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ABSTRACT

This paper investigates the problem of generating optimal space-
efficient code for the language BCPL. Designing such a code was seen to
be a two-phase process. The first phase was to describe an internal
representation scheme for BCPL programs which preserved those program
features which are salient to translation and at the same time minimize
the number of instructions generated. The second phase consisted of the
realization of the internal representation as an actual machine taking into
account the usage frequencies of instructions and other real world constraints
such as word size and addressing space. The intermediate code, called ICE
and an encoding scheme (known as ESO, standing for encoding scheme 0) are
described. ICE/ESO is seen to reduce code size by an average of about 32%
compared to BCODE which is a realization of OCODE, the intermediate language

currently used in BCPL program translation.



0. The Meaning of Optimality

One often speaks of the desire to produce "efficient
programs". Apart from the criterion of correctness, program
efficiency is usually measured in terms of time (the numter of
CPN cycles used), and space (the total amount of storage used by
the process). In the present context, the optimality of
generated code will be measured only on the basis of space
efficiency. Such a stance is fairly popular and is ncreally
justified by noting that memory is a more critical resource than
CPO cycles for, although bhoth are becoming less expensive, word
size Jlimitations vrestrict the convenient access of large areas
of store.(1) Since we are discussing the generation of optimal
code by an automatic translator it is reasonabhle to state that
space efficiency will lead to time efficiency. This is because
the increase of space efficiency by the restructuring of
programs (which miqght present a tradeoff bhetween prcgram speed
and size) 13 not considered here; the elementary optimizations
which are discussed in this paper are shown not to degrade the
generated code's speed characteristic.

In this paper, the problem of generating optimal space
efficient code is investigated for the language RCPL (Easic
Combined ©Programming Langnage) .BCPL |[R1) is a typeless langquage
which 1is particularly suited for the writing of systems
prograns. It is a qgood choice for the present study not only
because it is a simple lanquage which has been used in practice,
bhut also because most BCPL compiler implementations presently
generate an intermediate code called OCOD® [R2]. The existence
of CCODE facilitates +the evaluation of the relative merits of
the code developed here, called TCE. Designing such a code was
seen to be a two-phase process: the first phase was to describe
an internal representation scheme for BCPL programs which
preserved those program features which are salient to
trancslation; the sccond consisted of the realization of the
internal representation as an actual machine. The realization
would produce an instruction set encoding Lased on usage
frequencies of instructions and other real world constraints on
machines such as word size and addressing space. Roughly
speaking, therefore, the aim of the former phase was to minimize
the number of instructions generated, whereas the latter +wculd
ensure their optimal encoding on a target machine.

In some sense, the answer to phase one cf the problem is
evident: we can make the intuitively reasonable assumption that
the optimal representation of a BCPL program is the prcqram
itself. This assumes that the algorithm expressed by a ECPL
program cannot te expressed wmore succintly. A ccmmon data
structure used to represent a program is the tree. A tree has
several Adisadvantages when viewed as an intermediate code for

—— - ——— - —

(1) See [T] for a fuller discussion of other cecnsiderations.



BCPL.(2) Since a tree 1is a structure in two-dimensions
(sequencing and nesting) it is difficult to realize in terms of
the sequential machine architectures prevalent today.¢(3) 1t
translation were heing considered to the native code of sonme
existing machine a tree may be a more reasonabhle choice.
Hovwever the task of such a translator could be greatly
simplified if the intermediate code were itself one-dimensional.
Such a one dimensional code should ideally have the property
that its instructions can be expanded into instructions for the
target machine in a context-free way (that is, by treating
commands in the intermediate code as macros defined in terms of
the target machine's instructions). It is the design of such a
code that will be discussed in section 2.

The advantages of two-dimensional representation should not
be overlooked, however: a tree representation would be ideal in
that it would closely reflect program structure and at c¢nce
remove all wunneccessary information such as ncise words, and
most names. But since we are lonking for an intermediate code
which can be viewed as an actual machine with a structure ccmmon
to those in existence today, the one-dimensional alternative
will be the only one developed here.

As a correollary to the previous assumnption that the ECPL
program being translated has heen optimally represented, we ltave
that the introduction of such programming artifices as index
registers are unnecessary. This is because an index register
may typically be useful in reducing code size if it can be
loaded with the address of a frequently referenced vector (say).
If the high 1level 1language does not allow for the explicit
loading of the 1index register with the vector's starting
address, some form of data flow analysis is required for its
optimal usage. We have specifically precluded such analysis.

1. A Method fer Producing Good Machine Code frcm BCPL

In this section the design phase of the intermediate code
ICE is discussed. As noted previously, two major objectives are
to ke met: ICF should be a language that is easily encodable as
the instruction set for some real machine such that the enceding
is efficient and it should be amenable to translation into the
host language of some other machine.

(2) 7In an environment where complete syntactic information
reqgarding a program is required at execution time (as in, say,
an interactive debugging system) a tree is likely to be the
representation scheme of choice.

(3) wWhat is required is a machine capable of executing

directly some LIS? type lanquage. FEven here, the linking scheme
would have to be modified to reduce space wastage due to linkage
fields.



