
STABILITY RESTRICTIONS ON SECOND ORDER, THREE LEVEL 

FINITE DIFFERENCE SCHEMES FOR PARABOLIC EQUATIONS 

by 

J.M. Varah 

Technical Report 78-9 

December 1978 

ABSTRACT 

In this paper we are concerned with second order schemes which are 

easy to use, and apply readily to nonlinear equations. We examine the 

stability restrictions for such schemes using linear stability analysis, 

and illustrate their behaviour on Burgers' equation. 



j 
I 

•j 
I 



1. Introduction 

We take as our standard equation 

ut = vu + f(u,u) 
XX X 

(1.1) 

in the region O ~ x ~ I, 0 ~ t with u(x,O), u(O,t), u(l,t) prescribed. We 

take v to be a constant and f(u,u) a smooth nonlinear function of u and u, 
X X 

and assume the equation has a unique solution. Throughout the discussion, 

we shall treat (1.1) as a scalar equation, but extensions to systems of 

equations (and variable v) are easily made. The corresponding linear model 

equation for stability analysis is 

vu xx 

with constants v and c. 

cu 
X 

(1. 2) 

We assume the usual bx, bt mesh in x and t, and denote the finite 

n difference solution v(jbx,nbt) by v .. We shall use the fairly general three
J 

level scheme 

n+l n n-1 av. + Sv. + yu. 
~J~---J __ ~J~ = vD o (~.) + f(~ .• o

0
~.). 

flt + - J J J 
(1. 3) 

" - ~ Here a,8,y are constants, v.,v.,v. denote (possibly different) linear combina-
J J J 

tions of v. 
1

, v., v. 
1

, and 
J - J J+ 

v. 1 - v . 1 J+ J -
2 (l'ix) 

DD (v.) == 
+ - J 

v. 1 - 2v. + v. 1 J + J J -

(bx) 2 
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This scheme includes many of the second-order schemes in current use; it 

does not, however, include Keller's box scheme [9], or the recently proposed 

fourth-order schemes for fluid dynamics [2] and [8]. 

For (1.3) to be second order in both x and t, we need 

n+l n n-1 au . +Su. + yu. 
2 J Xt J = ut(j~x,n6t + 86t) + 0((6t) ) 

for some -1 < e < 1 and as well, 

,.. - ~ u.,u.,u. 
J J J 

Of course, the use of the specific spatial difference operators in 

(1.3) immediately imposes a restriction on 6x. For the linear equation (1.2) 

in steady state, vu - cu = 0 and boundary conditions u(O) = 0, u(l) = 1, 
XX X 

the solution is 

u(x) = 

The difference equation is vD D (v.) - cD0(v.) = 0, v0 = O, vn = 1, with 
+ - J J 

solution 

(1 +a) j -1-a 
V. = 

J (l+a)n -1-a 

where 6x = 1/n and a= c(~x) 
2v 

1 

1 

this we need (at least) a< 1 or 

Th ( . ) 1 . f 1 +a 2a d f usvj~UJ6X onyi l-a~e an or 

, _ 

l ,·. 
I 
I 

, 
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(1.4) 

This restriction (which comes from accuracy considerations, not stability) is 

well-known, and has led to other schemes being proposed for equations where 

vis small (see for example Hemker [6] and Kellogg and Tsan [10]). 

In what follows, we shall examine the stability restrictions on 6x and 

6t imposed by specific choices of parameters in the general scheme (1.3). 

Fully implicit schemes will be discussed in Section 2; then in Section 3 we 

examine the effect of linearizing the nonlinear part using extrapolation. 

In Section 4 we describe other li~earizations which work well in special cases. 

Finally in Section 5 we apply these schemes, and illustrate the effect of the 

stability restrictions, on Burgers' equation. 

