;
(2) The action is not as predicted.

If cnly (1) is allowed then any differences must be explained by modifying the world model. If only (2) is allcwed the probler IV T Towards the design of a robot-contrcller
is to recognize what position in the world model could give rise to the actual retinal impression and thus deduce what actually happened. Since the difference between the actual and predicted effects of an action will normally be quite swall the froblea is cne of computing the disparity between the twc retinal impressions, say by trying the positions closest to the predicted position. If the difference is toc great for a disparity to be found then it becomes a pure recogniticn preblem to be approached, say, by matching features. If both (1) and (2) occur together then the problem is to find a match in the world model for as much as possible of the retinal impression, thus proposing a new position, and then modifying the world model to explain the remaining unmatched parts of the retinal impression. Although (2) is easily incorporated in my system. I have not attempted to bandle this possiblity.

IV. H. 4 Accommodation, another apprcach

The problem is, given the current retinal impressicn, to modify the current vorld model as necessary to be consistent witb it. This can be broken down into three processes. The first process interprets the retinal impression, regarded as a structured array of graylevels, as a consistent collection of line segments. The adjective 'consistent' implies that, locally, the line segments make sense or in cther words form continuous lines. Moreover straight lines are preferred to lines with many changes of direction. The next process IV \boldsymbol{m} Towards the design of a robot-contreller
interprets the lines formed by the line segments as the (fartial) contours of the verge or of an isclated object. The third process extends these contours by rules of continaation to a complete vorld model. The last two processes are straight-fcrward, the first cne is harder.

In more detail, the first process can be descrited as follows. In the fovea the graylevel of a retinal field is 0 or 7 according as the corresponding TABLE square is occupied or not. Trivially, a line segment is inserted between each pair of adjacent cells with differing graylevels. In the middle part of the retina the graylevels which can actually occur are $0,2,4,6,7$. Each graylevel bas a distinct class of potential interfretations where an interfretation is a 2×2 pattern of occupied and vacant squares. In the periphery all the graylevels $0,1, \ldots, 7$ can occur and the fotential interfretations of a graylevel are specified by classes of 4×4 patterns of squares. Each assignment of a line segment to a retinal field must be consistent with the assignements of neighbouring retinal fields, such that the line segments constitute a continuous line and preferably a straight line. Thus this first process is a problem of finding a consistent interpretation and can be tackled by the $N C$ consistency algcrithm of [Mackworth, 1977], by the relaxation algorithms of [zucker, 1977], cr the improved backtracking algorithms of [Gaschnig, 1978]. The latter two processes, line segment interfretaticn and continuation, can be handled as before.

IV. 4 - 5 The spatial plannec

This is the heart of the system. This is where path-finding is done, where a plan for ecving an cbject is constructed and where the initial task command is interpreted. Given an interpreted task description, the spatial planner uses the current wcrld ucdel as a datarase and produces a structured plan as output. If the current world model reflects the "real world" outside the organism sufficently clcsely, or at least models closely enough those parts of the world model required for this task, then a completely accurate execution of the flan will result in the successful completion of the task. The spatial planner does not produce flans from the vorld model directly, but indirectly via the screen, a 2-dimensional digital array. Consider a simple pathfinding problem, "Go to the north east corner" for example. First the dimensions of a rectangular window which includes both the current pcsiticn of Otak and the fosition of the destinaticn are computed. Then the world model is projected through this window onto the screen and each square cf the screen marked as representing space or with the name of the object ovarlaying it. Then a pathfinding algorithm is used (cf. chapter 5) to find a fath from start to destination that only traverses cells refresenting space. If this fails then cther potential paths are considered. These arise where two adjacent squares of the array are marked with names of different objects or where a single square of the screen is marked with the names of two or more objects. These
positions can be used to trace possible paths between objects and. Where such a position is adjacent to squares representing space, tc ccnnect up these possible paths with other faths through space. If the path between two objects is required in more detail thea a small rectangular window is selected that includes only the potential passage between the objects. Then the world model is projected onto the screen again and this part of the path traced at a higher rescluticn. The result is included as a more detailed surpath in the previous coarser path.
IV. 5 An alternative approach to implementation

The implementation sketched above uses a representaticn for the world model based on the use of Cartesian coordinates and then computes, via projection cnto a screen, the skeleton, a graph-like representation of the world model. The edges of this graph represent routes in the environment. A representaticn in terms of routes has been used by kuipers to model a person's representation of large-scale (city) space, and by arbib and Lieblich tc model a rat's representation of space. The natural suggestion, then, is to use the skeleton as the basic representation for the world model. This defends on the fact that the complete skeleton of a shape, consisting of the skeletal graph plus the quench function, can be used to recover the original shape in its entirety. The world model then IV-Towards the design of a robot-contrcller
consists of a graph, wose edges represent routes through the envircnment, together with a quench function defined on each edge. Pathfinding is done directly on this graph. One way to carry out perception is to regenerate the original shape in the predicted retinal impression and then match it with the actual retinal impression. Any shape changes forced by the actual retinal impression are reflected in changes to the skeletal graph or the quench function. Alternatively, instead of deing matching on shapes, matching $c a n$ be dcne on graphs. That is, the skeleton of the spaces on the retina is matched against the stored skeleton and changes made as appropriate to the stored skeletcn.
IV. \underline{E} Summary

The design of the whole organism-controller is of major importance for my project. I described in this chapter the first approach that I tock, based on the analogy between the process of perception and the scientific method, and the progress made in iaplementing it. There are two outstanding problems inherent in this approach. One is defining exactly what is meant by the phrase "collecting evidence for a feature of the world model", and the cther is defining a phrase such as "assigning a degree of confidence to a feature on the basis of the evidence". I approached the first prcblem by retaining with each feature both the graylevel values in the retira and the IV atouards the design of a robot-contrcler
retinal field sizes, from which the feature parameters were derived. In line with the analogy, one can say that "the feature explains the graylevel values". The problem of defining a measure of confidence, showing how it changes with the receipt of new evidence, and using the confidence values to control how the features are allowed to change when new evidence shows that a change must be made, is an impcrtant and interesting problem that must be solved before completion of this project is possible. This problem bears comparison with the legal problem of evidence in a court of law, where the degree of confidence in a statement depends upon the evidence presented.

There is one major requirement that remains to be described, namely algorithms for pathfinding and for aking plans for moving an cbject.

CHAPTER Y

EATH-FINDING AND THE SKELETON OP A ELANAR SHAPE

Abstract

The purposes of this chapter are to review fath-finding algcrithrs, to motivate the use of the skeleton for path-finding, to introduce a new algorithm for computing the skeleton, and to apply the skeleton to path-finding.

V. 1 Introduction ± 0 path-finding algorithms

The problem is this. Given a description of shapes on the Euclidean plane in terms of the Cartesian coordinates of foints on the boundaries of the shapes and the lines between then, and given the coordinates of two points S and D outside all the shapes, describe a path from S to D that avoids all the shapes, if such a path exists. Further requirements are that the path should be reasonably close to being oftimal, and that if an organism wanders slightly frcm the correct path, either due to inaccurate moverent or to avoid a small cbstacle, it should be easy to regain the correct path.

A path-finding algorithm was incorporated in the design of Shakey [Nilsson, 1969]. This was kased on the crservaticn that in a cluttered space an cptimal path between two points consists of a sequence of line segments connecting extreme foints of obstacles. Thus one starts with the extreme (convex) fcints on Vapath-finding and the skeletcn of a planar shape
the obstacle boundaries and considers the set consistirg of the lines jcining the fairs of extreme points together with lines frca the starting point s to the extreme points and with lines from the extreme points to the destination foint D. Any line which intersects an obstacle is discarded, so that the remaining lines represent all the "lines of visibility" in the situation. A heuristic search is then used to find the cftimal series of foints connected by lines of visibility from s to D.

Another approach to path-finding, but still using a Cartesian representation, was used by \{Thoascn, 1977] for the path flanning module of the JPL robot. This was the approach I first tock to the probl $\in \mathbb{M}$. The zero'th order approximaticr was the straight line $S D$. The first order approximation was obtained as follows. Determine those shapes intersected by $S D$, if any. If none, then the straight line $S D$ is the reguired path. Otherwise pick the obstructing shape nearest to S, call it B say, and compute four points L1,R1,L2, B2 on the perifhery of B defined as follcus. L1, B1 are the leftmost, rightmost foints respectively of B as seen from S, while 12 , g2 are the rightmost, leftmost points respectively of B as sefn from D. There are now two candidate paths at the first order level of apprcximation:

$$
\begin{aligned}
& \mathrm{P} 11=\mathrm{SL} 1+\mathrm{L} 1 \mathrm{~L} 2+\mathrm{L} 2 \mathrm{D} \\
& \mathrm{P} 12=\mathrm{SR} 1+\mathrm{R} 1 \mathrm{R} 2+\mathrm{R} 2 \mathrm{D}
\end{aligned}
$$

where the path segments SL1, L2D, SR1, R2D are knowr nct to intersect object B. See figure ∇. 1 . Now recursively apply the VeFath-finding and the skeletor of a planar shape

FIGURE I. I $\begin{aligned} & \text { ANO/OR APPROACH TO PATH- } \\ & \text { FINDING }\end{aligned}$
above procedure to each of the segments SL1, LiL2. L2D, SB1, B1R2, R2D. Eventually the procedure stops, there being only a finite number of objects and only a finite number of foints on the boundary of each cbject, with a perhaps long list of possible paths. Each path can be evaluated in terms of total length, number of segments, total angle turned, etc., and the best one chosen. The disadvantages of this direct approach to the path finding problem are the following.
A) It involves finding the intersections of particular lines with every object and finding extreme points of those objects intersected, altogether an expensive computaticn in some cases.
b) There is no notion of "level of detail". All objects of whatever size are considered, and all lines which form the bcundary of a shape have to be scanned for intersection finding.
c) There is no obvious way to generalize to okject moving. An advantage of this approach is that it can produce a description of a path in "left-of object". "right-of object" terms.

