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ABSTRACT 

This paper investigates the problem of generating optimal space­

efficient code for the language BCPL. Designing such a code was seen to 

be a two-phase process. The first phase was to describe an internal 

representation scheme for BCPL programs which preserved those program 

features which are salient to translation and at the same time minimize 

the number of instructions generated. The second phase consisted of the 

realization of the internal representation as an actual machine taking into 

account the usage frequencies of instructions and other real world constraints 

such as word size and addressing space. The intermediate £Od~, called ICE 

and an encoding scheme (known as ESO, standing for ~ncoding ~cheme _Q_) are 

described•. ICE/ESO is seen to reduce code size by an average of about 32% 

compared to BCODE which is a realization of OCODE, the intermediate language 

currently used in BCPL program translation. 
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One oftAn speaks of th~ desire to produce "efficient 
programs". ~part from the criter.ion of correctness,. program 
efficiency is usually measured in terms of time (the numter of 
CPTT cycles used), · anrl space (the total amount of storage used by 
the process). In the pr-esent context, the optimality of 
generated code will he measured only on the basis of space 
efficiency. such a stan~e is fairly popular and is ncrm~lly 
1ustified by noting that memory is a more critical resource than 
CPO cycles for, although both ar.e becoming less expensive, word 
si~e limitations restrict the convenient access of large areas 
of store.Ct> Since we are discussing the generation of optimal 
code by an automatic translator it is reasonable to state that 
space efficiency will lead to time efficiency. This is because 
the increase of space efficiency hy the restructuring of 
programs (which might present a tradeoff b~tween prcgram ~pee~ 
and size) is not considAred here; the elementary optimizations 
which are discusse~ in this paper are shown not to degrade the 
generated code's speed characteristic. 

In this paper, the problem of generating optimal Epace 
efficient co~e is investigated for. the language ECPL (fasic 
r.ombined Programming Language) • RC r>t [ R 1 J is a type less language 
which is particularly suited for the writing of systems 
programs. It is a qood choice for the present stady not only 
because it is a simple lanquage which has been used in practice, 
hut also becau~e most ncPL compiler implementations presently 
generate an intermediate co~e called ocnDR [R2]. The existence 
of CCODB facilitates the evaluation of the relative merits of 
the code ~eveloped hPre, called TC~. Designing such a code was 
sePn to be a two-phase process: the first phase was to describe 
an internal representation scheme for BCPL programs wtich 
preserved those program features which are salient to 
translation; the secon~ consisted of the realization of the 
internal representation as an actual machine. The realization 
would produce an instruction set encoding based on usage 
frequencies of instructions and other real world constraints on 
machines such as word size and addressing space. Roughly 
spear.inq, therefore, the aim of the former phase was to minimize 
the number of instructions generated, whereas the latter would 
ensure their optimal encofling on a target machine. 

In some sense, the answer to phase one cf the problem is 
evident: we can make the intuitively reasonable assumption that 
the optimal representatjon of a BCPL program is the prcgram 
itself. This assumes that the algorithm expressed by a ECPL 
program cannot re expn~ssed more succi.ntly. ~ ccmmon nata 
stcuctur~ used to represent a program is the tree. ~ tree has 
SP.Veral disadvantages when viewed as an intermediate code for. 

Ct> SPe [T] for a fuller discuBsion of other considerations. 
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BCPL.C2> Since a tree is a structure in two-dimensions 
(sequencing and nesting) it is difficult to realize in terms oE 
the seguentJal machine architectures prevalent today.<3> If 
translation were being considered to the native code of ~ome 
existing machine a tree may be a more reasonable choice. 
However the task of such a translator could be greatly 
simplified if the intecme~iate code were itself one-dimensional. 
Such a one ~imensional codA should ideally have the property 
that its instructions can be expanded into instructions for the 
target machine in a context-free way (that is, by treating 
commands in the int~rme1iate code as macros defined in terms of 
the target machine's instructions). It is the design of such a 
code that will be discussed in section 2. 

The advantages of two-dimensional representation should not 
be overlooked, however: a tree representation would be ideal in 
that it would closely reflect program structure and at cnce 
remove all unneccessary information such as noise wor~s, and 
most names. But since we are loo~ing for an intermediate code 
which can be viewed as an actual machine with a structure cc~mon 
to those in existence today, the one-dimensional alternative 
will be the only on~ developed here. 

~s a cor.rollary to the pr~vious assumption that the F.CPL 
proqram being translate~ has heen optimally represented, we tave 
that the introduction of such programming artifices as index 
registers arP unnecessary. This is bec~use an index regi~ter 
may typically be useful in reducing code size if it can be 
loaded with the address of a frequently referenced vector (say). 
If the hiqh level langnage does not allow fort.he explicit 
loading of the index register with the vector's starting 
address, some form of data flow analysis is required for its 
optima 1 11 sage. w~ ha V"" speci fical 1 y precl uned such analysis. 

1. A Method fer Producing Goo~ Machine Co~e frcm BCPL 

In this section the design phase of the intermediate code 
ICE is discussed. As noted previously, two major objectives are 
to be met: IC~ should be a language that is easily encodable as 
the instruction set for some real machine such that the enccding 
is efficient and it should be amenable to translation into the 
host language of somP other machine. 

C2> In an 8nvironment where complete syntactic information 
regarding a program is required at execation time (as in, say, 
an interactive debugging system) a tree is likely to be the 
representation scheme of choice. 
C3J What is r~quired is a machine capable of executing 
directly somf' LIS? t.ype language. Even here, the linking scheme 
would have to be modified to reduce space wastage due to linkage 
fields. 
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,1thouqh the machines underlying OCODE and ICE are the 
same, rrE manipulates ~ata objects iiffer~ntly. In BCPl the 
basic data obiect is always the !2£1- A word is of unrestricted 
size an~ form proviaea that it can be use1 tc store any address 
an<l that cousecutivP war.as are numbere" consecutively. OCOOE 
manifulates aata ob4ects by pushing them onto the runtime stack, 
then applying the require~ operator to them. If OCODE is to be 
viewe~ as a real machine, the need to explicitly stack all data 
obiects is wasteful in both tim~ and space since the rush 
operation requires a seoarate instruction. If OCOD~ is tb be 
translated into a 1lfferent machine's language, scme fairly 
intricate pattern matching mechanisms are reguired if reasonable 
ohiect code is tote generated. This is because a BCPL command 
such as 

a := b+c 

will translate into the ocnn! commands 

I. ~ 
T, C 

Push b onto stack 
Push c onto ~tack 

(E 1) 

HJJS 
S a 

ReplacP top two elAments of stack with sum 
~tore the top of stack in location a. 