2. Fully Implicit Schemes 

The basic scheme is 

n+l n n-1 (S+½)v . -28v.+(8-½)v. 
------"J---~--t.__ __ _,J'- = v o o c v . ) + f c v. , n

0
v. ) 

l1 + - J J J 
(2.1) 

n+l n with v. = ev. + (1-e)v .. For any e, ·-1 .::_ e .::_ 1, this scheme has second 
J J J 

order truncation error in x and t, applied to (1.1) centered at the point 

(x ,t + 8(6t)). From an accuracy point of view, it makes little difference 
n n 

which e is chosen; stability considerations however do limit the effective 

range of e (see below). Well-known special cases of this scheme are: 
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(a) Crank-Nicolson (e = 1). 2 • 

n+l n n+l n n+l n n+l n 
V. -V . v. +v. v . +v . V . +v. 
J J = vD D ( J J) + f( J J DO( J J)) 

Lit + - 2 2 2 

(b) Gear (e = 1): 

3 n+l n n-1 -2 v. .,.2v .+½v. 
J J J n+l n+l n+l 

= vD D (v. ) + f(v. ,D
0
v. ). 

+ J J .J 

(2. 2) 

(2. 3) 

We refer to the second as Gear because of the connection with the second-

order backward differentiation formula popularized by Gear [5]. 

The basic stability questions are answered by the following theorem. 

Theorem 2.1: On the linear problem (1.2), the scheme (2.1) is unconditionally 

stable for all v and c, if½< 8 < 1. 

Proof: The amplification matrix has eigenvalues K(~) satisfying 

(8 + ½ + 8z)K 2 - (28 - (l-8)z)K + 8 - ½ = 0 (2.4) 

Notice Re z > 0. Since we want unconditional stability, we need to show 

JK(~) J < 1 for all z = w + iy in the right half-plane. That 8 .:::_½is 

necessary is easily seen by taking z + 00 : one root JK 2 J + J
1

;
8

J .::_ 1 only if 

For sufficiency, we use the Schur-Cohn criterion (Henrici [7, page 474]). 

If the quadratic (2.4) is expressed as a2K
2 + a1K + a0 = O, both roots are 



insicle tire unit' circle ir 

and 

so ·fna:-t ·o- ' < b Jbr a2f1 ·9 ·> ',0 o.if ·,.w > "-0. ,After 'Some ·.mani~ulati.on, :the .,second 1 ~ T 

in.equality reduoe's to 

'b · · · .2 - · .2 .3 2 . -2 2 3 .2 .· 2 2 2 
·. < ·49w + (89 .. +20-l)w ·+ (49 +49 -20}w(w +y ) -+ (29 ..:e ')Jw '-t:Y) 

whicn holds ;for w > ·o Tf e > ½. For ·w-= o, we 'get ·equali'ty (whi.ch means ~one 

root IK1 1 = 1) ·tor all 0-when y.-= o (this is the :tcmsistency condition) and 

as well for all y; when w = O and 9 = ½. ·stnce at ·most one ~root IK1 I 0 = ·1, 

this (von Neumann) condition is sufficient a:s well as necess-ary £or s.tabil:ity. 

Q:E :D. 

It is also interesting to riote that as v -+ 0, the model equation (1.2) 

becomes the model hyperbolic equation with no decay in· the solution; ' the 

only difference scheme of type (2 .1) which carries over this property ·is. 

Crank-Nicolson (0 = ½). For e > ½, all I K (F;) I < 1 even for w = 0 so the·re · is 

attenuation of all Fourier components of the solution. 



- 6 -

Although this fully implicit scheme has nice stability properties, 

discretization of the nonlinear equation (1.1) leads to a nonlinear algebraic 

system to be solved at each timestep. This necessitates some kind of itera

tive procedure (such as a Newton iteration) with perhaps several iterations 

if an approximate Jacobian is used, and thus a large amount of computation 

per iteration. Thus some form of linearization of the scheme (2.1) is of 

interest. 

3. Linearization by Extrapolation 

This was first p~oposed for the Crank-Nicolson scheme by Lees [12]. 

The general a-scheme (½ .:'.:. e 2- 1) is 

(e+½)v~+1-2ev~+(e-½)v~- l 
------=-J __ ~ J ___ -=-J- = vD D ( v . ) + f (v . , D

0
v. ) 

lit + - J J J 
(3.1) 

-where v. 
J 

n+l 
= ev. 