Although the machines underlying OCNDE and ICE are the
same, ICF manipulates data objects differently. TIn BCPL the
basic data object is always the word. A word is of unrestricted
size and form provided that it can be used tc stcre any address
and that consecutive words are numbered consecutively. OCODE
manigpulates data objects by pushing them onto the runtime stack,
then applying the required operator to them. If OCODE is to be
viewed as a real machine, the need to explicitly stack all data
objects is wasteful in both +time and space since the fpush
operation requires a sevarate instruction. If OCODE is to ke
translated into a Adifferent machine's language, scme fairly
intricate pattern matching mechanisms are regquired if reasonatle
obhject code is to ke qgenerated., This is hecause a BCPL conrmand
such as

a := b+c (E1)

will translate into the QOCODE commands

I & Push b onto stack
L e push c onto stack
ELNS Replace top two elements of stack with sunm
S a Store the top of stack in location a.
Now consider a fairly ¢typical multiple register machine

architecture with instructions of the form
<op>» <reg> <addr>

where <op> is the diadic aperator applied to the contents of the
register <reg> and the memory 1location <addr> in the form
<reqg> := <reg> <op> <addr>. To generate the exrpected

LOAD regl,B
ADD regl,C
STORF regl,A

sequence for this machine from +the above OCONE segment, the
'L ¢; PLUS' sequence has to be recognized. This 1is only a
sinple instance of the pattern matching capakilities needed. A
BCPI. command such as

a'b := c (F2)

may ke implemented on many machines as a single instruction;
OCNDE generates the sequence

1. ¢

I.' l‘i

L b

ELUS Calculate address of al!b

STIND Store ¢ in address at top of stack .

Some mechanism has to exist to detect this pattern to generate



optimal code from 0CODE. Unfortunately, such translation
schemes are not straightforward to implement.

ICE(*) views data objects +*o be of +two basic tyres:
cellular and complex. Any data object which <can be directly
stored in a word without +he need for further evalunaticn is
cellular. Complex ohjects are those which can be stored in a
word only if evaluated. Hence all non-trivial expressions are
complex. Generally, TICE allows the direct specificaticn of all
cellular objects as instruction operands; the runtime stack is
used only to store the intermediate results prcduced in the
evaluation of complex objects. A disadvantage of such an
intermediate representation is that the number c¢f instructions
in the repertoire increases enormously. Whereas OCODE has
exactly one operator specifying an operation, ICE in princirle
requires 2%%n operator variants to specify all the cellular and
complex operand n-permutations for an n-adic ogperator. To
linearize this exponential growth, a realistic ccmpromise has
been made: instead of having instruction variants allowing any
operator type permuntation, the only ones TICF features from the
2%**n possibilities are those whose rightmost operands are all
cellular. The remaining operands, be they cellular cr comglex,
are all fetched from the stack. Thus, for an n-adic operator
ICE has a zero operand variant (where all operands are on the
stack) to an np-operand variant (where all operands are cellular
and thus directly specifiable). This produces a total of n+1
instruction variants. By “Judiciouns choice of the c¢rder of
operand specification, such a restricted representation produces
almost as good code as would be in the general case. There are
several reasons for this. In some cases (e.g., cocmmutative
operatcrs) the linearized set of operands are as general as 1in
the exponential <c¢ase, since the order c¢f «cperands can be
reversed. TIn some other cases certain ovperands, such as the
selector field in a select expression (see MOVESELECT in A.1.4)
can cnly he cellular objects and so invalidate some of the
possible variants 1in the exponential set. 1In yet other cases,
an operator as well as its inverse is available (e.g., GT and LS
for the "greater than" and "less than" relations). This allows
BCPI. code sequences such as

ssm BCERREY wan
to be transformed into

caw:  (B¥CY DR wae
with a corresponding increase in code density, for reasons noted

below. The existence of an inverse for an operator makes it, in
essence, commutative. One should note that the specific crder

(4) only the design principles of ICE are discussed here. A
complete description of the ICF instruction repertoire is to be
found in appendix A.4.



in which operands are allowed to appear 1is relatively
unimportant, for we could specify (for example) that cellular
operands could only appear in the leftmost positions, instead of
the rightmost. If the operands were themselves reversed the
leftmost scheme would be equivalent to the previcus one (modulo
the notation used). The important point in the 1linearization
scheme 1is that relatively little representational power is lost
by it use.

To illustrate the possitle instruction variants for an
operator 1et us consider the operation of division, which takes
two arquments {shown as *'x' and 'y' below). If both '"x* and 'y?
are cellular, the instruction generated is

DIV 2 x vy .
If 'x' is complex, the correct ICE instruction is
DIv 1y

where the value of 'x' is now fetched from the top of stack(s) .
If both 'x' and 'y' are ccmplex or if 'x' is cellular but 'y' is
complex, the instruction to be generated is

DIV O

where 'y' is at the top of stack and 'x' at the location
immediately below the top.

Note here that we are forced to push 'x' on to the stack if
'y' is not cellular. This is a consequence of the linearization
scheme outlined above. Illowever, if the operator is commutative,
then the operand order can be reversed to allew the cellular *x?*
operand to he directly specifiecd. Since BCPL specifically
leaves the order of sub-expression =2valuation undefined,
operators which are commutative in ordinary mathematics can (and
must) be considered commutative by a BCPL to ICE translator.
Note that the commuting of operator order wherever advantageous
is not an option =-- it 1is a part of the definition of ICE.
Similarly, maximizing the number of operands tc an instruction
is also not optional. fHence if two cellular objects 'a' and 'bh!
are to be added, the correct ICE instruction is

ADD 2 a b é
An instruction sequence such as
PUSH

POSH
ADD N

1 a
1 b

(5) OUnless otherwise specified, fetching an item from the stack
always implies its deletion.



is incorrect. Furthermore, the BCPL fragment
C+A%R
is correctly translated into ICE as

MOLT 2 A B
ADD 1

Note the transformation of 'C+A*B' jnto "A*B+C.°"

The advantages of such an intermediate code will now bhe
outlined. Tf one wishes to reduce the instruction count, it is
clear that elimination of unnecessary POSH irstructions (L in
NCODE) helps. Although the number of bits required to represent
an instruction code has now increased, the overall number of
bits needed to represent a program (in comparision to sipilar
encodings for CCODF) is nonectheless reduced.