Another idea is to project all the shapes onto a rectangular network of cells, the screen cf chapter iv for example, and convert the path-finding probler into a pure graph-traversal problem. The screen is converted to a graph by inserting between every pair of adjacent or diagonally adjacent cells an edge of the graph, where each edge is assigned a length Vapath-finding and the skeletcr cf a planar shape
of roct2 or one according as its ondpoints are diagonally adjacent or not. It is forbidden to traverse edges leading to cells that do not represent floorspace. The start and destinaticn foints are mapped ontc cells S and D of the graph. The problem can now ke restated as: find the shortest path from S to D along the edges of this graph. This can be done $b y$ an application cf the $A *$ algorithm of [Hart, Nilsson, ε Raphael, 1967], using their function $f=g+h$ to evaluate incomplete paths. Fcr an inccmplete path p that currently terminates at a cell $n, g(p)$ is the sum of the lengths of the edges from S to n and $h(p)$ is the Euclidean distance from n to D. This algorithm finds the optimal path through the graph directly, tut suffers from some disadvantages. These include: ic cbvious way to generalize to handle object moving; no easy way to discover what objects a section of the path is passing betreen; no distinction between topologically distinct paths. In additicn the actual search process involves a high number of "knovledge independent" choices. As an extreme example of what I mean by "knowledge independence", witness the rucket phencmencn illustrated in figure $V .2$. In using heuristic search to go from S to r, the search goes straight to the bottom of the bucket and gradually fills up until suddenly it overflows ard rapidly advances towards D. Norse cases can also cccur.

Finally the skeleton of the shape of the empty space was considered. The initial attraction was that the skeletal graph contains only the topologically distinct faths between two $\mathrm{V}=\mathrm{Path}-\mathrm{finding}$ and the skeleton of a planar shape

FIGURE V. 2 The bucket phenomenon, which occurs when the A^{*} search algorithm is applled to a network representation of space.

Fositions. Two paths are topologically distinct if neither can be continuously deformed into the other. The search for a path then reduces to searching over the topologically distinct faths. The chcice points in the skeleton seem, intuitively, to correspond to the choices we have to make in navigating thrcugh obstacles. In addition there is a great deal of information asscciated with the skeleton wich can be used in other sfatial prcklems. The optimum path, when restricted to edges of the skeletal graph, is not in general the optimun path when no such restrictions are made; however, my initial concern was to compute any reasonable path, not necessarily an cptimal cne.

V. 2 The skeleton

[Blum, 1964], whe called it the Medial Axis Function, was the first tc intrcduce the skeleton of a planar shape. Since then it has been the topic of several investigations [Calabi and Hartnett, 1968; Montanari,1968,1969; Bosenfeld and ffaltz,1966; Ffaltz and Rosenfeld,1967; and others] and has been called the distance transformation, the grassfire trarsformaticn, or the symatric axis transformation. [BIUm,1973,1974] has comprehensively analysed it and written arout its potential afflicaticns to the description of shape in kiolcgy.

y.2.1 Definition and proferties

In the continuous Euclidean plane several equivalent definiticns of the skeleton can be given; however when these are converted to algorithms to compute the skeletcn on a rectangular network if cells, it turns out that this equivalence no longer hclds.

First the several equivalent definitions in the continuous Buclidean plane will be described, second Montanari's algorithm will be derived from one of these definitions, third we will see why this algorithm is unsatisfactory, and fourth we will see how to augment Montanari's algorithm to provide a satisfactory algcrithm for the skeletcn on a network of cells.

Definition 1. Interpret the boundary of the shape as a wavefront which propagates at unifcrm velocity into the interior of the shape. At certain points two or more sections cf the wavefront emanating from distinct foints of the boundary meet and mutually extinguish themselves; the locus of these pcints of extinction is the skeletal graph and the time from the initiation of the wavefront to the time of extinction is the quench functicn.

Definition 2. The most concise definition for mathematical purfoses is probably this. Consider the set of all circles contained in the shape and partially order them by inclusion. Then the skeletal graph is the locus of the centre cf maximal Vafath-finding and the skeleton of a planar sbape
circles, and for each pcint on the graph the radius of its maximal circle gives the value of the quench functicn.

Definition 3. At every point P of the plane define the function d $t c k \in t h e$ inimum distance frem P to the shape:

$$
d(P)=\min \{\operatorname{euc}(P, Q) \quad \mid Q \in \text { shape }\}
$$

where euc is the euclidean distance. For every point f there is at least one point $Q \in$ shape such that $d(P)=\epsilon u c(P, Q)$, while for certain points $P *$ there are at least two distinct fcints Q 1, Q2 such that $d(P *)=e u c(P *, Q 1)=e u c(P *, Q 2) . \quad Q 1, \quad Q 2$ are contact points for $P *$. The locus of points with twc or more contact points is the skeletal graph and the value of the function d at each point of the graph is the quench function.

Definition 4. Given a point P, a ainimal patb frcm P tc the bcundary of the shafe is a straight line segment PR where R lies on the boundary. P is defined to be a point of the skeletal graph if it does not kelong to a minial fath of any cther foint. In the mountain $\mathbb{m e t a}$ fhor, this says that any point on a ridge-crest or peak does not lie on the fall-line cf some higher point. This is the definition used by [Montanari, 1968]. Definition 3 lends itself to the following visualization of the skeleton. Imagine the boundary of the shape as the shcreline of an island, which everyuhere rises uniformly at an angle of 45° out of a calm ocean, thus forming a mountain range with peaks and ridges. It is pcssible for three or mcre ridges VePath-finding and the skeleton of a planar shape
to meet at a junction which is not a peak. Hcles in the shape are to be visualized as lagocns at ocean level. The frojection of the ridges and junctions to the plane of the ocean is the skeletal graph and the height of the ridge at each point, i.e. the function d, gives the quench functicn. picture ycurself standing on the crest of the ridge; in your immediate vicinity there are exactly two well-defined directions in which to travel along the ridge, "forwards" or "backwards". Now stand at a junction ; three or more ridges meet there, providing three or more corresponding mell-defined directicns of travel. That is the content of [Calabi and Hartnett, 1968, Theorem 6]. Now return to a point on the ridge crest and note that there are exactly two lines of stefpest descent, or fall-lines in skiers parlance, from the ridge-point down to the ocean. The fcints where the fall-lines frcm a ridge foint or peak enter the ocean are called contact pcints. Back at a junction again, wbere n ridges meet, note that there are n fall-lines to the ocean, alternating with the ridges. That is the content of [Calabi and Bartnett, 1968, Theorea 7].

At any junction there can be at west one ridge which ascends away frcmit; all the others must be descending frcait. This can be seen as fcllows. Suffose P is a junction where 3 ridges meet. Let the three contact points be F, G, I on the circumference of the maximal circle centre F. one may without loss of generality consider the skeleton generated by these three points alone. Consider the ridge which starts at F and VePath-finding and the skeletcn of a planar shape
passes midway between p and q. The quench function must decrease frcm p to the midpcint of p and g, since $t b \in d i s t a n c e$ pg is less than the diameter of the maximal circle, unless p and g lie on the ends of a diameter through p. In this latter case the quench function increases at P as one begins to move out along the ridge. Also, since pq is a diameter, neither grer rp can te a dianeter, and hence the value cf the quench functicn as cne starts out along these other two ridges is decreasing.

$\underline{\underline{V}}-\underline{2} \cdot \underline{2}$ Approximating the Euclidean Elane

To obtain the skeleton of a shape the euclidean distance between two arbitrary points is required. But when the shafe is given as a digital image, that is to say as a rectangular netwark of cells where each cell is marked with a 1 foutside the shape) or a 0 (inside the shape), this network can be treated as an approximation to the euclidean plane. Ey connectingeach cell to a number of its neighbours and measuring distance between cells by summing over all the links betyeen them an approximation is obtained. Figure $\quad .3$ shows 4-, 8-, 16 -connected cells and figure V. 4 shows networks of $4-$, $8-$, 16-connected cells. The n directions of the links in an n-connected netuork will be referred to as the major directions of the network. The higher the connectivity the better the approximation. Using cnly 4-connectivity, the distance between tyo cells in a network can be as wuch as 41\% out from the euclidean distance, whereas with 8-connectivity it can be ε out VmPath-finding and the skeletcn of a planar shape

FIGURE V 3
 16 CONNECTED

FIGURE V. 4.
and with 16-connectivity only 2.7% out.
Given two cells in a network, if the line connecting them happens to lie parallel tc one of the major directions then there is a unique shortest path between the two cells, otherwise there will be many shortest paths between them. This is illustrated in figure 0.5 . Note that there is always a shortest path consisting of exactly two straight line segments.

Using definition 4 arove Montanari showed that the skeleton finding problem was equivalent tc a certain optimal policy problem, and thus derived a two part alçorithm which can be stated as follows.
a) For each cell of the network find the winimum distarce to the boundary of the shape (the "height"), and find all the fall-lines (necessarily at least one) frcm the cell tc the boundary.
b) Classify as skeletcn points those cells which do not lie on a fall-line descending frcm any other cell.

The distance to the shape can be computed using an algorithm which requires cnly two passes over the network, which will now be described. Divide the directions of the links between cells intc two classes, \quad PPRR and LCYER, as shown in figure $\nabla .6$. The first pass is in forward raster order and computes the minimum distance to the boundary when crly links with UPPER directions are considered. The second pass is in Vapath-finding and the skeleton of a planar shape

FIGURE V. 6

UPPER and LOWER directions of links are considered in the first and second passes respectively of the iterative algorithm.
backward raster order and continues the minimum distance comfutation, adding in those links with LOMER directicns. This is spelt out in steps 1 and 2 of SKEL-3 below. surprisingly, after these two passes the minimum distance at every $c \in l l$ is correctly computed, even for cells whose fall-line(s) include links with both UPPER and LOWER directions. A proof of this can be found in [Montanari, 1968].

Some notation is in order. Let the network cells in forward raster order be p1,P2, Pi. Cells Pi, Fj are neighbours if there is exactly one link between ther, ard are HV-adjacent if they are neighbours and their lirk is horizcntal or vertical. Let $T i j=T(P i, P j)$ be the distance between $E i$ and Pj. In the case of an 8-connected netuork, the possible values for Tij are 1 and the square root of 2 , ard in a 16-connected network, 1 , the square root of 2 and the square root of 5 . UPPER(Pi) \{LOWER(Pi)\} denotes the cells reached frcmei by traversing one link in an UPPER [LOAEB] direction. Let
 the shape. Di, the rinimum distance from fi to the boundary of the shape, is to be computed for $i=1,2, \ldots, \quad n$.

