
ID Search of an Ol!!irnal ~chine

Architecture for BCPL ------- - ---
7 't-\

by

R~ T<. Agarwal ancl s. T. Chanson

DApt. cf Computer Science
nniversity of British Columbia

January 1979.

Technical R~port 79-1

n. K. 1\garwal

by

ana s. 'J'. Chanson

Tab]e of Contents

DPpt. cf Computer Science
University of British Columbia

January 1979.

Technical RP.poet 79-1

O. The Meaning of Optimality·····•-•·•··••·····••·•·••·•·••• 1
1. A Methe~ for Producing Good Machine Code from BCPL ••••••• 2
2. An Encoding Scheme for ICE ••••••••••••••••••••••••••••••• 8
3. Conclufions ••• 10
Acknowledgements •• 12
References •• 13
A. 1. 11. Dflscri_ption of ICE 14
A.1.1. Niladic OpPrators ••••••••••••••••••••••••••••••••••• 16
A.1.2. Monadic orerators •••••••••••••••••••••••·••••••••••• 17
A. 1. 3. niailic Operators •••••••••••••••••••••••••••••••••••• 19
ft.. 1. 4. Triadic op~rator.s 22
A.2. Some Statistics on the Composition of BCPL Programs ••• 23
A.3. Usjng the RCPL/ICE Translator •••• • •••••••••••••••••••• 28

ABSTRACT

This paper investigates the problem of generating optimal space­

efficient code for the language BCPL. Designing such a code was seen to

be a two-phase process. The first phase was to describe an internal

representation scheme for BCPL programs which preserved those program

features which are salient to translation and at the same time minimize

the number of instructions generated. The second phase consisted of the

realization of the internal representation as an actual machine taking into

account the usage frequencies of instructions and other real world constraints

such as word size and addressing space. The intermediate £Od~, called ICE

and an encoding scheme (known as ESO, standing for ~ncoding ~cheme _Q_) are

described•. ICE/ESO is seen to reduce code size by an average of about 32%

compared to BCODE which is a realization of OCODE, the intermediate language

currently used in BCPL program translation.

1

One oftAn speaks of th~ desire to produce "efficient
programs". ~part from the criter.ion of correctness,. program
efficiency is usually measured in terms of time (the numter of
CPTT cycles used), · anrl space (the total amount of storage used by
the process). In the pr-esent context, the optimality of
generated code will he measured only on the basis of space
efficiency. such a stan~e is fairly popular and is ncrm~lly
1ustified by noting that memory is a more critical resource than
CPO cycles for, although both ar.e becoming less expensive, word
si~e limitations restrict the convenient access of large areas
of store.Ct> Since we are discussing the generation of optimal
code by an automatic translator it is reasonable to state that
space efficiency will lead to time efficiency. This is because
the increase of space efficiency hy the restructuring of
programs (which might present a tradeoff b~tween prcgram ~pee~
and size) is not considAred here; the elementary optimizations
which are discusse~ in this paper are shown not to degrade the
generated code's speed characteristic.

In this paper, the problem of generating optimal Epace
efficient co~e is investigated for. the language ECPL (fasic
r.ombined Programming Language) • RC r>t [R 1 J is a type less language
which is particularly suited for the writing of systems
programs. It is a qood choice for the present stady not only
because it is a simple lanquage which has been used in practice,
hut also becau~e most ncPL compiler implementations presently
generate an intermediate co~e called ocnDR [R2]. The existence
of CCODB facilitates the evaluation of the relative merits of
the code ~eveloped hPre, called TC~. Designing such a code was
sePn to be a two-phase process: the first phase was to describe
an internal representation scheme for BCPL programs wtich
preserved those program features which are salient to
translation; the secon~ consisted of the realization of the
internal representation as an actual machine. The realization
would produce an instruction set encoding based on usage
frequencies of instructions and other real world constraints on
machines such as word size and addressing space. Roughly
spear.inq, therefore, the aim of the former phase was to minimize
the number of instructions generated, whereas the latter would
ensure their optimal encofling on a target machine.

In some sense, the answer to phase one cf the problem is
evident: we can make the intuitively reasonable assumption that
the optimal representatjon of a BCPL program is the prcgram
itself. This assumes that the algorithm expressed by a ECPL
program cannot re expn~ssed more succi.ntly. ~ ccmmon nata
stcuctur~ used to represent a program is the tree. ~ tree has
SP.Veral disadvantages when viewed as an intermediate code for.

Ct> SPe [T] for a fuller discuBsion of other considerations.

2

BCPL.C2> Since a tree is a structure in two-dimensions
(sequencing and nesting) it is difficult to realize in terms oE
the seguentJal machine architectures prevalent today.<3> If
translation were being considered to the native code of ~ome
existing machine a tree may be a more reasonable choice.
However the task of such a translator could be greatly
simplified if the intecme~iate code were itself one-dimensional.
Such a one ~imensional codA should ideally have the property
that its instructions can be expanded into instructions for the
target machine in a context-free way (that is, by treating
commands in the int~rme1iate code as macros defined in terms of
the target machine's instructions). It is the design of such a
code that will be discussed in section 2.

The advantages of two-dimensional representation should not
be overlooked, however: a tree representation would be ideal in
that it would closely reflect program structure and at cnce
remove all unneccessary information such as noise wor~s, and
most names. But since we are loo~ing for an intermediate code
which can be viewed as an actual machine with a structure cc~mon
to those in existence today, the one-dimensional alternative
will be the only on~ developed here.

~s a cor.rollary to the pr~vious assumption that the F.CPL
proqram being translate~ has heen optimally represented, we tave
that the introduction of such programming artifices as index
registers arP unnecessary. This is bec~use an index regi~ter
may typically be useful in reducing code size if it can be
loaded with the address of a frequently referenced vector (say).
If the hiqh level langnage does not allow fort.he explicit
loading of the index register with the vector's starting
address, some form of data flow analysis is required for its
optima 1 11 sage. w~ ha V"" speci fical 1 y precl uned such analysis.

1. A Method fer Producing Goo~ Machine Co~e frcm BCPL

In this section the design phase of the intermediate code
ICE is discussed. As noted previously, two major objectives are
to be met: IC~ should be a language that is easily encodable as
the instruction set for some real machine such that the enccding
is efficient and it should be amenable to translation into the
host language of somP other machine.

C2> In an 8nvironment where complete syntactic information
regarding a program is required at execation time (as in, say,
an interactive debugging system) a tree is likely to be the
representation scheme of choice.
C3J What is r~quired is a machine capable of executing
directly somf' LIS? t.ype language. Even here, the linking scheme
would have to be modified to reduce space wastage due to linkage
fields.