In ccmparision to OCODE, TICE 1is also tetter suited to
translation into the host lanquage for machines which presently
exist. This is hecause most machines allow at least some of the
operands nf an operator to bhe explicitly specified. Continuing
with our previous exanmples we note that the ICE codes generated
for (E1), if both 'h' and 'c¢' are cellular is

ADD 2 b ¢
MCYE 1 a =

More importantly, we note that the definition of ICE requires
that the

ADD 2 b c
be generated, and not (say)

PNSH 1 b
ADD 1 ¢ e

This imrlies that if a PIUSH command is encountered in
translating ICF to some other language we are gquaranteed that
the PUSH is indeed necessary(®) ., The major advantage of such a
property is that ICE instructions can be transformed into the
language cf most other machines in a context-free way, and still

(6) Tt is assumed that instructions on real machines allow
operands *o be specified cnly in the order that ICE allows; that
is, instructions such as

CIVIDE <addr>,<reg>
meaning <req> := <addr>/<req>, where <addr> is a memory location
and <reg> a register, are not allovwed. Empirical evidence shows
this to be a reasonable assumption.



produce close to optimal code. 5Such is not the case for OCCDE.
A good aquality code generator can thus be produced for most
target machines by treating ICF commands simply as macros wlose
expansion is defined using the macro assemhler which is usvally
provided by the machine's vendor. Recognizing that the format
of macros accepted by macro assemblers varies considerably, an
exact external form for ICE commands has not been defined. For
the purposes of description, appendix A.1 does indeed fpresent a
representation scheme; the current implementation of the BCEI to
ICE translator allows +he appearance of ICF commands to bhe
modi fied readily however. Indeed, it is quite reasonable to
perform the ™M"macro expansion" referred to earlier within the
routine which emits the ICE code (in the BCPL to ICE
translator).

ICE is essentially a generalization c¢f OCODE. Fizxed
seguences of ccmmands which frequently occur in CCODE have Feen
combined intc one TCE instruction. The coHlescing of
instructions has not heen done in an arbitrary way. The general
rule followed hLas bheen that every BRCPL operator has been
assigned a corresponding IC® instruction. 1In practice such an
architecture resembles those of real machines quite closely. 1In
particular, the scheme used to linearize the numker of variants
of an instruction seems to be employed by real machines also.
It should be noted that some machines allow for a greater deqgree
of compression than ICF. TFor example, the BCPL command of (E1)

a := b+c (E1)

can be translated into a single instructicn on some existing
machires. ICE can, at best, produce

ADD 2 b ¢
MCVE 1 a -

This is because machines which allow (E1) to be expressed as one
compand are combining the distinct RCPL operations of addition
and assignment. TCF does not include such ccrhinations in its
instructicn set.

From the viewpoint of Flynn's work |[F) on the evaluaticn of
machine architectures, ICF's superiority over OCODE results from
the reduction of the need for M-type instructicns €¢(7) +to the
point of absolute necessity. ICE also unites several distinct
OCODF commands as single ccmmands with variants. For exangle,
the ICF equivalent of the OCODE STIND operation is MOVE 0.
Similarly, the operations J"MP and GOTO in OCODE are simply
variants of the ICF JNMP command.

(?) In Flynn's terminology, M-type instructions are those wtich
move data from one space in the memory hierarchy (e.g.,
registers) to another (e.g., main memory).



2. An Encoding Schkeme for ICR

From the discussion of the previous section it can be
inferred that, under the constraints specified, ICE does 1indeeAd
minimize +the number of instructions generated from a prcgram
written in BCPL. 1If we are to view ICE as the instruction set
for a real machine, it is not clear however that ICF expresses
programs in fewer bhits than an alternate scheme such as ECODE
(see [M]) for although the number of instructicns generated has
decreased, the number of bits required to represent them " has
increased (due *to their greater conmplexity). Indeed, the
prohlem of encoding an instruction set optimally is largely an
exercise in the statistical measure of the frequency of
instruction usage; an encoding for ICE which is optimal for all
conceivable BCPL vprograms is thus not possitle in princirle.
Here we present a reasonatle encoding based upon some
measurements of a large sample of BCPL programs and the
constraints on encoding schemes which real hardware inevitably
provides.

An 1initial decision was made to have a machine with a word

length of sixteen bhits, This was done 1largely because an
encoding was being sought which would be suitable for use in a
minicempoter environment. From experience with machines of

various word sizes, sixteen bhit words were alsc felt to precsent
a reasonable tradeoff point between the information storage
capacity of a word and the memory wastage associated with the
use of large word sizes. This choice of word size has one
disadvantage: floating point operators are unavailable since
real values are not conveniently stored in sixteen bits. Since
real arithmetic is not a feature of standard BRCFL(®8) , and since
such data manipulation is uncommon in BCPL, the lack of this
capakility was not felt to be serious. Lastly, choosing a
sixteen bhit word was advantageous since other object machines
for BCPL have GLteen devised using the same word size. This
allows a method for mweasuring (by comparisicn) the relative
space efficiency of a particular ICE encoding scheme. Since ICE
instructions consist of an operator fcllowed by zerc or nmore
orerands, the encoding problem can be divided into the protlems
of encoding the operator arnd encoding the operands. These two
encodings cannot bhe performed entirely independently however
since they both have to meld together well in the environment of
the underlying word.

