An Apg

Based on

of

roach to the Organization of Knowledge
or the Modelling of Conversation

by

Gordon I. HcCalla

Departpent of Co?pgter §cience
University of Toronto
Toronto, Ontario, CANADA

Technical Report 78-4

the author's thesis of same title
subm?tteg in Jure 159? '
as partial fulfifiment
the regulrements for the degree of
octor of Philosophy

February, 1978

Department of Co ter Science
Ungversity of Brg Esh Cofumbia
Vancouver, B, C., CANADA

ABSTRACT

i raport 2scribs i
conveggafion.ep It ig agﬁébegtedantha%ppggacguccggd mg%ell%ﬁgs
2ndeavour the problem must be tackled principally as a prohlem

in pra mafics rather than as one 1in language _analysis_ alone,
Severa Eragmatlc aspects of conversation arfe delineated ard it
is shown_ that the attempt to account for them raises a number of
genaral issues in the representation of knowledgs. '
A scheme for resolving some2 of these issués is gresented
and given computationa description as a se of
énon-lmplemente@) LIsP-based control _structures called |[LISP,
entral to this scheme are sevaral different types of object
that encode knowledge and communicats this knowledge by pasSing
messages. One particular kind of oh;ect, the pattern exgre551on
(| PEXPR) , turns out to be +the most versatile. |PEXPRs car
encode _an arbitrar amount of procedural or declarative
information; are capable, as_ _a by-product of their message
passing, behaviour, of_ providing both a context for future
processing decisions and a record of past processing decisions;
and make contributions to the resolution of several artificial
intelligence problems, , . " .
Some examples of typical conversations that might occur in
the_general context of attending a_ symphony concer are thearn
expléred, and a particular model of conversation to handle these
examples is detailed in |LISP._ The mod=2l is oal oriented 1in
its_"behaviour, and, in_ rfact, is described in terms_of four main
0al levels: higher level non-linguistic goals; , scripts
irecting both sidzs of a _conversation; speech acts guiding one
conversant's actions; and, flnall¥, language level _ goals
providing a basic parsing component Ior_ the model. 1In addition,
a place is delineated for belief models of the conversants,
necessary if utterances are, to, be properly understood or
roduced, The smbedding of this kind of 1language model _in a
LISP bass ields a "rich pragmatic environment for analyzing
conversation.

&l

TABLE COF CONTENTS

‘-rod Ct.onl .8 0 L L R B IO BN B B BN T I L B BN BN B] e ® 8 00 L . 8
foung: %Ome Trenas .l....'.I'...C....:I..I..:l:‘l

o
S Sand Limitations LA I O I D B B DN B B B D B B B B B N B B R DN BN R BN B B
a. SPrOpOSEd? .'..llll.ll,lllll-.-..I.l.'.lliolﬂi.l
% Concepts of Representation seeecvcscscscssncesssen
g

Bl Yel=]

concepts Of LaNgUAQE ceeevsssscesscsasassssssssnss
anlzatlon of the eport T 8 % 4 BB 4 BRSSO h e

ek = B 192138 2

Anal | in Conver Sation " & 8 8 88 B P E AR SEREEEEEAE
kgrougé I?. ® ® 8 S s 8 8 0SSR AR RS R R AR s EE AR RN
ues ® & 8 8 s 8 00 .l 8 8 B PSR EES S E R NS R YRR A
els of Rnalysls 0 & 40 5O 0 PO AR S S0 T PO FE ST 008 NE Y
re to Begln @ & a w e W % % 0 B O S BV O OO S B O W E SRRSO

c

S

v

e

I Schepe for Representing KRnowledde seeesscssses
l qverv].e" @4 o e 0 & 80 8 & be 28w B F S BB 00 M SR S e SRS AN
E JECtS l!.l.l.l!...0....!..l..ll.....l.....t..-.
1 Pa?t ern Expresslons L I I I B B B B B B B B BN B B B A TR R R B B RN B B]
2 .Otner Objects l.l‘.l“lilllllol L L B B L B L B B B B I B B
talls Of Message Passlnq 8 8 % 4 8 8 % B e BB R e DR R Y e
1 Introductlon B8 & 8 % 85 8" 8% 8 W PR AE RS EA e
2 Messages tO !PEX PRS 4 49 & P W N P OO0 0SS PSS SN D
ematCher e.elll.‘l..l.'.ll..l.l.ll.l.'!.l..ll....‘.
1 The Definition of the Pattern Matching Macros ..
2 Difficulties with MACrOS seveevesssevcsesncsnnsne
lnters and SearChl ng "8 9 8% & & 08 8 8 % 8B AR YRS AS e
terruptsl.,-...II......".-.‘..Clltl.l....."
mu ated Parallellsm ® 8 @ & P 0B ® B RO W SRR e DS S DRSNS PR

n Evaluation of the Representation Scheme .eee.s
LANN ER / CDNNIVER Appr ach 4 & & 8 8 0 & & ¥ " B BN & F 0 E S 8 8PN
The Da‘td Base.o...liton....al.’.l..aul...q.....-
Patt ern Hatchlng L I R BN DN B B N RN R N BN R I B B Y T N B B IR B B B B B B R
Procedures % & &5 9 8 4 8 & 9 0 & 8 8 O W RS A NS B R &9 B e PR RS S RS N 8N

Control ® &8 & 0 0% 0 8B A TE PPN AR R RS SEE AR DR R

Why are Frames Ne€ed2d? csecssessasssscnssssscsnse
Hhat do Frames Look lee? 8 % 8 P4 B BRSSO S SRR Y

e

1

2

3

4

ames ® ¥ 8 &8 % 85 88 00 B0 8 R A S S S0 S S S E RS 0SS FT AR DT RD R
2

ﬁ Inter-frame Connections ® 8 8 & & & 4 8 B8 8B e s EE BB B e e
n

rhpggoaches (N L I I I D D B B DN D O N BN B O BN B RN R B BN R B D BB A A
u

EAhGEYONS 20 "the TSSUES , & seiewmire simy s £ssswsimse € & e

Ox}cert enarlo ® & 8 & & 8 % 8 & PR B RO ER SR A e PR e AN
V;ew gf ?he MOdel 4 8 8 8 9% 8 8 B %R 8 5B S W U A B E ST PR e e
llngu lgtlc Goals 8 8 % 9 8 O 8 0 P A B B A SRS O R SN A TR PR R AR
The nghest GoalS LN B B B I B BN BN R B R BN OB I R I B B RN BN BT I B B BN B B B B]
A Major Subgoal: .ATTEND-~CONCERT csecccssssessass
% The !JY Subgoal LR B B B BN B N R I B I R B B B D I BN BN I B BN B R BN B B
lts ® @ & @ ® P @ 4 & 0 0 & 0 B E B S S S 8 9 E S A S S S PSS Ee e
BUY-CON VERS&TIO @ W 8 & 08 5 5 BB N 4 9 AE B 8 e R RS eSS e
WHAT'DO-YOU'HENT R R I I I B R R R NN I B B R N T A RO B B R)
RGAIN ® 8 F B A & 8 8 BB E S AT T RS A RS S SRS AR e
HRNGE *® ® 2 09 B & B B S H OO 9 B S S W P S e S S SR S S 48 e S e A 80
EHELL a0 & 9 08
UIRE I!I‘,.. ..l'!ll.?"I......l...'.l'.‘l‘..
g e2A55001at1ve Activation of YES2 sesnassesass
ES & 9 & 8 &8 & % &% B W BN R B A S F I FE AR S S Y e
Lan uage L?vel & ® 8 & 9 8 & 0" B 8 %8 M F A W E BRSSPSR RN
Interpreting UTTERANCEsS and CLATSES scessvacens
Interpreting NOUNGs, VERBGs, and PREPGS «ecsess
Generatiol seessssan .
versations II and III ’

e

5

godelling Conversation: A Detailed Example ceseess
Cc

T

(@]

o H)

=
(S2182107 ;v B = =
e a ® 3
Who=td Fw

Lz 8

- & =

w
L]
=

® 2 8 8 0P W B O R A YRS SRS e e R e

9]
u
- e &
ok _j=-1]
Q
'_'.
)]

(]
(o}

® 4@ % 8 B SN S FEES AR A s

WWWNONNNSD =R @ aa0000VWWM o nOUIUTUIULN UTNEFWWWWILWIWIWLAI DN etadadad
UEaJUwawuo@dooJo<JUNUobi O-10ONWWw S OW0m-J- UVINCUILNOESaasO0oULn WO

uvibhon bhonln g Lnunan
e ek el e el b b e e e el ek e e

. = @

L B O I BN B I B D B I B B B B DR DR D B BB

CHAPTER VI: Generalizations and EXtenSionsS scsesescescnces
0.1 Reqresentatlon_Propertles of the Model svseencvons
6.1- The ISA Hlera.rChY ® & 8% 8 9 B9 8 B B RE T P PR SN NRS

l2 The PART_OE Hlera!_:clhy s 8 % 49 8 & 5 8 % B B 4N A B SE e
The Execution EnvironNMent scsvesssscesssessscs
One“ShOt RElatlons ¥ ® 8 0 " 8 %00 B S 8 K S e EE N YRR
Procedural Knowledge seeescsvsossnsnsssssseccns
Slble ExtenSans & & & % & P 0P B 8 8D B WSS d 8BRS RN
Tlslng M@ta Patt?rns .I.l.'..,..l.l.l‘.llﬂ-l..
Garbhage Collection and LearnNing ssesescesecnse
Non-Goal Directed ProCeSSiNg ecesssssssssscncs
Cgmparlng ‘PEKPRS s'..lle..l..l.I.IIICI..I..I
Miscellaneous ConsiderationsS sesesscssscnssss

o
°
28]
" s 8 @
® ®» o & 8 Qe * »
OH UFEWwo=alnl LiEw

b=) oY O\ONOON
<t POPNINMNMNT - d

CHADT . On U.Sio L] ® e & 200 0 . L B B B I B B B D DR B BN B BN BN
% | irgbu%%ons Bohaprassntation tiotorresataiis
1.2 ntributions to Language AnRalySisS eseescvceccocves
703 Future DlIQCtlonS T % " 5% B S B0 8B ¢ AP e T SO S ST N