Now consiaer a fairly typical multiple 
archjtectur.~ with instructions of the form 

<op>.<reg> <addr> 

register machine 

where <op> is the diacHc oper.ator appli0d to the contents of the 
register <reg> and the memory location <addr> in the form 
<req> := <n'!g'> <op> <aadr>. To generate the exFected 

LOAD r-eg1,B 
1\DD reg1,C 
STOR,:;, rt:!g1,II. 

sequence for this machine from the above OCOOE segment, the 
'L c; PT.US' se-guence has to be recogni7,ed. This is only a 
simple instance of thP pattern matching capabilities needed. A 
BCPt command such as 

a! b := c ( F.2) 

may te implemented on many machines as a single instruction; 
OCODE qenerates the s~quence 

L c 
L a 
L b 
FLUS 
STIND 

ralculate a~dross of a!b 
Stor~ £ in address at top of stac~ 

some mechanism has to Pxist to aetect this pattern to generate 
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optimal code from OCOD!. Unfortunately, such translation 
schemes are not straightforward to implement. 

ICE<•> views aata object~ to be of two basic tyFes: 
cellular and complex. 1\ny data ohject which can .be directly 
stored in a word without the need for further evaluaticn is 
cellular. Complex objects are those which can be stored i~ a 
word only i£ evaluated. Hence all non-trivial expressions are 
complex. Generally, TCE allows tbe direct specification of all 
cellular obj cts as instruction operands; the runtime stack is 
use~ only to stor~ ~he interroeaiate results frcduced in the 
evaluation of complex obj~cts. A disadvantage of sue~ an 
intermediate representation is that the number cf instructions 
in the rPpertoire increases e normously. Whereas OCO0E has 
~xactly one operator specifying an operation, ICE in princifle 
cequires 2**Il op~rator varjants to specify all the cellular and 
complex operano n-permutations for an E-aa·c Oferator. To 
linearize this ex ponential growth, a realistic compromise has 
been made: instea~ o f having instruction variants allowing acy 
operator typA permutation, thP only onRs TCF features from the 
2**n possibilities are those whose rightmost Oferands are all 
cellular. The r 0 maining operands, be they cellular or compl~x, 
are aJl fetched from the stack. bus, for an ~-adic operator 
ICE has a zero operand variant (whern all operanas are on the 
stack) to an n-operana variant (where all operands are cellula~ 
and thus directly specifiable). This produces a total of n+1 
instruction variants. By iudicious choice of the ceder of 
op~rand specification, such a restricte1 representation produces 
almost as good code as woul1 he in the genAral case. There are 
several reasons for this. In some cases (e.g., commutative 
operatcrs) the linearized set of operan1s are as general as in 
the exponential case, since the order cf CFerands can be 
reversed. In some otb r cases certain operands, such as the 
selector fiel~ in a sAlect expression (see MOV~SELECT in A.1.4) 
can cnly he ce1.lular objects and so invalidate some of the 
po~sible variants in the exponential set. In yet other cases, 
an operator as well a s .its inverse is available (e.g., GT and 1.S 
for t.he "greater than" and "less than" relations). This allows 
BCPt code sequences such as 

11,< ( B+C) 

to be transforme~ into 

(B+C) >A ... 

with a correspondinq increase in code density, for reasons noted 
below. The existence of an inverse for an operator makes it, in 
essence, commutative. one should note that the specific crder 

<•> only the design principles of ICE are ~iscussed here. ~ 
comrlete description of the ICF instruction repertoire is to be 
found in appenaix A.4. 
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in w.hich opP.rancis , r:P allowed to appear is relatively 
unimportant, for WG c:0111.r, s neci. Ey (for example) that cellular: 
opPranas ~oul~ on y appear ~n thP leftmost positions, instead of 
tbe rightmost. Tf. .Ii~ oper.anas wer.e themselves reversed the 
leftmost sr.hemP. wo11lr! bP equiv lPnt to the previous one (modulo 
the notation used). The important point in the linearization 
scheme is that rel~tively little representational fOwer is lost 
by it use. 

To illustrate ~he possitle instruction variants for an 
operator lat us consi~er the operation of division, which takes 
two arquments (shown as 'x' and 'V' below). If both •x• and •y• 
are cellular, the instruction generated is 

DIV 2 X y 

If •x• is comple~, the correct ICE instruction is 

DIV 1 y 

where the value of 'x' is now fetched from the top of stack< 5 >. 
If both 'x' and 'Y' are ccmple~ or if •x• is cellular but 'Y' is 
complex, the instruction to be generate~ is 

DIV 0 

where 'Y' is at the top of stack and •x• at the location 
immeaiately below the top. 

Note here that we are force~ to push 'x' on to the stack if 
'Y' i s not CP]lular. ~his is a consequence of the linearization 
scheme outliM!d above. However, if the operator is commutativ~, 
then the op~ran~ or~er can be reversed to allow the c~llular •~• 
op€ rand to h"? dire tly c::pec ·_fi e d. ~ince BCPt spl:!cifically 
l@aves t.hP. orne1· ot s11b-exprG!ssion e valuation unaefin£d, 
operators which ~P c0mmutative in ordinar y mathematics can (an~ 
must) be consirlereft com mutat ive hy ~ RCPL to ICE translator. 
Note that thP. commnt.inn, of op@.r:ator:- orc1er wherever advantageou s 
is not an option it ic a part of the definition of ICE. 
eimilarly, maximizing the number of operan~s tc an instruction 
is also not optionnl. ijencp if two cellular objects •a• and 'b' 
are to h . added, thA ~orrect ICE instruction is 

ADD ?. ab 

An instruction sequence such a~ 

PUSH 1 a 
l?rJSH 1 b 
Ann o 

<~> Unless otherwise specified, fetching an item from the stack 
always implies its deletion. 



is incorrect. Furthermore, the BCPL fragment 

is correctly translated into ICE ~s 

MOLT 
ADD 

2 A R 
1 C 

Note the transformation of 'C+A*R' into 'A*E+c.• 
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The advantages of such an intermediate code will no~ he 
outlined. If one wishes to reduce the instruction count, it is 
clear that elimination of unnecessary PTISCT instructions (Lin 
OCOD~) helps. ~lthough the number of bits required to reprfsent 
an instruction codP has now increased, the overall number of 
bits needP.d to represent a program (in compar1s1on to si3ilar 
encodings for ocnDF.) is noncthP.less reduced. 