Including all possible command variants, ICF consists of a
total of 256 operators. As will be =seen shortly, a "no
operation” instruction 1is also needed. Since PUSH 0 is a one
byte operator which does nothing (it pops the top of stack, then
pushes it Dback on) it will be used as the no op. The total of
256 operators can bhe represented by a single byte (8-bits) of

- ———

(8) ICF is sufficiently powerful to accomodate ECPL-V, an
extension of BCPIL which permits real arithmetic.



information. The actual mapping of operators to bit patterns is
left unspecified; this is Aone so that the inrlementor nright
make best use of any specia) characteristics of the machine on
which ICE is ecmulated or simulated. Note that the 256 operators
include all those which operate on real values; for the present
case, there will therefore bhe fewer than 256 operators. A
complete bhyte 1is nonetheless assiqgned to the operator field to
simplfy the hardware decoding lcgic (or mpicrocode). Such
considerations will affect the form of the operand field also.
In particular, it will be assumed that the basic (indivisible)

size of any datum 1is eiqht Dbits. Hence, in this encoding
scheme, instructions and data will always be in multiples of
bytes. As may be evident, the imposition of such a coenstraint

reduces encoding efficiency.

The representation of operands under this encoding scteme
(called ESDO) will now be discussed. An operand in BCPL consists
of two parts: an addressing mode (admode), and a value for the
particular addressing mode. For example, an cperand referencing
glckal cell 20 is in the global admode with a value of 20.
There are four basic addressing modes. They are absolute,
qlotal, local, and relative. 1In addition, for each admode, ICE
has the ability to specify whether the addressing is direct or
indirect. Hence three bits are needed to represent the admcde.
If operands are tn be stored in a single byte there are five
bits left for the value field. Since five bits are insufficient
to represent all value fields, operands are allowed to be either
long (three bytes) or short (one byte). One bit is required to
represent this 1length attribute and hence the space for the
value field of a short operand 1is reduced to four bits.
Although this may seem restrictive at first, Table A.2.3. in
appendix A.?2. shows that an average of 71 percent of operands
1t into four bhits, when represented in two's-ccmplement
notaticn. If an operand is long, it must occupy three bhytes.
This is because a two hyte operand leaves cnly twelve bits of
space for the value field; more are needed to represent
addresses in any medium sized progranm.

The operator and ovperand encoding schemes having leen
descrited, they <can now be combined te represent ICE
instructions. The TICE/PS0 machine represents instructions hy
specifying the operator (in one byte) and following it with the
(implied) number of operand fields reguired. Since the ltasic
addressable unit at the RCPL level is a word, a proklem arises
whenever code is addressed (e.g., by a JUMP) which is at an odd
numbered bhyte (since there exists no corresponding word
address). Two methods are apparent which overccme the proklem:
since all addressing at the BCPIL level is accomplished via an
indirect tranch through a <cell, a byte address can be stored
within the cell. This 1imits +he word addressing space *to
fifteen bits on a sixteen bit machine (the freed bit being used
to index the byte). The other alternative is tc genmerate a one
byte "no operation" command whenever necessary preceeding a
label declaration within the code body (i.e., declaraticns using
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the LAB command). ICE/ES0O adopts the latter solution.

Measuring the space efficiency of any machine architecture
is nect a straightforward task, for the results are affected by
the sampling of programs studied. Poth the style of prograrming
present in the sample, as well as the applications being sanmgled
are factors which influence +the outcome c¢f the analyses.
Nonetheless, Table A.2.4. in appendix Ba2. presents a
comparision ketween Tcr/rs0 and SLIM, a machine devised
specially for representing BCPIL programs (see [Fox] fcr a
description of the SLIM machine). Code generation for a srall
sample of programs shows that SLTM compares favcurably with EMIT,
an experimental machine designed by Tanenbhaum which attempts to
minimize the object code size of oprograms written in SAIL, a
lanquage with a RCPL flavour (see [T] and |Fecx]). As a further
indication of the compactness of TCE/FS0, we note from Table
A.2.4 that ¢the average SLIM to ICE/FS0 ccde ratio is 1.18
whereas Fox (see [TFox]) reports RCODE to SLIM ccde ratio tc be
T 12 This means that BCNDE, which is a realization of OCODE
(the intermediate language currently used in BCP1 prcgran
translation) takes up an average of 32 percent more space as
compared to ICF/FSOD.

3. Conclusions

cur obhjective has been to find a space-efficient way of
encoding BCPL programs. A two-phase method has been used in
developing this code: ¢the first phase produced an instruction
set which minimized the number of instructions generated; in the
second phase a space-efficient encoding for this instruction set
was derived. fThe translator section of a RCPFI compiler has Lteen
modified to generate ICE code and to cecllect code size
statistics. Assuming that no optimizations other than the
reordering of operands *o ccmmutative operators and constant
fclding are allowed, ICTFT minimizes +the number of generated
instructions, within the constraints imposed by the
linearization schene.

As pointed out in section 2, it is meaningless to talk of
an encoding for ICE which 1is optimal for all programs. The
encoding scheme presented, RSO, emerged from an attempt to
satisfy the conflicting objectives of unifcrmity and space
efficiency. As an example, note that all operators (including
their wvariants) are entirely ecncoded in the first byte cf an
instruction. However, not all operators are used with equal
frequency; for example, the ADD operator in apy cf its variants
is far more prevalent thanm &FM. Hence, with a sufficiently
tricky encoding, some of the most frequently used operators
along with one operand could possibly be represented in a single
byte. The (acceptable) tradeoff would be that scme of the
rarely used operators would now require more than one byte for
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their representation. Tanenbaum adopts such an approach in [T].
Further gains could likely be made if one were not constrained
ty bhyte boundaries when devising an encoding. ESO was designed
for such a restricted environment however to conform with word
formats prevalent on current machines, and to simplify the
decoding logic (or microcode) used in implementing it.