BIBLIOGR&PHY @8 % & 0 98 & % 00 @ 0 00 & &0 2R P R SR B eSS AN TR R TEYEEE

APPEDXI: omesstem Ob'e S @ 8 8 8 & 80 8 0 088 000 e E e

A¥.¥ BaSEC-IDtgr retEEJOggecES ® % % B 04 8 B0 F B8 F AR S S0 PSRN
.2 Red.eflnedl.lsp SUBRS Ill'.l..l.lll.l..ll'.lt‘..l..
Objects Which Create ObjectsS svesevessssesscsnens
Objects for Commuglcatlng.wlth Objects eseessecvne
Ob]ects In?Olved %n Matc lng ® 8 8 8 & 0 8 S B PR E R B EFE NN
Objects Which Manipulate Patterns seeevecessvocae
Objects for SearChiNg esesvcsvessessssvonsenscnns
Objects Involved in Saving StacksS seeecssccasnses
SPE‘Clal PUEPOSE‘ ObJeCtS @ ® " & B 2 AR ® O8N SRR

b
o
Q

e
vl
g
s

II5 CONCASrt SCenarTio |PEXPRS awwe ws s v swiewamwms ¢ v s
Conversat;on I 4 & 8 & 5 & % 8 B B8 % B &0 8 & BB EF % O 08 B e SRS
Conversatlons II and III ® % 2 B % 4 & 99 & F 0 & O 9 K W S0 S 00 8N

b= = cd I = e e Zfbes b e s e
MO el e e el e e el

LR
M+ Wo~JhvindE W

INDEX LR B I BN B B B B B R DN BN B BN B RN BN I B BN BN TN B B DR BN B B BN BN B B DR RN B I BN BN BN BN BN BN B B B BN BN BN BN BN B]

L

* s o e

L3
- o & 8 & 8 8 @

PR Y W - Y — e el e e e e e e e e)
OO0 W =2~J0iw=a=nO=lJUN=taa

—

QT T T W (i QR U o S S |
O OW WwWOEREDmOWE~N ~ ~Noowor OUVitinUiEREEEESEEE

Ul NG WOWNUTEN SO0

[O I Y PO S

fie
Ia
IS
M
I®

= W W Jw

= |=

la
1=
=
[t
o =

fi+

=
ia
1=
I+
Ib
fw

e I Lo O L B L |

=
W
=
I
I

1=
-
19
=
1+
I
o

I
Te)
=]
I
o

(=B
W
l=
I
I
& Jw o

o
I=
i
io
(S0 (G2 B [B (B

=

Ao T e O L O L |

I
Vo
I=
iH
{[1]

lut

I
1a
1=
iH
13
[e8

1=
o
I=
It
i)
I~ o

o T L B

I=-
Lo
=
i+
o

o lw

I=
-
o
=
]
b
{[oR N (G20 (G200 (O]

1i=-
te
I=
IH
1)
=

LIST OF FIGURES

Macro Conflict Tablessssssessssessssscsosssasssssattd
A Small NetWoIKesaswanswuswowsadosssimessnssdvevedd
INSTANCE-OF LinK:essscevssesoonensccnooncosssonesid
SUPERSET Pointars................................73

The Dynamic Linkages of Some
Concegg Scenar‘tllo PEXBﬁSO.IIl.ll..l'..l.'..l..li.gg

OrdEr of Presentation. ® & & & & & & B P " & 4 8 " R B O W B BB O W B N BEF A 95
Network for Concert InformatiONesssessssassnsssssI?
Ticket Information. ® P 0 ® & % 6 8 " 8P 0B B O S S e NP E R T e AR 103

Goal Tree_for the Ticket Buyin
Con“refsation......l.l..l.ll?.'.g'.l..l..ll...l...108

Speeth Acts dn the Modelssswvavs s selvwesses v 126
Word Geoup HierarChyss sewswwvans ¢ i gevwaaves viiee 28
PBOD IS imwm » » smeonimnein o » win eemeeae s seaeme we @ sieecess |37
Basgaining PositionSisecesannanssnsddvanionissnntal

An EpiSOde in Memory.lolnnll-01'.....!..-..-..--148

ACKNOWLEDGEMENTS

This technical report is based on my_ Ph,D. thesis recently
completed at the University of British_ Columbia. _ Needless to
say, both the report and the thesis have benefited from the
comments and criticisms of others, First, I would like to thank
my supervisor, Richard Rosenberg, who has lent his ear to my
harangues and complaints and who has guided me through the long
and painful 2volution of this research. The other mémbers of m
Ph.D., committee, Rlan Mackworth, Ray PReiter, Bary Pollock, _ an
Bernie Mohan have also been of great help in various discussions
and in_their comments on earlier +thesis drafts, Finally, I
would like to thank the external examiner, Nick Cercone, for his
thorough analysis - the technical report, especially, cwes mnuch
to his comments. | . .

In many stimulating _coffee break convarsations, and
elsewhere, mny fellow graduate students at 7TBC_have been both
useful critics and sources of ideas: I am_particularly rateful
to, Rachel Gelbart, Bill Havens, Peter Rowat, Michael Ruttner,
3rian Funt, and Jim Davidson. In addition the wunflagging
enthusiasm of the Snarfler, L. R. Floyd, must be ackngwledge .

. Because this work was flnzshed.w_lie I was teaching a the
Uan@rSltg of Toronto, a not insignificant contribution has beern
rovided by m{ colleagues and friéends there., For many all night
iscussions hat providad several insights, my thanks to Hector
Lavasque and to_ Pat Levesque for pu tlng up _with us. My
appreciation, also to John Hlopoulos, Ray Perrault, Phil Cohen,
Lou Melli, Dick 2eacocke, and Nick Foussopoulos,

CHAPTER T

This report is concerned with the computational modelling
of natural language conversation. It 1is suggested that a
prerequisite tc the study of conversation is determining how to
represent the vast amount of world and linguistic knowledge that
is required in such an undertaking. A method of representatiorn
has been devised that allows nuch of this knowledge to be
encoded reasonably conveniantly in modules called pattern
expressions. The representa wion problam then becomes primarily
the problem of how to organize knowledge into appropriate
pattern expressions. A basic organizational philosophy for
conversation is described and is detailed by showing how it «can
be wused to handle thres conversations which might occur in the
scenario of attending a symphony concert.

Several aspects of language and representation are at least
touched upon in this report. There is a re-categorization of
linguistic knowledge that tends to meld such traditional
distinctions as those dividing syntax, semantics, and
pragmatics, and also the division between 1linquistic and
non-linguistic knowledge. A suggestion is made as to how to
combine knowledge from a script, knowledge about intention and
purpose, knowledge about the convarsants, and linguistic
knowledge, The necessity for explaining or excusing errors, the
need for a context mechanism, and the usefulness of expectation
in guiding the processing of natural language is pointed out,
Finally both task-oriented and non-task-oriented dialogues are
discussed.

Although all of these aspects are encountered, none of then
is resolved completely; in some cases the analysis is only in
its preliminary stages. In general I have not been as concerned
with finding detailed solutions “o particular problems as I have
been with trying to accomodate a wide variety of phenomena, at

the expense of depth in places. This seemed a necessary price

Chapter I

to pay in order to look at the problam in some genzarality.

The approach to conversation taken here is based on three
trends which I perceive in ths study of language. The first
trend is the ever broadening focus of attention of linguistics.
After Bloomfield (1933), 1linguists fe2lt constrained to focus
th2ir attention on a relatively narrow subset of 1linguistic
phenomena, with most attention being paid to phonetics and
syntax. The Chomskian ravolution (see Chomsky (1957) for the
opening shots) brought an impressive new descriptive power to
linguistics, O0f particular importance were the notions of
winfinite capacity with finite means" (i.e., generating an
infinite number of sentences using phrase structure rules and
transformations) whereas previous corpus-based analyses had
seemed to be attempting the impossible task of collecting all
valid sentances; the competence / performance distinction,
allowing knowledge about language itself to be separated fronm
+he vagaries of peopls's actual use of language; and the
discovery /of the underlying deep structure similarity of many
seemingly different surface descriptions.

In the mid-sixties the Chomskian revolution itself came
under attack. Linguists such as G. Lakoff (1971) started what
became known as the generative semantics movement which
attempted +o point out flaws in the Chomskian view of language
and which expanded the scope of the 1linguistic endeavour with
the hope that this broader view would overcome the problems.
Generative semanticists see a more central role for semantics in
the study of language to account for things (such as scoping
phenomena involving quantifiers and negation) that directly
affect +he surface structure without any intermediate syntactic
phase, Chomsky (1971) has responded “o these criticisms with
scme modifications to his +theory and with the claim that
genarative semantics is a "mere notational variant" of his
theory. I don't want to get embroiled in this dispute, my point

Chapter I

being merely that in recent times the semantic level 1is coming
more and more into play (see Leach (1974) for a comprehensive
description of the relative merits of current semantic
theories).

The second relevant trend to the research reported here is
the growing realization that the borders separating the various
levels of linguistic description are not rigorously defined. 1In
the last paragraph I mention2d that semantic phenomena can
influence surface structure without going through deep
structure. It 1is also the case that phonetics sometimes seens
to influance semantics. Thus, Adiscovering pronoun references
app2ars to have important semantic aspects, but the process is
not strictly semantic. For exampls, "George always wanted to be
a guitarist but it wasn't the instrument that suited hinm
best." is acceptable, but "George always wanted to be a
flautist, but it* wasn't +the instrument that suited hinm
best." is not, at least partially because th2 word "flautist" is
phonetically more distinct from "flute"” than "guitarist" is from
"guitar" (this example is based on observations by Lakoff and
Ross (1972)).

The second trend has been emphasized in recent times by the
appearance of word based case theories of language
(Fillmore (1968), Chafe (1970)) which place lingquistic
information in case fram3s associated with words. Each such
case frame is ra2sponsible for "filling in slots" for that word
appropriate to the context in which the word appeared. Computer
based case models {e.g. Schank (1972), Taylor and
Rosenberg (1975), Martin (1975)) have tended to deepen cass
frames so they can do semantic and even pragmatic processing as
well as the more syntactic things suggested by the earlier case
theories.

The third major line of development has been the increasing
interest in models of language which treat language as it is
used rather tharn as some ideal grammatical abstraction. This
is, of course, quite contrary to the competence / performancs

distinction which has enabled larguage to be studied in relative

Chapter I

isolatioen from the real world. However, I believe this
isclation has generated many false issues. One such is the
attempt to categorize sentences as "grammatical" or
"ungrammatical" in some absolute sense. A more useful decision
procedure might concentrate instead on what situations would
make a sentence acceptable or unacceptable. Another example
concerns the debate that often arises over whether two sentences
are syronymous when, of course, at some level no two sentences
mean the same, Once again, a determination of the situations in
which they can be considered synonymous seens to be a more
usseful approackh.