Algcrithg SKEL=1.

1. [Forward raster scan].

FOI $i=1,2, \ldots, n d c$
If $\mathrm{Pi} \in \mathrm{I} . \mathrm{Di}=0$
If Pi f I ,
$\mathrm{Di}=00$ if UPPEE (Pi) is empty
Di=min\{ Tij+Dj | Pj E UPPER(Pi) \} otheryise.
2. \&Eackward raster scan].

For $i=n, n-1, \ldots, 1$ do
Di=min\{ Di, \{Tij+Dj | Pj \in LOHER(Pi) \} \}.
3. LDefine skeleton points].

SKEL=\{Pi | Di \neq Dk-Tik fCI all Ek $\in \mathbb{N B E S}(P i) j$.

Two skeletons computed with this algorithm are shonn in figure V.7. Note how they compare witt their euclidean skeletcns. As can be seen from this example, this algorithm suffers two deficiencies. First, the output is an unstructured set of points - no method is provided to link up the fcints into a graph structure. Second, the set of skeleton points is in general disconnected, so that it would be infcssible te Ecrm a graph structure anyway.

ㅍ.2-ㄴ The neu algcrithm

This last deficiency can be remedied by using definiticn 3, which defines the skeleton to be the locus of foints with at Vapath-finding and the skeletor of a flanar shape

Figure V. 7

$\begin{array}{llllllllllllll}I & I & I & I & I & I & I & I & I & I & I & I & I & I \\ I & * & * & & * & & & & & & & & I \\ I & * & * & * & * & * & * & * & & I \\ I & * & * & * & * & * & * & * & * & * & * & & I \\ I & * & & & & & & & & & & & * & I \\ I & I & I & I & I & I & I & I & I & I & I & I & I & I\end{array}$
least two contact points. This suggestion can be implemented as fcllovs. First, while computing the minimum distance to the figure, compute also the contact points for each cell. second, classify all cells with at least two contact foints as belonging to the skeleton.

Since the fall-lines and contact points of a cell cannct be defined until the final value of the winiwuadistance frca the cell to the shape has been computed, they cannot begin to be computed until the backward raster scan of SKEL-1. Step 2 requires an extra operaticn, another raster scan is needed and step 3 must be replaced. This results in the following algcrithmo.

Alqorith SKEL-2.

1. [Forward raster scan].

For $i=1,2, \ldots, n d o$
If $\mathrm{Fi} \in \mathrm{I}, \mathrm{Di}=0$
If $\mathrm{Pi} \boldsymbol{f}$,
Di= OO if UPPER(Pi) is empty
Di=min\{Tij+Dj $\mid P j \in O P P E R(P i) j$ ctberwise.
2. [Eackward raster scan].

$$
\begin{aligned}
& \text { FCr } i=n, n-1, \ldots, 1 \text { do }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Contacts }(P i)=U \text { \{ contacts (Q) } 1 Q \in \operatorname{LCWER}(P i) \varepsilon \\
& d(P i)=T(P i, Q)+d(Q) ;
\end{aligned}
$$

3. [Seccnd fcrward raster scan].

$$
\begin{aligned}
& \text { For } i=1,2, \ldots \quad, n d c \\
& \operatorname{contacts}(\text { Pi) }= \\
& \text { contacts (Ei) } u
\end{aligned}
$$

$$
\begin{aligned}
& U\{\operatorname{contacts}(Q) \& Q \in \operatorname{UPPER}(P i) \& \\
& d(P i)=T(P i, Q)+d(Q) j
\end{aligned}
$$

4. [Define skeletcn Fcints]. SKEL=\{Pi | Iumber-of-contacts-of $(P i)>1\}$

This improves matters a little, for it ccrrectly classifies as skeleton points many points cmitted by SKEL-1. At the same time, unfortunately, at places in the skeleton such as a straight corridcr of even width, where skel-1 would compute a doutle row of skeleton pcints, SKEL-2 computes ncne.

What is needed is the introduction of points in between cells of the arrap as skeleton points, as suggested by the examples of figure $\nabla .7$. The obvious way to do this is to introduce a skeleton point between any two \quad 证-adjacent cells witb disjoint sets of contact points. This doesn't work, however, because many pairs of $H \forall-a d j a c e n t$ cells, far frow any ridge-line, have $H V-a d j a c \in n t$ contact points, and corseguently many spurious ridge points would get introduced. Consequently a more conservative condition must be used. Define two cells of the network to be neighbourly if they are identical or are HV-adjacent, and twc ncn-expty sets Si . S 2 of cells tobe neighbourly if there is at least one neighbourly pair of cells, one member of the pair from $S 1$ and one from $S 2$. The modified algorithm is as follows.
V.Path-finding and the skeleton of a planar shape

Algorithm SKEL－3．
Steps 1，2，3 as for SKEL－2．
4．【Create ridge points ］．
For all $i, j=1,2, \ldots n,(i<j)$ do
if not neighbourly（contacts（Pi），contacts（Pj））
then create－ridge－pt $⿴ 囗 ⿱ 一 一 廾 彡$ between Pi and Pj ．
5．［Define skeleton points］．
SKEL＝\｛ all created ridge－points \}
u \｛ Pi 1 number－cf－contacts－of（Ri）＞ 1 \}
Figure V． 8 shows the result of using SKEL－3 on two examples．

V． 2 － 5 Kidge－following

The points of the skeletcn will be referred to as ridge cells．A ridge cell may be either a cell of the original network or a point created between two cells of the original netmork．The output of SKEL－3 is an unordered collecticn of ridge cells which，to be oseful，must be organized into chains of linked ridge cells．I use the term ridge－fcllowing to refer to the operation，on a network to which SKEL－3 has been applied， of inserting links between ridge cells and assequling three or more neighbouring ridge cells into＂junctions＂so that the resulting collection of cells，links，and junctions is a connected graph structure closely approxiating the skeletal graph of the corresponding Euclidean shape．

Geturn again to the mountain metaphor．Iqagine oneself stradding a ridge with one＇s left and right feet just to the V＝Path－finding and the skeletcn of a planar shape

FIGURE $Y .8$ b.
left and right respectively of the crest, and cbserve the ccntact fcints of the fall-lines which originate under cre's left and right feet and descend on opposite sides of the ridge. The fositions of these two contact points vary continucusly with one's position on the ridge crest, except when a crossover point, where three or more ridges meet, is fassed. The only exceptions to this statement could occur when the set of contact Foints includes an arc of a circle - but this cannot happen with pclygonal figures or a digital image. Conversely the foint on a ridge-crest frow which a fall-line descends tc a contact pcint on the shoreline varies continuously with the position of the contact point. In a network, this says that two ridge cells are to be linked only if their contact points are the same crare neighbourly in pairs.

To make this precise some more terainology must be introduced. A csquare is a unit square in the network with a cell at each corner. Any of the four corner cells may be a ridge cell, and in addition the centre of each side may be occupied by a constructed ridge cell. Thus a csquare may contain up to eight ridge cells, and there are $2^{8}=256$ possible different configurations of ridge cells on a csquare. This is illustrated in figure $\nabla .9$. Two ridge cells are contiguous if they lie on a common csquare. on 1 y contigucus ridge cells ever get linked together and when that happens let us say that they are crested and the link between them is a crest. Now the condition for cresting two ridge cells can be precisely stated:
V. Fath-finding and the skeletcn of a planar shape

FIGURE V. 9

0

\bullet
 $\stackrel{\rightharpoonup}{0}$

-

0

0

A CSQUARE in a network. Each corner retinal cell may be classified as a ridge-cell and the triangles mark the positions of potential constructed ridge cells.

Two contiguous ridge cells R 1 , R 2 can be crested iff
J Fcints C 11, C12 E contacts(R1) and
f pcints C21, C22 \in contacts(R2)
such that neighbourly (C11, C12) and
neightourly (C2 1, C22).
The basic scheme for inserting crests and forming junctions is as follows. All csquares in the network are examined and the number of ridge cells in each determined. Those with less than two are ignored. If a csquare has tho ridge cells then usually they will be crested although there are excefticns. In this way it is possible that one ridge cell may have crests to more than two other contiguous ridge cells; such a ridce cell is called a junction cell. If a csquare has three or more ridge cells some pairs of ridge cells vill be crested and/or a set of three or more ridge cells may $b \in$ grouped into a junction set. Exarfles of junction cells and junction sets appear in figure v.10. Now define a graph as follows. Every ridge-ft, junction-cell, or junction-set, is a vertex, andevery crest is an edge of this graph. This is always a connected graph and is the skeletal grafh of a connected regicn of a digital image.

Although there are 256 different csquare configurations this reduces to exactly 51 distinct cases after reflections and rotations are accounted for. A froof of this fact appears in appendix A.2, together with a listing of the 51 cases.

A note on implementation of the arithaetic eperations should be made here. All quantities involved in the computation Vapath-finding and the skeleton of a planar shape

Two junction cells.

Two junction sets.

FIGURE V. 10
of the skeleton on an 8 -connected network are in the form $a+b * r o o t 2$ yhere a, b are integers, that is to say they constitute an integral domain, so rather than use real arithmetic all arithretic and comparison oferations ara done using integer arithmetic on pairs of integers (a,b). In cther words Gaussian arithmetic is used.

V. 2 - \underline{E} Dsing parallelisil tc ccmpute the skeleton

The above algorithm computes the skeleton in four raster scans, including one for forming junction sets and inserting crests. [Montanari, 1968] gives an algorithw which proceeds by wave-front expansion in parallel and is equivalent to SKEL-1. The algcritha SKEL-3 can be modified to compute tbe skeletcn in a similar parallel fashicn.