As a final remark, note that an instruction
<op> <var(1)> ... <vari(n)>
is equivalent to

EUSH <var (1)>
<op> <var(2)> ... <var(n)>

assuming that there 1is no stack overflow as a result of the
PNStH. This provides a way of reducing the numkter of operand
variants, and hence the number of bits required to encode an
operator. Note that the alove expansion degenerates to OCODE if
it is anplied recursively to the point that all operators are
seen only in their zern-operand variant.
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A.1. A Description of ICE

The intermediate code ICE is described here in a reference
manual format. As discussed in section 1, the properties of the
ICT code generated are an integral part of ICE, in additicn to
the instruction repertoire itself. 1In particular, recall that
one of +tha madjor advantages of ICE over OCODE is that one is
guaranteed that each TCE operator will maximize the numkter of
arquments passed to it. TFor example, the PCEL ccmmand

A = B/C
could ke translated into ICE as follows

PUSH 1 R

PNSH 1 C

nIv 0

FISH 1 27

MOVE 0
However, the <correct ICE code (by the marinrization of operands
prorperty) is

DIV 2 B C

MOVE 1 2A
Furthermore, since the order of evaluaticn c¢f operands is
unspecified in BCPL, the correct ICFE code for the BCPL code
fragment

A := B+ (C-2)
is

SURTRACT 2 C 2

ADD 1 R

MOVE 1 2A
Since addition 1is commutative, the expressicn 'B+(C-2)"' is
transformed into ' (C-2)+B' which allows the cellular(®) otject
'R' to bLe specified directly as an instruction cperand. It
should be noted though that if ICRE is used as an intermediate
code for a language which defines evaluation order, operands
cannot be validly commuted.

As presently generated, the external representation of ICF
instructions follow a very rigid format. The general form cf an
ICE instruction is

<op><var><arqg(1)> ... <arg(<var>)>
where <op> is the instruction name

<var> is the instruction variant (see belcw)

<arg(n) > is the nth arqument to the instruction (see below)
In the descriptions below, instructions are classified by the
number of argquments they accept. For example, ATD is a diadic
operator since it accepts +tvo arguments. In general, fcr an
n-adic operator, the instruction variant number (<vard>)
specifies the numker of arguments which occur directly after the

——

(9) A data obiject is cellular if it can be directly specified
as an arqument to an instruction. All words are cellular
objects. Non-cellular objects are termed complex. Most
expressions are complex. An exception is !A which, if evaluated
in Lrode, is cellular.
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instruction code. The n-<var> operands which the instruction
still needs are fetched from the n-<var> topmost locations of
the runtime stack (where fetching an object from the stack
implies its deletion). After performing the operation specified
by <op> the result, if any, is pushed onto the stack. Since
operands to an 1instruction are stacked only if they are not
cellular themselves, for an pn-adic operator c¢ne requires Z¥*p
instruction variants in general to allow cellular cbjects to be
always specified directly as an instruction's operand. ICE
allows for only n+1 variants by allowing cnly the rightmost
cellular operand fields to an instruction tc be specified
directly. To illustrate by example, ccnsider the ICF
instruction 'MOVFRY™F 3 ¢ b a', whose effect in terms of BCEL is
'a%b := c'. The four variants of MOVERYTE are given belecw in
tabular form along with the <conditions under which each 1is
generated. In +the +able, S is a variable which pcint tc the
tormost used element of the stack.

MCVEPYTE 3 c b a are all cellular cbijects.

+L£,2
ffect is a%b := ¢

MOVFEYTE 2 b a ¢ is a complex object.
Effect is a%b := IS
§ == 1
MOVEPRYTE 1 a LI is a complex cbkiject; ¢ is comglex

or cellular.
Fffect is a% (!S) := ! (S-1)
g == 2

MOVEBYTE 0 a is complex; r,c can be any
combination of cellular cr ccmplex
obdjects provided beth are not
cellular.

Rffect is (!S)% (! (S-1)) = !(S5-2)
S -:1= 2

Note the order in which the elements are fetched from the stack;
this scheme is used uniformly by all instructions.

Arguments {cf. <arg(n)> in the general instruction format )
can be one of tvwo general types. Thke mcst common is the
<admode,value> pair. This is used to specify simple objects;
for example global cell 100 would be represented as 'G 100'.
The valid admode types are

character constant
floating point constant
G global cell reference

Code RCPL Fquivalent
C
F
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lakel reference

numeric constant

local (dynamic) variable
field selector constant
string constant reference
external label reference

<uuxdo=z !

Each of these codes can be modified by the indirection operator
ng", Hence PUSH 1 TL 10002 means push onto the stack the
contents of the cell 1latelled 1L0002. The value field is an
integer, a character, a floating point constant, a string
constant, or a lahel. An example of a value is the "100" in 'G

100,

Many instructions do not require a generalized
<admode,value> notation to specify operands. In general these
operands are always constants, as 1in the constant string
argument +to the SFCTION ccmmand, or the constant label argument
to the RESULTEXIT command.

In the descriptions which follow, the instructions are
listed in order of the number of operands each accepts. From
the pcint of view of a translator, this has the advantage that
groups of instructions which have similar argument types carn he
processed by the same translator segment. In the tabtles helow C
refers to the program counter, P points toc the stack frame
pointer, and S to the top of stack (i.e., the last used cell on
the stack). Where required, the instruction is follcwed Lty a
description of its effect in terms of BCPL commands. Also note
that not all of ¢the instructions descrikted are those which
generate actual object code; manv, such as the NILSTATE
operator, are Adirectives required either during assembly, or
during code generation. These types of operatcrs are followed
by an asterisk (*) below.