.1

,1thouqh the machines underlying OCODE and ICE are the
same, rrE manipulates ~ata objects iiffer~ntly. In BCPl the
basic data obiect is always the !2£1- A word is of unrestricted
size an~ form proviaea that it can be use1 tc store any address
an<l that cousecutivP war.as are numbere" consecutively. OCOOE
manifulates aata ob4ects by pushing them onto the runtime stack,
then applying the require~ operator to them. If OCODE is to be
viewe~ as a real machine, the need to explicitly stack all data
obiects is wasteful in both tim~ and space since the rush
operation requires a seoarate instruction. If OCOD~ is tb be
translated into a 1lfferent machine's language, scme fairly
intricate pattern matching mechanisms are reguired if reasonable
ohiect code is tote generated. This is because a BCPL command
such as

a := b+c

will translate into the ocnn! commands

I. ~
T, C

Push b onto stack
Push c onto ~tack

(E 1)

HJJS
S a

ReplacP top two elAments of stack with sum
~tore the top of stack in location a.

Now consiaer a fairly typical multiple
archjtectur.~ with instructions of the form

<op>.<reg> <addr>

register machine

where <op> is the diacHc oper.ator appli0d to the contents of the
register <reg> and the memory location <addr> in the form
<req> := <n'!g'> <op> <aadr>. To generate the exFected

LOAD r-eg1,B
1\DD reg1,C
STOR,:;, rt:!g1,II.

sequence for this machine from the above OCOOE segment, the
'L c; PT.US' se-guence has to be recogni7,ed. This is only a
simple instance of thP pattern matching capabilities needed. A
BCPt command such as

a! b := c (F.2)

may te implemented on many machines as a single instruction;
OCODE qenerates the s~quence

L c
L a
L b
FLUS
STIND

ralculate a~dross of a!b
Stor~ £ in address at top of stac~

some mechanism has to Pxist to aetect this pattern to generate

4

optimal code from OCOD!. Unfortunately, such translation
schemes are not straightforward to implement.

ICE<•> views aata object~ to be of two basic tyFes:
cellular and complex. 1\ny data ohject which can .be directly
stored in a word without the need for further evaluaticn is
cellular. Complex objects are those which can be stored i~ a
word only i£ evaluated. Hence all non-trivial expressions are
complex. Generally, TCE allows tbe direct specification of all
cellular obj cts as instruction operands; the runtime stack is
use~ only to stor~ ~he interroeaiate results frcduced in the
evaluation of complex obj~cts. A disadvantage of sue~ an
intermediate representation is that the number cf instructions
in the rPpertoire increases e normously. Whereas OCO0E has
~xactly one operator specifying an operation, ICE in princifle
cequires 2**Il op~rator varjants to specify all the cellular and
complex operano n-permutations for an E-aa·c Oferator. To
linearize this ex ponential growth, a realistic compromise has
been made: instea~ o f having instruction variants allowing acy
operator typA permutation, thP only onRs TCF features from the
2**n possibilities are those whose rightmost Oferands are all
cellular. The r 0 maining operands, be they cellular or compl~x,
are aJl fetched from the stack. bus, for an ~-adic operator
ICE has a zero operand variant (whern all operanas are on the
stack) to an n-operana variant (where all operands are cellula~
and thus directly specifiable). This produces a total of n+1
instruction variants. By iudicious choice of the ceder of
op~rand specification, such a restricte1 representation produces
almost as good code as woul1 he in the genAral case. There are
several reasons for this. In some cases (e.g., commutative
operatcrs) the linearized set of operan1s are as general as in
the exponential case, since the order cf CFerands can be
reversed. In some otb r cases certain operands, such as the
selector fiel~ in a sAlect expression (see MOV~SELECT in A.1.4)
can cnly he ce1.lular objects and so invalidate some of the
po~sible variants in the exponential set. In yet other cases,
an operator as well a s .its inverse is available (e.g., GT and 1.S
for t.he "greater than" and "less than" relations). This allows
BCPt code sequences such as

11,< (B+C)

to be transforme~ into

(B+C) >A ...

with a correspondinq increase in code density, for reasons noted
below. The existence of an inverse for an operator makes it, in
essence, commutative. one should note that the specific crder

<•> only the design principles of ICE are ~iscussed here. ~
comrlete description of the ICF instruction repertoire is to be
found in appenaix A.4.

5

in w.hich opP.rancis , r:P allowed to appear is relatively
unimportant, for WG c:0111.r, s neci. Ey (for example) that cellular:
opPranas ~oul~ on y appear ~n thP leftmost positions, instead of
tbe rightmost. Tf. .Ii~ oper.anas wer.e themselves reversed the
leftmost sr.hemP. wo11lr! bP equiv lPnt to the previous one (modulo
the notation used). The important point in the linearization
scheme is that rel~tively little representational fOwer is lost
by it use.

To illustrate ~he possitle instruction variants for an
operator lat us consi~er the operation of division, which takes
two arquments (shown as 'x' and 'V' below). If both •x• and •y•
are cellular, the instruction generated is

DIV 2 X y

If •x• is comple~, the correct ICE instruction is

DIV 1 y

where the value of 'x' is now fetched from the top of stack< 5 >.
If both 'x' and 'Y' are ccmple~ or if •x• is cellular but 'Y' is
complex, the instruction to be generate~ is

DIV 0

where 'Y' is at the top of stack and •x• at the location
immeaiately below the top.

Note here that we are force~ to push 'x' on to the stack if
'Y' i s not CP]lular. ~his is a consequence of the linearization
scheme outliM!d above. However, if the operator is commutativ~,
then the op~ran~ or~er can be reversed to allow the c~llular •~•
op€ rand to h"? dire tly c::pec ·_fi e d. ~ince BCPt spl:!cifically
l@aves t.hP. orne1· ot s11b-exprG!ssion e valuation unaefin£d,
operators which ~P c0mmutative in ordinar y mathematics can (an~
must) be consirlereft com mutat ive hy ~ RCPL to ICE translator.
Note that thP. commnt.inn, of op@.r:ator:- orc1er wherever advantageou s
is not an option it ic a part of the definition of ICE.
eimilarly, maximizing the number of operan~s tc an instruction
is also not optionnl. ijencp if two cellular objects •a• and 'b'
are to h . added, thA ~orrect ICE instruction is

ADD ?. ab

An instruction sequence such a~

PUSH 1 a
l?rJSH 1 b
Ann o

<~> Unless otherwise specified, fetching an item from the stack
always implies its deletion.

is incorrect. Furthermore, the BCPL fragment

is correctly translated into ICE ~s

MOLT
ADD

2 A R
1 C

Note the transformation of 'C+A*R' into 'A*E+c.•

6

The advantages of such an intermediate code will no~ he
outlined. If one wishes to reduce the instruction count, it is
clear that elimination of unnecessary PTISCT instructions (Lin
OCOD~) helps. ~lthough the number of bits required to reprfsent
an instruction codP has now increased, the overall number of
bits needP.d to represent a program (in compar1s1on to si3ilar
encodings for ocnDF.) is noncthP.less reduced.