The attempt by philosophers of language to view language in
terms of its intendad effect on the hearer seems to avoid many
of these problems by focussing on the purpose of language: the
communication of ideas. Hence, sligh*t deviations in the surface
structure which don't affect the meaning are not important; two
santences are synonomous if their effect on the hearer is
identical, 0f particular interest here are the Gricean
approaches of giving "rules of conversation™ (1968) and giving
intentional definition to utterances (1259), and the speech acts
theory (Austin (1962), S=2arle (1969)).

The trend to viewing language in a more natural setting has
besn evident 1in artificial intelligsnce as well, Earlier
systems severely restrictad the domain of study to question
answering (e.g. Schwarcz 2t al (1970)), blocks worlds
(e.qg. Winograd (1572)), baseball statistics
(Green et al (1963)), family relationships (Lindsay (1963)),

belief systems (Teslsr et al (1968)), and so on. But more
recently ever broader views of language have been taken, so that

Schank?s system (1972), already quite comprehensive, when
2xtended by scripts (Schank and Abalson (1375)) became even more
general, Charniak's (1972) work on stories has been extended to
full scale frame descriptions (Charniak (1975)) of language
scenarios. Bruce (1975) has been concerned with large paradigms
of social action as they apply to language. P. Cohen (1978)

studies several «conversational scenarios using a methodology

Chapter I

based on a computational description of speech acts.
Winograd (1976, 1377) is concernad with formulating a general,
pragmatics centred, mod=21 of languags. This search for
generality is a manifestation of the third trend: trying to viaw
language in use.

These three trends are not diverging; rather, they seem to
be coming together into a single viewpoint: language should be
studied as it is used, with semantic and pragmatic information
being more central than the more purely surface aspects.
However, this shouldn'*t przclude knowledge from whatever level
being applied when relevant, These are the reasons why
conversation, a domain in which languag2 is used as naturally as
possible and a domain in which semantic and pragmatic
considerations are of utmost importance has been chosen for

study.

1.2 Issues and Limitations

t is probable that fully general computational models for

conversation are currently intractable, But under certain
restrictions progress can be made. The first restriction is to
only consider a particular conversational situation. A "concert
scenario" is proposed which illustrate both the importance of
ccnversation as a domain and also narrows the scope of the
prcject, The scenario involves conversations which would take
place during the events surrounding a symphony concert. Thres
particular conversations have been chosen for analysis:

(%) a conversation between a ticket seller and a concert
patron who wants %*o buy a ticket to the concert;

(ii) a conversation between a bartender and a concert
patron who wants to buy a drink during the intermission of the
ccncert;

(iii) a conversation between two <concert patrons who
unexpectedly meet during intermission.

Conversations (i) and (ii) are ‘"task-oriented" (Deutsch (1974))

and hence somewhat predictable. Convsersation (iii), which is

Chapter I

much less pradictable and hence much harder to analyze, has been
given a rather cursory analysis.

The study of conversation has been further 1limited by
considering only a few of the possible issues. In line with the
focus on the pragmatic and semantic levels the following have
peen of central ccncern:

(i) -L whather world and linguistic knowledge <can be
gffectively combined, and in particular whether language can be
viavwed as an activity like any other;

{ii) -L how the goals of a conversant affect what he says
and how he understands;

(iii)-L how *the knowledge a conversant has about the other
conversants affect what he says and how he understands;

(iv)-L how the conversant is able to focus on the ralevant
aspects and ignore the irrelevant aspects of any conversational
scenario.

Other potentially relevant issues have not been considered:
for example, a detailad analysis of linguistic surface
phenomena; an adequat2 treatment of the problem of generation;
the phoneti or morphemic aspects of language; the problem of
reference; +he problem of handling massively unexpected
uttarances (or other surprises); and so on., However, since most
of these problems unavoidably arise, suggestions as to possible
sclutions are often sketched out,

A *third aspect which helps to nmake conversation a
reasonable domain to study is tha methodology chosen to test out
ideas: building a computer model of the behaviour of one
participant in a dialogue, While simpli€ying the problem by
eliminating half of each dialogue, this viewpoint-dependent
approach means that the issues of goal direction and conversant
modelling become particularly ralevant, thus further focussing
the research.

The attempt to build a computer nodel, however, TrTaises 2
number of artificial intelligence issues. In particular the
following ars of crucial relevance:

(i) -R the conglomeration of proczdural and declarative

Chapter I

information of various sorts into on2 place, since the model
obvicusly has to both know things and know how to do things;

(ii)-R the problem of acczssing this knowledge; that 1is,
how and when to search for information, when to inherit general
information (see Levesque (1977) for example), when to make
inferences, how to attach procedures (Winograd (1975));

(1ii)-R the necessity for some sort of context mechanisnm
(of particular relevance to issue (iv)-L) ;

(iv)-R the need to keep a record of processing decisions,
nct only to allow the model to keep track of what has just been
said but also to allow it *to reason about its own behaviour ({(sce
issue (ii)-L parcticularly);

(v) -R the incorporation of robustnass, so that when
scmething fails, appropriate 2xplanations, excuses, or failure
preccessing can be undertaken;

(vi)-R the standard artificial intelligence issues of

ccmplexity and combinatorial explosion.

1.3 What's Proposed?

An irvestigation into the issues raised in the last section
tends to be cyclical, with language issues raising
representation issues which reflect back into language and so on
back and forth. Therefore, this rsport does not represent some
"cast in concrste" final version of my ideas, but is much more a
snapshot of my current thinking.

I would like to indica*e the major concepts contained in
th2 report. The discussion is divided into two parts: concepts
of representation and concepts of language.

1.3.1 Concepts of Eepreszn
A prerequisite to 2 study of «conversation 1is th=a
representation of knowledge, Th2 representation scheme proposed
here has the following main characteristics:
(i) It is modular, allowing many Adifferent kinds of
objacts to co-2xist together. Objects are opague to one another

— e e s

Chapter I

and can communicate only by passing messages. Such modularity,
it 1is hoped, will help solve some of the complexity issues
(issue (vi)-R).

(ii) The most interasting such object, called a pattern

expression (JPEXPR) is roughly based upon the frame idea of
Minsky (1974). Most domain knowledge 1is represented in such
objects as patterns. Since thes=2 patterns can be static or can
contain certain Tactive" macro elements, either procedural or
declarative information can be ancoded (issusz (i)-R).

(1ii) Messages to a |PEXPR are also patterns that are
handled by matching them against patterns in the |PEXPR. Since
message passing 1is defined £for all kinds of patterns, in
particular procedural and declarative information can be
accassed uniformly (issues (i)-R and (ii)-R).

(iv) If a message pattern caannot be matched in a |PEXPR,
failure to match processing (associated with patterns of that
type) can take place. Such failure processing can involve
trying to "inherit" th=s pattern, performing appropriate
inferences to discover *he pattern, or in the worst case giving
up complately (this addresses issues (ii)-R and (v)-R).

(v) A by-product of message passing is the creation of an
activation record to which temporary variables and other 1local
effects of the message passing are restricted. This activation
racord is called an execution instance and is a pattern
expression like any other (and hence able to be accessed 1in
identical fashion to other |PEXPRs (issue (vi)-R)).

(vi) A pattern expression may need to <comnunicate with
another pattern expression as it handles a message. Chains of
messages can be set up this way with corresponding chains of
execution instances. They form a dynamic environment (akin to
“+hat of ALGOL or 1ISP) called the execution environment which

T)

turns out to be a very useful focussing and context mechanism
(issue (iii)-R, issue (iv)-L, as well as allowing the discovery
of current goals (relevant to issue (ii)-1).

(vii) Execution instances are not automatically removed

after a message is answarad. Instead, they stay around and

Chapnter I

chains cf them are «consequently preserved., Such ven=rable
execution environments <can be accessed if the details of what
went on in the past ars needad. They thus give the model a sort

of 2pisodic memory (issue (ii)-R).

scribe the approach to language taken
in this research 1is 1in terms of "lavel of goal", from higher
level extra-linguistic goals through lower level goals that are
called in to understand particular parts of an utterance. Each
such goal can be more or less ssparated from other goals, and
each is thereafore encodesd as a pattern expression., Since goals
invoke subgoals arbitrarily, it is sometimes difficult to
classify them precisely; they do seem, however, to fall into
four main catagories: non-linguistic goals, scripts, speech
acts, and language level goals.,

(1) non-linquistic goals: Goals at this 1level undertake

significant plans of action such as attending a concert, buying
a ticket to the concert, e*c. Not primarily concerned with
language, they do, however, know enough to call in linguistic
subgoals when appropriate (e.g. to talk to the ticket seller).
Perhaps as importantly, much of what is said is interpreted or
produced in the ccntext created by this level, giving it focus
and direction,

(ii) scripts: Scripts (a term borrowed from Schank and
Abslson (1975)) are subgoals of non-linguistic goals (or of
higher 1level scripts) called in to actually direct a
conversation (e.g. the script'to direct the buying of something
such as a ticke%t). They are responsible for keeping track of
the utterances of all parties to a conversation, for determining
the sequence of speaking, for recognizing the beginnings and
endings of a conversation, for using script expectations to aid
the interpretation and production of utterances, and for meshing
these expectations with the actual utterances produced. Scripts
have available to them models of the conversants for use in

performing their varied tasks.

Chapter I

10

(iii) speech acts: Speech acts (e.g. inquire, respond,

inform) represent ideas @xpressible in a single verbal action by
a lone speaker, The name has been chosen because of the
similarity of this 1level to the speech acts approach of
Austin (1962) ard Searle (1969). Spsech acts are 1invoked by
scripts to interpret or produce actual utterances, to check that
the utterancs is not in conflict with the special requirements
of a speech act of 1its type, and to make sure the utterance
doesn't violate anything known about ths conversant (available
from the conversant model). Speech acts sometimes deal directly
with surface linguistic strings, but more often call in language
level goals to buffer them from the "real world",

(iv) language level goals: The spaciality of +this level of
analysis is language itself. Thus, there are pattern
expressions which know about noun groups, verb groups, clauses,
utterances, etc., This 1is the traditional parsing level,
although *the methods are not as inflexible as the usual parsing
image suggests. The primary task of any goal at this level is
to transform a sequence of words into internal concepts, a task
which involves appropriately grouping words (syntax), perfcrming
checks that the groups are consonant with known information

discovered in memory or in the currently relevant execution

(&7

anvironmant (semantics), an occasionally doing other tests

perhaps involving such pr

v

gmatic considerations as looking at
tha conversant model (not directly available, but discoverable
in the execution environment).