A.1.1. Niladic Operators

Niladic operators take no arguments, They are

RV : Indirection
1S 1= 1(195)
RTNRETEN : Return from a routine invocation
S := P-1 ]] restore stack pointer
C := P!1 || restore program counter
P := P!0 || restore frame pointer
FCNRTEN : Return from a function invocation
C := P11 || restore program counter
P := P!0 || restore frame pointer
'P 3= !S || place result on top of caller's stack
S 3= P || restore stack pointer
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FINISH : Terminate proaram execution unconditionally

SAVEMARKER : Allocate space on stack for savirg progranm
counter and stack pointer
S #:= 2

FALSF : Push false onto stack

TRUE : Push true onto stack

NILSTATE (*) : Code generator directive forcing generation of
code which ensures that the contents of all memory cells in
the run-time environment are valid.

END (%) : Code generator directive signifying the end of a
cempilation section.

STARTBLOCK (%) : Signifies the start of a BCPI Lblock.

A.1.2. Monadic Operators

Monadic operators in TCE are of two types: those which take
an <admode,value> argument and those which take a constant
argurent. The notation used in describhing them is

<op> <arqg>

where <op> is the instruction being applied to <arg>. If <arg>
is denoted by "var", it means that the argument is of the
<admode,value> type. Only such instructions are allowed to take
their operands from the stack (thus producing the n+1
instruction variants discussed earlier). If not denoted Ly
"yar", the argument ¢to the instruction can crly ke a constant
(the type of the constant being denoted by the single letter
argument codes listed earlier).

POSH var : Pusk var onto the stack.

NEG var : Push -var onto the stack.

FNFG var : Push #-var onto the stack.

NOT var = Push -~var onto the stack.
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ABS var : "ush abs var conto the stack.

FABS var : Push fabs var onto the stack.

FIX var : Push fix var onto the stack.

FLOAT var : Push float var onto the stack.

STACK N : Set the stack pointer
S 3= N

RESULTSTACK N : Take the current top of stack as an expression
resnlt.
FIN := !5
S 1= N

JOME var : Jump *o location va

P

RESULTEXIT L : Jump to location L; also states that the tcp of
stack contains the resunlt of an expression (generated Lty

LAR L (%) 3 Define label L within program ccde.

DATALAR L (%) Define lakel L within the data area.

COMMAND N (¥) : Start of RCPL command number N.

ENDBLOCK nlist (*)Cro) Denotes end of a BCPI block.

ENDPROC nlist (*)C(10) : Denotes end of a BRCPL procedure.

ITENC C 1} Defines a word with the character C stored right
justified in it.

ITEMN N @ Defines a word with the value N stored in it.

€10) The argument nlist is a list of BCPL source names which
can be optionally generated by the ICE translator.
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ITEML L : Defines a word with the address of laktel L stored in
1%

ITERF ¥ 2 Nefines a word injitialized to the floating point
constant F stored in it.

ITENS S : Allocates a contiquous bklock of store with the ERCPL
representation of the string S stored in thenm.

BUFFFR N : Allocates N contiguous words of store without any
initialization.

SECTION S (*) : in assembler directive specifying the start of
section S.

NEFEDS X (%) = Loader directive specifying that external symbol
X is needed by the progranm.

INCLODE S (*) : Assenbler directive specifying that object
file S should be concatenated to the object code generated
by the present compilation.

PARAMETER S (%) : Implementation dependent assembler/code
generator directive, as specified by the string S.

A.1.3. Diadic Operators

Diadic operators are described using the general fornm
<op> <arg (1) > <arag (2)>
vhere <op> is the operator beinqg aprlied to arguments <arg(1)>
and <arg(2)>. The remarks concerning arqument types in section
A.4.2. apply here as well.

MOLT varil, var2: Push varl*var2 onto stack.

DIV varl, var2: Push varl/var2 onto stack.

REM varl, var2: Push varl rem var2 onto stack.
ADD varl, var2: Push varl+var2 onto stack.
SURTEACT vari1, var2: Push varl-var2 onto stack.

EQ var1, var2: rush varl=var2 ontc stack.



NE varil1, var?2: Push varl-=var2 onto stack.
LS varl, var2: Push vari<yar2 onto stack.
GE varl, var?2: Push varli>=var2 onto stack.
GR varl1, var2: Fush varli>var2 onto stack.
LE var1, var2: Push varli<=var2 onto stack.

LSHIFT varl, var?2: Push varid<<var2 onto stack.

RSHIFT varl, var?2: Push var1>>var?2 onto stack.

LOGOR varl1, var2: Push varllvar?2 onto stack.
LOGAND varl1, var?: Push varlfvar2 onto stack.
NEQV var1, var2: Push varl megqgv var2 onto stack.
EQV varl, var?: Push var! eqv var2 onto stack.
FMULT varl1, var2: Push varl#*var2 onto stack.
FDIV var?, var2: Push varl#/var?2 onto stack.

FALD varl, var2: Push varil#+var?2 onto stack.
FSUBTRACT var1l, var2: Push varl#-var2 onto stack.
FEQ var1, var2: Push varl#=var2 onto stack.

FNE vartl, var2: Push varl#-=var2 onto stack.

FLS varl1, var2: Push varl#<var2 onto stack.

FGE var1, var2: Push varl#>=var2 onto stack.
FGR var1, var2: Push varl#>var2 onto stack.
FLE varil, var2: Push varl1#<=var2 onto stack.

PUSHINDX var1l, var?2: Push var2!varl onto stack.

PUSHBYTE var1, var?2: Push var2%varl onto stack.

PUSHSELECT var1, var2: Fush var2 of varl onto stack.

MOVFE var1, var?2 : Storec the valne of varl in the location

teferenced by var?.
tvar? := var?