J 
+ (1-e)v~ and v. = 

] ] 

n 
v. + 

J 
n n-1 e (v. -v. ) . 
J J 

Again the special cases 

of interest are: 

(a) extrapolated Crank-Nicolson (e=½): 

n+l n v. -v. 
] J 
li t 

n+l n v. +v. 
= vD D ( J 

2 
J) + f(v.iD

0
v.) 

+ - J J 

l Il-1 
2V. , 

J 

(b) extrapolated Gear (0=1): 

3 n+l n n-1 
2 v. -2v.+½v. n+l A A 

_ __.J,__A_tJ,,__----=-J- = vD D (v. ) + f(v. ,D
0
v.) 

Ll + ] J ] 

A n n-1 
V. = 2V. V. 

J J J 

(3.2) 

(3. 3) 
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Again we wish to examine stability for the linear proplem ut = vuxx - cux. 

Notice that as c ➔ 0~ we tend to the same scheme as in the previous section; 

whereas as .v ➔ 0, we tend to an explicit scheme, so there is no chance for 

unconditional stability. The most we can expect is that the scheme be stable 

if en< 1 for example. 

are somewhat surprising: 

.. 2 
Again n = t:,. t/ t:,.x, ).. = 6 t/ (t:,.x) . Hbwever the results 

Theorem 3 .1: On the hyperbolic problem ut = -cux, the extrapolation scheme 

(3 .1) is unstable for all n and all 0 > 0. 

Proof: The eigenvalues K (0 of the amplification matrix satisfy 

(8+½)K 2 - (20 + (1+0)iy)K ~ (0 - ½ ~ 6iy) = 0 

with y = en sin~- Expanding Kl (y) for small y gives 

Kl (y) 1 . i 2 e • 3 Ce 2 e 1) 4 
= ·. + 1.y - ~y + 2 1 Y + z - 4 - s Y + • · · 

and thus 

so the scheme is unstable for all e > 0 and all n. Q.E.D. 

Thus for small v, the extrapolation scheme will be unstable. 
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However the scheme may still be of interest: recall that we rieeded 

~x < 2v/c to get a reasonable approximation to the steady-state solution of 

(1.2). Perhaps the stability restriction here may be comparable. So we 

now ask: how small can we take v before some IK(s)I > 1? The K(!;) satisfy 

the quadratic 

This is somewhat simplified by introducing d = en , g = VA, w = 4 sin2 (1;/2), 

2 2 and y = sin 1; (soy = w - w /4); this gives 

2 (8+½+g8W)K (28-(l-6)gw+(1+8)idy)K + (8-½+id8y) = o. (3.4) 

Clearly, for g large and d small (so the diffusion term dominates) all roots 

are inside the unit circle; and for g small and d large, we have some roots 

outside the unit circle. Thus we can phrase our stability question as 

follows: given d, for what values of g, g ~ g(d), are all roots IK(!;) I < 1 

for I 1; I 5.. 1r (or O ~ w ~ 4)? 

Th f(34) I ()I lf 11 <1T1'fg~( 238 )d2. Theorem 3. 2: e roots o . , K 1; < ·or 1; 
28 +28-1 

Proof: Again applying the Schur-Cohn criterion, we need the following 

conditions, expressed as polynomials in w: 
1. 
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(i) 
2 2 2 2 - 8(2 + (g+28g-8d )w + 8(g +d /4)w J > O for O <.w < 4 

(ii) 

The first condition is quite easily dealt with: the quadratic has no positive 

"f 11 ff" . . . "f ( 8 )d2 - d2. roo.ts w 1 · a , coe 1c1ents are non-negative, 1.e. 1 · g ~ l+20 , = r 1 · • 

This is a rather weak estimate, , but sufficient here because of what .follows. 