Much else obviously is involvad in language analysis, and
such aspects as encoding static (non-proc=adural) information,
handling associative activation, doing bottom-up processing,
performing morphological +*‘rimming, are touched wupon in the
report in varying amounts of datail, However, the analysis

centres around the four levels just described.

Chapter I

"1

- P R T e

1.4 Organization of the Report

The rest of the report is organized as follows: in Chapter
IT are further details about conversation as a domain of study;
in Chapter III a scheme is proposed for representing knowledge;
and T is evaluated in Chapter 1IV; an <example of the
representation being used to handle a conversation is showr in
Chapter V; while in Chapter VI are some generalizations that carn
be extracted from the example as wa2ll as some extensions to the
system; finally, Chapter VII sums up all that has gone before.
In addition to the main body of +the <report, there are two
Appandices: Appendix I, containing a description of many of the
important objects in the representation; and Appendix II, with
scme of the more elaborate pattern expressions used in the
extanded example of Chapter V. Finally, there is an Index of
important terms and concepts.

Chapter I

12

Conversation is ar ideal "expsrimental laboratory" in which
to study the interaction of linguistic and world knowledge. It
is an area of lingquistic performance where pragmacic
considerations are uppermost, where things like models of the
conversant, goals, context, etc. can be studied not as
aftearthoughts or in some secondary role, bu%t as central concarns
that in certain respects ars mores important than the analysis of
actual utterances. Thus, it is important %o analyze how
conversants sequence their utterances, how they make use of
expectations (both in relation to their goals and in accordance
with what has been said so far) to guide them and how they can
focus in on the relevant things at any stage of a conversation.
Also occurring in conversations are linguistic phenomena such as
partial sentences, ungrammatical wutterances, and multiple
sentence constructions which require language to be viewed as
connected discourse not isolated sentances.

Perhaps the main reason for studying conversation is to
show the inseparability of languag2 from the context in which it
is used. Sometimes the context imposes great control over what
is said, sometimes less., Thus, there are very rigiad
conversational formats, such as ritualized ceremonial exchanges
where even the actual words are prescribed; less rigid, but
still top-down, task-oriented dialogu=s (Deutsch (1974)) such as
a conversation to order a meal in a restaurant or buy a ticket
to a concert; and, finally, more or 1less unpredictable
conversations (2.9. dinner tables chatter, talking with a friend)
where it is difficult to dstermine what is going to be said
next, but where context still has some role to play irn
foregrounding concepts as they becoms relevant.

In summary, conversation is a good area for exploring
language because it doesn't arbitrarily restrict the domain of

study. To explain, or evan to begir %o explain, what is going

Chapter II

13
on in a conversation, th2 vast number cf things mentioned here

must be analyzed and unified to yield insights into language use
at all levels.

2.1 Background

The attempt to model conversation has not arisen in a
vacuun, In this section I would like to very briefly locok over
related research in artificial intelligence, lingquistics,
philosophy of 1language, sociolinguistics, and elsewhere,
Naturally, there is a vast amount of relevant work, and in what
follows I can only hope to suggest various influences rather
than give a destailed description of every piece of research.
Mor2 specific debts are noted at appropriate places throughout
the report.

Sociolinguistics is one arsa concernsed with issues of
direct relevanca to conversation modelling since it is concerned
with examining 1language in its social context. Work by
Schegloff (1971) on sequencing, Garfinkel (1972) or social
expectations, Lirnde (1974) on the <choice of determiners in
verbalizing internal concepts, Goffman (1974) on "frame
analysis" of language, and the 1like, 1is indicative of the
importance placsed on the non-linguistic aspects of language use,
Most of this work has been influential to this research in
delineating gseneral approaches rather than in yielding specific
suggestions,

Philosophy ¢o¢f language also makes a commitment to viewing
language as it is us=2d. Thus, Grice (1957) defines language in
terms of its intended effect on the hearer, the speech acts
paradigm {Austin (1962), Searle (1969)) looks on language as
ccmposed of primitive units of meaning (the speech acts), and
Grice (1968) and R. Lakoff (1973) attempt to formulate rules of
ccnversation which not only guide speakers but which also form
the basis for appropriately judging deviant utterances. Once
again, the influence of philosophy of language research on this

work has been a general one except, of courss, for the speech

Chapter II

14

acts model, some aspects of which have been incorporated fairly
directly.

The case grammar movement (Fillmore (1968), Chafe (1970))
is a major linguistics influ=nce on this research. Case grammar
is useful in at least two ways:

(i) it suggests a means of handling the partial and
ungrammatical utterances rampant in conversation, in that a case
frame is &able to pick and choosz what it needs from an
utterance, ignoring extraneous words and substituting its own
default values for non-existent parts of an utterance;
and (ii) the <case frame conca2pt can be readily "deepened" to
include the necessary semantic and pragmatic checks, an absolute
necassity in a domain such as conversation, Computational
linguists such as Martin (1975) and Taylor and Rosenberg (1975)
havs used deep case frames with considerable success. That case
frames likely need to be deepened still further is evident £fron
the more recent work of Fillmore (1975) and Chafs (1975) who are
looking at frames for encoding extremely pragmatic kinds of
information. Obviously, such considerations are not out of lirne
when trying to account for the many real world influences on
conversation.

Recently, artificial intelligence has begun looking at
language 1in more comprehensive terms. Winograd's (1972) work,
while limiting the domain of study to the blocks world, accounts
for an interesting array of linguistic phenomera, including the
use of procedural semantics at appropriate times by the
syntactic component, the wuse of history lists that enable the

model to discuss previous episodes in the dialogue, the
importance of real world knowledge in helping to disambiguate
sentences. Moreover, ths surface language handled by Winograd's
system was extremely sophisticat=2d compared to anything that had
bean done before.
Woods et al (1972) have also achieved impressive

performance in the LOUNAR system by using a representational
scheme (augmented transition networks) which allows information

to be used when appropriate and which has a perspicuous visual

Chapter II

15

description (i.e. graphs can be drawn representing a particular
ATN's flow of control).

Schank (1272) has been a pioneer in focussing languags
analysis on semantics - almost all interpretation and production
of surface 1language in the various Schank systems has been
directed by the desire to £fill in slots in his conceptual
dependency semantic representation, More recent work (Schank
and Abelson (1975)) has further dsepened <the analysis to
pragmatic issues and has atta2mpted to account for how certain
kinds of conversations are undertaken with top-down direction by
processes called scripts,

Charniak's (1972) model attempts to understand connected
discourse, specifically children's stories. The demon style
control structure which he proposes there, while containing many
flaws, has provoked research into how to use more constrained
kinds of control., For example, Minsky's (1974) frame proposal
has been, 1in part, an attempt to overcome the explosive
inferencing of demon based control schenes. Interestingly
enough, Charniak (1975) himself has adopted some aspects of the
frame proposal when modelling episodes in a supermarket, a
situation where pragmatic context has been considered all
important to appropriate linguistic processing. Another attempt
to embed language analysis in a larger «context has been
Bruce's (1975) work with social action paradigms containing
knowledge about stereotyped social situations.

Perhaps most directly relevant to the approach taken here
has been the recent investigations into conversation by
artificial intelligence researchars. Deutsch (1974) has already
been mentioned for her work on task oriented dialogues;
P. Cohern (1978) has been concerned with developing a model
explaining conversations which take place at the checkout
counters of supermarkets; Horrigan (1977) delineates scripts for
a couple of task oriented dialogues; Grosz (1977) describes the
use of focus in nunderstanding task oriented dialogues; CAI
systems (see Collins and Grignetti (1975)) have been simulating
realistic natural language dialogues between student and tutor.

Chapter II

16

Winograd (1977) suggests some prerequisitss for a model of

dialogue.

2.2 Issues

This research concentrates on four issues of central
concern to the modelling of conversation:

(1) whaether world and 1linguistic knowledge can be
effectively combined (or, indeed, is there a distinction?);

(ii) how th2 goals of a conversant affect what he says and
understands;

(iii) how the knowledge of a conversant about himself and
the other conversants affect what he says and understands;

(iv) how the conversant is able to use context to enable
him to focus on the relevant anrd ignore the irrelevant.

(i) combining world and linguistic knowledge:

———— e

Perhaps the mrain problem tha* arisss when modelling
conversation 1is figuring out how to organize a vast amount of
knowledge of various sorts. There are several dimensions along
which to <categorize this knowledge. A model of conversation
needs to have information about various different subjects.
Thus, it needs knowledge about 1languagzs itself, i.e. how to
relate words to concepts; how to interpret and produce single
utterances; how to handle nmultiple utterances (perhaps by
sevaral different conversants). It needs knowladge about the
topic under discussion, so that if a ticket buying conversation
is initiated, knowledge about ticket prices, ticket locations,
tradeoffs between these, etc. will be needed, It needs
knowledge about the conversants, so that in the ticket buying
situation the desires and motivations of each conversant need to
be taken into account.

Along the procedural / dsclarative dimension, a model of
conversation has to allow for more or 1less static facts
(e.g. cost of a ticket, location of a concert), but also must be
concerned with actually doing +*hings (e.g. interpreting or

Chapter II

17

producing an utterance, engaging in a conversation).

Another kind of knowledge can ba categorized according to
what Schank (1974) terms the episodic / semantic memory
distinction. Clearly a conversation mode2l needs to have
episodic capabilities (i.2. a memory of evants) not only as to
what actually happened in the past but also as to how the model
perceived what happened in the past. 3But just as clearly, any
such model would need a semantic memory containing specific
knowledge about local things (e.g. location of a specific seat
in a theatre) all the way up to gensral rules 2.g, the fact
that people have two legs or a rule for accomplishing some class
of tasks).

There are, no doubt, many other kinds of knowledge needed.
Regardless, the point is that a major (in many ways the major)
problem is to find some sort of scheme that allows appropriate
information to be available at the right time2 while still being

comprehensible to the modeller.