MODMULT MODDIV MODREM MODADD MODSUBTRACT MODEQ MODNE MODLS
L Q

20

MODGE MODGR MOLLE MODLSHIFT MODRSHIFT MODLOGOR MODLOGAND MODEQV
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MODFMULT MODFDIV MODFADD MODFSUBTRACT MODFEC MOLCENE MODFLS
MODFGE MOCFGF MODFLE] varl, var?2
The effect of the MOD operators is similar to their
non-modi fied countertarts described above, with the
exception that the destination of the result is not the top
of the stack but the location referenced by var2. For
example,
MODDIVY varl, var?
means
tvar2 /:= varl
Note that the order of the operands, with respect to the
non-modified operator, has reversed.

JOMEF var, L : Jump to the location referenced by L if yar is
false.

JUMPT var, L : Jump to the location referenced by L if var is
true.

FCNCALL var, N : Functicn invocation
temp := D+N |1 temp <- start of new frame
temp!0 := P |l save old frame pcinter
temp!l1 = C || set new stack pointer
C := var || branch to procedure
S := P+2 |l set new stack pecinter
RTNCALL var, N : RPoutine invocation

The effect of this instruction is the same as FCNCALL with
the additional requirement that the result at the top of
stack returned is deleted (i.e., popped cff the stack).
This also requires that RTNRTRN have the same semantics as
FCNRTRN.

PRCCENT S, L (*) : Specifies the start of the definition cf
the procedure named S. Also states that I is to ke defined
as the entry point to the procedure.

GLOBAL n, glist (*) :  Defines a list (glist) of n pairs of the
form (N L) where N is the global cell which is to be
initialized to the address of label L.

ENTRYLIST n, elist : Defines a list (elist) of n pairs of the
form (Y L) where the entry symbol X is to be initialized to
the address of label L. TIf L=0 then X is an external
symhol.
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A.1.4., Triadic Operators

Triadic operators are described by the general form
<op> <argl1> <arg?2> <argi>
where <op> is the operator applied to +the three arguments
darg1>, <arg2>, and <argid.

SWITCHCN var, N(O), L(0) : The SWITCHON command expects N (0)
pairs of ¥ L values immediately following it. Its effect
is to scan the N field of each N L pair until a value equal
tc var is found. A branch is then made to the
corresponding L. If no match is found, a tranch is made to
label L (0).

MOVEINDX varl, var2, var3 : Store into an indexed cell.
var3!var2 := varl

MOVEPYTE varl1, var2, var3 : Store into a byte.
var3%var2 := var]

MOVESELECT varl1, var2, var3 : Store into a selector field.
var3 of var2 := varl

[ JUMPLS JUMPGR JUMPLE JUMPGE JUMPEQ JUMPNF JUMPFLS JUMPFGR
JOUMEFLE JUMPFGF JUMPFEQ JUMPFNE] varil, var2, L
The effect of each instruction in this class is to apply
the relation following the JUMP to varl and var2 (see the
descriptions of the diadic relationals). If the result is
true, a branch is made to label L. Note that the result is
not cstacked.
An example is "JUMPLE X, Y, LOU45' whose effect is to jump
to label 10045 if X<=Y.
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A.2. Some Statistics on the Composition of BCPL Proqrams

In this appendix some figqures are given regaring various
aspects of BCPL programs. All measurements presented are Lkased
on static analyses of programs. Two major classes of analysis
were performed: those from PBCPL programs themselves(11) and
those from the OCOD¥T generated by the BCPL conmgpiler. For the
former class, about thirty-five NCPL secticns were analyzed, for
the latter about sixty sections. The sixty sections corresgond
to cver 11,000 BCPIL commands. In both instances, the programs
locked at were largely of the Vsystems" variety, namely
compilers, code generators, run-time snupport likraries, text
editors and the like. Such a sampling was Jjustified in that
BCPL 1is specifically suited for systems applications; indeed
other types of prcgrams were unavailable for analysis.

The analysis of BCPI. program composition revealed command
usage frequency as shaown in Table A.2.1. 1In additicn, 7Table
R.2.2. =chows the average complexity of BCPL expressions, lLased
on operator counts.

BCFL Command | Frequency (percent) (12)
Assignment |
Routine application i
Punction application |
if, unless, test |
while, until |
repeat, repeatwhile, repeatuntil |
for |
return (explicit) |
|
|
|
!
|
|
|

———

S OCWOO~damamnOoO O

Table A.2.1. Frequency of BCPL command usage.

The second class of analysis was on the composition of
OCOLE generated from the RCPL ccmpiler.(13) The data repcrted
here is a set of measurements on the number of bits required to

C11) The data for these were gathered at UBC by Mark Fox.
(12) values of less than 1 percent are shown as 0.

(13) the compiler used to generate the OCODE was the BCPL-V
compiler at UBC. The BCPL-V language is a slightly enhanced
version of standard BCPL. The compiler used to generate the
OCODE did no optimization on the BCPL source.
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represent the value of an opgerand.(1%) (15) Tt should be
realized though that the absolute address of a label operand is
not easily determined during code generation. Since statistics
were gathered during this phase the number of label operands
encountered are listed separately in the cclumn labelled nr 1in
Table A.2.3. Following this column is a count of all operands
less those which were labelled (nr-sum). Finally a complete sunm
is shown. Note +that +two's-complement notation 1is always
assumed. FHence there is alwayvs one bit reserved for the <ign,
even if the operand can never be negative (as, for example, in
the STACK command).

Number of Operators | Frequency (percent)(12)

————————— " ——————— o — i ——————— i ———

Table A.2.2. Typical expression ccmplexity in BCPL.

In table A.2.4., a ccmparision is made Lketween the overall
object size for TCE/FSO and SLIM ({(see [Fox] for details on
SLIM). The data reported is the sum of the srace occupied by
data and code without any relativization of operands.

—— i —

(14) (Qther analyses of OCODE command counts, etc. were
performed. They are available upon request.