V.2. 1 Paths between objects and superfluous branches

With this new algorithm there is an $\in d g e$ of the $s k \in l \in t a l$ graph emanating from every corner of a digital image. This is correct, in accordance with the definition cf the skeleton. When the shapes involved have long straight lines aligned with the axes as borders, this is of no concern. But when the shapes are rotated slightly, many corners appear in a digitization and many superfloous edges appear in the skeletal graph. There are two ways to hande this froblem, depending on the situation. If there are several isolatєd objects (an archipelago), and one is cnly concerned to find a route through the archifelago, then the VaPath-finding and the skeleton of a planar shape
only edges that need to be retained are those alcng which the skeleton fcints bave contact pcints on distinct objects. I refer to these as inter-object edges, and the remaininc edges as internal edges. The internal edges can be discarded and the search restricted to the inter-object edges. On the other hand, if one has to find paths from place to place within a single complex connected shape, all the edges are internal since the contact points of every skeleton point all lie on the same surrcunding cbject. Various pruning strategies are available. If the contact points of an $\in d g e r m a i n$ the same and are very close together, and the value of the quench function goes to zerc fot a minimum greater than zero, as would occur in a passageway), then this edge may be removed. This handles the case of small steps intrcduced by the digitization of a line at approximately 45°. The threshold number used to decide when two contact points are "very close together" controls the size of bay that is represented in the skeletal graph. If cne contact point of an edge remains constant while the distance from this contact point to the other contact pcint decreases, and the value of the quench function on the edge goes tc zerc, then this edge may be removed. This handles the case of an edge introduced into the skeleton by a small step in the digitization of a slightly inclined straight line.

Y. 3 Using the skeleton for path-finding

Use of the skeleton of the shape delineated on a network proxised to overcome most of the objections to the ose of heqristic search for pathfinding.

First assume that the start cell S and the destination cell D lie on the skeletal graph. Then a path frcm S to D alcng the skeletal graph is certainly a spatial path. In searching for a path through the skeletal graph, the juncticn cells and jurction sets are the only places where a chcice is needed. To simplify this search the pathgraph, homomorphic to the skeletal graph, is defined as follows. The vertices of the pathgraph correspond to the junctions (cells or sets) of the skeletal graph, and an edge betrieen two vertices of the pathgraph corresfonds to the chain of cells in the skeletal graph between the corresponding junctions. A skeletal graph and its corresponding pathgraph is shown in figure v.11. Now all the topclegically distinct sfatial paths frcm S tc D are fcund by using a standard graph traversing algorithm on the pathgraph, with considerably less search than when the network of cells is searched directly.

If the start S or destination D are not on the skeletal graph then the nearest fcints to S and D on the skeletal graph, S^{\prime} and D^{\prime}, must first be found. This can be done ty fcllowing the fall-1ine at that pcint upwards until the skeletal graph is encountered. Then proceed as before. If it happens that several points on the skeletal graph are equally close tc S or to D, then the pathfinding algorithm requires a trivial V\&Fath-finding and the skeleton of a planar shape

FIGURE V. 11 A skeletal graph and its pathgraph.
modificaticn.

ㅍ.3.1 Describing a skeletal path

A path specified by a path through the skeletal graph can be naturally described in terms of the okjects of the world model. For instance in figure $V .12$ the path from S to D can be described as

$$
\begin{aligned}
& \text { (move ((keep-right-of ob1) \& (keep-left-of cb2)) d1) } \\
& \text { (turn right 450) } \\
& \text { (mcve ((keep-right-of cb3) \& (kefp-left-of cb2)) d2) } \\
& \text { (move ((keep-right-of cb3) \& (keep-left-of cb5)) d.3) } \\
& \text { (move ((keep-right-of ob4) \& (keep-left-of cb5)) d4) } \\
& \text { (turn right 60) } \\
& \text { (move ((keep-right-of ob6) \& (keep-left-of ob5)) d5). }
\end{aligned}
$$

Such a path description can $\mathrm{b} \in \mathrm{gen} \in \mathrm{rated}$ frcu the skeletal graph by examining the two contact pcints of each ridge-cell on the path. One belongs to the nearest object on the left hand side and the cther belongs to the nearest object on the right hand side. So long as no two distinct objects on tre screen run into each other, that is to say there is always a channel of spatial cells between distinct objects, then the membership of the contact cells of ridge cells can cnly change at junctions and therefore the description of ridge cells alcng any one edge of the fathoraph rewains constant.

FIGURE V. 12 Skeletal path between objects. The skeleton allows a "natural" description to be easily derived.

V.3.2 Optimizing a skeletal path

The example in figure 0.13 shows that it is necessary to consider optirizing a skeletal path. If θ is the angle between consecutive corridors in the figure, then the length of the optimized path is sin $(\Theta / 2)$ times the length of the unoptimized skeletal path, a considerable improvement if θ is, say, 450 since in that case the optimized path is approximately 0.1 as long as the skeletal path.

In certain special cases, the optimization can be carried cut roughly as follows. Let S, D be the start and destinaticn of the skeletal path to be optimized, and define a function e on
 skeletal path to the straight line $S D$. As p varies from S to D find the maximum of the function $e(p)-g(p)$; if this is not Fositive nothing needs be done, for in this case the straight line $S D$ is the shortest path from S to D. Ctherwise let the maximum be at p^{*} and apply this algorithm recursively tc the paths $S P *$ and $P * D$. Unfortunately this method cannot be carried out in $g \in n \in I a l$.

The problem here might be christened the rore-tightening problem, described as follows. Given an environment of arbitrary two dimensional shapes on a tabletop, two points S, D at vacant spots, and a rope laid out frcm S tc D alcng a skeletal --or arbitrary-- path: ccmpute a description of the curve assumed by the rope when tension is apflied at S or D, any slack being taken up as required. Preferably the solution Vapath-finding and the skeletcn cf a planar shape

FIGURE V. 13
Example 'illustrating the need to optimize a skeletal path.
should be stated in terms of an array of cellular autcmata. One obvious strategy is tc meve the path in the direction of the centre of curvature at positicns where the absolute value of the radius of curvature has a local minimum. The local minima of the radius of curvature correspond to the bends in the rope and the effect of woving such points inwards towards the local centre of curvature is tc smooth out these bends. The radins of curvature at a point p of the path can be found by a lccal cperator that looks at a small set of adjacent foints of the path centred on p \{say five neighbouring foints). Then one pass along the whole path determines the local minima of the radius of curvature. If such a point is already adjacent to a point of an obstacle on the same side as the radius of crrature it cannct be moved any further. Otherwise each point E of local minimum is moved to the closest grid point B, in the direction of the centre of curvature. If the adjacent pcints to B in the path were A, C, then the adjacent points to E in the new fath rewain A, C. The process is now repeated until either the path is straight, with infinite radius of curvature at all points, or else the only points of inflection occur where the path goes round an extreme point of an obstacle, the path being straight otherwise.

What I have just sketched is a relaxation algorithm for obtaining a curve whose second derivative is zero everymbere exceft for foints where the curve contacts an obstacle. In effect it simulates the rope-tightening.
V.Fath-finding and the skeletcn of a planar shape

V.3.3 Comparison of skeletal and A* path finding

The complexity of both is linear in the number of cells in the network, except that the constant cf linearity is much greater in the skeletal case. This is clear for A^{*} since the number of nodes expanded $k y A^{*}$ is bounded by the number of cells in the network. In the case of skeletal path-finding there are two parts to consider, finding the skeletal graph and searching the graph. The first operation is linear in the number of cells and in the second, the number of nodes expanded by a graph traversal algcrithm is bounded by the number of cells. on the other hand a skeletal path has a natural description in environmental terms. If the use of parallelisu is considered, then it is likely that the skeletal path-finding method comes out well. If the raster scan algorithm for the skeletcr is replaced by a parallel wavefront-expanding method, it takes w wave-front expansions y hen the maximum value of the quench function is w. All the ridge-crest links can ke computed in one parallel operation, except for scer junction sets where two oferations would be required.

Y. 4 Other applications of the skeletcn

The skeletcn can alsc be applied tc finding a path for moving an object, finding empty space, and cther protlems. I describe each application in turn.

ㅍ.4. 1 object moving

Suppose there is an envircnment of obstacles and an cbject tc be moved frcm cne position tc another. The simplest shape for which a path can be found by the skeletcn is a circle.

Y-4.-1.1 Circular shaped object of radius 5

First find the pathgraph of the empty sface and remove from it any edge whose chain of cells in the skeletal graph contains a cell at which the value of the quench function is less than r. Then, if the initial and terminal fositions of the circular shape are S and $D, a p p l y$ a beuristic graph traversal algoritha to the pathgraph to find the shortest path frcm S to D that fcllows the arms of the skeletal graph. Since the quench function along this path is everywhere at least as great as r, the circular shape can certainly be moved along this path provided the centre of the shape is kept on the path.

․․ .1.2 Other object shases

The basic idea of this approach is to find the skeleton of the empty space, the skeleton of the shape tc be moved, and work with the skeletons instead of the original shapes. The condition for a shape to be contained within a space can be stated in teIms of the skeletons as follows:
(*) Let the quench functicn of the skeleton of the shage be g and the quench function of the skeletcn of the empty space ber. Then for all pcints x of the skeleton of

Vafath-finding and the skeleton of a flanar shape
the shape, there must exist at least cne point y on the skeleton of the space such that the circle centre z radius $q(x)$ is contained in the circle centre q radius $r(y)$.

Consider a long thin shape like a stick. By adding semi-circular ends if necessary, its skeletal graph is a straight line segment. Clearly if this line segment can be kept aligned with the skeletal graph of the space while the shafe is being moved then condition (*) is easily checked, since then points of the shape's skeletal graph lie on the space's skeletal graph.

ㅍ.4.1. 3 An L-shared cbject

This is an awkward problem for humans at the best of times and in retrospect it was ferhaps overly optimistic to think that a clean approach to its solution could be obtained through the use of skeletons. Although the skeleton does provide a clean approach to the problem of a circular shaped ofject, I have not yet found a useful afflication cf it to the froblem cf moving mcre complex shaped objects.

The L problem can be viewed as requiring the siraltaneous soluticn of two interacting subproblems. Namely, since each arm is a rectangular stick, first sclve the problem cf moving a stick though the doorway. Then, tackle the I problem by simultaneously solving two problems of meving a stick through the doorway, one from each arm of the L, with the couplication Vepath-finding and the skeletcn of a planar shape
that any movement of one stick causes a movement in the ctber.

V. 4 - 2 Finding empty space

An interesting application of the skeleton is to the findspace problem: find space cna cluttered tabletop to put down another object. This is the PINDSPACE frcblem of Sussman 1.973]. The positicn of the maximum sized circular spaces on the tabletop can be found directly from the guench function of the skeleton of the empty space. This is done by traversinc the skeletal paths and finding the local maxima of the quench function. If the circle with radius equal to the maximum of the quench functicn is sufficient to contain the extra object then the problem is solved; if not, the positicns of the maximal circles within the space are good candidates fcr the fositicn of the extra object.