In ccmparision to OCODE, ICE is also tetter suited to
translation into the host language foe machines which presently
exist. This is hecause most machines allow at least some of the
operands of an operator to be explicitly specified. Continuing
with our previo11s examples we note that the ICE codes generated
for {E1), if both 'h' and 'c' ace cellular is

ADD 2 b c
MCVF, 1 a

More importantly, ffe not~ that the definition of ICE requires
that the

~OD 2 b c

be generated, ana not (say)

PUSH
Ann

1 b
1 C

This imrlies that if a POSH command is encountered in
translating ICF to some other lan~uage we are guaranteed that
the PUSH is in~eed necessary< 6 >. The maior advantage of such a
property is that rrE instructions can be transformed into the
language cf mo~t othPr machines in a context-free vay, and still

<6> It is assumed that instructions on real machines allow
operands to be specified cnly in the or1ec that ICE allows; that
is, instructions such as

DIVIDl <addr>,<reg>
meaning <reg> := <a~dr>/<req>, where <addr> is a memory location
and <reg> a registPr, are not allowed. Empirical evidence sbows
this to bA a reasonable assumption.

7

p.r::oauce closP. to optimal co,h~. Such is not. the case for OCCD~.
A good qU l"ty G de generator can thus be produced fo~ most
target machines by treat.in_ ICE commands simply as macros wtose
expansion is deEin~~ using th0 macro assembler ~hich is usually
provided by thP machjne's vendor. Recognizing that the foxmat
of macros accepte~ by macro ass~mblers varies considerably, an
exact external form for ICE comman~s has not been defined. For
the purposes of Jescription, app endix A.1 does indeed fresent a
representation scheme; the cucrent implamentation of the BCEI to
ICE translator allows ~h~ appearance of ICE commands to be
modified reanily howev~r. IndPed, jt is quitf' reasonable to
perform the "macro expansion" refereed to earlier within the
routine which emits the ICR code (in the BCPL to ICE
translator).

ICE is essentially a generalization cf OCODE. Fixed
sequ~nces of ccmmands which frequently occur in CCODE have teen
combined intc one TCE instruction. The co~lescing of
instructions has not been ~one in an arbitrary way. The general
rule followed has been that every BCPL operator has been
assignPd a corresponding re~ instruction. In practice such an
architecture resembles those of real machines quite closely. In
particular, the scheme used to linearize the number of variants
of an in~truction seems to be employed by real machines al~o.
It should be noted that some machi.nes allow for a greater degree
of compression than ICl. For example, the BCPL command of (Fl)

a := b+c (F 1)

can be translatPd into a single instructicn on some existing
machines. ICR can, at best, produce

1\DD
MOVE

2 b c
1 a

This is because machines which allow (E1) to be expressed as one
command are combining the distinct BCPL operations of addition
and assiqnment. TCF aoes not include such ccnbinations in its
instruction set.

From the viewpoint of Flynn's work LF} on the evaluaticn of
machine architecture::., ICF's m1periority over 0CODE results from
the reduction of the need for M-type instructicn£ <7 > to the
point of absolute necessity. ICE also unites several distinct
OCODE comman1s as singla ccmmands with variants. For examFle,
the ICE equivalent of the OCODE STIND operation is MOVE O.
Similarly, the operations ,l'Tl'JP and GOTO in OCODE are simply
variants of the ICE JTTMP command.

(7) In Flynn's terminology, M-type instructions are those which
move data from one Apace in the memory hierarchy (e.g.,
rPgisters) to another: (e.g., main memory).

8

2. An Encodi.!Ll] Scheme for ICR

From thP discussion of the previous section it can be
inferred that, under the constraints specified, ICE does indee1
minimize the number of instructions generated from a rrcgram
written in BCPL. If we are to view ICE as the instruction set
for. a real ma c hinP, it is not c lear however that ICE expresses
programs in fewer hits han an a l.ternate scheme such as ECODE
(~ee [M]) for although the numbe r of instructicns generated has
~ecr~ased, the numher of bits r e quired to represent them · has
increase~ (du(>- to th e ir (J n=? a t er complexity). Indeed, th€
prohlem of e ncoding n in str ct i on set optimally is largely an
exer-cise i,n th"" s tatisti c al measur.e of the frequency of
instruction us ag e : ~n enco~inq fo r ICE which is optimal for all
conceivable BCPL programs is thus not possitle in princiFle.
Here we pr.esent a reasonable encoding based upon some
m~asurements of a large sample of BCPL programs and the
constraints on enco~ing schemes which real hardware inevitably
provides.

An initial ~ecision was made to have a machine with a \Ord
length of sixteen hits. This was done largely becausE an
encoding was being sought which would be suitable for use in a
minicomputer environment. From experience with machines of
various word sizes, sixteen hit words were also felt to present
a t€asonable tradeoff point between the information storage
capacity of a word an~ the memory wastage associated with the
use of large word sizes. This choice of word size has one
disadvantage: floating point operators are unavailable since
real values are not conveniently stored in sixteen bits. Since
real arithmetic is not a featur ~ o f s an~ a rd BCPt <~>, and einc e
such data manipulation is uncommo n in RCeL, th e lack of this
capatility was not fe] t o hP. s er ious. Lastly, c boosing a
sixt.e Pn hit worn was ;t a van ta geo11s sj nce o th f' c object machines
for BCPt havP been de vi sed u s ing th e s am e word size. This
allows a me thoa for measuring (by compa risicn) the relative
space e ff i ciency of a par t ·c ular ICE e nco ding sche me . 5ince I CE
instruction s c on s is t of a n operator followed by zerc or nore
operanrls, t he e nco i nq pro bl Am can be divided into the protlems
of encodi ng t he o p~ca to r and encoding the operands. These two
encodings c annot be perfor me~ entirely independently hovev~r
since the y both have to me l d together well in the environment of
the underlying wor~.

Including all possible commana variants, TCP consists of a
total of 2~ 6 o pnca t ors. ~s will be seen shortly, a "no
operation" i nEtr uc t ion is a lso needed. Since PUSH O is a one
byte opArator whi ch does not h in g (it pops the top of stack, then
pu~hes it hack o n) it. will h0 used as the no op. The total of
2515 ope rat o-cs can t ie rPpr@s<-rnt.erl by a single byte (8-bits) of

ce> ICF is sufficiently powerful to accomodate ECPL-V, an
extension of BCPL which per-mits real arithmetic.

9

information. ~h~ actual mapping of operators to bit patterns is
left unspecified; this is acne so that the imflementor might
mate best use of any special characteristics of the machine on
which ICR is emulated or simulated. Note that the 256 operators
include all those which operate on real values~ for the present
case, there will th~refore be few~r than 256 operators. A
complete byte is nonAtheless assigned to the operator field to
simpl .fy the harnware decoding logic (or microcode). Such
considerations will affect the form o~ the operand field al~o.
In particular, it will be assumed. that the basic (indivisible)
size of any datum is eiqht bits. Hence, in this encoding
scheme, instructions and data will always be in multiples of.
bytes. As may be evident, the imposition of such a constraint
reduces encoding efficiency.