The second condition appe.ars rather fo,rmidable, and it is not enough to merely 

consider non-negativity of the coefficients. To see the order oif magnitudie 

of the relati<i>nship between g, and d, we can rewrite o2 (w) by conecting the· 

g and d terms separately; this gives 

o
2 

(w) 
2 2 , 2 2 . . 3 

= g [ 48 + (88 -i,28-1) (wg) + 28 (28 +28-1) (wg). + 0 (29·-l}(wg); J 

Completing the square on the terms involving d gives o2 (w) > 0 when 

✓4egw· p(gw) - wg(38wg-28 2+49+1) > 8 (1+28) (1 - i)wd
2 

where p(gw) = 8(9 2+2)(gw) 3 + 28(9 2+8+l)(gw) 2 + (a 3+68+2)(gw) + 1.. For large d, 

if w = O(l/d2), this can only happen if wg = 0(1) or g = O(d2). We emphasize 
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this because it is rather surprising: one might expect g = O(d) would be 

sufficient. 

With this in mind, we now express o2 (w) as a polynomial in g: 

0 2 2 02(1 +2 0) 2 4 +g(40-2wd (4-w) (1+40-20 )) -
16 

w(w-4) d . (3.5) 

2 Now set r = g/d ands= wg; then the right hand side above is 

This has no positive roots (ins) and hence c2(w) > 0 if all coefficients are 

non-negative: for this we need 

39 r:_ 
2 

=r
2

(0) 
20 +20- 1 

and 
. (1+20) r > ____ ..:....__.L,. ______ = r 

3 
( 9) • 

2 ✓0(0 3+60+2) - (1+40-202) 

Q.E.D. 
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We remark that this is only a sufficient condition, and that tretter bounds 

for r may be obtained for specific values of e. 

Expressing this result in turns of t.x., t. t, v, and c, ,we find tha:t 

g .:_ ra2 means 

\) 
t:.t < -2 . (3..6) 

re 

This is a rather unusual stabi'lity condition; the more expected result 

g > rd would translate into /J.x < __;:!_ , a condition similar to (1.4). However - - re 

recall 'that we really ·needed g = O(d2) for d large; •if we assume 

lft 
d = en = c - < 1 ( 3 • 7) 

t.x - ' 

which is reasonable in any case because of the explicitness of the hype·rbolic 

difference approximation; our stability condition (3.6) becomes 

t:.x < " (3.8) - re 

Again we mention that the value of r can be improved from r = r
2

(e) 

for fixed values of e and d. For exanple 9 = 1 gives r 2 (e) = 1 so the stabi

lity condition is t.x .::_ v I c. However using ( 3. 5) directly with d = 1 gives 

IK(~)I 2- 1 precisely for r .:_ ½, the~~ condition as (i.4). For 9 = ½, 

r 2 (e) = 3 but using (3.5) directly with d = 1 gives IK(~) I 2- 1 for r .:_ r 0, 

where½< r 0 < 1. 

These results are borne out by numerical experiments: we give in 

Table 1 results on the linear equation ut =vu · - cu with steady-state 
XX X 



solution u(x) = 
e (c/v) x _ 1 

c/v 1 e -
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The numbers given refer to errors from this 

solution, for Crank-Nicolson, Gear, and their extrapolated versions. The 

fourth row illustrates the different stability limits for e = ½ and 8 = 1. 

The errors in the last two cases are large because of the rapid change in 

the steady-state solution. 

TABLE 1 

b.x lit \! C CN EXCN GEAR EXGEAR 

0.1 0.1 1 1 10-4 10- 4 10-4 10-4 

0.1 0.1 1 10 '.034 00 .034 00 

0.1 0.1 0.1 1 .034 .034 .034 .034 

0.1 0.1 10 10 10-4 
00 10-4 10-4 

0.05 0.05 .01 1 0.43 00 0.43 00 

0.05 0.05 .02 1 0.2 0.2 0.2 0.2 

We also give results for"= 0, c = 1 using a periodic initial condi

tion u(x,0) - see Table 2. 

TABLE 2 

/J.X /J.t CN EXCN 

t=l t=5 t=20 t==l t== S t=20 

0.1 0.09 0.12 0.38 0.38 105 

0.05 0.021 0 .11 0.09 0.33 0.08 0.29 103 
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4. Other Linearizations 

Here we discuss two other alternatives to the fully implicit scheme 

(2.1). The first is something of a compromise between (2.1) and the extra

polated scheme (3.1), which we call the linearized scheme: 

n+1· n n-1 (8+½)v. -28v.+(e-½)v. 
__ ..._.;.J ____ AtJ~--~J- = vD D (v.) + f(v.,Dov.) 

u + - J J J 
(4.1) 

- n+l n A where again v. = 8v. + (l-8)v., v. = 
J J J J 

n v. + 
J 

n n.:1 8(v.-v. ) . 
J J 

The special cases are 

(a) linearized Crank-Nicolson (8=½): 

(4. 2) 

1 n-1 
- 2 v. 