Y. 4 -3 Finding the shortest distance between the shapes

Given two isolated planar shafes, a shortest straight line between them can be found by means of the skeleton in the fcllowing way. First find the skeleton of the eapty space surrounding the shapes, and retain only those edges cf the skeletal graph having one contact point on each shape. These are the inter-shape edges. Then, find a point P on the inter-shape edges at which the quench functicn takes its ainimum value. The straight line joining the two contact points of E is then a shortest straight line between the two shapes.

Father than developing the extensive mathematical machinery necessary to make the above description rigourous, I cffer the following intuitive justification. At every point cn an inter-shape edge one can draw a circular disc centred at that point, radius the quench function there, and with one contact point on each shape. As the inter-shape edges are traversed the disc expands and contracts in radius. The minimum value of the radius of this disc is assumed at one or more points of the inter-shape edges. At such a point the line connecting the contact foints of the disc must be a diameter of the disc, and moreover is a line of shortest distance betwefn the edges.

ㅂ.4-4 Finding nearest neighbourhood regions

Let F be a collecticn of foints in the plane. The nearest neighbourhocd of a point $p \in P$ consists of all points x on the plane such that x is closer to p than to any cther point in the ccllection 2 . The nearest neighbourhocds of a collecticn of fcints is also known as the Vcronoi diagram or Dirichlet tessellation [Green ε Sibson, 1978]. Consider the skeletcn of the plane with pcint objects p, g, r, \ldots corresponding $t c$ the pcints of P .

Lemma. The edges of the skeletal graph of tte space surrounding the foints P ferm the bcundaries of the nearest neighbourhoods of the feints of P.

Erocf sketch. Every point of the plane is either equidistant frca two or more foints cf P, crelse is closer to cne foint Vapath-finding and the skeleton of a planar shape
than to any other point of E. In the first case the foint lies on the skeletal graph of the space surrounding the points cf P, in the second case the pcint is in the nearest neighbourbocd of scme point of p. Let x be point in $t h \in s k \in l \in t a l$ graph of the space surrounding the points of P, with contact points $p, q \in P$. Thus x is not a vertex of the skeletal graph. In any arbitrarily small neighbcurhocd of x, there are foints closer to p than to any other point of P, points closer to q than $t c$ any cther fcint of p, and pcints of the skeletal graph. Hence x is a boundary point of the nearest neighbourhood of p and of the nearest neighbourhood of q. Similarly, if x is a vertext $c f$ the skeletal graph with contact points p, q, r, \ldots, x is a boundary Foint of the nearest neighbourhoods of $\mathrm{F}, \mathrm{q}, \mathrm{r}, \ldots$.

Thus the skeleton of a collection of shapes is a generalization of the boundaries of the nearest neighbourhood regions of a collection of points.

V. 5 Summary

In this chapter I sketched various approaches to path-finding and proposed one based on the use of the skeleton of the shape of the empty space. In order tc iaplement this latter approach I developed a new iterative algorithr for the skeleton that is guarantefd to compute a connected skeleton from a connected shape. I sketched hou the skeleton could te used as a heuristic aid in the sclving of object-mcving problems, and Vapath-finding and the skeletcn of a planar shape
showed how the skeleton could be applied to finding the shortest distance between objects and to finding nearest neighbourhood regions.

With this, chapter on pathfinding I have specified a class of algorithms which can be used as a basis for the scluticn of pathfinding and object moving problems in the spatial planner. Thus the outline design of the robot-controller is corplete.

CHAPTER VI

SUMMARY, CCNCLUSION, AND FUTURE RORK

VI. 1 Summary

After an introductory chapter, I reviewed at some length the nature of artificial Intelligence, introduced the approach of simulating a made up organism, and revieved several closely related pieces of work. Then I described in scme detail a system for simulating an environment and the sensori-motor farts of an organism to inhabit it. In chapter IV I sketched the overall features of the contrcl program of such an organism, basing it on the notion of the action cycle. one partially implemented design was described and an alternative apfraach profcsed. An important requirement for any organism, in particular for its controller, is a path-finding ability. To this end I described in chapter ∇ an approach to path-firding based on the skeleton of a shape. The skeleton, which was originally motivated by physiological considerations and first applied to shape description, is also a useful tool for path-finding and as a heuristic for other spatial protlems. I developed a new iterative algoritha to compute it. Although the actual amount of computation to find the skeleton on a serial VIaSumary, conclusicn, and feture work
machine may be greater than that for cther techniques for path-finding, it reduces the heuristic search required for finding a route retween cbstacles.

So let me stand kack and take stock. What has befn sclved and what problems uncovered? How does this wark relate to cther work? Fhat contribution does it make tc the Artificial Intelligence enterprise? The advances cortained in this work are threefcld.
(a) In the first place I explicitly laid out the features of the action cycle for a rokot-controller; this has not been done befcre. The implementation done thus far was based on the analogy between the process of perception and the scientific method whereby one is always acting on the basis of a collection of hypotheses and gathering evidence for these hypotheses in the fcrif cf senscry input data.
(b) A spatial reasoning module is an important and essential part of any robot-controller. It makes plans for action on the basis of the current collection of hypotheses about the fors of the environment. The second advance is the developent of a new approach to problems of spatial reascning based on the use of the skeleton of a two-dimensional shape. \quad han the ervircnment has been drawn $c n$ an array of pcints like a screen, an iterative algorithm requiring a constant amount of comfutation reduces any pathfinding problem to a simpler graph-traversal problem. Each VInSummary, conclusion, and future work
edge of the graph corresponds to a path between tro objects, each node corresfonds tc a junction of three or more paths, while the number of nodes is reduced to a rinimum. Thus the amount of heuristic search is reduced. There are cther ways to do this that are based on a Cartesian representation of the shapes of objects, which will require much more search if the shapes in the envircnment have much extraneous detail. The method presented here could clearly be computed by a nevicnal netecrk. Thns it is interesting to ponder if this is cne of the algcrithms actually used by the functioning mammalian brain.

Some interesting technical problems were uncovered in this approach. One is called the rope-tightening problem. When you have found one reasonable path between two foints, bow do you tighten the path to the shortest possible way? The cther technical problem relates to elucidating the full details for moving an L-shaped object through a doorway. I presented one suggesticn for approaching the solution to this problem.
(c) as discussed in chapters II and III there have befn several robct simulation programs uritten before and the full details of畂 robot simulation were described there. Mine is the first to handle the movement and collision of two dimensional shapes. Of the previous two major robot simulations, Becker ε Merriam used a Cartesian representaticn and Nilsscn \& Raphael used a digital representation of shapes. The Cartesian represents shapes as a series of points given by Cartesian coordinates while the VIsSummary, conclusion, and future work
digital represents a shape directly as an array of points like a screen. $O f$ the previous rigid object motion simulations, Eastman and Pfefferkorn used Cartesian refresentations bile Funt and Baker used digital representations. My advance was to use a combination of the Cartesian and the digital representations to simulate the motion and collision of objects cn a tabletof.

VI- $\underline{\text { Conclusicn }}$

I began the thesis by asking what computational processes are required for spatial reasoning. My answer, and, briefly, the conclusion of the thesis, is this. Computational processes inccrporating algorithms for computing the digital skeleton of a planar shape may prove to be sufficient for the spatial reascoing of a robot-controller.

VI. 3 Eesearch protlems

This consists of a list of froblems encountered in the course of our project, that need further investigation. 1. Eroblems related to the simulated envircrment.
(a) Extend TARLETOP to compate exact collision points betyeen robot or object and an obstacle. Two wethods for doing this were described in III. 3, which sbould be irplemented and tested.
(b) Simulate parallel operating hardware to carry out the TAELETOF simulation.
(c) Generalize the TABLFTOP simulation to three dirersiors.
(d) Design a mcre interesting environment. Trivially, this can be done, for example, by allowing randcmized action effects; less trivially, by allowing independently moving objects. Since any extension of the enviranment requires a corresponding increase in the capabilities of the organism-controller, no such extension should be contemplated until the current environment is competently handled by the current organism-ccntrcller.
2. Ercblems related to the organism-controller.
(a) Allow a restricted form of natural language input for the task statement.
(b) Design a more 'realistic' form of visicn.
(c) Iqplement the spatial planner. In particular, extensive exferimentation with the L-shaped ckject problem is required.
3. Frobl $\in \mathbb{Z} S$ related to the skeleton.
(a) Implement skeleton algorithms that use 16 -connected cells rather than 8 -ccnnected cells, and compare their performance with the algorithm for 8-connected networks and with true Euclidean skeletons.
(b) Extend the skeleton algorithms to apply to three VIs Summary, conclusici, and future work
dimensions. The short definiticn of the 3 D skeleton is "the locus of the centre of maximal spheres", and in general the 30 skeleton is a surface nct a line. It may, however, be of scme use in planning the movement of objects in three dimensions.

AEPENDICES

A. 1 TABLETOP user's manual

Bun LISE, then type the following to bring up the TABLETOP system:
(DISKIN GSR1:BASIC RSR1:SBW\#LISP RSR1:ENVIRONMENT\#5 COB4:SE月*OH) (OHSENSE)

A snapshot of the environment is then displayed on the screen, and the bug can now be controlled by a small number of comands. After each command is given the retinal impression and tactile impression of σ tak are displayed.