7he representation of operands under this encoding scteme
(cal led ESO) will now be discusRed. An operand in BCPL consists
of two parts: an addressing mode (admode), and a value for the
particular aadressing mode. for example, an cperand referencing
glctal cell 20 is in the global aamode with a value of 20.
There ar.e four basic addressing modes. They a re abso 1 ute,
g_J:otal, local, ana rel r1.t. ive. In adcHtion, for each admode, ICE
has the ability to spe cify whether the addressing is direct or
indirect. Hence three bits are needed to repre~ent the admcde.
If operands arP tn be stored in a single byte there are five
bits left for the value fiel~. Since five bits are insufficient
to represPnt all value fields, operands are allowed io he either
long (threP bytes) or short (one byte). one bit is required to
represent this length a~tribute and hence the space for the
value field of a short operand is re~uced to four bits.
Although this may seem restrictive at first, Table A.2.3. in
appendix~.?. shows that an average of 71 percent of operands
fit into four bits, when represented in two•s-ccmplement
notation. If an operand is long, it must occupy three bytes.
This is because a two ~yte operand leaves ooly twelve bit~ of
space for the value field; more a~e needed to represent
addresses in aTiy meaium sized program.

The operator an~ operand encoding schemes having teen
described, they can now be combined tc represent ICE
instructions. The ICR/FSO machine represents instructions hy
sp~cifying the operator (in one byte) and following it ~ith the
(implied) number of operand fields r.~quired. Since the tasic
addressable unit at thP RCPL level is a word, a problem arises
whenever code is a~ ~ressed (e.g., by a JUMP) which is at an odd
numbered byte (~inc e there exists no corresponding word
address). Two m~tho ds are apparent which overccme the problem:
since all addressi.ng at the BCPL level is accomplished via an
indirect tranch through a cell, a byte address can be stored
within the cell. This limits ~ha worn addressing space to
fifteen bits on a sixteen hit machine (the freed bit being used
t .o inde.x the byte). 'l'he other altf>rnati.ve is tc generate a one
byte "no operation" command whenever. necessary preceeding a
labPl <'leclaration withi.n the cod(~ body (,i.e., declaraticns u~ing

10

the LAB commano). ICE/ESO ai1opts the latt~r solution.

Mea5uring tbP spar.e pffjci~ncy of any machine architect ure
is net a straightfn~ward task, fr the results are affected by
the sa mplinq of progcams stuaie~. Both the style of program ming
prese nt in the samplP, as WRll as the aoplications being samfled
are factor~ which influ~nce tbe outcome cf the analyses.
~onetbeless, ~ blR A.~.Q. in appendix A.2. presents a
comparjsion t~twean JCF/FSO and SLIM, a machine devise~
specially for rP.present ing BCPL rograms (see [Pox J fer a
de cription nf thR SLIM machine). Co~R generation for a small
~a mple of. program shows hat SLTM compares favcorably ~ith EMl,
an exp er i m~n tal mach.i nP. c'l~sign ed by Tan en ha um wl1 ic h atte mpt E to
minimize tbe obiP.ct cone siz~ of orograms written in SAl , a
language with a RCPL flavour (seA [T] ann L Fox]). .\s a furt her
inaication of the compactness of TCE/RSO, we note fcom 1a ble
A.2.4 that the average SLIM to ICE/FSO cede ratio is 1.18
whereas Fox (see [Fox]) reports BCODR to SLIM code ratio tc be
1.12. ~his means tha~ BCnDFr which is a realization of OCODE
(the int crme~ i ate language cu rr@nt.ly used .in BC Pt pt cg ram
translation) takes up an average of 32 percent more space as
compared to ICF/FSO.

3. Conclusions

cur ohi ~cti v~ has b~An to find space-efficient way of
e ncodiriq BCPL proqrams. A two-phase mf>t.hod bas been usea in
developing this coie: the firs phasP. produced an instruction
set which minim" zpr he numh r of instructions generated; in the
second phase a space-~ffjciPnt encoa3ng foe this instruction set
was derivPd. ThR translator s .ction of a BCPI compiler has tee n
modified to generate ICR cod P and tn collect code cize
statistics. ~ssumjng that no o timizations other than the
reord@ring of operanrls to commutative operators an~ con~tdnt
fclding are allow~a, ICP m1n1m1zes the number of generated
instructions, within the constraints imposed by the
linearization Echeme.

As pointea out in section 2, it is me&ningless to talk of
an •needing foe ICE which is optimal for all pcograms. Th ~
encoding schemP presente~, ES O, emerged from an attempt o
satisfy the conflicting objectivP.s of unifcrmity and spac 0

efficiency. l\s an exa mp c, note that all operators (inclurHng
th ·c variant~) re entir.ly encoded in the first byte cf an
instruction. Howe ver, not all operators are used with fqual
frequency: f or ~xa mple, the ADD operator in any cf it~ variants
is far mor e prevalnnt t han RF ~. Hence, with a suff"ciently
tricky enco~ing, som~ of th e most fr .guently used _opcrators
along with on e ope and coula possibly be represented in a single
byte. The (accep able) tr.ac'leoff wouli, be that some of the
car@ly usea operat0rs wou d now cequire mo c than one byte for

11

their representation. Tan~nbaum adopts such an afproach in [TJ.
Further qains coull likely be madP if one were not constrained
ty hyte boundaries when devising an enco~ing. ES0 was designed
for such a restricted Pnvironment however to conform with word
formats preval~nt on current machines, and to simplify the
decoding logic {or microcode) used in implementing it.

~s a final remark, note that an instruction

<op> <var(1)> ••• <var(n)>

is equivalent to

fTTSH <var. (1))
<op> <var(2)> <var{n)>

assu ming that the~ is no stack overflow as a result of the
PTTSH. This provia~s a way of reducing the number of operand
variants, and hence t.h0 number of bits required to encoae an
operator. Note that ~h alove e~pansion degenerates to OCOD! if
it is anplied recucsive ly to the point that all operators are
sePn only in +hR~r zero-op~ra nd variant.

12

We would li~e to acknowledge the help received from the
following people in the course of this proiect in the form of
criticisms, suggestions, and insights Erom various discussions:
Mark Fox, Stephen Ma, ana Dave Mielke. The project was
supporten by thP National Sciences and Engineering Research
Council cf Canada under Grant No. AJ55Q, by the Yoath
Em pl oymen t Program for Universities {YE !lU) and the Depart. men t of
Com~uter Science at TTRC.

13

References

[F] Flynn, 11.,1., Com.211ter organization and A.r.chitP.cture, Lecture
notes for the advanced course on operating systems. Munich,
1977.

[Pox l FoY, !"I. , Machine 1\ rchi tect.ure a.na. the P ro_qram mi.fill La n.9 u~e
~.££1· "!.Sc. Thesis, Dept. of Computer science, UBC 1~78.