J 

(b) linearized Gear (8=1): 

n+l A n+l = vD D (v. ) + f(v ,D0v. ) 
+ - J n J 

(4. 3) 

Applied to the linear equation ut = vuxx - cux, this scheme is identi

cal to the fully implicit scheme (2.1), so this scheme is unconditionally 

stable for 8 > ½. Mo (4 1) 1 d 1 . 1 b . f n+l reover . ea s to a i near age raic system or v. 
J 

provided f (u, ux) is linear in ux. If this is the case, this scheme has all 

the advantages and none of the disadvantages of the fully implicit scheme (2.1), 
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and we recommend its use. Such is the case with Burgers' equation for 

example which we discuss in the next section. 

The second alternative is the averaging scheme of Lees (11]: 

n+l n- 1 n+l n n-1 v. - v. v. +v.+v . 
....... J...__2_,(_tt....,.)....:..J_= vD+D_( J 3J J 

n n ) + f(v.,D
0
v.). 

J J 
(4.4) 

Although this fits the general model (1.3), it is not a direct linearization 

of (2.1) and has no a-generalization. It is second order, centred at (x.,t ), 
J n 

and we refer to it as the averaged Crank-Nicolson method. The linear stabi-

lity analysis is straightforward: applied to the equation u = vu - cu, 
t XX X 

notice first of all that for v + 0, the scheme tends to the well-known leap-

6t frog scheme for u =-cu, which is stable for en= c,:- < 1. For v IO, 
t X oX -

the eigenvalues K(~) of the amplification matrix satisfy the quadratic 

2 (l+w)K + (w+iy)K + (w-1) = 0 (4.5) 

I 

where w =} VAsin2(~/2) and y = 2cn sin~- It is easily seen that the above 

condition (en.::_ 1) guarantees stability for all v. 

However, there is a new problem with this scheme, which often appears 

in schemes which use averaging over two or more time-levels: the parasitic 

solution (arising from K2(~) rather than Kl(~)), although stable, can domi

nate the numerical solution, leading to improper decay for a diffusion

dependent problem and separation of the numerical solution at alternate time

steps. This effect can be most easily seen for the pure diffusion problem 

u = vu · (4.5) reduces to t xx' 
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(l+W)K
2 

+WK+ (w-1) = 0. 

For w = O, Kl= 1 and K2 = -1 S© tqe parasitic solution is just as large; 

for small w, 

3 9 2 
K

1
=1- 2 w+ 8 w -z 

+ .•• "' e = 

where z = w2v(~t) which gives the paper decay rate (recall~= w(~x)). 

However, 

2 
K - 1 + w w "' -z/3 

2 = '2" - 8 = - e 

and hence this solution dominates, and gives an improper decay rate. Because 

of the negative sign, the parasitic solution will alternate sign at each time 

step, leading to separation of the numerical solution into two very different 

solutions on alternate timesteps. This effect is illustrated in Table 3, where 

we give the errors· in the numerical solution to ut = vuxx' u(x,O) = sin 'ITX, 

using CN and this scheme, AVGCN. All errors are absolute errors; in all 

cases CN gave the right order of magnitude for the (possibly rapidly) decaying 

solution, but AVGCN did not. 
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TABLE 3 

error on first step error at t = 1 comments 

t:,.x t:,.t \) CN AVGCN CN AVGCN 

.1 .1 1 .01 .076 .3 X 10-4 .002 separation 

.OS .05 1 .0034 .018 .9 X 10-S .0003 separation 

.1 .1 5 .003 .53 .3 X 10-S . 012 poor decay 

. 05 .OS 5 .002 .30 10-16 10-S poor decay 

We should add however, that this scheme does not always perform badly; 

for example as shown in the next section~ it performs well on Burgers' equa

tion, especially when the dominant part of the solution is governed by the 

hyperbolic terms. Nevertheless, it clearly must be used with care. 