(ii) goaling:

The issue of "goaling"™ breaks down into two sub-issues: how
a model's non-linguistic goals affect its linguistic goals; and
vice versa. That non-linguistic goals are crucial to
conversation is fairly obvious at a number of levels. First, it
is clear that conversations are enter=d into to achieve subgoals
of non-linguistic processes. For example, a ticket buying
conversation is undertaken to obtain a ticket for some higher
level goal such as th2 goal of attending a concert. And,
because a non-linguistic goal'"sets the stage" for all that
follows, the interpretation and production of utterances is

strongly affected by +the goal, In the ticket buying
ccnversation, for example, there should be no problem
interpreting things associated with tickets, money, seat

locations, =2tc., but talk of zoos, battleships, flying saucers,
or the like, would seem out of place. Non-linguistic goals are
often directly gqueried in a conversation, for instance by a

ticket seller asking a buyer what he wants at the beginning of a

Chapter II

18

ccnversation, Finally, the importance of a non-linguistic goal
can determine how perservering a conversant is in continuing a
ccnversation, Thus, a door-to-door salesperson 1is very
persistent in trying to talk to a householder despite open hirnts
of hostility because the gcal of selling the product requirss
such diligence.

It 1is also fairly evident that linguistic goals affect
non-linguistic goals, although in a somewhat 1less domineering
fashion. Thus, what is said can raflect back into and perhaps
evan alter a non-linguistic goal, so that if a discussion with a
ticket seller indicates there are no tickets le2ft, clearly the
goal of attending the concert cannot be satisfied. More subtly,
a linguistic goal can actually call in a non-linguistic subgoal
(e.g. moving closer to a conversant to better hear what he says)
or can be interleaved with a non-linguistic goal
(e.g. exchanging money for a ticket during the conversation *to
buy a ticket).

From this discussion i+ should be clear that the
intermeshing of 1linguistic and non-linqguistic gqoals is an
important aspect of the modelling of conversation.

(1ii) modelling ccnversants:

Another obviously important aspect in processing
conversations is using models of the conversants to help in the
disambiguation and production of utterances. Clearly, who is
talking is crucial at all levels of the 1linguistic endeavour:
the type of conversation itself may be determined by the

conversants (some married couples, for example, may be unable to
engage in any kind of conversation except a vigourous debate);
the particular utterances within a conversation may be strongly
influenced by the conversant (e.g. when talking to a child
certain subjects would be avoidad); the style may depend on who
is being talked to (e.g. the language of a clerk when talking to
his boss is much more constrained and formal than when talkirng
tc his mate at the next desk); and even certain speech patterns
and quirks of fthraseology fe.g. "Y'all come back now,

Chapter II

19

y'hear?") could be expected to change as the conversant changes.

Convarsant models seem to b2 useful, as well, in
formulating concepts to verbalize. In certain rather undirected
ccnversational scenarios (e.g. coffee break conversations,
conversations with friends), deciding what to say next can be
independent of current goals. One possible strategy is to use
nodels of the conversants to compare what is said to the beliefs
of the various conversants. Notable contradictions or
similarities could form the basis of a response. Altogether,
conversant models are crucial to adequately handling
ccnversation,

(iv) conktext:

From the above discussion it should be clear that some sort
of context mechanism is needed to focus on the relevant aspects
of any situation, This is necessary not only for practical
reasons of time and space, bu*t also for linguistic reasons.
Thus, +the problem of ambiguity may be overconme with a
sufficiently restrictive context, e.g. "They are flying
planes." would be totally unambiguous in the situation where a
flest of airplanes is buzzing overhead. Knowing the surrounding
context may also ease reference problams by limiting the number
of possible candidates for any referent. For example the
sentence "The brown hairy animal ran after the dirty green
car." might actually be referring to a particular dog, "Ruff",
chasing a particular car, "Smedley Hittite's mangy old
Vclkswagen" 1f these concepts have been foregrounded in the

context in which the sentence is uttered.

The issues of section 2.2 illustrate the need to view
language 1in a wider context than just the processing of surface
strings. One possible analysis involves viewing 1linguistic
goals in the same terms as other goals of the model. Generally
speaking, non-linguistic goals govern lower level linguistic

Chapter II

20

goals such as scripts, speech acts, and language level goals.

(1) non-linquistic goals:

Much of any realisitic conversation 1is concerred with
things that aren't linguistic at all. As mentioned earlier, any
conversation is driven by non-linguistic goals such as
attempting to buy a ticket or +trying to buy a drink. 1In
addition to this primary role, non-linguistic goals do much
foregrounding of useful extra-linguistic information. It is at
the non-linguistic level, for example, that the conversants are
recognized and pointers to conversant models are recorded for
use at all levels. Also delineated at this level is information
pertaining to the focus of attention of the model. This is
typical of the non-linquistic 1level: the .goal itself and
extra-linguistic information availabla2 from the goal help focus
things further down in the goal hierarchy.

(ii) scripts:

Scripts are the highest level of linguistic goal. They are
invoked usually as subgoals of non-linguistic goals (e.g. the
script to direct the dialogue to buy the ticket is called in by
the non-linguistic goal overseeing the buying of the ticket
genserally), but can be invoked by other scripts as well (e.g. a
subgoal of the buy conversation script is a greeting script that
helps. establish the conversational roles of the speakers).

A script's primary task is to keep track of utterances on
all sides of a conversation. It must not only determine who
should speak when and, depending on the identity of the speaker,
interpret or produce an utterance, but it must also set up some
sort of expectation as to what kinds of utterances will be
forthcoming. If the utterance is to be produced, then this
content forms the basis of the genarated utterance; if the
utterance is to be interpreted, then this expected content
should serve as an aid to understanding the surface utterance.
If notable differences are found between expectations and
reality, the script 1is responsible for explaining them. A

Chapter II

21

script must also keep a record of any conversation it directs.

A script has available to it the models of the conversants
discovered at +the non-linguistic 1level. In many situations
scripts will access information in these conversant models to
determine that verbalizations are consonant with the beliefs of

the conversants, to try to find something to say, etc.

(1ii) speech acts:

It has already been explaired that scripts can call in
subscripts; what hasn't been spelled out is that scripts can
also call in subgoals that involve interpreting or generating
the speech of a single speaker., Such single verbal subgoals are
called speech acts (after Austin (1962) and Searle (1969)). It
is interesting to note that speech acts are also central to
other computational approaches to discourse
(e.g. Bullwinkle (1977), P, Cohen (1978)), +thus 1lending extra
credence to their usefulness.

A speech act 1is responsible for either generating or
interpreting an utterance, depending on who the speaker is. 1In
the former mode it takes an expactation as to the content of the
speech act and builds a surface utterance which is then actually
"spoken" (i.e. printed) under control of the act. 1In the latter
casa the speech act reads a surface utterance and tries to
interpret it in a way which 1is both <consonant with the act
(€.g. "yes™ will be interpret2d by an "inquire" act as a
gquestion but by an "agree" act as a statement) and with the
expected content (e.g. if the expected object of an "inguire" is
the health of the hearer, then a statament such as "How about
you?" must be an inquiry concerning the hearer's health rather
than, say, into his desire to do something). Conversant models
ars available at this level as wzll, since to properly undertake
a speech act may very well involve looking into the beliefs of
the conversant. TFinally, a speech act records for posterity the
actual surface utterance, the actual meaning, and the speaker of

and listener{s) to the speech act,

Chapter II

£

(iv) language lesvel goals:

Somatimes a speech act will itself look directly at surface
language, but more frequantly it needs the help of a level of
goals with language handling expertise. Such goals are grouped
into the lanquage level.

Language level processing involves either the
interpretation of utterances or the generation of responses.
The interpretation process involves breaking an utterance into
groups of Telated words. Each subgroup is then interpreted
(which in true top-down parsing fashion may involve still more
breakdowns) into some internal conc2pt representing the meaning
of the group (the meaning is not finalized at this point, but
can be further refined as more information about the concept is
gained). These various group meanings must be combined into a
single <concept representing the meaning of the entire utterance
(a process with many case-like aspects). This concept 1is then
passed back to whatever higher goal wanted to understand the
utterance.

The generation process has not been studied in detail, but
it would involve a somewhat different kind of processing wherein
a group would be asked to produce surface words that describe
scme concept. For example, a noun group might pnroduce a surface
level noun group "the brown curly haired animal" to describe the
internal concep* "Ruff", Clearly such processing would involve
all sorts of esoteric decisions as to how much to verbalize,
what words to chocse, etc. These decisions would have to be
mads using knowledge about the conversant's knowledge,
information about the current goals, and general knowledge about
werds and word groupings.,

Many other kinds of proca2ssing would be needed to fully
explain conversation, but these four levels do account for most
of the issues deemed important earlier. The combining of world
and linguistic knowledge 1is done at any 1level by mixing
extra-linguistic information with the goals at that level;

moreover, linguistic goals are supervised by non-linguistic

Chapter II

23

goals. The desired goaling has been achieved by the basic
organization of the levels of linguistic analysis. Conversant
modelling is handled by discovering the conversants' identities
at the non-linguistic levels and using the information so
realized at the lower linguistic leviels. The desired context
abilities are achisved by the successive focussing on ever
narrover goals with a consequent narrowing of things needing to
be looked into. The goal +tree itself allows access to the
current goals of a conversant at any level.

ere are persuasive reasons for studying conversation
using a methodology that involves constructing a computer model
to take an active role in a few simple dialogues. Computer
modelling enables ideas to be tested, requires precision in the
statement of concepts, provides a powerful process metaphor, and
allows a performance model to be built. Moreover, as section
2.2 has shown, there is relavant current research which can be
used to aid the endeavour.

A number of things must be handled when such a computer
mcdel is constructed:

(1) The static information in the conversant model and
elsewhere must be handled; so must the dynamic goaling
activities. This information must be stored in ways that allow
general rules to be combined with spescific information,

(ii) Technigues must be found to access knowledge about
conversants, knowledge about subgoaling, knowledge about
language, knowledge about the topic of discussion, etc.

(iii) There mnust be some way of keeping all this
information in line so that the system is not overwhelmed by too
much at once. The goal tree, as has been pointed out, is useful
in this capacity, but exactly how it is to be represented and
used must be determin=d.

(iv) At various levels it is important to record
information as *o what was said, who said it, what the context

Chapter II

24

was then, what processing decisions had to be taken, and so on.
(v) Naturally, when things go wrong (for example, when a
script or speech act has its expectations violated), the anomaly
nust be excused or explained.
(vi) There must be a satisfactory tradeoff between doing
all this efficiently and doing it in a way which is
ccemprehensible.,

Now, 5 the introduction is re-examined, these six
requirements will be seen there in slightly disguised terms as
the six representation issues of concern to this research. That
is, (i) is the procedural / declarative controversy; (ii) is the
problem of accessing information; (iii) is the need for context;
(iv) is the necessity for keeping a record of the processing;
(v) is the issue of robustness; and (vi) is the problem of
devising methods which are non-combinatorially explosive yet
within the <complexity barrier. Therefore it should come as no
gr=at surprise that before modelling conversation, several
representation problems must be handled.