In ccmparision to OCODE, ICE is also tetter suited to 
translation into the host language foe machines which presently 
exist. This is hecause most machines allow at least some of the 
operands of an operator to be explicitly specified. Continuing 
with our previo11s examples we note that the ICE codes generated 
for {E1), if both 'h' and 'c' ace cellular is 

ADD 2 b c 
MCVF, 1 a 

More importantly, ffe not~ that the definition of ICE requires 
that the 

~OD 2 b c 

be generated, ana not (say) 

PUSH 
Ann 

1 b 
1 C 

This imrlies that if a POSH command is encountered in 
translating ICF to some other lan~uage we are guaranteed that 
the PUSH is in~eed necessary< 6 >. The maior advantage of such a 
property is that rrE instructions can be transformed into the 
language cf mo~t othPr machines in a context-free vay, and still 

<6> It is assumed that instructions on real machines allow 
operands to be specified cnly in the or1ec that ICE allows; that 
is, instructions such as 

DIVIDl <addr>,<reg> 
meaning <reg> := <a~dr>/<req>, where <addr> is a memory location 
and <reg> a registPr, are not allowed. Empirical evidence sbows 
this to bA a reasonable assumption. 
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p.r::oauce closP. to optimal co,h~. Such is not. the case for OCCD~. 
A good qU l"ty G de generator can thus be produced fo~ most 
target machines by treat.in_ ICE commands simply as macros wtose 
expansion is deEin~~ using th0 macro assembler ~hich is usually 
provided by thP machjne's vendor. Recognizing that the foxmat 
of macros accepte~ by macro ass~mblers varies considerably, an 
exact external form for ICE comman~s has not been defined. For 
the purposes of Jescription, app endix A.1 does indeed fresent a 
representation scheme; the cucrent implamentation of the BCEI to 
ICE translator allows ~h~ appearance of ICE commands to be 
modified reanily howev~r. IndPed, jt is quitf' reasonable to 
perform the "macro expansion" refereed to earlier within the 
routine which emits the ICR code (in the BCPL to ICE 
translator). 

ICE is essentially a generalization cf OCODE. Fixed 
sequ~nces of ccmmands which frequently occur in CCODE have teen 
combined intc one TCE instruction. The co~lescing of 
instructions has not been ~one in an arbitrary way. The general 
rule followed has been that every BCPL operator has been 
assignPd a corresponding re~ instruction. In practice such an 
architecture resembles those of real machines quite closely. In 
particular, the scheme used to linearize the number of variants 
of an in~truction seems to be employed by real machines al~o. 
It should be noted that some machi.nes allow for a greater degree 
of compression than ICl. For example, the BCPL command of (Fl) 

a := b+c ( F 1 ) 

can be translatPd into a single instructicn on some existing 
machines. ICR can, at best, produce 

1\DD 
MOVE 

2 b c 
1 a 

This is because machines which allow (E1) to be expressed as one 
command are combining the distinct BCPL operations of addition 
and assiqnment. TCF aoes not include such ccnbinations in its 
instruction set. 

From the viewpoint of Flynn's work LF} on the evaluaticn of 
machine architecture::., ICF's m1periority over 0CODE results from 
the reduction of the need for M-type instructicn£ <7 > to the 
point of absolute necessity. ICE also unites several distinct 
OCODE comman1s as singla ccmmands with variants. For examFle, 
the ICE equivalent of the OCODE STIND operation is MOVE O. 
Similarly, the operations ,l'Tl'JP and GOTO in OCODE are simply 
variants of the ICE JTTMP command. 

(7) In Flynn's terminology, M-type instructions are those which 
move data from one Apace in the memory hierarchy (e.g., 
rPgisters) to another: (e.g., main memory). 
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2. An Encodi.!Ll] Scheme for ICR 

From thP discussion of the previous section it can be 
inferred that, under the constraints specified, ICE does indee1 
minimize the number of instructions generated from a rrcgram 
written in BCPL. If we are to view ICE as the instruction set 
for. a real ma c hinP, it is not c lear however that ICE expresses 
programs in fewer hits han an a l.ternate scheme such as ECODE 
(~ee [M]) for although the numbe r of instructicns generated has 
~ecr~ased, the numher of bits r e quired to represent them · has 
increase~ ( du(>- to th e ir (J n=? a t er complexity). Indeed, th€ 
prohlem of e ncoding n in str ct i on set optimally is largely an 
exer-cise i,n th"" s tatisti c al measur.e of the frequency of 
instruction us ag e : ~n enco~inq fo r ICE which is optimal for all 
conceivable BCPL programs is thus not possitle in princiFle. 
Here we pr.esent a reasonable encoding based upon some 
m~asurements of a large sample of BCPL programs and the 
constraints on enco~ing schemes which real hardware inevitably 
provides. 

An initial ~ecision was made to have a machine with a \Ord 
length of sixteen hits. This was done largely becausE an 
encoding was being sought which would be suitable for use in a 
minicomputer environment. From experience with machines of 
various word sizes, sixteen hit words were also felt to present 
a t€asonable tradeoff point between the information storage 
capacity of a word an~ the memory wastage associated with the 
use of large word sizes. This choice of word size has one 
disadvantage: floating point operators are unavailable since 
real values are not conveniently stored in sixteen bits. Since 
real arithmetic is not a featur ~ o f s an~ a rd BCPt <~>, and einc e 
such data manipulation is uncommo n in RCeL, th e lack of this 
capatility was not fe ] t o hP. s er ious. Lastly, c boosing a 
sixt.e Pn hit worn was ;t a van ta geo11s sj nce o th f' c object machines 
for BCPt havP been de vi sed u s ing th e s am e word size. This 
allows a me thoa for measuring (by compa risicn) the relative 
space e ff i ciency of a par t ·c ular ICE e nco ding sche me . 5ince I CE 
instruction s c on s is t of a n operator followed by zerc or nore 
operanrls, t he e nco i nq pro bl Am can be divided into the protlems 
of encodi ng t he o p~ca to r and encoding the operands. These two 
encodings c annot be perfor me~ entirely independently hovev~r 
since the y both have to me l d together well in the environment of 
the underlying wor~. 

Including all possible commana variants, TCP consists of a 
total of 2~ 6 o pnca t ors. ~s will be seen shortly, a "no 
operation" i nEtr uc t ion is a lso needed. Since PUSH O is a one 
byte opArator whi ch does not h in g (it pops the top of stack, then 
pu~hes it hack o n) it. will h0 used as the no op. The total of 
2515 ope rat o-cs can t ie rPpr@s<-rnt.erl by a single byte (8-bits) of 

ce> ICF is sufficiently powerful to accomodate ECPL-V, an 
extension of BCPL which per-mits real arithmetic. 
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information. ~h~ actual mapping of operators to bit patterns is 
left unspecified; this is acne so that the imflementor might 
mate best use of any special characteristics of the machine on 
which ICR is emulated or simulated. Note that the 256 operators 
include all those which operate on real values~ for the present 
case, there will th~refore be few~r than 256 operators. A 
complete byte is nonAtheless assigned to the operator field to 
simpl .fy the harnware decoding logic (or microcode). Such 
considerations will affect the form o~ the operand field al~o. 
In particular, it will be assumed. that the basic (indivisible) 
size of any datum is eiqht bits. Hence, in this encoding 
scheme, instructions and data will always be in multiples of. 
bytes. As may be evident, the imposition of such a constraint 
reduces encoding efficiency. 