5. A Numerical Example: Burgers' Equation 

We present two examples of Burgers' equation 

u = vu t xx O<x<l. (5.1) 

The first is the exact solution given by Whitham [13, Chapter 4] and also used 

by Fong [3] of one shock overtaking another for v small: 

u(x,t) = 1 - 0.9 

I. 



- 17 -

x-0.5 99t x -0.S 3t x- 3/8 
where rl = exp(-( 20v) - 400v), r2 = exp(-( 4v ) - 16v), r3 = exp(-( 2v )) . 

We are not so much interested in accuracy as in the effects of the stability 

restrictions on the numerical solution. We present in Table 4 the errors 

using linearized CN (4.2), which gave the same results as the fully impl~cit 

CN of (2.2), extrapolated CN (3.2), and the averaged CN (4.4). Results for 

other values of 8 (notably 8 = I) were very similar. 

TABLE 4 

error at t = 1 error at t = 5 

\1 t.x t.t LINCN EXTCN AVGCN LINCN EXTCN AVGCN 

.1 .1 .1 .0015 .0026 .0014 .42x10 -5 . -5 
.18x10 .67x10 

.01 .1 .1 .63 .76 .76 -3 
co* .62xl0 co 

.01 .OS .02 .16 .12 .13 10-13 10-13 10- 7 

The large errors for v = .01 are of course due to the difficulty of 

fitting the shock with only a few points in x. Despite this, the results are 

surprisingly similar, except that EXTCN blows up when its stability condition 

(3. 6) is violated. Similarly AVGCN blows up because we v,iolate its stability 

limit 

.0028. 

I u t.t I 
t.x < 1 whenever u > 1; when t.t was reset to .OS, the error was 

-4 

The second example of (5.1) is with the initial condition u(x,O) = sin nx, 

discussed in Ames [I, page 87]. For v + 0, the solution (see Whitham [13, 

Chapter 4]) is given by 
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u(x,t) =sin(~• ~(x,t)) 

where ~(x,t) is the (unique) solution to 

sin ~E; = X - ~ 
t 

This solution develops a discontinuity at x = 1 fort> 1/~: u(l,t) = 0, 

yet for any fixed t > 1/~, u(x,t) +sin~~ as x + 1, where~ is the root of 

1 - ~ sin ~~ = ---t 

to zero. 

This root~+ 0 as t +~so the solution ultimately decays 

The presence of this discontinuity causes an interesting phenomenon 

in ·the numerical solution: the solution is good for most of the x-interval 

(0 ~ x ~ 1) but a large spike develops at the last interior x-point(x = 1 - 6x), 

grows in time, and finally shrinks. This characteristic is common to all the 

methods; for very small v there is some additional smaller oscillation in x. 

In Table 5 we give the numerical solut.ion at x = 0.9 for 6x = 6t = 0.1 

for various time-values. 
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TABLE 5 

\l=.01 t=.4 t=.6 t=.8 t=l.0 t=2 .o, t=S.O t=lO.O 

AVGCN 

I 

LINCN ► 1.0 1.9 2.1 2.2 1.5 0.2 

EXTCN 

\)=.001 

AVGCN 1. 30 2 .37 1.9,2 2.60 00 00 00 

LINCN 0.94 2.06 2.84 3.10 3.34 3.28 400' 

EXTCN 0.91 2.81 2.79 2.95 3-. 3'5 2.93 00 

LIN GEAR o. 78- 1.63 2.46 2.92 3.33 3.28 2'.59' 

For v = .Ol, all methods behaved very similarly. For \I = .001, the 

AVGCN blew up because its stability condition I u ~! I < I was eventuaUy 

violated, and a similar thing happened with EXTCN. As well, however, LINCN 

grew enormously fort= 10, and this cannot be accounted for by linear 

stability analysis. We believe it is another example of a nonlinear stability 

for this scheme (for another more extensive example see Fornberg [4]). Notice 

as well that the instability was not present using the Gear scheme. 
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