The next couple of chapters will be concerned with doing
exactly that. Chapter IET outlines a scheme for the
representation of knowledge which enhances the chances of
achieving (i) - (vi). Chapter IV undertakes an analysis of the
strengths and weaknesses of this schene.

Chapter II

CHAPTER III

A Scheme for Represanting Knowledgs

In this chapter I would 1like to discuss a scheme for
representing knowledge that has bsen developed as a preliminary
to 2xploring the many facets of modelling conversation. The
schame 1is being tested by implementing it as a set of programs
collectively called |LISP (because all system functions are
preceded by a "™|" to distinguish them from other functions).
System notation 1is based as closely as possible on LISP,
complemented where applicable by CONNIVER notation (McDermott
and Sussman (1974)). The implementation is meant to be an
extension of LISP in the sense that most of LISP can be invoked
directly from within it. Finally, it must be emphasized that
the version of |LISP described here has not been coded, although
several predecessors have been, Hence, all code is "soft"™ in
the sense it hasn't bean run on the computer,

The chapter is organized as follows: section 3.1 contains
an overview of the scheme's capabilities which, for all but the
most intrepid, should provide background sufficient to
understand the rest of the report. But, for interested readers,
sections 3.2 through 3.7 describe in detail the various features
of the scheme: cbjects, ma2ssage passing, the matcher, pointers
and searching, interrupts, and simulated parallelisnm. When
reading the reast of this chapter (and for that matter the rest
of the thesis), an important pcint to remember is that there are
algorithms and detailed descriptions of many system functions in
Appendix I.

The system is divided into fundamental conceptual units
called objects which can pass messages to each other and receive
responses. All messages and responses are co-ordinated by an
interpreter (named |EVAL) which reads messages from sending

Chapter IIT

26

objacts, dirscts them to the proper receiving objects, and later
steers the receiving objects' responses back to the appropriate
sending objects,

There are many different types of object in the systen,
classified according to their message passing behaviour. The
simplest are LISP SUBRs and EXPRs with standard LISP argument
conventions. |EXPRs are similar to EXPRs, except that their
internal structure is |LISP code and they use stacks local to
objects called |PEXPRs for their argument binding. These types
of object are all useful for doing relatively efficient,
LISP-style processing, but they do not resolve many
representation questions than efficiency.

The objects that are most crucial to the representation are
objects called pattern expressions (|PEXPRs) which correspond
(roughly) *to frames in that they each represent a single large
piece of knowledge in the system. Pattarn expressions are meant
to be major domain-dependent objects: most world and linguistic
knowledge is contained in pattern expressions. (Much procedural
knowledge still remains embedded in EXPRs or |EXPRs rather than
the more analyzable |PEXPRs because a thorough analysis of the
semantics of procedures is bayond the scope of the report).

| PEXPRs are objects whose structure is a list of patterns.
A pattern is a list whose first =element is the name of an
objact, and the rest of whose elements are either the names of
objacts or further sub-patterns. Moreover, any element of a
pattern can be preceded by a single macro character ("2® Mmin
ngn uzw wyn g wgn wmy yhich has significance in its matching
behaviour. The patterns in a |PEXPR are the major means of
defining exactly what that | PEXPR means (another aspect of a
| PEXPR's meaning comes, of course, from the use of its name in
the patterns of other |PEXPRs).

An example of a |PEXPR 1is the WIDGET-PEDDLER pattern

expression

Chapter III

27

<|{PDEFUN WIDGET-PEDDLER

sulhn
oo s R i
=g
=t
S

uEmmoo

P~~~
wWrenHmH

9,84, 17;]
~ohvun
I TETET)
A ——
Hi40
220
\nm
=31
e
Z=Z==
elels!

fes Lo}
==
o L o |
oo
= o b
UomE ~Mmou
oo
HENOOQD S
WHnd 1=
BU oo
= eI G0 D
wHnNEHEE d-or
HEE D | 2O
mrZZs o
f"‘"’b]:dn'u

This |PEXPR contains knowledge about widget peddlers. It
in itself does not have any "real world" reference; that is
WIDGET-PEDDLER is not any particular widget peddler or group of
peddlers, but is rather a description of the characteristics
that widget peddlers have in common. It can be interpreted as
fcllows:

(i) the name of the |PEXPR is WIDGET-PEDDLER;

(ii) the body of the |PEXPR 1is the «collection of

patterns S1 through S7;

(iii) each pattern in the body is 1labelled with a

pattern name Si;

(iv) pattern S1 says that the | PEXPR WIDGET-PEDDLER

has superset SELLER;

(v) pattern S2 says that the |PEXPR WIDGET-PEDDLER has

another superset, PERSON;

(vi) pattern S3 says that an arbitrary instance of

WIDGET-PEDDLER sells an arbitrary instance of WIDGETs;

(vii) pattern S4 says that an arbitrary instance of

WIDGET-PEDDLER trades with an arbitrary instance of

BUYER as follows: the widget peddler exchanges ™goods"

for either money or services depending on whether the

goods are widgets,

(viii) pattern S5 says that patterns S3 and S4 are the

core patterns of the |PEXPR; that is, they are more

central to its meaning than are other patterns (this

is useful mainly in comparing |PEXPRs to one another

where core patterns are the central patterns which

must be compared);

Chapter III

28

(ix) patterns S6 and S7 d=fine a couple of instances

of the widget peddler, namely PETER and MARTHA.

The other component of any |PEXPR is how it handles

messages sent to it from other objects in the system. Another
object, say the |PEXPR BUY-WIDGET, might formulate the message

{WIDGET-PEDD%ER
TRADE PETER SELF SQUIGGLY-WIDGET ?WHAT-COST)
ATTITUDE PETZR ?WHAT-ATTITUDE))

That is, BYY-WIDGET is interested in seeing what (according to
WIDGET-PEDDLER) SELF might give +to PETER in return for the
SQUIGGLY-WIDGET; and also to see what attitude PETER should be
expected *to maintain,

Here is a simplified outline of what happens to the
message:

(i) The message is read by the interpreter as it is

executing code within a pattern of the BUTY-WIDGET

expression. The interpreter (named [EVAL in the

implementation) acts as a central switchboard whose

task it 1is to buffer contact between objects.

Whenever an object formulates a message, it is read by

the interpreter and dispatched +to the appropriate

receiving object where it is further processed. If

this object should desire to send any messages of its

own, it too must route them through |EVAL. When an

object is finished answering a message, it notifies

the interpreter which passes back the response and

resumes execution of the object which sent the

message.

{(ii) So, in this case the interpreter sees that the

receiving object is to be a | PEXPR named

WIDGET-PEDDLER,

(iii) Setting aside for the moment the rather complex

set of things that happens next, the eventual effect

of the message is that the message pattern

(TRADE PETER SELF SQUIGGLY-WIDGET ?WHAT-COST)

is matched against patterns in the body of

Chapter III

WIDGET-PEDDLER.

(iv) The pattern labeslled "sS4" is discovered and is
found to match under the assumption that PETER is a
particular WIDGET-PEDDLER (a fact discoverable by
loocking at the |PEXPR to see if it has a pattern
(INSTANCE-OF PETER WIDGET-PEDDLER)) and SELFT is a
particular BUYER. If the further assumption is nade
that SQUIGGLY-WIDGET is a particular WIDGET, then the
pattern's last element will be MONEY1, a |PEXPR
representing an 3individual price appropriate to the
widget., Thus, the pattern to be returned in answer to
the TRADE message is

(TRADE PETER SELF SQUIGGLY-WIDGET MONEY1).

This pattern is saved for return to BOY-WIDGET.

(v) But, first, the message pattern

(ATTITUDE PETER ?2?WHAT-ATTITTDE) must also be matched
in WIDGET-PFDDLER. No match is found, so after a
further set of rather elaborate machirnations which I
will go into shortly, the ™ISA environment™ “above"
WIDGET-PEDDLER is looked into,

(vi) The only "ISA" |PEXPRs are SELLER and PERSON, so
they are searched in breadth-first fashion (although
in this case there isn't much breadth for 1long since
the superset of SELLER is its2lf PERSON) for a pattern
matching (ATTITUDE PETER ?WHAT-ATTITUDE).

(vii) If the knowledge of sellers is complete, it
will be discovered that the attitude of any particular
seller is that of politeness, so

(ATTITUDE PETER POLITE) will be the appropriate
matching pattern for the message. This pattern will
be inherited by WIDGET-PEDDLER and will be saved for
return to BUY-WIDGET.

(viii) Since there are no more patterns in the
message, the two response patterns

(TRADE PETER SELF SQUIGGLY-WIDGET MONEY1) and
(ATTITUDE PETER POLITE) are appended and returned to

29

Chapter IIT

30

BUY-WIDGET where they can be used.

This, then, has be2n a general look at some of the features
of the rapresentation schema, I would now like to discuss these
features in more detail,

3.2 The Objects

3.2.1 PRattern Zxpressions

A pattern expression is defined as an atom with a property
list indicator |PEXPR designating its body. The body is a 1list
of patterns, where a pattern is, in turn, a list of elements,
the first =lement of which is an object name and the rest of
whose elements can be object names, sub-patterns, or
single-character macros. A macro indicates that the following
element 1is to be treated in a special way by the pattern
matcher, thus giving the ability to postpone decisions until the
information in the pattern is actually needed. In particular
there are macros which allow ccomputations to be carried out, to
allow matching of any element, to allow expansion to larger
elements, and others. Macros will be more fully explained in
the section on pattern matching.

Patterns can also be labell=2d so that other patterns can
refer to them., This is done by preceding a pattern with a name,
fcllowed by a ":"; for example,

S1 : (SUPERSET WIDGET-PEDDLER SELLER)
designates the pattern (SUPERSET WIDGET-PEDDLER SELLER) with the
label 51. These labels are local to the pattern expression (so
that other pattern expressions can use the same name without
confusion). Pinally, only a top-level pattern can be labelled,

i.e. labels cannot appear inside patterns.