7he representation of operands under this encoding scteme 
(cal led ESO) will now be discusRed. An operand in BCPL consists 
of two parts: an addressing mode (admode), and a value for the 
particular aadressing mode. for example, an cperand referencing 
glctal cell 20 is in the global aamode with a value of 20. 
There ar.e four basic addressing modes. They a re abso 1 ute, 
g_J:otal, local, ana rel r1.t. ive. In adcHtion, for each admode, ICE 
has the ability to spe cify whether the addressing is direct or 
indirect. Hence three bits are needed to repre~ent the admcde. 
If operands arP tn be stored in a single byte there are five 
bits left for the value fiel~. Since five bits are insufficient 
to represPnt all value fields, operands are allowed io he either 
long (threP bytes) or short (one byte). one bit is required to 
represent this length a~tribute and hence the space for the 
value field of a short operand is re~uced to four bits. 
Although this may seem restrictive at first, Table A.2.3. in 
appendix~.?. shows that an average of 71 percent of operands 
fit into four bits, when represented in two•s-ccmplement 
notation. If an operand is long, it must occupy three bytes. 
This is because a two ~yte operand leaves ooly twelve bit~ of 
space for the value field; more a~e needed to represent 
addresses in aTiy meaium sized program. 

The operator an~ operand encoding schemes having teen 
described, they can now be combined tc represent ICE 
instructions. The ICR/FSO machine represents instructions hy 
sp~cifying the operator (in one byte) and following it ~ith the 
(implied) number of operand fields r.~quired. Since the tasic 
addressable unit at thP RCPL level is a word, a problem arises 
whenever code is a~ ~ressed (e.g., by a JUMP) which is at an odd 
numbered byte (~inc e there exists no corresponding word 
address). Two m~tho ds are apparent which overccme the problem: 
since all addressi.ng at the BCPL level is accomplished via an 
indirect tranch through a cell, a byte address can be stored 
within the cell. This limits ~ha worn addressing space to 
fifteen bits on a sixteen hit machine (the freed bit being used 
t .o inde.x the byte). 'l'he other altf>rnati.ve is tc generate a one 
byte "no operation" command whenever. necessary preceeding a 
labPl <'leclaration withi.n the cod(~ body (,i.e., declaraticns u~ing 
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the LAB commano). ICE/ESO ai1opts the latt~r solution. 

Mea5uring tbP spar.e pffjci~ncy of any machine architect ure 
is net a straightfn~ward task, fr the results are affected by 
the sa mplinq of progcams stuaie~. Both the style of program ming 
prese nt in the samplP, as WRll as the aoplications being samfled 
are factor~ which influ~nce tbe outcome cf the analyses. 
~onetbeless, ~ blR A.~.Q. in appendix A.2. presents a 
comparjsion t~twean JCF/FSO and SLIM, a machine devise~ 
specially for rP.present ing BCPL rograms (see [ Pox J fer a 
de cription nf thR SLIM machine). Co~R generation for a small 
~a mple of. program shows hat SLTM compares favcorably ~ith EMl, 
an exp er i m~n tal mach.i nP. c'l~sign ed by Tan en ha um wl1 ic h atte mpt E to 
minimize tbe obiP.ct cone siz~ of orograms written in SAl , a 
language with a RCPL flavour (seA [ T] ann L Fox]). .\s a furt her 
inaication of the compactness of TCE/RSO, we note fcom 1a ble 
A.2.4 that the average SLIM to ICE/FSO cede ratio is 1.18 
whereas Fox (see [Fox]) reports BCODR to SLIM code ratio tc be 
1.12. ~his means tha~ BCnDFr which is a realization of OCODE 
(the int crme~ i ate language cu rr@nt.ly used .in BC Pt pt cg ram 
translation) takes up an average of 32 percent more space as 
compared to ICF/FSO. 

3. Conclusions 

cur ohi ~cti v~ has b~An to find space-efficient way of 
e ncodiriq BCPL proqrams. A two-phase mf>t.hod bas been usea in 
developing this coie: the firs phasP. produced an instruction 
set which minim" zpr he numh r of instructions generated; in the 
second phase a space-~ffjciPnt encoa3ng foe this instruction set 
was derivPd. ThR translator s .ction of a BCPI compiler has tee n 
modified to generate ICR cod P and tn collect code cize 
statistics. ~ssumjng that no o timizations other than the 
reord@ring of operanrls to commutative operators an~ con~tdnt 
fclding are allow~a, ICP m1n1m1zes the number of generated 
instructions, within the constraints imposed by the 
linearization Echeme. 

As pointea out in section 2, it is me&ningless to talk of 
an •needing foe ICE which is optimal for all pcograms. Th ~ 
encoding schemP presente~, ES O, emerged from an attempt o 
satisfy the conflicting objectivP.s of unifcrmity and spac 0 

efficiency. l\s an exa mp c, note that all operators (inclurHng 
th ·c variant~) re entir.ly encoded in the first byte cf an 
instruction. Howe ver, not all operators are used with fqual 
frequency: f or ~xa mple, the ADD operator in any cf it~ variants 
is far mor e prevalnnt t han RF ~. Hence, with a suff"ciently 
tricky enco~ing, som~ of th e most fr .guently used _opcrators 
along with on e ope and coula possibly be represented in a single 
byte. The (accep able ) tr.ac'leoff wouli, be that some of the 
car@ly usea operat0rs wou d now cequire mo c than one byte for 
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their representation. Tan~nbaum adopts such an afproach in [TJ. 
Further qains coull likely be madP if one were not constrained 
ty hyte boundaries when devising an enco~ing. ES0 was designed 
for such a restricted Pnvironment however to conform with word 
formats preval~nt on current machines, and to simplify the 
decoding logic {or microcode) used in implementing it. 

~s a final remark, note that an instruction 

<op> <var(1)> ••• <var(n)> 

is equivalent to 

fTTSH <var. (1)) 
<op> <var(2)> <var{n)> 

assu ming that the~ is no stack overflow as a result of the 
PTTSH. This provia~s a way of reducing the number of operand 
variants, and hence t.h0 number of bits required to encoae an 
operator. Note that ~h alove e~pansion degenerates to OCOD! if 
it is anplied recucsive ly to the point that all operators are 
sePn only in +hR~r zero-op~ra nd variant. 
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A. 1. A Descri,Etion of ICE 

Th~ intermediate co~e ICE is described here in a reference 
manual format. ~s <'liscussed in section 1, the properties of the 
ICE code generated are an integral part of ICE, in additicn to 
the instruction repertoire itself. In particular, recall that 
one of the maior advantages of ICE over OCODE is that one is 
guaranteed that each TCE opecator will maximize the number of 
arguments passed to it. For example, the PCPI ccmmand 

A : = B/C 
could b~ translated into ICH as follows 

PUSH 1 B 
PflSH 1 C 
nrv o 
FflSH 1 @A 
MOVF 0 

However, the correct ICE code (by the ma~iaization of operands 
pr c re r t y) is 

DIV 2 BC 
MOVl=; 1 'iiA 

Furthermore, since 
unspecified in BCPL, 
fragment 

the order of 
the correct ICF. 

