
On the Efficient Implementation of Implicit
Runge-Kutta Methods

by

J.M. Varah

Technical Report 78-5

May 1978

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia V6T 1W5

Abstract

Extending some recent ideas of Butcher, we show how one can efficiently

implement general implicit Runge-Kutta methods, including those based on Gaussian

quadrature formulas which are particularly useful for stiff equations. With this

implementation, it appears that these methods are more efficient than the recently

proposed semi-explicit methods and their variants.

I. Introduction

Consider the initial value problem

y' = !_(y) (1. 1)

where y is an m-vector. Implicit Runge-Kutta methods for the numerical

solution of (1.1), first proposed by Butcher [1964], have the form

s
= y + h L b.F.

n i=l 1 1
, where

s
F. = f(y + h E ai.F.)

1 n j=l J J
i=l, ... ,s.

The methods are commonly described by the tableau

where c. =
1

a
11

a
Sl

a
ss

b
s

e
1

C
s

(1. 2)

Butcher showed that these methods could have order as high as 2s,

and subsequently several authors have produced classes of formulas which

are particularly appropriate for stiff equations. We mention the methods

- 2 -

based on Gauss-Legendre quadrature (Butcher [1964]), those based on

Radau quadrature (methods IA and IIA of Ehle [1969]), and those based

on Lobatto quadrature (methods IIIC of Ehle [1969] and Chipman [1971]).

However the implementation difficulties of these methods have

precluded their general use; for each step, (1.2) involves solving a

nonlinear algebraic system of order ms. Instead, other authors have

proposed methods of this type with A= (a ..) lower triangular to facil-
1J

itate their numerical solution - these are the semi-explicit methods of

Norsett (1974]. Unfortunately methods of this type have maximum order

s+l (Norsett and Wolfbrandt [1977]) and making them useful for stiff

equations restricts the possibilities even more, so that only a few such

methods have been found (see Alexander [1978]).

More recently, Butcher [1976] has described an ingenious tech­

nique for implementing general implicit Runge-Kutta methods using a

similarity transformation T- 1AT = B, where B has a much simpler struc­

ture. In Butcher (1977], he then applies this technique to a class of

special methods of Burrage [1977], which have orders or s+l, and for

which the matrix Bis a single Jordan block.

In this paper, we would like to point out how this technique can

be efficiently applied to general impiicit Runge-Kutta methods, and thus

(we hope) render the Gauss-Legendre, Gauss-Radau, and Gauss-Lobatto

formulas more effective and competitive. The key is to perform a simi­

larity transformation to Hessenberg form on the Jacobian matrix, rather

than use the LU factorization. We also make a rough estimate of the

- 3 -

work involved per step of the relevant methods.

II. Using the Similarity Transformation

Each step of (1.2) requires the solution of the nonlinear system

¢(F) = 0

T
where ¢(F) = (¢ 1 (F), ... , ¢ (F)) and ¢.(F) = F. - f(y + hra .. F.).

s 1 1 n 1J J

Normally this is done by a modified form of Newton's method, one step of

which takes Finto F+6F, with 6f given by

Here

~ J =

J(6F) = -¢(F).

I-ha
11

J

-ha J
21

\
-hal2J

I-ha22 J = I - h(A(B)J)

I-ha J
ss

elf.

(2 .1)

1 where J is the Jacobian matrix, JiJ. = -- , normally evaluated at most once
. clyf

per step.

-1
If we use the similarity transformation T AT= B,

so (2.1) reduces to

- 4 -

(2,2)

-lCI
in the transformed coordinate system where X = (T 0,,I)X, for any

vector X. Thus, keeping in the transformed coordinate system as much

as possible, one step of Newton's method can be described as follows:

(A) given F, compute -¢.(F) = f(y +hra .. F.) - F, i=l, •.. ,s
i n l.J J

(B) solve (I-h(B(x.)J))(~F) = -¢(F), and form F+~F

Thus we can avoid explicitly calculating F; we iterate for a fixed

number of steps or until J J¢(F) J J is small, and finally form

Yn+l = yn + hrb.F.
J J

via

Yn+l = yn + hrb.F.
J J

where b = TTb.

(2.3)

We now describe the work involved in (A) and (B). In (A), to

get the new arguments zi = yn + hraijFj, i=l, .•. ,s, we need to compute

Z = y 6)1 + h(A@I)F = y €)I + h(TB@I)F,
n n

evaluate f(z.), i=l, ... ,s, and compute f(Z) = (T-@I)f(Z). Each trans­
l.

formation takes ms 2 multiplications, which we use as our basic measure

of time; thus the total is (2rns 2 + smf) where f denotes the equivalent

number of multiplications needed to evaluate one component of the

function f (z).

This first step (A) is the same for all methods; (B) however will

depend on the particular method used. For the Butcher/Burrage scheme

mentioned earlier, which uses Laguerre polynomials and has orders or

s+l,

" /1-hU

, so I-h(B {x)J)
!

B = -;\ " =

\
hU I-h;\J

'"'-"' ~" \ -11. " h;\J

This is lower block-triangular, so we can use a forward block recur­

rence to solve it. Expressed efficiently (as in Butcher [1977]), the

recurrence is

The work involved here is one LU factorization of (I-h11.J), plus the solu­

tion of s right-hand sides for each Newton iteration. Thus if we assume

q Newton iterations are performed, the total work (in multiplications)

per step is
3

wL = m2J + ~ + q(2ms 2 + m2s + smf). (2.4)

~

Here J is the equivalent number of multiplications to evaluate one

component of the Jacobian. We hasten to add that these estimates only

- 6 -

involve the highest order terms. For example, another ms multiplications

are needed to form yn+l from (2.3).