Chapter III

i

3.2.2 Other Objeckts

Asides from |PEXPRs, there are three kinds of object:
primitives, EXPRs, and |EXPRs. Primitives are named atoms with
no internal structure, Such objects are primitive in the sense
thay cannét be further analyzed; but, unlike Schank!s (1975)
primitives, much dinformation g¢ould be added to the object if
some future analysis made it necessary to have a more elaborats
cenception of the object, HMoreover, in many situations, even
well endowed objects need be considered only in terms <¢f their
names, not their «contents, hence making them effectively
primitive at that time. The 1idea that any object <can be
considered primitive or not, as desired, is fundamental to the
system and is in cohflict with Schank's hypothesis {(this is mnot
to say that it isn't often us=2ful to consider a conveniently
small set of primitives in cerctain circumstances).

EXPRs are objects whose structure is stored wunder the
indicator EXPR on the property list of the object name. The
body of an EXPR is a LISP LAMBDA, NLAMBDA, OR ‘FLAMBDA
expression.

J]EXPRs are the same as EXPRs wexcept the property list
indicator is |EXPR and the body is a |LAMBDA, °‘|NLAMBDA, -or
| FLAMBDA expression. These |LAMBDA expressions have a slightly
different way of binding their arguments (using the <cuorrent
| PEXPR stack, something that will be eaxplained shortly).

3.3 Details of Message Rassing

3.3,1 Introduction

An object communicates with another object when it needs a
piece of knowledge that it doesn't know directly, when ‘it ‘has
information that would be of wuse to another object, when it
wants to achisve a subgoal, when it wants +to associatively
signal a "neighbouring"” object; and so on. Such commumication
is accomplished by passing a message from one object to another
and receiving a corresponding response.

Chapter III

32

To b2 able to send a message to object B, object A nmust
know B's name. This is not gquite as much of a restriction as it
might seem, since many computations can be carried out by A, if
necessary, ¢to discover the name. Once it has the name, A must
then compose th2 message in the format which B expects (be it a
list of arguments, a list of patterns, or whatever). A message
form ,

g (B "message")
is then created by appending the message to the receiving
object's name and this form 1is sent off to the interpreter
| EVAL.

The basic 1lcgic for |EVAL is given in Appendix I, but a
brief description of its behaviour is in order here. Assune
that |EVAL has received a message form of some sort., The
message can either be (i) an atom or (ii) a list.

(i) If the nmessage form is an atom, |EVAL realizes that no
ﬁessage is being sent to any other object; instead the value of
the atom is desired. Atom-valus pairs are stored within pattern

(ISTACK object-name {stack-values))
whose third element contains the atom-value pairs., To
understand exactly which stack is to be searched for the value
of an atom, it is necessary to realize that in some sense all
processing is done within pattern expressions. Thus, the systenm
is initialized with a top-level READ-|EVAL-PRINT pattern
expression in control (see TOP-VIEW in Chapter V) and all
top-level calls are in some sense embedded within +this |PEXPR,
Whenever a message is sent to some other |PEXPR, the new |PEXPR
becomes the pattern expression in which subsequent processing
takes place. It either finishes (in which case a previously
initialized }PEXPR is resumzd, probably the one to which the
response has been sent) or it calls in still another |PEXPR to
take control. In any case there 1is always unambiguously one
pattern expression in control: it is called the current |PEXPR
and all stack operations are performed on its stack.

Thus, in the situation where the message form is merely an

Chapter III

33

atom, the interpreter finds its value on the current stack and
returns it as the response to the message (or NIL if no value is
found) .

(ii) TIf the message form is a 1list with message head
(i.e. first element) either an atom or a lambda expression of
scme sort, then this is a messags to be further processed. If
the message hezad is

(a) the SUBR QUOTE; then the message 1s returned
unchanged.

(b) a |PE¥YPR; then special processing takes place which
I'1l explain shortly.

(c) a |JEXPR; then associated with the object is a |LAMBDA
expression which accepts the message as actual parameters to be
bound to its formal parameters on the current stack. The
binding is done (perhaps requiring the |EVALuation of the actual
parameters depending on whether the body is a |LAMBDA, |NLAMBDA
or |FLAMBD2), the object's |LAMBDA body is then |JEVALed.
Eventually, the |LAMBDA body is done, so the bindings are
undone, and the result of the |LAMBDA |EVALuation is returned in
response.

(d) an EXPR; then associatad with the object is a LISP
LAMBDA expression accepting the messag2s as actual parameters to
be bound to its formal parameters on the LISP stack. The
binding is done, requiring first the EVALuation of the actual
parameters if the LAMBDA is a LAMBDA (but if it is a NLAMBDA or
FLAMBDA, it 1is assumed that +he programmer has indicated
explicitly when to EVAL in the body of the function). The EXPR
is then EVALed, and the value returned is the response to *the
message.

(2) a SUBR; then the object is APPLYed to |EVAL of each
element of the rest of the message form,

(f) a NSUBR or FSUBR; then an error is generated since
such objects cannot |EVAL the message elements properly.

(g) a |{(LAMBDA-expression or LAMBDA-expression; then the
obvious binding, popping, and EVALing takes place on the PEXPR
stack and LISP stack respectively, just as in the corresponding

Chapter III

34

EXER or | EXPR case.

(h) any other form; will result in error.

So, we now return to |PEXPR message handling, both the most
importart and also the most complex kind currently in existence.
If the function descriptions of Appendix I are studied the
Datailed function descriptions are in Appendix I, so perhaps the
best way of elucidating the process hare is to do a step by step
analysis o¢f what would happen to one communication sent from
obj2ct A1 to object 8. Say the message form

(B (x yz)(z s tu)

is |EVALed within A1. The |LISP interpreter reads the message
form, sees the object B (the message head) 1is a pattern
expression [by discovering the attribute |PEXPR on B's property
list) . It creates a new, initially empty pattern expression to
serve as a working-storage area for B as it answers the message.
Ths new |PEXPR is& given an internal name (B1, say) and is called

an execution ipstance of B. ©Next, three patterns are asserted

=

EX-INSTANCE-OF "points" to B, the object which has been

sent the message; via this pointer all of the ISA envirgcnment

can be accessed (where the ISA environment consists of all those
| FEEXPRs that can be reachad by going along EX-INSTANCE-OF,
INSTANCE-QOF, or SUPERSET pointers). EX-ENVIRON "points" to the
sending |PEXPR A1 in the execution environment or dynamic
context of B1. Finally |STACK indicates the 1local pattern
expression stack, initially empty.

Next, the stack must be initialized with a form called the

message handler. This form can then be EVALed and will direct

the pattern expression in its hunt for an appropriate response.

Chapter III

In this cas=, a form

(]PEXPR-MH (B (x y z)(r s t u)))
will Dbe rpushed onto the stack of B1 as the valus of the special
atcm JEV. Such an atom / value pair is called a "]EVAL block".
Whenever the interpreter decides to actually execute a |PEXPR,
it merely looks for the top |EVAL block on the stack of that
| PEXPR and =2xecutes the form it finds there. 1In this case,
then, the call +to the message handler |PEXPR-MH can be
discover=d and |EVALed to <carry on the processing of the
message. It would seem reasonable to make B1 the current
pattern expression and do exactly +this, thus effectively
transferring control.

But, this is not what happens: B1 is merely scheduled to
run by mergirng it into an execute queue along with a priority
indicating its potential importance to the system. This
priority defaults to 5 (highest priority = 9, lowest = 0) if it
isn't explicitly given in the message. Such an explicit
priority can be given using a pattern

(1PRIO= priority)

which is essentially an instruction to the interpreter rather
than a pattern to be handled by B1., (Other such messages will
be seen in section 3.6). The interpreter checks for all such
patterns, strips them from the message, and acts upon them. For
{]PRIO= priority), the action is to assert in B1 the priority
(PRIORITY B1 priority), in this case, by default,
(PRIORITY B1 5).

The scheduler is +then summoned. After having "aged" the
execute queue priorities (by increasing all priorities by sonme
fixed amount so that eventually all objects will get to run), it
calls upon the pattern expression with the highest priority to
be made current and executed. By executing a |PEXPR, I mean
| EVALing the top |EVAL block on its stack.

So, in due course B1 is callad in, made the current pattern
expression, and the top form

{]PEXPR-MH (B (x y z)Y({r s t u)))
is |EVALed. {PEXPR-MH, the EXPR which handles most pattern

Chapter III

36

expression messages is given 1in Appendix I. It matches each
message pattern (i.e.(x y z), (r s t wu)) against receiving
patterns in the body of B. At the presant time, the patterns of
3 are scanned from newast pattern to oldest (where the
sequencing of patterns within a |PEXPR can be determined by
looking at their position in the 1list of patterns that
constitute the body of the |PEXPR). It would be better, in the
leng run, if |PEXPR-MH used an indexing scheme to access the
patterns of a |PEXPR body, but the |PEXPRs considered so far are
small enough to obviate the immediate need for such a feature.
If patterns matching the message patterns are found, they
are put in an answer list and ra2turned by |PEXPR-MH as the

answer to the nmessage. | PEXPR-MH also asserts each matching
pattern in the body of B1 so that they can be later accessed if
desired. | PEXPR-MH sends the answer list back to A1, and also

asserts in the body of A1, a return condition of the following

form:

(FEETURN-COND
ex-environ-ob return-type resturn-codes return-value)

where return-type is (usually) NORMAL, return-codes is a list of
sub-|PEZXPRs of importance to answering the message (usually the
receiving object), and return-value is the answer list of
matching patterns. In this example,

(RETURN-COND A1 NORMAL (B1) ((x' y' z')(r' s' t*' u")))
might be asserted in A1. This return condition is basically
unimportant for the NORMAL return, but for other more esoteric
returns, return-codes become crucial.

The question arises: what would havs happened if |PEXPR-MH
had been unable to discover a match in B for some message
pattern, say (x y z)? 1In cases such as this, the matcher does
not give up. Instead, it 1looks at the first element of the
pattern to be matched and asks the object with that name
(i.2. x, here) for help. The rationale for consulting x is that
tte first elemert of a pattern usually acts as the relation
ccrnecting all the other elements, and is thus the most crucial
part of the pattern, The hope is that x will have associated

Chapter III

37

with it a failure to match pattern that tells the matcher what
to do if at any time an x pattern is unmatched. There are
various possibilities: look into the ISA environment of B1; look
into the execution environment of B1; perform some sort of
inference; give up; and so on. The various possibilities for
search will be elucidated in Chapter VI. With the systen.