./\ := B+(C-2) 
is 

SUBTRACT 2 C 2 
ADD 1 A 
MOVF. 1 wA 

evaluaticn 
co<'le fo.t: 

cf 
the 

opera n d i: i. s 
ECPL code 

Since andition is commut.ative, the expressic .n 1 '8+ (C-2) 1 is 
transformed into • (C- 2) +n' which al lows the ce.llu la.r c 9 > o t ject 
'P' to he specified directly as an instruction operand. It 
should be noted though that jf ICR is usP~ as an intermedi~tc 
code for a language which defines evaluation order, operands 
cannot be vali~ly commuted. 

As presently generated, the external representation of ICF 
instructions follow a very rigid format. The general form of an 
ICF. instruction is 

<op><var><arg{1)> ••• <arg(<var>)> 
where <op> is the instruction name 

<var> is the instruction variant (see belcw) 
<arg{n)> is the nth arqument to the instruction (see below} 

In the descriptions below, instructions are classified by the 
numb~r. of arguments they accept. For example, ADD is a diadic 
operator since it accepts two arguments. In general, fer an 
B-adic operator, the instruction variant number (<var>) 
specifies the numter of arguments which occur directly after the 

<9> A data object is cellular if it can be directly specifiea 
as an argument to an instruction. All words are cellular 
ob1ects. Non-cellular ohiects are termed complex. ~ost 
expressions ace complex. An exception ls !A which, if evaluate~ 
in Lroode, is cellular. 
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instruction co~e. The n-<var> operands which the instruction 
still needs are fetched from the n-<var> topmost locationE of 
the runtime stack {where fetching an object from the st~ck 
implies its ~eletion). ~fter performing the operation specified 
by <op> the result, if any, is pushe~ onto the stack. Since 
operands to an instruction are stacked only if they arE not 
cellular themselv~s, for an !-adic operator one requires 2**n 
instruction variants in general to allow cellular cbiects to be 
always specified directly as an instruction's operand. ICE 
allows for only n+1 variants by allowing cnly the right~ost 
cellular operand fjelds to an instruction tc be specified 
directly. To illustrate by e~ample, consider the ICF 
instruction 'MOVFBY!E Jc b a•, ~hose effect in terms of ECEL is 
1 a%h := c•. The four variants of MOVRBY1E are given belo~ in 
tabular form along with the conditions under which each is 
generatea. In th~ table, sis a variable ~hich pcint tc the 
to~most used element of the stack. 

MCVF.P'l"l'F. 3 c b a s,~,! are all cellular cbjects. 
Fffect is a%h := c 

MOVFEY'T'E ?, b a 

MOVFPYTE 1 a 

MOVEBYTP. 0 

c is a complex object. 
iffect is ~,b := !S 

S -:-= 1 

1 is a complex cbj€ct; ~ i~ co ■ ~lex 
or cellular-. 
Effect is a%(!S) :-= !(S-1) 

S -:= 2 

~ is complex; !,S can be any 
combination of cellular er ccmflex 
objPcts provided beth are not 
cellular. 
Effect is (!S)%(!(S-1)) := !(S-2) 

S -!-= 2 

Note the order in which the elements are fetched from the stack; 
this scheme is used uniformly by all instructions. 

Arguments (cf. <arg(n)> in the general instruction format) 
can he one of two gen~ral types. The mcst common is the 
<admode,value> pair. This is used to specify simple objects; 
for example global cell 100 would be represented as 'G 100 1 • 

The valid 21~od~ types are 

£2.2g 
C 
p 
(; 

~CPL Fguivalent 
character constant 
floating point constant 
global cell reference 
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L label reference 
N numAric constant 
P local (ay namic) variable 
R field selector constant 
S string constant reference 
X external label reference 

Each of these codes can be modified by the indirection operator 
"I". Hence PUSH 1 IL 10002 means push onto the stack the 
contents of the cell latelled L0002. ~he value field i~ an 
integer, a character, a floating point coniiiii, a string 
constant, or a label. An example of a value is the "100" in 'G 
100'. 

Many instructions do not require a generalized 
<admode,value> notation to specify operands. In general thes~ 
operands are always constants, as in the constant string 
argument to the SFCTION command, or the constant lab~l argument 
to the BESTTLTEXIT command. 

In the dPscriptions which follow, the instructions are 
listed in order of the number of operands each accepts. From 
the point of view of a translator, this has the advantage that 
groups of instructions which have similar argument types can he 
processed by the same translator segment. In the tables below C 
refers to the program counter, P points tc the stack framA 
pointer, and S to the top of stack (i.e., the l~st used cell on 
the stack). Where required, the in~traction is follcwed ty a 
description of its effect in terms of BCPL commands. Also note 
that not all of the instructions described are those which 
generate actual obiect code; many, such as the NILSTATE 
operator, are 1irectives required either during assembly, or 
durinq code generation. These types of operators are followed 
by an asterisk (*) below. 

A.1.1. Niladic O£erators 

Niladic operators take no arguments. They are 

RV : In direct.ion 
! S : = ! ( ! S) 

F'T'NR'T'FN . Retu en from a routine invocation . 
s . P-1 l I restore stack pointer 
C ·- p ! 1 1 I res·tore program countP.r .-
p ·- P!O " rf'!store .frame point.er .-

FCNRTBN: Return from a function invocation 
c := P!1 11 r~store program countP.r 
P := P!O ,1 restore frame pointer 
!P := !S 1 I place result on top of caller's stack 
s := P II restore stack pointer 



FINI SH : TerminatP program execution unconditionally 

SAVEMAFKER : Allocate space on stack for saving program 
counter and stack pointer 
s +:= 2 

FAtSF.: P.ush false onto stack 

TTIUE : Push true onto stack 
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NI .LST·ATE {*) : Coile generator directive fo .rcing generation of 
code which ensures that the contents of all memory cells in 
the run-time environment are valid. 

END (*) : Code generator directive signifying the end of a 
ccmpilation section. 

STAR'I'BLOCK (*) Signifies the start of a BCPL block. 

A.1.2. Monadic OQerators 

Monadic operators in TC~ are of two types: those which take 
an <admoae,value> argument and those which take a constant 
argument. The notation used in describing them is 

<op> <ar.g"> 
where <op> is the instruction being applied to <arg>. If <arg> 
is denot.P.o hy "var", it means that the argument is of the 
<admode,value> type. only such instructions are allowed to take 
their operands from the stack (thus producing the n+1 
instruction variants discussed earlier). If not denoted by 
"var", the argument to the instruction can crly he a constant 
(the type of the constant being denoted hy the single letter 
argument codes listed earlier). 

POSH var : Push .Y.2!:. onto t .he stack:. 

NP:G var . Push -.Y.2!: onto t.he stack. . 

FNFG var . Push •-.Yfil: onto the stack. . 

NC'f var . Push -,_yg ont.o the stack. . 



18 

AES var : T.'ush abs .!~£ cnto the stack. 

FAES var : Push £abs~~! onto the stack. 

PIX var : Push fiI .Ylrr onto the stack. 

FLOAT var : Push floa1: yg_r onto the stack. 

STACK 'N : S~t t t,e stack pointer 
S : = N 

RESOL'l'STACK N: 
r:esult. 