[K J Knuth, n. Fi., "rin Empirical study of F0R'rR7\N Programs",
Software: Practice an.-1 Fx.egrience ,rol.. 1, 1971, pages 261 to
301.

[~] Ma, s. and R.K. ~gar.val, The 8CODE system, ~echnical Nanual
1M-24,Dept. Of Computer Science, TTBC, April 1978.

l:R1] .!Hchards, M.,. _The BC.El: .RI.Qfil!!fil.!!lin_g J!i!nual revised .by J.!.L.
Peck and v.s. Manis, Technical Manual 75-10, Department of
Computer Science, UBC 1977.

[R2l Richards, M., "The Porta:bility of the BCPL Compiler",
Software: Practice and E.!.Qerience, Volume 1, 1971.
Pp135-146.

[T] Tanenbaum, A.s., "Implications of Structured Programming for
Machine ~rchitecture", 1:icr-1, Vol. 21, Number 3, ll!arch 1978.
Pp237-246.

14

A. 1. A Descri,Etion of ICE

Th~ intermediate co~e ICE is described here in a reference
manual format. ~s <'liscussed in section 1, the properties of the
ICE code generated are an integral part of ICE, in additicn to
the instruction repertoire itself. In particular, recall that
one of the maior advantages of ICE over OCODE is that one is
guaranteed that each TCE opecator will maximize the number of
arguments passed to it. For example, the PCPI ccmmand

A : = B/C
could b~ translated into ICH as follows

PUSH 1 B
PflSH 1 C
nrv o
FflSH 1 @A
MOVF 0

However, the correct ICE code (by the ma~iaization of operands
pr c re r t y) is

DIV 2 BC
MOVl=; 1 'iiA

Furthermore, since
unspecified in BCPL,
fragment

the order of
the correct ICF.

./\ := B+(C-2)
is

SUBTRACT 2 C 2
ADD 1 A
MOVF. 1 wA

evaluaticn
co<'le fo.t:

cf
the

opera n d i: i. s
ECPL code

Since andition is commut.ative, the expressic .n 1 '8+ (C-2) 1 is
transformed into • (C- 2) +n' which al lows the ce.llu la.r c 9 > o t ject
'P' to he specified directly as an instruction operand. It
should be noted though that jf ICR is usP~ as an intermedi~tc
code for a language which defines evaluation order, operands
cannot be vali~ly commuted.

As presently generated, the external representation of ICF
instructions follow a very rigid format. The general form of an
ICF. instruction is

<op><var><arg{1)> ••• <arg(<var>)>
where <op> is the instruction name

<var> is the instruction variant (see belcw)
<arg{n)> is the nth arqument to the instruction (see below}

In the descriptions below, instructions are classified by the
numb~r. of arguments they accept. For example, ADD is a diadic
operator since it accepts two arguments. In general, fer an
B-adic operator, the instruction variant number (<var>)
specifies the numter of arguments which occur directly after the

<9> A data object is cellular if it can be directly specifiea
as an argument to an instruction. All words are cellular
ob1ects. Non-cellular ohiects are termed complex. ~ost
expressions ace complex. An exception ls !A which, if evaluate~
in Lroode, is cellular.

15

instruction co~e. The n-<var> operands which the instruction
still needs are fetched from the n-<var> topmost locationE of
the runtime stack {where fetching an object from the st~ck
implies its ~eletion). ~fter performing the operation specified
by <op> the result, if any, is pushe~ onto the stack. Since
operands to an instruction are stacked only if they arE not
cellular themselv~s, for an !-adic operator one requires 2**n
instruction variants in general to allow cellular cbiects to be
always specified directly as an instruction's operand. ICE
allows for only n+1 variants by allowing cnly the right~ost
cellular operand fjelds to an instruction tc be specified
directly. To illustrate by e~ample, consider the ICF
instruction 'MOVFBY!E Jc b a•, ~hose effect in terms of ECEL is
1 a%h := c•. The four variants of MOVRBY1E are given belo~ in
tabular form along with the conditions under which each is
generatea. In th~ table, sis a variable ~hich pcint tc the
to~most used element of the stack.

MCVF.P'l"l'F. 3 c b a s,~,! are all cellular cbjects.
Fffect is a%h := c

MOVFEY'T'E ?, b a

MOVFPYTE 1 a

MOVEBYTP. 0

c is a complex object.
iffect is ~,b := !S

S -:-= 1

1 is a complex cbj€ct; ~ i~ co ■ ~lex
or cellular-.
Effect is a%(!S) :-= !(S-1)

S -:= 2

~ is complex; !,S can be any
combination of cellular er ccmflex
objPcts provided beth are not
cellular.
Effect is (!S)%(!(S-1)) := !(S-2)

S -!-= 2

Note the order in which the elements are fetched from the stack;
this scheme is used uniformly by all instructions.

Arguments (cf. <arg(n)> in the general instruction format)
can he one of two gen~ral types. The mcst common is the
<admode,value> pair. This is used to specify simple objects;
for example global cell 100 would be represented as 'G 100 1 •

The valid 21~od~ types are

£2.2g
C
p
(;

~CPL Fguivalent
character constant
floating point constant
global cell reference

16

L label reference
N numAric constant
P local (ay namic) variable
R field selector constant
S string constant reference
X external label reference

Each of these codes can be modified by the indirection operator
"I". Hence PUSH 1 IL 10002 means push onto the stack the
contents of the cell latelled L0002. ~he value field i~ an
integer, a character, a floating point coniiiii, a string
constant, or a label. An example of a value is the "100" in 'G
100'.

Many instructions do not require a generalized
<admode,value> notation to specify operands. In general thes~
operands are always constants, as in the constant string
argument to the SFCTION command, or the constant lab~l argument
to the BESTTLTEXIT command.

In the dPscriptions which follow, the instructions are
listed in order of the number of operands each accepts. From
the point of view of a translator, this has the advantage that
groups of instructions which have similar argument types can he
processed by the same translator segment. In the tables below C
refers to the program counter, P points tc the stack framA
pointer, and S to the top of stack (i.e., the l~st used cell on
the stack). Where required, the in~traction is follcwed ty a
description of its effect in terms of BCPL commands. Also note
that not all of the instructions described are those which
generate actual obiect code; many, such as the NILSTATE
operator, are 1irectives required either during assembly, or
durinq code generation. These types of operators are followed
by an asterisk (*) below.

A.1.1. Niladic O£erators

Niladic operators take no arguments. They are

RV : In direct.ion
! S : = ! (! S)

F'T'NR'T'FN . Retu en from a routine invocation .
s . P-1 l I restore stack pointer
C ·- p ! 1 1 I res·tore program countP.r .-
p ·- P!O " rf'!store .frame point.er .-

FCNRTBN: Return from a function invocation
c := P!1 11 r~store program countP.r
P := P!O ,1 restore frame pointer
!P := !S 1 I place result on top of caller's stack
s := P II restore stack pointer

FINI SH : TerminatP program execution unconditionally

SAVEMAFKER : Allocate space on stack for saving program
counter and stack pointer
s +:= 2

FAtSF.: P.ush false onto stack

TTIUE : Push true onto stack

17

NI .LST·ATE {*) : Coile generator directive fo .rcing generation of
code which ensures that the contents of all memory cells in
the run-time environment are valid.