In the fcllowing commands, "distance" is a fcsitive or negative number with a decimal pcint. "orientation" is a compass direction (one of $N, N E, E, S E, S, S W, W, N W)$ or a positive or negative number with a decimal pcint. a zerc number means north, a positive number means an angle measured clockwise from north, and a negative number means an angle measrred anti-clockwise from north. "radians" is a pcsitive or negative number, or one of the angles PI or PI/2. "degrets" is a Fositive or negative number. For both "radians" and "degrees", a positive number means a clcckwise turn and a negative number
means an arti-clcckwise turn.
(SLIDE distance orientation) The bug moves approximately "distance" units in the direction "orientation".
(HOLD) if the bug is immediately adjacent to a movable ofject then after this command is executed the bug and the adjacent object are cerented together and move as one rigid object. The puSHTO and TUEN comrands must now le used.
(LETGO) Undoes the effect of HOLD. After this command the bug can move freely again, by means of the SLIDE command.
(EUSHTO distance orientation) The bug and the object held move as one rigid unit apfroximately "distance" units in the approximate direction "orientation".
(TUEN radians) The bug and the object beld turn as cne rigid unit through an angle of apprcximately "radians" radians.
(IDEND degrees) The bug and the object held turn as one rigid unit through an angle of approximately "deyrees" degrees.
(WOBLD integer) This sets up a new environment for the bug. "integer" must lie $b \in t m \in e n \quad 0$ and 8. These are predefined envircnments; there are also facilities for setting up an envircnment directly using the functions STABT-SRW, CREATB-OBJFCT, and POTPUSBER. Examples of their calling sequences can be found in

BSR 1: ENVIRON\# 5 。

A. 2 A combinatorial lemma

A csquare is defined as a square with eight locaticns on it, cne at each corner ard cne at the midpoint of each side. Each location may be occupied or vacant. Thus the set S of all csquares contains $2^{8}=256$ members. Now consider the group G of rotations and reflections of a square into itself. G has eight elements, consisting of the identity, three rotations, and four reflections. Each element of G acts as a Fermutation cf the set S. Two elements of $s 1, \leqslant 2$ of S are equivalent if there is a group element g such that gsi=s2. This is an equivalence relation that divides S into a number of equivalence classes. Lemma. The number of equivalence classes of csquares under the grove G of rotations and reflections of a csquare is 51. Eroof. Ey Burnside's lemma (see for example, [de Eruijn, 1964, f. 150]) the number of equivalence classes is given by

$$
1 / 1 G \mid \quad \operatorname{psi}(g)
$$

where |G| denotes the number of elements of G, and, for each g. psi(g) denotes the number of elements of s that are invariant under g, that is, the number cf ses for which gs=s.

For the group G of reflecticns and rotaticns of a square, $|G|=8$. $G=\{I, E 1, B 2, B 3, B E 1, B R 2, G B 3$, BR4 $\}$ were I is the identity, Bi, $i=1,2,3$ are the rotaticns, and RRj, $j=1,2,3,4$ are the reflections. Then one has psi(I) $=256$; $\operatorname{Esi}($ R1 $)=\operatorname{psi}(83)=4$;
psi (R2) $=16$; psi (RR1) $=\mathrm{psi}($ ER2 $)=\mathrm{psi}($ RR3 $)=\mathrm{psi}($ (RE4 $)=32$. Thus the number of equivalence classes is
$1 / 8\{256+4+16+4+4 * 32\}=408 / 8=51$. QED.
One representative from each equivalence class is shoun in figure A2. 1.

Pigure A2. 1

A.3 On Funtis rigid shape rotaticn algorithm

Let a situation be an arrangerent of squares on the FHISPER array and let a rotation k an ordered pair \{centre of rotation, angle of rotations. A rotation transforms a situation into a new situation. This is defined precisely as fcllows. Supfose a rotaticn rho $=\{C$, alpha\} is used to rotate situation SIT 1 into a new situation SIT2. The transformation is carried oot by rctating each square Q in SIT 1 independently. The image square B of Q after rotation rho is computed by the following method. Let P be the centrepoint of square Q. Now with centre C and radius $C F$, rotate P by amount alfha to a nev position P^{\prime} and determine which square of the array contains F^{\prime}. This is B , the image square of Q under rho. Note that the distance between \mathbb{R} and F^{\prime} may have any value up to root2/2. The transformed situation SIT2 consists of the set of all image squares under sho.

The simplest examples illustrating why the depiction $c f$ an object on the array disintegrates are shown in figure a3.1. Note that the distance between the centres $c f$ two edge-adjacent squares is one whereas the distance between the centres of two diagonally corner-adjacent squares is root2. Thus the centres of two edge-adjacent squares, when rotated by 45°, can map into the same square. This is a merge of two squares into one. Similarly, the centres of two corner-adjacent squares can map

$$
\begin{aligned}
& \text { SHRINKING LEMMA } \\
& 3 \sqrt{2}<5<4 \sqrt{2} \\
& Q R=5 \text { sHRINKS to } Q R^{\prime \prime} .4
\end{aligned}
$$

EXPANDING LEMMA $8-1 / 2<6 \sqrt{2}<8+1 / 2$ $Q R=6$ ExPANDS To $Q R^{R}: 8$

SPREADING THEOREM.
The axis distance between the squares in situation A is 2 , the axis distance between the squares in situation E is 4 .

FIGURE A3.1 (continued)
into two non-edge-adjacent squares in a row. This is a sflit between two previously adjacent squares. Giver ar initial situation and a sequence of rotations, the final situation is the situation arising after all the rotations of the sequence have been applied in succession to the initial situaticn. Let the centre-line of two squares be the line joining their centres. Let a n-square situation $b \in a \operatorname{situaticn}$ with exactly n squares. Then the follcwing lemmas hold.

Merge lemma. For any tuc-square situation there is a sequence of rotations such that the final situation is a cne-square situaticn.

Sclit lemma. For any two-square situation and arbitrarily large number X, there is a sequence of rotations such that the final situation is a two-square situation and the distance between the centres of the squares is at least X.

Three further lemmas are needed to prove the split/merge lemmas.

Staggered rotation lemma. In a two-square situation let the centre-line of the t wo squares lie at some angle between the horizontal and 45°. Let the horizontal distance tetween their centres be n. Then two seguences of rotations can re found, each of which keeps the horizontal distance $k \in t w e n$ the certres of the squares equal to n. One has property (a) and one has
property (b) in the corresponding final situations.
(a) The centre-line cf the two squares is horizontal.
(b) The centre-line of the two squares makes an angle of 45° with the horizontal.

The staggered rotation lemma essentially says that if two squares have a 45° centre line and are separated by n intermediate squares $(\mathrm{n} \geq 0)$, then they can be rotated in a staggered fashion so that they have a horizontal centre line but are still separated by exactly n intermediate squares; and conversely. To be more precise, suppose that in a two-square situation the coordinates of one square relative to the cther are (ix,iy). Then the axis distance between the squares is $m^{\prime}=$ Max $\{1 i x], \mid i y l j$. The staggered rotation lema then says that any two-square situaticn can be transformed into any other in which the axis distance $t \in t w e \in n$ the squares is the same.

Shrinking lemma. Given a two-square situation with axis distance n between the squares, and suppose

$$
(m-1) * \operatorname{coot} 2<n<m * \operatorname{root} 2
$$

holds for some integer $\mathbb{B}>$. Then there exists a sequence of rotations such that in the final situation the axis distance between the squares is m.
(Frcof: cne 450 rotation plus one staggered rotation.)
The proof of the merge lemma now fcllcws by alternate afplicaticns cf the shrinking lemma and the staggered rotation
lemma.

Expanding lemma. Given a two-square situation with axis distance \mathbb{I} between the squares, and suppose

$$
n-1 / 2<\mathbb{m} \text { root } 2<n+1 / 2
$$

hclds for some integer $n>\mathbb{m}^{\prime}$. Then there exists a sequence of rotations such that in the final situaticn the axis distance $b \in t w e e n$ the squares is n. (Frcof: one staggered rotaticn plus cne 45° rotation.)

The proof of the split lemma now fcllows by alternate applications of the expanding lemma and tte staggered rotation lemma. Successive applications of the merge lemma prove the fcllowing

Ccllapsing theorem. Given any initial situation there is a sequence of rctations such that the final situation contains cnly cre square.

Conversely, the question is whether the split lema can be generalized to multisquare situations. The answer is yes.

Spreading theorem. Given any situation with s squares and given an arbitrarily large muber X, there is a sequence of rotations such that in the final situation there are still S squares and the distance between any two squares is at least X.

Procf (outline). Pick a pair of squares with minimum axis
distance and take the centre of one of these as the centre of rctation for all fcllowing rctaticns. First jiggle each square in turn until all the squares lie on either of the two diagonal lines through the centre of rotaticn. No merges must be allowed to occur in this jiggling. An individual square can always be moved without moving any other squares, by picking a centre of rotation closer to that square than any other. In particular, 'compact' sets of squares, as would occur in the original depiction of an object, can be split up without any merges. Now rotate 45° so that the diagonal lines are in the hcrizontal/vertical position, then carefully stagger back to the diagonal fosition. The 45° rctaticn does the splitting, the staggering regains the standard fosition. Repeat this until sufficient spreading has cccurred.

The collapsing and sfreading theorems are enough to show that Funt's object rotation scheme cannot work.