Take the current top of stack as an expression 

r, ! N := ! S 
S := N 

JUMf var : Jump to location .!.2!: 

RESTTLTEXIT L : Jump to location L; also states that the tcp of 
stack contains the result of an expression (generated ty 
the P.CPL !~~!!is command). 

U1E L (*) : Define label L ~ithin program code. 

DATA.LAB t. (*) . . Define label L within the data area. 

COMMAND N (*) . . start of ~CPL command numb~r N. 

E NnJH OC K n l is t ( *) C t o > Denotes end of a BCPI block. 

'P.NOP1WC nli.st (*} <to> : Denotes end of a BCPL procedure. 

ITEMC C : Defines a word with t .he character C stored right 
1ustified in it. 

ITEM'N N: Defines a word with the value N stored in it. 

< 1 o > The ar.gument n.!i.§! is a 1 ist of BCPL source names which 
can be optionally generated by the ICE translator. 
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ITEML l ! 
it. 

Defin~s a word with the add~ess of latel L stored in 

ITEMF F : Defines a ~ord initialized to the floating point 
constant f stored in it. 

ITEMS s: Allocates a contiguous block of store with the ECPL 
representation of the string S stored in them. 

BUFFFB N : \!locates~ contiguous ~ords of store ~ithout any 
initialization. 

SF.CT.ION S (*) : 
sect:ion s. 

,n assembler directive specifying the start of 

NFEDS X (*) : Loa~er dirPctive specifying that external S)mbol 
Xis neeaed by the program. 

INCLnDE s (*) : Assembler airective specifying that object 
file S should be concatenated to the object code gen€rated 
by the present compilation. 

PARAMETER S (*) : I mplernentation depenrlent assembler/code 
generator directive, as specified by the strings. 

A.1.3. D1adic 0Eerators 

Diadic operators are described using the general form 
<op> <arg(1)> <arg(2)> 

where <op> is the opPrator being applied to arguments <arg(1)> 
and <arg(2)>. The remarks concerning argument types in section 
A.4.2. apply here as well. 

fl'!UJ.T var1, 

DIV var1, 

REM var1, 

ADD var1, 

var2: 

var2: 

var2: 

var2: 

Push ~IJ*~r2 onto stac~. 

Push .Y2I1/ll!1 onto stack. 

Push ,Ygfj re■ .Y2!"l onto stack. 

Push _yg£1+n!"l onto stack. 

SUBTFACT var1, var2: Push .Y.2!1-.Y.~l onto stack. 

EQ var1, var2: 



NE var1, var 2: Push .!!!£J-,-=.YM1 onto stack. 

LS var: 1, va r2: Push .Y.aIJ <_yg1 onto str1ck. 

GE var1, var2: P.ush .!ill>= .Y.2£1 onto stack. 

GB var1, va -c2: rus.h .Y.arJ>.Y~!1 onto stack. 

T. .E var1, var2: t-ush .Y.a!:J<=.Y~!:1 onto stack. 

LSHIFT var1, var2: !>11sh ~r1<<.Y~!:1 onto stack. 

Push varJ>>.Y.a.£2 onto stack. RSHJPT var1, var2: 

LOGOB var1, var2: Push .Y2!..!lll.£1 onto stack. 

tOGAND var.1, var2: Push .Y~r:1&!~£1 onto stack. 

NEQV var1, var2: Push .Yi!I..! neqv y 2 r2 onto stack. 

EQV var1, var2: Push .Y!Il eqY .!~!1 onto stack. 

FJl1Ul'I var1, var2: Push _ygr1#*.!g£J onto stack. 

FDIV var1, var2: PU8h !!.£1#/!.a.£1 onto stack. 

PAl'JD var1, var2: Push yar1#+yar,Z onto stack. 

PSUE'IB1\CT var1, var2: P.ush !.1!1#-J@r2 onto stack. 

FF.Q var 1, var2: Push Y!!I1#=~.r1 onto stack. 

FNE var 1, var2: Push .Y~r:1 f-,=_y.ar.1 onto stack. 

FJ..S var 1, var 2: Push Y~£1#<gr2 onto stack. 

FGE var 1, var.2: .Push Y2!:J J>= !.fil:l onto stack. 

FGR var 1, var 2: Push Y~I.!•>yg.rl onto stack. 

FLE var 1, var2: Push Y2I..!#<=.Y2£Z onto stack. 

PUSHINDX var1, var.2: Push !fil:l!ll.£1 onto stac.k. 

PUSREYTE var1, var2: Push .YM.f'i_y2 .£1 onto stac.k .. 

PDSHSELEC'Y' var1, var2: rusb _y~r2 of n.rJ onto stack. 

MOVE var 1, V<ff 2 : Store the value of _y2.r1 in t.he loca tio.n 
referenced by EL2• 
!var?. := var1 
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lMODMULT MODDIV MODR~M ~ODADD MODSCTBTBACT MODEQ MODNE MODtS 
MODGE MODGR MOCLE MODLSHlPT MODRSHIFT MODLOGOR MODLOGAND ~ODEQV 



MODFMULT MODFDIV MODF~DD MOnPSUETRACT MODFEQ MODFNE MODFLS 
MODFGF MODFGF MODFLB] var1, var2 
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Tbe pffect of the MOD operators is similar to their 
non-modified counterrarts described above, with the 
exception that the destination of the result is not the top 
of the stack bu+:, the locat :ion referenced by .!!.!l. For 
example, 

MODDIV Vnr1, var2 
means 

!var2 /:= var1 
Note that th~ order of the operand~, with respect to the 
non-modifjed operator, has reversed. 

JtJMPF va.r., L : 
false. 

JUMP'J vaC', L : 
true. 

FCNCAlL var, N: 
temp:= P+N 
temp!O := P 
temp! 1 :,:: C 
C : = var 
S := P+ 2 

iTump to the location reference/I by L if BI is 

,Jump to the location r~f.erenced by L i.f ll.! is 

Fu net ion 
I I 
11 
11 
I I 
1 l 

invocation 
temp<- start of new frame 
save old fram€ pcinter 
set new stack pointer 
branch to procedure 
set new stack pointer 

RTNCALL var, N : Routine invocation 
The effect of this instruction j_s the same as FCNCALL with 
the additional reguirement that the result at the top of 
stack returned is deleted (i.e., popped off the stack) • 
This also requires that FTNRTBN have the same semantics as 
F'CNnTRN. 

PECCENT S, L (*) : Specifies the st,art of the definition cf 
the procedure named s. Also states that Lis to be defined 
as the entry point to tbe procedure. 

GLOBAL n, qlist (*) : Defines a list (gJJ.§t) of !! pairs of the 
form (NL) where N is the global cell which is to be 
initialized to the address of label L. 