END (*) : Code generator directive signifying the end of a
ccmpilation section.

STAR'I'BLOCK (*) Signifies the start of a BCPL block.

A.1.2. Monadic OQerators

Monadic operators in TC~ are of two types: those which take
an <admoae,value> argument and those which take a constant
argument. The notation used in describing them is

<op> <ar.g">
where <op> is the instruction being applied to <arg>. If <arg>
is denot.P.o hy "var", it means that the argument is of the
<admode,value> type. only such instructions are allowed to take
their operands from the stack (thus producing the n+1
instruction variants discussed earlier). If not denoted by
"var", the argument to the instruction can crly he a constant
(the type of the constant being denoted hy the single letter
argument codes listed earlier).

POSH var : Push .Y.2!:. onto t .he stack:.

NP:G var . Push -.Y.2!: onto t.he stack. .

FNFG var . Push •-.Yfil: onto the stack. .

NC'f var . Push -,_yg ont.o the stack. .

18

AES var : T.'ush abs .!~£ cnto the stack.

FAES var : Push £abs~~! onto the stack.

PIX var : Push fiI .Ylrr onto the stack.

FLOAT var : Push floa1: yg_r onto the stack.

STACK 'N : S~t t t,e stack pointer
S : = N

RESOL'l'STACK N:
r:esult.

Take the current top of stack as an expression

r, ! N := ! S
S := N

JUMf var : Jump to location .!.2!:

RESTTLTEXIT L : Jump to location L; also states that the tcp of
stack contains the result of an expression (generated ty
the P.CPL !~~!!is command).

U1E L (*) : Define label L ~ithin program code.

DATA.LAB t. (*) . . Define label L within the data area.

COMMAND N (*) . . start of ~CPL command numb~r N.

E NnJH OC K n l is t (*) C t o > Denotes end of a BCPI block.

'P.NOP1WC nli.st (*} <to> : Denotes end of a BCPL procedure.

ITEMC C : Defines a word with t .he character C stored right
1ustified in it.

ITEM'N N: Defines a word with the value N stored in it.

< 1 o > The ar.gument n.!i.§! is a 1 ist of BCPL source names which
can be optionally generated by the ICE translator.

19

ITEML l !
it.

Defin~s a word with the add~ess of latel L stored in

ITEMF F : Defines a ~ord initialized to the floating point
constant f stored in it.

ITEMS s: Allocates a contiguous block of store with the ECPL
representation of the string S stored in them.

BUFFFB N : \!locates~ contiguous ~ords of store ~ithout any
initialization.

SF.CT.ION S (*) :
sect:ion s.

,n assembler directive specifying the start of

NFEDS X (*) : Loa~er dirPctive specifying that external S)mbol
Xis neeaed by the program.

INCLnDE s (*) : Assembler airective specifying that object
file S should be concatenated to the object code gen€rated
by the present compilation.

PARAMETER S (*) : I mplernentation depenrlent assembler/code
generator directive, as specified by the strings.

A.1.3. D1adic 0Eerators

Diadic operators are described using the general form
<op> <arg(1)> <arg(2)>

where <op> is the opPrator being applied to arguments <arg(1)>
and <arg(2)>. The remarks concerning argument types in section
A.4.2. apply here as well.

fl'!UJ.T var1,

DIV var1,

REM var1,

ADD var1,

var2:

var2:

var2:

var2:

Push ~IJ*~r2 onto stac~.

Push .Y2I1/ll!1 onto stack.

Push ,Ygfj re■ .Y2!"l onto stack.

Push _yg£1+n!"l onto stack.

SUBTFACT var1, var2: Push .Y.2!1-.Y.~l onto stack.

EQ var1, var2:

NE var1, var 2: Push .!!!£J-,-=.YM1 onto stack.

LS var: 1, va r2: Push .Y.aIJ <_yg1 onto str1ck.

GE var1, var2: P.ush .!ill>= .Y.2£1 onto stack.

GB var1, va -c2: rus.h .Y.arJ>.Y~!1 onto stack.

T. .E var1, var2: t-ush .Y.a!:J<=.Y~!:1 onto stack.

LSHIFT var1, var2: !>11sh ~r1<<.Y~!:1 onto stack.

Push varJ>>.Y.a.£2 onto stack. RSHJPT var1, var2:

LOGOB var1, var2: Push .Y2!..!lll.£1 onto stack.

tOGAND var.1, var2: Push .Y~r:1&!~£1 onto stack.

NEQV var1, var2: Push .Yi!I..! neqv y 2 r2 onto stack.

EQV var1, var2: Push .Y!Il eqY .!~!1 onto stack.

FJl1Ul'I var1, var2: Push _ygr1#*.!g£J onto stack.

FDIV var1, var2: PU8h !!.£1#/!.a.£1 onto stack.

PAl'JD var1, var2: Push yar1#+yar,Z onto stack.

PSUE'IB1\CT var1, var2: P.ush !.1!1#-J@r2 onto stack.

FF.Q var 1, var2: Push Y!!I1#=~.r1 onto stack.

FNE var 1, var2: Push .Y~r:1 f-,=_y.ar.1 onto stack.

FJ..S var 1, var 2: Push Y~£1#<gr2 onto stack.

FGE var 1, var.2: .Push Y2!:J J>= !.fil:l onto stack.

FGR var 1, var 2: Push Y~I.!•>yg.rl onto stack.

FLE var 1, var2: Push Y2I..!#<=.Y2£Z onto stack.

PUSHINDX var1, var.2: Push !fil:l!ll.£1 onto stac.k.

PUSREYTE var1, var2: Push .YM.f'i_y2 .£1 onto stac.k ..

PDSHSELEC'Y' var1, var2: rusb _y~r2 of n.rJ onto stack.

MOVE var 1, V<ff 2 : Store the value of _y2.r1 in t.he loca tio.n
referenced by EL2•
!var?. := var1

20

lMODMULT MODDIV MODR~M ~ODADD MODSCTBTBACT MODEQ MODNE MODtS
MODGE MODGR MOCLE MODLSHlPT MODRSHIFT MODLOGOR MODLOGAND ~ODEQV

MODFMULT MODFDIV MODF~DD MOnPSUETRACT MODFEQ MODFNE MODFLS
MODFGF MODFGF MODFLB] var1, var2

21

Tbe pffect of the MOD operators is similar to their
non-modified counterrarts described above, with the
exception that the destination of the result is not the top
of the stack bu+:, the locat :ion referenced by .!!.!l. For
example,

MODDIV Vnr1, var2
means

!var2 /:= var1
Note that th~ order of the operand~, with respect to the
non-modifjed operator, has reversed.