BERERENCES

[Amarel, 1968]
Amarel,S. On representations of problems of reascring about actions. In: D.Michie (ed.), Machine Intelligence 3, Edinburgh Dniversity Press, 1968.
[Anderson, 1978]
Anderson, J. A. Arguments concerning representaticns for mental imagery. Esychological review, 85(4) (July 1978), PF-249-277.
[Arbib E Lieblich,1977]
Arbib, M. A., and Liєblich, I. Motivational learning of spatial behavicur. In: J.Metzler (ed.). Systems Neuroscience, Academic Press, New York, 1977, pp.221-239.
[$\mathrm{Eak} \in \mathrm{r}, 1973$]
Baker, Bichard. A spatially oriented information processor which simulates the motions of rigid objects. Artificial Intelligence, 4 (Spring 1973), pp.29-40.
[Earicw \& Tenenbaum, 1978]
Barrow, $\mathrm{H} . \mathrm{G} .$, and Tenenbaum, J. M. Eecovering intrinsic scene characteristics from images. In: Hanson,A.R, and Biseman, E.M. (eds.), Computer Visicn Systems. Academic press, New York, 1978, Pp.3-26.
[Eartlett, 1932]
Bartlett, F. C. Remembering. Cambridge University Eress, (1932.
[Eecker, 1972]
Becker, J. D. "Botot" computer problen solving system. Report 2316, Bclt, Beranek ε Newman Inc., 1972.
[Eecker,1973]
Becker, J.D. "Rckct" computer problem solving system. Report 2546 , Bolt, Beranek ε Newman Inc., 1973.
[Eecker, 1973]
Becker,J.D. A model for the encoding of experiential information. In: R.C.Schank and K.M.Colby, Computer models of thought and language, W. H. Freeman 8 Co., 1973.
[EGCker \& Merriaq. 1973]
Eecker,J. D., and Merriam, W. "Fobot" computer Froblem-solving systew. Beport 2646, Bolt, Beranek ε Newman Inc., 1973.
[Eindra, 1976]
Bindra,D. A theory of intelligent behavicur. John Wiley and sons, 1976.
[Eitterman, 1975]
Bitterman, $\mathrm{M}_{0} \mathrm{E}$. The comparative analysis of learning. Science, 188 (1975). pp.699-709.
\{Elack,1968]
Black,F. A deductive question-answering system. In: M.Minsky (ed.), Semantic Information Processing, MIT Press. 1968.
[Blur, 1967]
Blum. B . a transformation for extracting new descriptors of shape. In: W.Walthen-Dunn (ed.). Models of the perception of speech and visual form. MIT Press. 1967, pp.362-380.
[E1ux, 1973]
Blum, Harry. Biological shape and visual science (Part I). J. Theoretical Biology, 38(2) (1973). Ep. 205-287.
[Blum, 1974]
Blum, H. A geometry for biology, in: Mathematical Analysis of Fundamental Biclcgical Phenomena, in: Annals New York academy of Sciences 231, pp.19-30.
[EOw
Bower.T.G.R. A primer of infant develofment. W. H. Preeman, 1977.
[Erindley, 1969]
Brindley, G. S. Nerve net models of plausible size that perform simple learning tasks. proc. Rcy. Scc. Icndon series B, 174 (1969), Fp. 173-191.
[Eurks.1978]
Burks,A. . Computer science and philosophy. Logic of computers group tech. report 218 , Computer science department, O.Michigan, 1978.
[Calabi ε Hartnett, 1968]
Calabi, L., and Hartnett, H_{E}. E. Shape recognition, prairie fires, convex deficiencies, and skeletons. American Math. Monthly, 그 (April 1968), pp.335-342.
[Chín \& heissman, 1975]
Chien, R.T., and Weissman,S. Flanning and execution in incompletely specified environments. Proceedings Fctrth International Ccnference on Artificial Intelligence, 1975, pp. 169-174.
[Ccles et al.,1975]
Coles, L.Stephen, A.M.Robb, E. L.Sinclair, Mo H_{4} Suith, E. B. Sobeck. Decision analysis for an exferimental rcbot with pnreliable sensors. Proceedings Fcurth International Conference on Artificial Intelligence, 1975, pp. 749-757.
[Cook \& Reckow, 1974]
Cook, S., and Beckow, $\mathrm{H}_{\text {. }}$ On the lengths cf prcofs in the propositional calculus. Froceedings 6 th Annual Symposium on Theory of Computing. ACM, 1974, pp. 135-148.
[Davis,1963]
Davis,M. Eliminating the irrelevant from mechanical proofs. Froc.symposia in applied mathematics, 15 (1963), pp. 15-30.
[de Bruijn, 1964]
de Bruijn, N. G. Eolya's theory of counting. In: E. F. Beckenbach, Ed., Applied Combinatcrial Mathematics, Jchn wiley, New Ycrk, 1964.
[Dennett,1978a]
Dennett, D.C. Commentary "Why not the whole iguana?". The Behavioural and brain sciences 1(1) (1978), PF. 103-104.
[Dennett, 1978b]
Dennett, D. C. Brainstorms. Bradford Bccks, 1978.
[Dcnaldscn, 1978]
Donaldson, M. Children's minds. Fontana, 1978.
[Doyle, 1c78]
Dcyle,J. Truth maintenance systems for froblea-solving. TB-419, MIT AI Lat.. 1978.
[Eastman, 1973]
Eastman, Charles M. Automated space planing. Artificial Intelligence, 4(1) (1973), Fp.41-64.
[Eccles et al.,1977]
Eccles,M.J., Mçueen, M. P.C. And Bosen,D. Analysis of the digitized bcundaries of planar objects. pattern Becognition, 9112 (January 1977), Fp.31-41.
[Eraentrout \& Cowan, 1978]
Ermentrout, G. B. And Cowan,J.D. Large scale activity in neural nets, SIAM Journal of Applied Math., 1978 .
[Fahlman, 1974]
Fahlman, Scott E. A Flanning system fcr rcbot constructicn tasks. Artificial Intelligence, $\underline{\text { (1) }}$ (1974). pp.1-49.
[Feldman E Sproull,1977]
Feldman, J.A. and Sproull,R.F. Decision theory and AI II: the hungry menkey. Ccgnitive Science, 1 (1977). FE. 158-192.
[Fikes E Nilsson, 1971]
Fikes, R.E., and Nilsson,N.J.. STRIPS: A new approach to the applicaticn cf theorem-proving to problem solving. Artificial Intelligence, $\underline{2}$ (1971). pp. 189-208.
[Fikes, Hart, \& Nilsson, 1972]
Fikes,F.E., Hart, F.E.. and Vilsson,N.J. Learning and executing generalized robot flans. artificial Intelligence, 3 (251-288 1972), Fp..
[Freeman, 1974]
Freeman, H. Computer processing of line-drawing images. Ccmputing Surveys, 6111 (March 1974), PE.57-97.
[Friedman, 1967]
Friedman, I. Instinctive \quad fehaviour and its computer synthesis. Behavioural Science, 12121 (March 1967), pp.85-108.
[Friedman, 1977]
Friedman, Leonard. Robot perception learning. Eroc. pattern directed inference systems workshop, SIGABT NEwsletter June (1977), pp.44-49.
[Funt,1976]
Brian V. Funt, RHISPER: A ccmputer implementation using analogues in reasoning. Technical report no. 76-09, Department of Computer Science, University of British Columbia, 1976.
[Gaschnig, 1978]
Gaschnig, J. Experimental studies of backtrack ∇S. Waltz-type vs. new algorithms for satisficing assignment problems. Proc. Second natioral conference CSCSI(1978), pp.268-277.
[Gass et al., 1976]
Gass,C.L., Angehr,G., and Centa,J. Regulaticn cf food
supply by feeding territoriality in the rufous
hummingbird. Can. J. Zool. 54, pp.2046-2054.
[Gelernter, 1963]
Gelernter, H . Bealizaticn of a gecmetry-theorem proving
machine. In: $E_{0} A . F e i g e n b a u m$ and $J . F e l d m a n(\epsilon d s$.$) .$
Ccmputers and Thought, McGrau-hill,1963.
[Gilmore, 1960]
Gilmore.P.C. A proof method for quantification theory.
IEM Journal for research and develcfatnt, 4 (1960),
FF. 28-35.
[Good, 1965]
Good, I,J. Speculations concerning the first
ultraintelligent machine. In: F.L.Alt and Mobutinoff
($\epsilon \mathrm{S}_{.}$). Advances in computers, Vol.6, Academic press,
pp.31-88, 1965.
[Green, 1969]
Green, C. Application of theorem-prcving to protlem
solving. IJCAI-69(1969), pF.219-237.
[Green E Sibscn, 1978]
Green, P.J., and Sibscn,R. Computing Dirichlet
tessellations in the plane. Ccmputer Jcurnal, 21(2)
(June 1978), pp. 168-173.
[Hart,Nilsson, Rafhael, 1968]
Hart,P., Nilsson,N., and Faphael,E. A formal basis for
the beuristic determination of minimur cost paths. IBEE
Trans. Sys. Sci. Cybernetics,SSC-4, $\underline{2}$ (1968).
PF. 100-107.
[Hebb, 1949]
Hebb, \quad. O. The Organization of Behaviour: a Neuropsychological Theory. Jchn Wiley and Sons Inc., New York, 1949.
[$\mathrm{E} \in \mathrm{L} \mathrm{L}, 1968$]
Hebb, D. O. Concerning imagery. Psychological Review, 75 (1968), PF.466-477.
[Hilbert, 1927]
Hilbert, D. The foundations of matheratics. Reprinted in: J.Van Heijenocrt (ed.), From Freqe to Godel, Harvard University Press, 1967.
[$\mathrm{Ecwd} \mathrm{C}, 1968$]
Howden, W.E. The sofa problem. Ccmputer Journal, 11 (May to November 1968). pp. 299-301.
[Jacobs \& Kiefer, 1973]
Jacobs, W., and Kiefer,M. Bobot decisions based on maximising utility. procédings Third International Conference on Artificial Intelligence, 1973, pp.402-410.
[Jerison, 1973]
Jerison, H. J. The evolution of the brain and intelligence. Academic Press. 1973.
[Kandel, 1976]
Kandel.E.R. Cellular basis of behavicur. W. H. Pretman, 1976.
[Kandel, 1979]
Kandel,E.R. Behavioural biclogy of aplysia. H. H. Freeman. 1979.
[Kleene, 1956]
Kleene, S.C. Representation of events in nerve nets and finite automata. In: E.C.Shannon and J.McCarthy ($\in \mathrm{J}_{\mathrm{E}}$). Automata studies, Princeton U.P.
[Kchler, 1925]
Kchler, W. The mentality of apes. Translated by E. Winter and republished 1976 by Liveright, Nev York.
[Kcsslyn E Pcuerantz, 1977]
Kosslyn, S.M., and Pomerantz, J. R. Imagery, propositions, and the forlu of internal representations. Cognitive Psychclogy, 9 (1977), ep.52-76.
[Kowalski,1969]
Kowalski,R. Search strategies fcr theorem-proving, B.Meltzer and D.Michie ($\in \mathrm{ds}_{\mathrm{o}}$) . Machine Intelligence 5 , Edinburgh Oniversity Press, 1970, pp.181-201.
[Kuhn,1962]
Kuhn, T. The structure cf scientific revolutions. Oniversity of Chicago Press, 1962.
[Kuipers, 1977]
Kuipers, Benjamin J. Bepresenting knowledge of large-scale space. Fh. D. Thesis, AI-TR-418, MIT AI lab., 1977.
[Levi \& Mcntanari. 1970] Levi, G., and U.Montanari. A gray-weighted skeleton. Information and Control, 17 (1970), ffe62-91.
[Ludlcw, 1976]
Ludlow,d.R. The behaviour of a model animal. Eehaviour, 58 (1976), pp.131-172.
[KcCarthy, 1968]
McCarthy, J. Programs with commen sense. In: M.Minsky (ed.). SEmantic Information processing. MIT Press, 1968.
[McCarthy, 1977]
McCarthy, J. Epistemclcgical problems of AI, Eroceedings Fifth International Conference cn Artificial Intelligence, 1977, PF=1038-1044.
[McCarthy \& Hayes, 1969]
McCarthy, J., and Hayes,P.J. Some philcscphical problems from the standpoint of artificial intelligence, B.Meltzer and D.Michie ($\in d s_{-}$). Machine Intellicence 4 , Edinburgh University Press, 1969, pp.463-502.
[McCarthy et al., 1978]
McCarthy, J., gayashi,T., and Igarashi,S. On the model theory of knowledge. AIM-312, Stanford AI Lab., 1978.
[Mackworth, 1977]
Mackworth,a.K. On reading sketch maps, Proceedings Fifth International Conference on Artificial Intelligence, 1977, pp.558-606.
[Marr,1976]
Marr, D. Early processing of visual information. Phil. Trans.Roy.Soc.London, 275 (9421 (Cctober 1976), pp.483-524.
[Marr. 1977]
Marr, D. Artificial Intelligence - a personal view. Artificial Intelligence, 9 (1) (August 1977), pe.37-4.
[Mari E fcggic, 1976]
Marr,D., and Poggio,T. Fror understanding computaticn to understanding neural circuitry. AIM-357, MIT AI lab... 1976.
[Marr E Ecggic, 1976] Marr, D., and T.Pcggio. Cooperative ccmputation of stereo disparity. Science, 194 (15 October 1976), ff. 283-287.
［Martelli，197ク］
Martelli，A．On the complexity of admissible search algorithms．Artificial Intelligence，8（1）（February 1977）．pp．1－13．
［Masterman，1970］
Masterman，M．The nature of a paradigm．In：I．Lakatos and A．Musgrave（ $\in \mathrm{d}_{\mathrm{o}}$ ），Criticism ard the growth of knowledge，Cambridge 0．P．，pp．59－89，1970．
［Merriam，1975］
Merriam，F．W．An experimental robot computer problem sclving system．Refort 3108，Bolt，Beranek ε Newman Inc．， 1975.
［Michie，1978］
Michie，D．Seminar at $\quad \mathrm{BC}$ ，fall 1978.
［Miller，1978］
Miller，L．Has AI contributed to an understanding of human mind？．Cognitive Science，$\underline{2}$（1978），pp．111－127．
［Viller，1974］
Miller，G．A．Needed：a better theory of cognitive organization．IFEE Trans．on Systems，Man，and CYbernetics，SMC－4（1）（January 1974），EP．95－97．