ENTRYLIST n, elist : Defines a list (.~lis,!) of ,B pairs of the 
form (XL) vhere the entry symbol Xis to be initialized to 
the address of label L. If L=O then Xis an external 
symbo.1. 
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A.1.4. Triadic Oferators 

Triadic operators are described by the general form 
<op> <arg1> <arg2> <arg1> 

where <op> is the operato~ applied to the three arguments 
<arg1>, <arg2>, and <arg3>. 

SWITCHCN var, N(O), L(O) : The SWITCHON command expects N(O) 
pairs of NL values immediately following it. Its effect 
is to scan the N field of each NL pair until a value e~ual 
tc !I~ is faun~. A branch is then made to the 
corresponaing L. If no match is found, a tranch is made to 
label L (0). 

MOVETNDX var1, var2, var1 : Store into an indexed cell. 
va.r3!var2 := var1 

MOVRPYTE var1, var2, var3: Store into a byte. 
var3%var2 := var1 

1'10VFSELECT var1, var2, var3 : Store into a selector field. 
var3 of var2 := var1 

[JUMPLS JTIMPGR JTTMPLE JUMPGE JUMPEQ JUMPN~ JUMPFLS JUMPPGR 
JOMFFLE JTTMPFGE JUMPFEQ JUMPFNE] var1, var2, L 

The effect of each instruction in this class is to apply 
the relation Eollowing the JTTMP to !g.£1 and ~~r2 (see the 
descriptions of the diadic rAlationals). If the result is 
truer a branch is mad~ to label L. Note that tbe result is 
not Etacked. 
~n example is 'JTTMPLF X, Y, L045 1 whose effect is to jump 
to label L0045 if X<=Y. 
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i\. 2. .§Q.!!!f. ]ta ti sties on the Com,eosition of ECPL P,r,2grams 

In this appenaix some figur s are given regaring various 
aspects of ECPL programs. ~]l measucaments FCES nted are tase~ 
on static analyses of programs. Two major classes of a nalysis 
were performe~: those from RCPL programs themselves<1 1 ) and 
those from the OCOD~ generated by the BCPL compiler. ·or t he 
former class, about thirty-five BCPL secticns were analyzed, for 
the latter about sixty sections. The sixty sections corresfon~ 
to ever 11,000 BCPL ~ommands. In both instances, the progtams 
locked at were largely of tbP "systems" variety, nam~ly 
compilers, code generators, run - timP s upport libraries, text 
editors and the like. such a sampling was ustified in that 
BCPL is specifically suited for systems applications; indeed 
other types of programs were unavailable for analysis. 

'The analysis of BCPL program composition revealed commanj 
usage frequency as shown in Table A.2.1. In additicn, ,able 
~.2.2. shows the average complexity of BCPL exFressions, tased 
on operator counts. 

BCFL Comrnana 

Assignment 
Routine application 
Function application 
if, unles~, test 
whjl~, J!!lti1 
re~ at, rt=~,e e a t while, I~.E..fi!!.!!.!! ti]. 
!Q!: 
gt U!] (e X pl ici t} 
re§..91.!i.§ 
.!!2.Q] 
bre~! 
endc,2,2~ 
ggi.Q 
finj~l! 
.§!.!!.fh!rn 

Frequency (percent)< 1 ~l 

22 
27 
13 
12 
0 
0 
2 
1 
7 
0 
0 
.3 
0 
0 
0 

Table A.2.1. Frequency of BCPL command usage. 

7he secon~ class of analysis was on the composition of 
OCODE generated from the BCPL ccmpiler.< 13 > The data repcrted 
here is a set of measurements on the number of bits required to 

cit> The data for these were gathered at UEC by Mark Fox. 
c12> Values of less than 1 percent are shown as O. 
Ct3> the compiler used to generate the oconE was the BCPL-V 
compiler at URC. The BCFL-V language is a slightly enhanced 
version of standard BCPL. The compiler used to generate the 
OCODE did no optimization on the BCPL source. 
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represent th9 va ue of an operana.c1 4 J <•~> It should he 
realized though that the absolute address of a label operand is 
not easily a~ter.mine~ ~urinq code generation. Since ~tatistics 
were gathered during this phase the number of label operands 
encounter~d are li~te~ separately in the cclnmn labelled ~£ in 
Table A.?.3. Following this column is a count of all operands 
less those which were labclle~ (n£-sum). Finally a complete sum 
is shown. Note that two•s-comFlement notation is always 
assumed. Hence t.ht?.re is always one bit reser.ved for the sign, 
even if the operand can never be negative (~s, for example~ in 
th~ STACK comman~). 

Number of npe~atnrs Frequency (percent)< 12 > 

0 76 
1 19 
2 1 
) 0 
4 0 

Table ~.2.2. Typical exprt?.ssion ccmplexity in ECPL. 

In table A.2.4., a ccmparision is made tetween the overall 
object size for JCE/RSO and S"LIM {see [Fox] for details on 
SLIM). The data reported is the sum of the space occupied by 
data and codt?. witbout any celativization of operands. 

c1 4 > Other analyses of OCODE command counts, etc. vere 
performed. They arP available upon request. 
c1s, Note that an operand is, in general, the pair 
<admode,.value> where _g_g.!!!Od.f is the addressing 11cde (e.g., 
global, P-.celative, etc.), and nl.!!.§ t.he value for the specified 
admode. Measurem~nts are made on the space occupied by tbe 
value field only since the admode field occupies a fixed numter 
of bits (typically threP). 



!\pplication Min operand width in bits (2•s compl} 
2 I 3 I 4 I 5 I 6 

UNIX Text F~itor I 434 
Run-time Library I 198 
MCODE-HP cgen V 1 I 3 44 
MCCDE-HP cgen V2 I 704 
MCCDE-J'!inicode I 255 
~LGAE Compiler I 390 
RCPL Ccmpi.l~r I 895 
BCPL-/370 cqen I 895 
InterLISP Kernel I 350 
BCCDE cqen I 421 
Parsing Machine I 8 2 
IS 1\ M ti br. ar y I O 3 
Permutations gen I 14 
Intcode Ldr,Int I 118 
Intcode Assembler! 7.25 
Towers of Hanoi I A 
C Parser. l 1 00 

I 6 71 
I 2A3 
I 69 2 
I 1257 
I 637 
1 532 
I 1784 
I 1473 
I 1487 
I 416 
I 167 
I 170 
I ~2 
I 27 1 
I 374 
I 15 
I 276 

I 696 
1 .10 5 
I 527 
l 1385 
I 615 
I 828 
I 1840 
I 1794 
I 1284 
I 670 
I 307 
I 152 1 
I 105 I 
I 19q I 
I 400 I 
I 16 I 
I 344 t 

15] 
136 
244 
419 
EO 
709 
923 
7€2 
250 
498 
119 
134 
9 
18 
84 
0 
140 

I 30 
I 95 
1 4 7 
I 44 
I 210 
I 105 
I 103 
I 351 
I 2S 
I 160 
I 9 
I 58 
I 1 
I 9 
I 17 
I O 
I 1 O 
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---------------------------------------------------------------
Sa■ 
Cu■alatiYe Sa■ 