JtJMPF va.r., L :
false.

JUMP'J vaC', L :
true.

FCNCAlL var, N:
temp:= P+N
temp!O := P
temp! 1 :,:: C
C : = var
S := P+ 2

iTump to the location reference/I by L if BI is

,Jump to the location r~f.erenced by L i.f ll.! is

Fu net ion
I I
11
11
I I
1 l

invocation
temp<- start of new frame
save old fram€ pcinter
set new stack pointer
branch to procedure
set new stack pointer

RTNCALL var, N : Routine invocation
The effect of this instruction j_s the same as FCNCALL with
the additional reguirement that the result at the top of
stack returned is deleted (i.e., popped off the stack) •
This also requires that FTNRTBN have the same semantics as
F'CNnTRN.

PECCENT S, L (*) : Specifies the st,art of the definition cf
the procedure named s. Also states that Lis to be defined
as the entry point to tbe procedure.

GLOBAL n, qlist (*) : Defines a list (gJJ.§t) of !! pairs of the
form (NL) where N is the global cell which is to be
initialized to the address of label L.

ENTRYLIST n, elist : Defines a list (.~lis,!) of ,B pairs of the
form (XL) vhere the entry symbol Xis to be initialized to
the address of label L. If L=O then Xis an external
symbo.1.

22

A.1.4. Triadic Oferators

Triadic operators are described by the general form
<op> <arg1> <arg2> <arg1>

where <op> is the operato~ applied to the three arguments
<arg1>, <arg2>, and <arg3>.

SWITCHCN var, N(O), L(O) : The SWITCHON command expects N(O)
pairs of NL values immediately following it. Its effect
is to scan the N field of each NL pair until a value e~ual
tc !I~ is faun~. A branch is then made to the
corresponaing L. If no match is found, a tranch is made to
label L (0).

MOVETNDX var1, var2, var1 : Store into an indexed cell.
va.r3!var2 := var1

MOVRPYTE var1, var2, var3: Store into a byte.
var3%var2 := var1

1'10VFSELECT var1, var2, var3 : Store into a selector field.
var3 of var2 := var1

[JUMPLS JTIMPGR JTTMPLE JUMPGE JUMPEQ JUMPN~ JUMPFLS JUMPPGR
JOMFFLE JTTMPFGE JUMPFEQ JUMPFNE] var1, var2, L

The effect of each instruction in this class is to apply
the relation Eollowing the JTTMP to !g.£1 and ~~r2 (see the
descriptions of the diadic rAlationals). If the result is
truer a branch is mad~ to label L. Note that tbe result is
not Etacked.
~n example is 'JTTMPLF X, Y, L045 1 whose effect is to jump
to label L0045 if X<=Y.

23

i\. 2. .§Q.!!!f.]ta ti sties on the Com,eosition of ECPL P,r,2grams

In this appenaix some figur s are given regaring various
aspects of ECPL programs. ~]l measucaments FCES nted are tase~
on static analyses of programs. Two major classes of a nalysis
were performe~: those from RCPL programs themselves<1 1) and
those from the OCOD~ generated by the BCPL compiler. ·or t he
former class, about thirty-five BCPL secticns were analyzed, for
the latter about sixty sections. The sixty sections corresfon~
to ever 11,000 BCPL ~ommands. In both instances, the progtams
locked at were largely of tbP "systems" variety, nam~ly
compilers, code generators, run - timP s upport libraries, text
editors and the like. such a sampling was ustified in that
BCPL is specifically suited for systems applications; indeed
other types of programs were unavailable for analysis.

'The analysis of BCPL program composition revealed commanj
usage frequency as shown in Table A.2.1. In additicn, ,able
~.2.2. shows the average complexity of BCPL exFressions, tased
on operator counts.

BCFL Comrnana

Assignment
Routine application
Function application
if, unles~, test
whjl~, J!!lti1
re~ at, rt=~,e e a t while, I~.E..fi!!.!!.!! ti].
!Q!:
gt U!] (e X pl ici t}
re§..91.!i.§
.!!2.Q]
bre~!
endc,2,2~
ggi.Q
finj~l!
.§!.!!.fh!rn

Frequency (percent)< 1 ~l

22
27
13
12
0
0
2
1
7
0
0
.3
0
0
0

Table A.2.1. Frequency of BCPL command usage.

7he secon~ class of analysis was on the composition of
OCODE generated from the BCPL ccmpiler.< 13 > The data repcrted
here is a set of measurements on the number of bits required to

cit> The data for these were gathered at UEC by Mark Fox.
c12> Values of less than 1 percent are shown as O.
Ct3> the compiler used to generate the oconE was the BCPL-V
compiler at URC. The BCFL-V language is a slightly enhanced
version of standard BCPL. The compiler used to generate the
OCODE did no optimization on the BCPL source.

24

represent th9 va ue of an operana.c1 4 J <•~> It should he
realized though that the absolute address of a label operand is
not easily a~ter.mine~ ~urinq code generation. Since ~tatistics
were gathered during this phase the number of label operands
encounter~d are li~te~ separately in the cclnmn labelled ~£ in
Table A.?.3. Following this column is a count of all operands
less those which were labclle~ (n£-sum). Finally a complete sum
is shown. Note that two•s-comFlement notation is always
assumed. Hence t.ht?.re is always one bit reser.ved for the sign,
even if the operand can never be negative (~s, for example~ in
th~ STACK comman~).

Number of npe~atnrs Frequency (percent)< 12 >

0 76
1 19
2 1
) 0
4 0

Table ~.2.2. Typical exprt?.ssion ccmplexity in ECPL.

In table A.2.4., a ccmparision is made tetween the overall
object size for JCE/RSO and S"LIM {see [Fox] for details on
SLIM). The data reported is the sum of the space occupied by
data and codt?. witbout any celativization of operands.

c1 4 > Other analyses of OCODE command counts, etc. vere
performed. They arP available upon request.
c1s, Note that an operand is, in general, the pair
<admode,.value> where _g_g.!!!Od.f is the addressing 11cde (e.g.,
global, P-.celative, etc.), and nl.!!.§ t.he value for the specified
admode. Measurem~nts are made on the space occupied by tbe
value field only since the admode field occupies a fixed numter
of bits (typically threP).