(15) YNote that an operand is, in general, the pair

<admode, value> where admode is the addressing mscde (e.g.,
glcbal, P-relative, etc.), and value the value for the specified
admode. Measurements are made on the space occupied by the
value field only since the admode field occupies a fixed nunmler
of bits (typically three).
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Application | Min operand width in bits (2's c
| 2 | 3 | 4 | g
UNIX Text Fditor | 434 | 671 ] 696 | 153
Run-time Library | 198 | 283 1 305 | 13¢
MCODE-HP cqen V1 | 344 | 692 | 527 | 244
MCCDE~-HP cgen V2 | 704 | 1257 ¢y 1385 | 419
MCCLE-Minicode | 255 | 637 | 615 | EO
ALGAE Compiler | 390 ] 532 ] 823 | 709
BCPL Compiler | 8835 | 1784 1840 | 923
BCPL-/370 cgen | 895 | 1473 )} 1794 | 7€2
InterLISP Kernel | 350 | 1487 | 1284 | 250
BCCDE cqgen | 421 | 416 i 670 | 4S8
Parsing Machine | 82 | 167 | 307 1 119
ISAM Library ] 83 | 170 | 152 1 134
Permutations gen | 34 | =2 i 105 | 9
Intcode Ldr,Int | 118 I 271 1 199 { 18
Intcode Assembler| 225 | 374 | 400 | &4
Towers of Hanoi | 8 | 15 { 16 | ©
C Parser 1 100 : 276 | 344 1 140
Sum 1 5560 | 10643 | 11514 | 4723
Cumulative Sum | 5560 | 16203 | 27717 | 32440
Takle A.2.3a. Typical operand width in BCPL.

Application

Min operand width in bits

7 |

9 |

(2's compl)

!

11

———— T ——— T ———— —— —— ————— ———————————— T — i —————— ——

UNIX Text Fditor
Run—-time Library
MCODE-HP cgen V1
MCCDE-HP cgen V2
MCCDF-Minicode
ALGAE Compiler
BCFL Compiler
BCPL-/370 cgen
InterLISP Kernel
BCODE cgen
Parsing Machine
ISAM Library
Permutations gen
Intcode Ldr,Int

Intccde Assembler

Towers of Hanoi
C Farser

—— — oy — oy T o o o — i, —

111
33

—_———— i —— T ———— —— o — — — T —— — T _———— i ———— — —— - — -

Sum
Cumulative Sum

1230 |
34949 |

Table R.2.3b. Typical operand width in PCPL.
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Min operand width in bits
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——————— e —— o — i — —————————— ———— —— i —— . ———————————_—————

20

oo

o —— — — ———— ——— —— ————————— e — i —— —

Application |

| 12
UNTX Text Fditor | 213
Run-time Library | 0
MCCDE-HP cgen V1 | 359
MCCDE-HP cgen V2 | uy
MCCDE-Minicode S 5
ALGRE Compiler ] B
BCPL Ccmpiler ] 0
BCPL-/370 cgen | 79
InterlISP Rernel | 22
BCODE cgen ] 6
Parsing Machine | O
ISAM Library ] 0
Permutations gen | 0
Intcode Ldr,Tnt | 19
Intcode Assembler)] 0
Towers of Hanoi | O
C Parser ] O
Sum 1 568
Cumulative Sum | 38493

9y
38587

Table A.2.3c. Typical operand width

- ———— i —————— i —

———— i ———— i —— T —— . ————— T ——— ——— T —— ————

Application | nr

| C16)
INIX Text Pditor | 1456
Run-time Tibrary | 400
MCODE-HP cgen V1 | 1708
MCODF-RP cgen V2 | 2460
MCODE-Minicode | 1436
ALGAF Compiler | 1761
BCPL Compiler | 4187
BCP1-/370 cgen | 2681
InterLISP Kernel | 2131
RCODE cgen | 3337
Parsing Machine | 441
ISAM Library | 184
Fernutations gen | €8
Intcode Ldr,Int | 952
Intcode Assembler| 913
Towers of Hanoi | 13
C Parser | 693
Sum | 22895 |

38853

Table A.2.3d. Typical operand width

in RCPL.

ST |

in BCPL.

(2's congl)
18 ] 16
¢ | O
0 | O
0 | O
0 | O
0 | 0
19 | O
1 1 O
7 | 3
1 | 1
0 | 1
0 | O
0 1 O
0 1 0
¢ 1 O
0 { O
¢ | O
Y { 0
28 F 5
38€E47 | 388tZ

C16) See the text of this appendix for details.
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| SLIM | ICE | Ratio |
Intcode Interpreter Sect. 0 | 5728 | 4978 | 115 |}
Intcode Interpreter Sect. 1 | 1526 | 1430 | 1.07 |

] 218 ] 194 f .12 |§
BCPI, Compiler LEX | 6578 |  S240 | 1.26 |
RCPL Compiler SYWM | 6308 | £148 i 1.23 |
BCPL Compiler TRNA | 5670 | 4S04 1 1.16 |
BCPL Compiler TRNF ] 5002 | 4180 | 1.20 |
BCP1 Compiler TRNC | 5986 | 4753 | 126 1

Tabhle A.2.4.

A ccnparision of TCE/ESO and SLIM code density
bytes).

(in



28

A.2. Using the BCPL/ICF Translator

This appendix gives instructions for running the BCPL/ICE
translator, as available under MTS at 0UBC. The translator is
invoked by the ccmmand

$RUN BRCDE:BCPL SCARDS=sourcefile 0=icefile -

SPRINT=1istfile PAR=paranmeters

parameters 1is the normal parameters 1list used by the

. S S

standard BCPI. compiler.

The compiler automatically generates statistics on the
listfile giving the size of the ICF obiject using the JICE/®SO
machine.