5560 
5560 

10643 I 11514 1 
16203 1 27717 I 

Table A.2.3a. Typical operand width in nCPL • 

4723 I 
32440 I 

1279 I 
33719 f 

. Application Min operand width in bits (2 1 s compl) 
7 I 8 I 9 1 10 I 11 

---------------------------------------------------------------
UNIX !ext. Edit or I 1 IJ2 
Fun-time Library 1 JO 
MCODE-HP cqen V 1 I 5 1 
MCODE-HP cgen V2 t 63 
MCCDF-Minicode 1 127 
ALGAE Compiler I 100 
BCPL Compiler I 3S9 
BCPL-/370 cgen I 146 
InterLISP Kernel I 59 
BCODE cgen f 41 
Parsing Machine I 21 
IS A fil Li hr ar y I 1 1 
Permutations gen I 5 
Tntcode Ld.r.,Int I ?.7 
Intcode Assembler! 2g 
Towe.rs of Hanoi I 1 
c Parser f 13 

39 
2 
E3 
74 
120 
159 
fl 2 5 
1<}0 
:n 
37 
26 
41 
23 

I 5 
' 1 g 
I 3 
I 42 

I 72 

' 4 I 2?. 
I 6 
I 11 2 
I 16 
I 84 
I 29 
I 111 
1 33 
I 32 
1 71 
I O 
I 2 

' 1 
' 0 I 9 

13 
3 
108 
102 
10 
40 
58 
111 
,~ 1 
24 
24 
0 
0 
32 
24 
0 
0 

I 10 
I 0 
I 15 
1 4 
I 22 
I 6 
I 18 
I 1 
I 49 
I 110 

' 0 I 1 
I O 
J 2 
I 11 .J 
I o 
I o 

I 
I 
I 
I 
I 

---------------------------------------------------------------
Su■ 1 2 3 o I 1321 I 6 o 4 I 70 o I 3 ~ 1 I 
Co■ulatiYe sa■ 34949 I 36270 I 36874 I 37574 1 37925 I 

Table ~.2.3b. Typical operand width in PCPL. 
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Application Min operand width in bits {2 IS com pl) 
1 2 I 13 I 14 I 15 1 16 

---------------------------------------------------------------
UNIX Text. EiH tor I 21 I 0 0 I 0 I 0 I 
Run-time Library I 0 I 0 0 I 0 I 0 I 
MCCDE-HP cgen V1 I 159 I 0 0 1 0 I 0 I 
MCCDE-HP CgP.n V2 I 44 I 1 0 I 0 I 0 I 
MCCD E-Minicorl e I 7 I 8 7A I 0 I 0 I 
I\LGl\E Compiler I 9 ' 0 2 I 19 I 0 I 
BCPL Ccmpi..ler I 0 I 11 65 I 1 l 0 I 
BCPL-/370 cgen I 79 I 0 16 I 7 I 3 I 
InterlISP KP.rnel I ?. 2 I 2 1 I 1 I 1 I 
BCODE cgen 1 6 I 71 0 I 0 I 1 I 
Parsing Machine I 0 I 0 0 I 0 I 0 I 
ISAM Library I 0 I 0 0 I 0 1 0 I 
Permutations gen I 0 I 0 0 ' 0 I 0 I 
Intcodf! r.ar,Tnt I 19 1 0 , 

I C I 0 I 
Intcode Assembler I 0 I 0 69 I 0 I 0 I 
TOWf>t'S of Hanoi 1 0 1 0 0 I 0 I 0 I 
C Parser I 0 I 0 0 I 0 I 0 I 
---------------------------------------------------------------
Su■ 568 I 94 1 
Cu■olati•e Su■ 3849.1 1 38 587 I 

Table A. 2. le. Typical operand width 

Applicat.ion 

UNIX Text F<1itor 
Run-time J.ib:rarv 
MCODE-HP cgen V1 
MCOn"P-RP cgen V2 
MCODE-Minicode 
1\LGiF Compiler 
BCPL compiler 
BCPI.-/370 C(JP.n 

InterLISP Kern@l 
BCODE cgen 
Parsing Machine 
ISAM Library 
Permutations gen 
Intcode L~r,Int I 
Intcoae ~~semhlerf 
Towers of Hanoi I 
c Parser I 

llL 

( l ~) 

1456 
uoo 
1708 
2lt60 
1436 
1761 
4187 
2681 
2131 
1337 
441 
184 
68 
952 
913 
1 3 
fi 9 3 

SOM-11£ 

( l 6) 

I 2283 
I 1056 
I 2492 
I 4076 
I 2281 
I 2915 
I 6556 
1 5857 
I 3826-
1 2488 
I 789 
I 7 '- 1 
I 229 
I 70 3 
I 1355 
1 10 
I 934 

I 

' I 
1 
I 
I 
I 
t 

' I 
I 
I 
I 
I 
I 

• I 

212 1 
38819 I 

in 8CPL. 

STJM 

( 1 6) 

]739 
1456 
4200 
6536 
3717 
4676 
107CJ3 
8518 
59S7 
3A25 
1230 
qos 
297 
1655 
2268 
56 
1627 

---------------------------------------------
Su■ 22R95 1 388'13 I 61748 I 

28 
38€4 7 

Table ~.2.3d. Typical operand width in BCPL. 

Ct6J See the text of this appendix for details. 

5 I 
388 5 2 I 
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Application SLifl! ICE ' Ratio I 
---------------------------------------------------------------
Intcode Int,;:,t'pr~tf>r Sect. 0 5728 I 4~78 I 1.15 I 
Intcodf' Interpreter Sect. , 1576 f 1430 I 1.07 I 
Hanoi 218 I 194 ' 1. 12 I 
BCPL Compilet' LEX 6578 I 5240 I 1.26 I 
BCPL Compiler SYN 6308 I !: 148 I 1. 23 I 
P.CPL Compiler. TRNA 5670 I 4904 I 1. 16 I 
BCPl Compiler 'l"'R NP. 5002 I 4180 I 1.20 I 
BCPl Compiler TRNC 5986 I 4753 I 1. 26 I 

Table A.2.4. A ccmpa rision of TCE/ESO and SLIM code density (in 
bytes) • 
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A.3. flsi.ng the BCP1LIC:R Translator 

This appendix gives instructions for running the BCPL/ICE 
translator, as available under MTS at TTBC. 1he translator is 
invoked by the command 

$RUN ECDE:BCPL SCARDS=sourcefile O=icefile -
SPRINT=listfile P~R=parameters 

where .§OU.££.Qfile is thP. file containing the BCPL source, 
i£ef..i.1f. is the file to which the ICE code will be written, 
.!iB.!!il~ is the file to which the program listing is to be 
a irf?ctea, a nil 
£~g..!]!eter§ is the normd1 parameters .list used by the 

standard :ncpr, compiler. 

The compiler automatically generates 
listfile giving the size of the ICR obiect 
machine. 

statistics 
using the 

on the 
lC.E/'ESO 