A second way of coping with the problem, which applies to any

implicit Runge-Kutta method, is to effect a transformation to diagonal

form:

For the useful methods (like Gauss-Legendre), the eigenvalues are complex,

so the operations involved are complex. If programmed directly, a complex

multiplication involves four real ones, but in a language with complex

type declarations it may be much less. In Fortran on IBM 370 machines

for example, a factor of two is more realistic.

Thus in (B), (I-h(B@J)) is block-diagonal, with the i th block

(I-hA,J). If the usual LU decomposition is used on each block, it would
1

sm 3
involve -

3
- multiplications, which would be very expensive. Instead,

one can use a triangular similarity transformation to Hessenberg form

on the matrix J: LJL-l = H. This involves ·!ro 3multiplications and need

only be done once. This is used as a· basic step in solution of the

general eigenproblem (see Chapter 7 of Wilkinson [1965]) and has also

been suggested in connection with multistep methods by Enright [1976].

Using this transformation, I-hA,J = L- 1(I-hA.H)L, so the systems
1 1

we must solve,

become

- 7 -

= -L(<j>(F)).
l, (2.5)

or in product form

where X = (I©L)X. The transformations <j>(F) + <j>(F) and ~F + ~F involve

s multiplications by Lor linear system solutions with L; each of these

sm2
requires - 2- complex multiplications. And, since His Hessenberg, (2.5)

requires only sm2 multiplications. Thus if we again assume q Newton

iterations are performed, the total work (in multiplications) per step

is

(2.6)

Here c denotes the effective factor to reflect complex multiplications.

A third alternative for those schemes derived from Gaussian

quadrature formulas, which keeps operations in the real domain, is to

transform A into tridiagonal form B. This uses a T whose values are

obtained from the relevant orthogonal polynomials, much as in Butcher

[1977] for the Laguerre polynomials. Then I-h(BGJ) is a real block­

tridiagonal matrix, and one can proceed with a block-tridiagonal LU

factorization. Unfortunately the Hessenberg structure is not main­

tained, so it seems impossible to avoid doing O (sm 3) multiplications,

- 8 -

III. Comparison of Methods

It is difficult to give meaningful comparisons of a quantitative

nature on the basis of rough estimates like (2.4) and (2.6). However

since the Butcher/Burrage methods have orders or s+l, whereas the

Gauss methods have order 2s or 2s-1, it seems clear that the Gauss

methods require less work per step for the same order method. As well,

it appears as though the error constants for the Butcher/Burrage methods

are larger, expecially for A-stable methods, so more steps would be re­

quired for the same accuracy.

It is even more difficult to compare these methods with stiff

multistep methods like those of Gear. A direct estimate of work per

step for an r-step method gives

3
= m2J +!!!_+rm+ q(m2 + mf).

3

These methods would seem to have a clear advantage over either type of

Runge-Kutta scheme of the same order. However this only applies to the

basic implicit multistep schemes which have order ~6. Higher order

multistep methods have been proposed (see for example Enright [1973),

Varah [1978)) but they involve more work. In any case, because of the

intricacies of error estimation and stepsize control which must be in­

cluded in any useful code, it is much more meaningful to compare methods

empirically on a suitable set of test problems.

- 9 -

References

R. Alexander [1978]: Diagonally implicit Runge-Kutta methods for stiff

ODE's. SIAM J. Num. Anal., _!_i (1977), 1006-1021.

Kevin Burrage [1977]: A special family of Runge-Kutta methods for solving

stiff differential equations. Tech. Rep. 122, Math. Dept., University

of Auckland.

J. C. Butcher [1964]: Implicit Runge-Kutta processes. Math. Comp . ..!_!! (1964),

50-64.

J. C. Butcher [1976]: On the implementation of implicit Runge-Kutta methods.

BIT 16 (1976), 237-240.

J. C. Butcher [1977]: A transformed implicit Runge-Kutta method. Tech.

Rep. 111, Math. Dept., University of Auckland.

F. H. Chipman [1971]: A-stable Runge-Kutta processes. BIT 11 (1971), 384-388.

B. L. Ehle [1969]: On Pade approximations to the exponential function and

A-stable methods for the numerical solution of initial value problems.

Res. Rep. CSRR 2010, Computer Science Dept., University of Waterloo.

W. H. Enright [1973]: Second derivative multistep methods for stiff ordinary

differential equations. SIAM J. Num. Anal._!! (1974), 321-331.

- 10 -

W. H. Enright (1976]: Improving the efficiency of matrix operations in

the numerical solution of stiff ODE's. Tech. Rep. 98, Computer

Science Dept., Univ. of Toronto.

S. P. Norsett (1974]: Semi-explicit Runge-Kutta methods. Report 6/74,

Math. Dept., University of Trondheim, Norway.

S. P. Norsett and A. Wolfbrandt (1970]: Attainable order of rational

approximations to the exponential function with only real poles.

BIT 17 (1977), 200-208.

J. M. Varah [1978]: Stiffly Stable Linear Multistep Methods of Extended

Order. SIAM J. Num. Anal. _!1 (1978), to appear.

J. H. Wilkinson [1965]: The Algebraic Eigenvalue Problem. Clarendon

Press, Oxford.

