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Abstract 

Extending some recent ideas of Butcher, we show how one can efficiently 

implement general implicit Runge-Kutta methods, including those based on Gaussian 

quadrature formulas which are particularly useful for stiff equations. With this 

implementation, it appears that these methods are more efficient than the recently 

proposed semi-explicit methods and their variants. 



I. Introduction 

Consider the initial value problem 

y' = !_(y) (1. 1) 

where y is an m-vector. Implicit Runge-Kutta methods for the numerical 

solution of (1.1), first proposed by Butcher [1964], have the form 

s 
= y + h L b.F. 

n i=l 1 1 
, where 

s 
F. = f(y + h E ai.F.) 

1 n j=l J J 
i=l, ... ,s. 

The methods are commonly described by the tableau 
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(1. 2) 

Butcher showed that these methods could have order as high as 2s, 

and subsequently several authors have produced classes of formulas which 

are particularly appropriate for stiff equations. We mention the methods 
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based on Gauss-Legendre quadrature (Butcher [1964]), those based on 

Radau quadrature (methods IA and IIA of Ehle [1969]), and those based 

on Lobatto quadrature (methods IIIC of Ehle [1969] and Chipman [1971]). 

However the implementation difficulties of these methods have 

precluded their general use; for each step, (1.2) involves solving a 

nonlinear algebraic system of order ms. Instead, other authors have 

proposed methods of this type with A= (a .. ) lower triangular to facil-
1J 

itate their numerical solution - these are the semi-explicit methods of 

Norsett (1974]. Unfortunately methods of this type have maximum order 

s+l (Norsett and Wolfbrandt [1977]) and making them useful for stiff 

equations restricts the possibilities even more, so that only a few such 

methods have been found (see Alexander [1978]). 

More recently, Butcher [1976] has described an ingenious tech

nique for implementing general implicit Runge-Kutta methods using a 

similarity transformation T- 1AT = B, where B has a much simpler struc

ture. In Butcher (1977], he then applies this technique to a class of 

special methods of Burrage [1977], which have orders or s+l, and for 

which the matrix Bis a single Jordan block. 

In this paper, we would like to point out how this technique can 

be efficiently applied to general impiicit Runge-Kutta methods, and thus 

(we hope) render the Gauss-Legendre, Gauss-Radau, and Gauss-Lobatto 

formulas more effective and competitive. The key is to perform a simi

larity transformation to Hessenberg form on the Jacobian matrix, rather 

than use the LU factorization. We also make a rough estimate of the 
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work involved per step of the relevant methods. 

II. Using the Similarity Transformation 

Each step of (1.2) requires the solution of the nonlinear system 

¢(F) = 0 

T 
where ¢(F) = (¢ 1 (F), ... , ¢ (F)) and ¢.(F) = F. - f(y + hra .. F.). 

s 1 1 n 1J J 

Normally this is done by a modified form of Newton's method, one step of 

which takes Finto F+6F, with 6f given by 

Here 

~ J = 

J(6F) = -¢(F). 

I-ha
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I-ha22 J = I - h(A(B)J) 

I-ha J 
ss 

elf. 

(2 .1) 

1 where J is the Jacobian matrix, JiJ. = -- , normally evaluated at most once 
. clyf 

per step. 

-1 
If we use the similarity transformation T AT= B, 

so (2.1) reduces to 
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(2,2) 

-lCI 
in the transformed coordinate system where X = (T 0,,I)X, for any 

vector X. Thus, keeping in the transformed coordinate system as much 

as possible, one step of Newton's method can be described as follows: 

(A) given F, compute -¢.(F) = f(y +hra .. F.) - F, i=l, •.. ,s 
i n l.J J 

(B) solve (I-h(B(x.)J))(~F) = -¢(F), and form F+~F 

Thus we can avoid explicitly calculating F; we iterate for a fixed 

number of steps or until J J¢(F) J J is small, and finally form 

Yn+l = yn + hrb.F. 
J J 

via 

Yn+l = yn + hrb.F. 
J J 

where b = TTb. 

(2.3) 

We now describe the work involved in (A) and (B). In (A), to 

get the new arguments zi = yn + hraijFj, i=l, .•. ,s, we need to compute 

Z = y 6)1 + h(A@I)F = y €)I + h(TB@I)F, 
n n 

evaluate f(z.), i=l, ... ,s, and compute f(Z) = (T-@I)f(Z). Each trans
l. 

formation takes ms 2 multiplications, which we use as our basic measure 

of time; thus the total is (2rns 2 + smf) where f denotes the equivalent 



number of multiplications needed to evaluate one component of the 

function f (z). 