!\pplication Min operand width in bits (2•s compl}
2 I 3 I 4 I 5 I 6

UNIX Text F~itor I 434
Run-time Library I 198
MCODE-HP cgen V 1 I 3 44
MCCDE-HP cgen V2 I 704
MCCDE-J'!inicode I 255
~LGAE Compiler I 390
RCPL Ccmpi.l~r I 895
BCPL-/370 cqen I 895
InterLISP Kernel I 350
BCCDE cqen I 421
Parsing Machine I 8 2
IS 1\ M ti br. ar y I O 3
Permutations gen I 14
Intcode Ldr,Int I 118
Intcode Assembler! 7.25
Towers of Hanoi I A
C Parser. l 1 00

I 6 71
I 2A3
I 69 2
I 1257
I 637
1 532
I 1784
I 1473
I 1487
I 416
I 167
I 170
I ~2
I 27 1
I 374
I 15
I 276

I 696
1 .10 5
I 527
l 1385
I 615
I 828
I 1840
I 1794
I 1284
I 670
I 307
I 152 1
I 105 I
I 19q I
I 400 I
I 16 I
I 344 t

15]
136
244
419
EO
709
923
7€2
250
498
119
134
9
18
84
0
140

I 30
I 95
1 4 7
I 44
I 210
I 105
I 103
I 351
I 2S
I 160
I 9
I 58
I 1
I 9
I 17
I O
I 1 O

25

Sa■
Cu■alatiYe Sa■

5560
5560

10643 I 11514 1
16203 1 27717 I

Table A.2.3a. Typical operand width in nCPL •

4723 I
32440 I

1279 I
33719 f

. Application Min operand width in bits (2 1 s compl)
7 I 8 I 9 1 10 I 11

UNIX !ext. Edit or I 1 IJ2
Fun-time Library 1 JO
MCODE-HP cqen V 1 I 5 1
MCODE-HP cgen V2 t 63
MCCDF-Minicode 1 127
ALGAE Compiler I 100
BCPL Compiler I 3S9
BCPL-/370 cgen I 146
InterLISP Kernel I 59
BCODE cgen f 41
Parsing Machine I 21
IS A fil Li hr ar y I 1 1
Permutations gen I 5
Tntcode Ld.r.,Int I ?.7
Intcode Assembler! 2g
Towe.rs of Hanoi I 1
c Parser f 13

39
2
E3
74
120
159
fl 2 5
1<}0
:n
37
26
41
23

I 5
' 1 g
I 3
I 42

I 72

' 4 I 2?.
I 6
I 11 2
I 16
I 84
I 29
I 111
1 33
I 32
1 71
I O
I 2

' 1
' 0 I 9

13
3
108
102
10
40
58
111
,~ 1
24
24
0
0
32
24
0
0

I 10
I 0
I 15
1 4
I 22
I 6
I 18
I 1
I 49
I 110

' 0 I 1
I O
J 2
I 11 .J
I o
I o

I
I
I
I
I

Su■ 1 2 3 o I 1321 I 6 o 4 I 70 o I 3 ~ 1 I
Co■ulatiYe sa■ 34949 I 36270 I 36874 I 37574 1 37925 I

Table ~.2.3b. Typical operand width in PCPL.

26

Application Min operand width in bits {2 IS com pl)
1 2 I 13 I 14 I 15 1 16

UNIX Text. EiH tor I 21 I 0 0 I 0 I 0 I
Run-time Library I 0 I 0 0 I 0 I 0 I
MCCDE-HP cgen V1 I 159 I 0 0 1 0 I 0 I
MCCDE-HP CgP.n V2 I 44 I 1 0 I 0 I 0 I
MCCD E-Minicorl e I 7 I 8 7A I 0 I 0 I
I\LGl\E Compiler I 9 ' 0 2 I 19 I 0 I
BCPL Ccmpi..ler I 0 I 11 65 I 1 l 0 I
BCPL-/370 cgen I 79 I 0 16 I 7 I 3 I
InterlISP KP.rnel I ?. 2 I 2 1 I 1 I 1 I
BCODE cgen 1 6 I 71 0 I 0 I 1 I
Parsing Machine I 0 I 0 0 I 0 I 0 I
ISAM Library I 0 I 0 0 I 0 1 0 I
Permutations gen I 0 I 0 0 ' 0 I 0 I
Intcodf! r.ar,Tnt I 19 1 0 ,

I C I 0 I
Intcode Assembler I 0 I 0 69 I 0 I 0 I
TOWf>t'S of Hanoi 1 0 1 0 0 I 0 I 0 I
C Parser I 0 I 0 0 I 0 I 0 I

Su■ 568 I 94 1
Cu■olati•e Su■ 3849.1 1 38 587 I

Table A. 2. le. Typical operand width

Applicat.ion

UNIX Text F<1itor
Run-time J.ib:rarv
MCODE-HP cgen V1
MCOn"P-RP cgen V2
MCODE-Minicode
1\LGiF Compiler
BCPL compiler
BCPI.-/370 C(JP.n

InterLISP Kern@l
BCODE cgen
Parsing Machine
ISAM Library
Permutations gen
Intcode L~r,Int I
Intcoae ~~semhlerf
Towers of Hanoi I
c Parser I

llL

(l ~)

1456
uoo
1708
2lt60
1436
1761
4187
2681
2131
1337
441
184
68
952
913
1 3
fi 9 3

SOM-11£

(l 6)

I 2283
I 1056
I 2492
I 4076
I 2281
I 2915
I 6556
1 5857
I 3826-
1 2488
I 789
I 7 '- 1
I 229
I 70 3
I 1355
1 10
I 934

I

' I
1
I
I
I
t

' I
I
I
I
I
I

• I

212 1
38819 I

in 8CPL.

STJM

(1 6)

]739
1456
4200
6536
3717
4676
107CJ3
8518
59S7
3A25
1230
qos
297
1655
2268
56
1627

Su■ 22R95 1 388'13 I 61748 I

28
38€4 7

Table ~.2.3d. Typical operand width in BCPL.

Ct6J See the text of this appendix for details.

5 I
388 5 2 I

27

Application SLifl! ICE ' Ratio I

Intcode Int,;:,t'pr~tf>r Sect. 0 5728 I 4~78 I 1.15 I
Intcodf' Interpreter Sect. , 1576 f 1430 I 1.07 I
Hanoi 218 I 194 ' 1. 12 I
BCPL Compilet' LEX 6578 I 5240 I 1.26 I
BCPL Compiler SYN 6308 I !: 148 I 1. 23 I
P.CPL Compiler. TRNA 5670 I 4904 I 1. 16 I
BCPl Compiler 'l"'R NP. 5002 I 4180 I 1.20 I
BCPl Compiler TRNC 5986 I 4753 I 1. 26 I

Table A.2.4. A ccmpa rision of TCE/ESO and SLIM code density (in
bytes) •

28

A.3. flsi.ng the BCP1LIC:R Translator

This appendix gives instructions for running the BCPL/ICE
translator, as available under MTS at TTBC. 1he translator is
invoked by the command

$RUN ECDE:BCPL SCARDS=sourcefile O=icefile -
SPRINT=listfile P~R=parameters

where .§OU.££.Qfile is thP. file containing the BCPL source,
i£ef..i.1f. is the file to which the ICE code will be written,
.!iB.!!il~ is the file to which the program listing is to be
a irf?ctea, a nil
£~g..!]!eter§ is the normd1 parameters .list used by the

standard :ncpr, compiler.

The compiler automatically generates
listfile giving the size of the ICR obiect
machine.

statistics
using the

on the
lC.E/'ESO