〔Miller，Galanter，$\&$ Pribram，1960〕
Miller，G．A．，Galanter，E．，and Pribram，K． $\mathrm{H}_{\text {．}}$ Elans and the structure of behaviour．Holt，Rhinehart and Winston， 1960．
［Minsky E Papert，1972］
Minsky，M．，and Papert，s．AI Progress Eeport．AIM－252， MIT AI Lab．，1972．
［Minsky，1975］
Minsky，M．A framework for representing kncwledge．In： P．H．Ginston（ $£ \mathrm{~d}$. ），The psychology cf computer yision． McGraw－Hill， 1975.
［Montanari，1968］
Montanari，U．A method for ortaining skeletcns using a quasi－єuclidean distance．Journal of the $A C M$ ，15（4） （October 1968）．PF．600－624．
［Montanari，1969］
Montanari，J．Continuous skeletons from digitized images．Journal of the ACM，16（4）（ October 1969）， pp．534－549．
[Noore, 1956]
Moore. E. F. Gedanken experiments on seguential machines. In: C.E.Shanncn and J. MCCarthy (eds.), dutomata studies. Princeton Oniversity Press, pp.129-153.
[Mocre \& Gclledge, 1976]
Moore,G.T., and Gclledge,R.G. (eds.). Environmental knowing: theories, research, and methods. Dowden, Hutchinson and Eoss, 1976.
[Mccre, 1975]
Moore, Robert C. Reasoning from inccaplete knowledge in a procedural deduction system. AI-TB-347, MIT AI Lab.. 1975.
[Moran, 1973]
Moran, Thomas P_{0} The symbolic nature $c f$ visual imagery, Proceedings Third International Conference on Artificial Intelligence, 1973, pp.472-477.
[Newell \& Simon, 1963]
Newell,A., and Simon, $\mathrm{H}_{\mathrm{A}} \mathrm{A}_{\mathrm{A}}$. GFS, a prcgram that simulates human thought. In: F.A.Feigenbaum and J.Feldmar. ($\in \mathrm{A}_{\mathrm{s} \cdot}$), Ccmputers and thought. MCGraw-Hill.
[Newell \& Simon, 1976]
Newell, A., and Simon, H. A. Computer science as empirical enquiry: symbols and search. Communications of the $A C M$, 19(3) (1976). pp.pp.113-126.
[Nilsscn,1974]
Nilsson,N.J. Artificial Intelligence. IFIE Congress, Stockholw, Sueden (1974), pp...
[Nilsson E Raphael,1967]
Nilsson, N.J., and Raphael, B. Preliminary design cf an intelligent rcbot. Ccmputer and infcrmation sciences, 7(13) (1967). pp.235-259.
[Fapert et al., 1970]
Pafert et al., Lcgo Memos, 1970-1971.
[Parzen, 1960]
Garzen, E. Yodern probability theory and its aeflicaticns. JchnWiley and sons, 1960.
[Efaltz, 1967]
Pfaltz, J.L., and Azriel Bosenfeld. Computer representations of planar regions y y their skeletons. Ccmuunications of the ACM, 10 (1967), pp.119-122.
[Efefferkorn,1975]
Pfefferkorn, C.E. A heuristic frobler solving design system for equipment or furniture layouts. Communications of the ACM, 18(5) (May 1975). pp.286-297.
[Erawitz,1960]
Prawitz, D. An infroved proof procedure. Theoria, 26 (1960). FF. 102-139.
[Pylyshyn et al...1978]
Pylyshyn, Z.W., E.W. Elcock, M. Marmer, and P. Sander. Exploraticn in visual-motor spaces. proc. Second National Conference Canadian Society fcr Ccaçutational Studies of Intelligence, Fp. 236-243.
[Feiter, 1972]
Reiter, 8 . The use of models in autcmatic theorem-proving. Technical Report 72-09, Computer Science department, University of E.C.. 1972.
[RCtinscr,1965]
Bobinson, J.A. A machine oriented logic based on the resclaticn princifle. Journal of the $A C M, 12(1)$ (January 1565). PF.23-41.
[Eosenfeld \& Pfaltz, 1966]
Rcsenfeld, A., and J.L.Pfaltz. Distarce functicns on digital pictures. J. Pattern Recognition, 1 (1966), PF.33-?
[Iosenfeld E Kak, 1976]
Rosenfeld,A., and Kak,A.C. Digital Eicture processing. Academic Press, New Ycrk, 1976.
[Sacerdoti, 1977]
Sacerdcti, Earl D. A structure for clans and behaviour. Elsevier North-Hclland, Inc., 1977.
[Shepard, 1¢78]
Shepard, E. N. The mental image. Americar Psychclcgist, (February 1978), FF. 125-137.
[Simen, 1956]
Simon,H.A. Raticnal chcice and the structure of the environment. Esychological Beview, 63 (1956), pp. 129-138.
[SimCn, 1977]
Simon. H.A. Artificial intelligence systems that understand. Frocetdings Fifth Interrational Conference on Artificial Intelligence, 1977, pp. 1059-1073.
[Slcman, 1971]
Sloman, Aaron. Interactions between philosophy and AI: the role of intuition and non-lcgical reasoning in intelligence. Artificial Intelligence, $\underline{2}$ (1971), pF.209-225.
[Slcman, 1978]
Slcman, A. The computer revoluticn in chilosceny: philosophy, science, and models of mind. Harvester press, 1978.
[Stallman E Sussman,1S77]
Stallman, Be. Mo, and Sussman, G. Forvard reascning and dependency-directed backtracking in a system for computer-aided circuit synthesis. Artificial Intelligence, 9(2) (October 1977), pp.135.
[Sussman, 1973]
Sussman,G.J., The FINDSPACE problem. AIM 286, MIT AI Lab., March 1973.
[Sussman, 1975]
Sussman, G. A computer model of skill acguisition. American Elsevier, 1975.
[Sussman,Wincgrad, E Charniak, 1971]
Sussman,G., 'Winograd,T., and Charniak, E. Microplanner reference manual. AIM-203, MIT AI Lat., 1971.
[Tate, 1975]
Tate,A. Interacting goals and their use, frocédings Fourth International Conference on Artificial Intelligence, 1975, pp.215-218.
[ThCmpson, 1977]
Thcmpson,A.H. The navigation system of the JPL robot, Proceedings Fifth International Conference on Artificial Intelligence, 1977, pp.749-757.
[Toda, 1962]
Toda, M. The design of a fungus eater: a model of human behaviour in an unsophisticated envircnment. Eehaviour, 7 (1962), pp. 164-183.
[Tclman, 1948]
Tclman, E. C. Ccgnitive maps in rats and aen. Esychological Review, $5 \underline{5}$ (1948), pp. 189-208.
[Trcwbridge, 1913]
Trowbridge, C. C. On fundamental methods of orientation and imaginary maps. Science, 88 (1913), Fp.888-897.
[Tseitin,1968]
Tseitin, G. S. On the complexity of derivation in propositional calculus. In: A.O.Slisenko (ed.), Studies in constructive mathematics and mathematical lcqic, Part II, 1968.
[Warren, 1974]
Warren, D. H. D. A system for generating flans. Memc 76, Department of computaticnal logic, University of Edinburgh, 1974.
[HE11s,1978]
Wells,M. octopus: physiology and behaviour cf an advanced invertekrate. John Wiley and scns, 1978.
[Winston, 1970]
Winstcn, P. H. Learning structural descriptions from examples. AI-TR-231, MIT AI Lab., 1970.
[Minston, 1978]
Winston, P. $\mathrm{H}_{\text {. }}$ Learning by creating and justifying transfer frames. Artifial Intelligence, 10ل2 (April 1978), pp. 147-172.
[Zucker, 1978]
Zucker,S. ${ }^{\text {. }}$. Local structure consistency and continuous relaxation. TE-78-11. Department of electrical engineering, MCGill University, 1978.