This first step (A) is the same for all methods; (B) however will 

depend on the particular method used. For the Butcher/Burrage scheme 

mentioned earlier, which uses Laguerre polynomials and has orders or 

s+l, 

" /1-hU 

, so I-h(B {x)J) 
! 

B = -;\ " = 

\ 
hU I-h;\J 

'"'-"' ~" \ -11. " h;\J 

This is lower block-triangular, so we can use a forward block recur

rence to solve it. Expressed efficiently (as in Butcher [1977]), the 

recurrence is 

The work involved here is one LU factorization of (I-h11.J), plus the solu

tion of s right-hand sides for each Newton iteration. Thus if we assume 

q Newton iterations are performed, the total work (in multiplications) 

per step is 
3 

wL = m2J + ~ + q(2ms 2 + m2s + smf). (2.4) 

~ 

Here J is the equivalent number of multiplications to evaluate one 

component of the Jacobian. We hasten to add that these estimates only 
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involve the highest order terms. For example, another ms multiplications 

are needed to form yn+l from (2.3). 

A second way of coping with the problem, which applies to any 

implicit Runge-Kutta method, is to effect a transformation to diagonal 

form: 

For the useful methods (like Gauss-Legendre), the eigenvalues are complex, 

so the operations involved are complex. If programmed directly, a complex 

multiplication involves four real ones, but in a language with complex 

type declarations it may be much less. In Fortran on IBM 370 machines 

for example, a factor of two is more realistic. 

Thus in (B), (I-h(B@J)) is block-diagonal, with the i th block 

(I-hA,J). If the usual LU decomposition is used on each block, it would 
1 

sm 3 
involve -

3
- multiplications, which would be very expensive. Instead, 

one can use a triangular similarity transformation to Hessenberg form 

on the matrix J: LJL-l = H. This involves ·!ro 3multiplications and need 

only be done once. This is used as a· basic step in solution of the 

general eigenproblem (see Chapter 7 of Wilkinson [1965]) and has also 

been suggested in connection with multistep methods by Enright [1976]. 

Using this transformation, I-hA,J = L- 1(I-hA.H)L, so the systems 
1 1 

we must solve, 

become 
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= -L(<j>(F)). 
l, (2.5) 

or in product form 

where X = (I©L)X. The transformations <j>(F) + <j>(F) and ~F + ~F involve 

s multiplications by Lor linear system solutions with L; each of these 

sm2 
requires - 2- complex multiplications. And, since His Hessenberg, (2.5) 

requires only sm2 multiplications. Thus if we again assume q Newton 

iterations are performed, the total work (in multiplications) per step 

is 

(2.6) 

Here c denotes the effective factor to reflect complex multiplications. 

A third alternative for those schemes derived from Gaussian 

quadrature formulas, which keeps operations in the real domain, is to 

transform A into tridiagonal form B. This uses a T whose values are 

obtained from the relevant orthogonal polynomials, much as in Butcher 

[1977] for the Laguerre polynomials. Then I-h(BGJ) is a real block

tridiagonal matrix, and one can proceed with a block-tridiagonal LU 

factorization. Unfortunately the Hessenberg structure is not main

tained, so it seems impossible to avoid doing O (sm 3) multiplications, 
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III. Comparison of Methods 

It is difficult to give meaningful comparisons of a quantitative 

nature on the basis of rough estimates like (2.4) and (2.6). However 

since the Butcher/Burrage methods have orders or s+l, whereas the 

Gauss methods have order 2s or 2s-1, it seems clear that the Gauss 

methods require less work per step for the same order method. As well, 

it appears as though the error constants for the Butcher/Burrage methods 

are larger, expecially for A-stable methods, so more steps would be re

quired for the same accuracy. 

It is even more difficult to compare these methods with stiff 

multistep methods like those of Gear. A direct estimate of work per 

step for an r-step method gives 

3 
= m2J +!!!_+rm+ q(m2 + mf). 

3 

These methods would seem to have a clear advantage over either type of 

Runge-Kutta scheme of the same order. However this only applies to the 

basic implicit multistep schemes which have order ~6. Higher order 

multistep methods have been proposed (see for example Enright [1973), 

Varah [1978)) but they involve more work. In any case, because of the 

intricacies of error estimation and stepsize control which must be in

cluded in any useful code, it is much more meaningful to compare methods 

empirically on a suitable set of test problems. 
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