For the sake of illustration, assums that x has the pattern

1 FAILURE-TO-MATCH_x ?PATTERN 20BJECT
M (! (SEARCH-ISA PATTER OBJ%ETT))

in its body; that is, if PATTERN has failed to match in OBJECT,
direct a search (using the EXPR SEARCH-ISA) for PATTERN into the
ISA environment of object. What SZARCH-ISA does is to search up
EX-INSTANCE-OF, TINSTANCE-OF, and STPERSET links, breadth-first,
matching patterns against patterns in the body of each |PEXPR
encountered wuntil eventually the pattarn is matched and the
matching pattern returned, or until no ISA links remain to be
traversed in which <case the first message (x y z) cannot be
answered, This eventuality would result in NIL being appended
to the answer-list.

In the present circumstances, the matcher has failed +o
find a match for (x y z) in B1, so it formulates a pattern

(2) (FAILTBRE-TO~MATCH x (x y z) B1 ?MATCHING-PAT)

which it matches against patterns in the body of x, finding (1)
above thus effecting an ISA search from BIT. Eventually,
MATCHING-PAT will be bound to a pattern matching (x y z) or NIL
and this value will be returned as the response to the (x y z)
message pattern. A final point: 1if x did not contain any
FAILURE-TO-MATCH pattern, then the matcher would know
automatically not to undertaks failure processing (thus avoiding
an infinite regress of attempted matches),

Failure to match processing means that gquite robust
behaviour can be achieved. A system can be designed so that it
can, when temporarily stymied, mak2 use of knowledge appropriate
to the current context and the kind of data which is causing the
trouble rather than relying on some more uniform mechanisms,

Being able to use local knowledge such as this 1is one of the

Chapter III

38

strong points of this approach.

Meanwhile, once it has finished answering the message,
| PEXPR-MH reschedules the sending pattern expression (discovered
by looking up the EX-ENVIRON pointer), which is A1 in this casse.
The priority of A1 on the exscute queunue is set to its original
(stored) value, even if A1 at some time had beesn given a larger
quene priority as a result of the scheduler's aging technique.
Eventually, A1 is re-started where it left off with the value of
the message being readily available., Thus, 1
{(x y z)(r s t u)) had been embesdded in a call to the |EXPR
RALPH; e.g.

(RALPH (B (x y z)(r s t u)))
then RALPH would have access to th2 value of the message,
i.2., RALPH would execute with argument

iz 3t 2% (2! @t TF o))
RALPH could, of course, find out the new execution instance
created in answering the message, the return type, and so on, by
looking at the RETYRN-COND pattern.

One final note here: B1 has not disappeared (although its
stack has been fully ponped of |EVAL blocks). Execution
instances stay around so they can (perhaps) be queried later as
tc various pieces of information in them such as the matching
answer patterns, the axecution environma2nt or execu*ion instance
pcinters, etc., This is important in many places, especially in
locking at o0ld execution environments to see the concerns of
that +time. Eventually, of course, some sort of garbage
ccllection must take place. Moreover, given the potential
importance of some execution instanceé, it seems crucial to do
such collection intelligently. Such an intelligent garbage
collector has not been worked out in any detail, although what
it would need to do is discussed somewhat more fully in Chapter
VI,

Chapter III

39

3.4.1 The Definition of the Pattern Matching Macros

Throughout the exposition of the representation scheme, the
ccncept of pattern matching has cropped wup with alarming
regularity. The most ubiquitous use of pattern matching is by
the system itself when it handles pattern expression message
passing. But the pattern matcher <can be used elsewher2, by
other system programs or by the user. Because of this, more
general terminology than "message pattern", "receiving pattern®,
"sending object", and "receiving object" is needed to describe
the patterns being compared., So, I will speak of

(1) the source pattern, the pattern for which a match is

being sought (corresponding in the message case to the message
pattern) ;

(ii) the target pattezrn, the pattern which is a candidate
as a possible match for the source (corresponding in the message
case to the receiving pattern);

(iii) the source object, the pattern expression which is to
serve as the context for any macro operations in source pattern
(the sending object in the message case) ;

(iv) the target object, the pattern expression which is to
serve as the context for any macro operations in the <candidate
pattern (the receiving object in the message case).

Whenever a source pattern 1is matched against a target
pattern, the source object and target object must be specified
as well., The basic principle underlying pattern matching can be

sunmed up by the fundamental matching rule:

A source pattern matches a target pattern 1if each
element of the source matches the corresponding
element of the target, unless one of the elements is
NIL, in which case the patterns fail to match. If a
source element designates an object, then it matches
the corresponding target element only if they

Chapter III

Lo

designate the same object. If a source element is a
sub-pattern, then it matches th2 corresponding target
element only if the sub-patterns match,

Under the fundamental matching rule, the following
source / target pairs will match:

(1) (AR BCD):(A BC D)

(113 (A (B C) D):=(A (B C) D)

(iii) (((A (((B C)) D)))):{((A ({(B C)) D))))
but, the following will not match:

(1) (A BCD):(A (B C) D)

(ii) (A (B} (C) D)=z (A (B) (C D))

(iii) (A (B (C (D)))):(A (B (C (D NIL))))

Pattern matching would be a trivial exercise indeed if this
were all there was to 1it. But, matching is made nmore
that have meaning to the matcher and certain other systenm
functions. A macro character can precede any element in a
pattern (including a sub-pattern). No more than one macro
character per element is allowed, howevar. A macro character
indicates to the matcher that the element is to be treated
differently during matching. Thare are macros that tell the
matcher +to |JEVAL the element bafore matching, or to consider
that the element matches anything, or to match only elements
which pass certain tests, or any of a number of other things.

In the following description of the macros, it should be
kept in mind that their Operation'is totally symmetric. The
macros are often described as if they appear before an element
in a target pattern, but *their action if they appear before a
source pattern elemsnt would be exactly analogous.

(iy "!"---This macro 1is an instruction to the matcher to
| EVAL the following element before attempting to match it
(because the matcher works in inverss QUOTE mode, |EVALuation
must be explicitly indicated). 1If a stack is needed, the stack
corresponding *o the pattern containing the element is used.

Chapter III

41

For example (INSTANCE-OF GEORGE-III KING) will match

{INSTANCE~-OF !KING KING) s 2 and only if KING has value

GEORGE-III on the stack of the target object. Another example:
(EYECUTE GOTO QzZT)

will match

(EXECUTE GOTO ! (| COND {4zgcgg§gg§g);?rnpﬁour; 'QET)

if and only if the |COND [EVALs to QET. Note that the target
stack must b2 used to find the value of CONCERT.

It is through the wuse of "!" macros that a pattern
expression obtains procedural ability; that is, often a rather
long computation must be carried out before trying to match arn
el2ment, a computation which could involve sending messages to
othar pattern expressions, etc. In the message passing example
(section 3.3.1) the wmessage to B could have been embedded in
scme sort of pattern in A1's body, i.e.

(EXECUTE FOIBLES ! (RALPH (B (x y z)(r s t u))))
which was being matched in an attempt to answer a message sent
to A1 by some other pattern ~=2xpression. Before the third
element could be matched, the "' forces a |EVAL of the "RALPH"
expression, thus setting off the <chain of events described
earlier,

A final note: "I!" can oftan be used outside of patterns to
indicate JEVAL where normally no such |EVAL could take place.
In particular it can be used in the arguments of |ASSERT (see
below) and in front of +the message h=ad in a message fornm
(indicating that a message is to be sent to the value of a name
rather than to the name itself).

(ii) "$"---This is almost exactly the same as "!" except
that it says to the matcher to EVAL the element, rather than to
|EVAL it. Although wusing "$" is often useful for efficiency
reasons, caution should be exercised since no |EXPRs or |PEXPRs
can be handled nor can any | PEXPR level variables.

A common use for "$" is when some EXPR must be executed
with constant arguments, e.g. when matching
(COMPUTE FACTORIAL-S5 $(FACT 5)), the previously defined LISP

Chapter III

L2

function FACT can tke called in since it uses no |LISP features.

(iiiy w/%---This macro charactar assumes that the
following element is the label of a pattern in the body of the
target element. "/" merely says to raplace the label by the
pattern itself during matching. Thus, the source
(CHASE (BROWN DOG) HELICOPTER) will match the target
(CHASE /S7 HELICOPTER) only if S7 labels the pattern (BROWN DOG)
in the target object.

(iv)y "?"---The processing €for this macro character is
slightly mor2 complex than for the macros described thus far.
w2t indicates that the target slement is to match anything, but
with the side-effect that the element is bound to the matching
element on the target stack. Note that the target element must
be an object rather than a sub-pattern.

For example the target pattern (SLOGAN WOMENS-YEAR (2?WHAT))
will match the source (SLOGAN WOMENS-YEAR ((WHY NOT)) with WHAT
being bound to (WHY NOT) on the source stack.

(v) "#"-~--Fyery so often it is desirable to suppress macro
processing in the corresponding e2lement of the other pattern so
that the full blown macro code can be looked at. mEn is
designed to do this. It acts like "?" in that it will match
anything and bind its element to the matching element; however,
it first turns off macro processing on the other side (except if
the element has a macro that is itself # - see below). This is
usaful for getting "code" unevaluated so that it can be
examined., Thus, the *arget (EXECUTE PARSER #PARSE-CODE) would
match the source (EXECUTE PARSER ! (] PROG()---)) with PARSE-CODE

being bound to ! (|PROG()---) in the source.

(vi) "="---This is a macro character that is restricted in
th2s kind of element which can follow it. "=" must precede an
element of the kind " (object-name message-form)", where object
is any object in the system and message-form is any form which
can be |EVALed. Thus, the full macro-element pair is
"= (object-name message-form)".

Assume "=" is in the target pattern. It tells the matcher

1. to temporarily bind object-nam2 (on tha target stack)

Chapter III

43

tc the corresponding source pattern element;

2, to |EVAL message-form;

3. if message-form doesn't return NIL, then the binding is
kept and the elements match;

4, else, 1if message-form returns NIL, then the binding is
discarded and the elements fail to match.
This feature allcws a "condition" to be imposed on the kinds of
elements that will match, a condition that <can be arbitrarily
ccmplex.

For example, the pattern

(SELLS =4INDIVIDUAL &SUB-INSTANCE INDIVIDUAL SELLER))
TICKET-TO-CONCERT)

will only match pa*tterns whose first and third elements are
SELLS and TICKET-TO-CONCERT and whose second element is some
individval who is a SELLER. SUB-INSTANCE is an EXPR which
returns T if its first argqument names a |PEXPR that is an
instance (or execution instance) of tha |PEXPR specified in the
second arqgumant; e€lse SUB-INSTANCE returns NIL,

If JOHN is such an individual, then the source pattern
{SELLS JOHN TICKETS-TO-CONCERT) would match the target above
with INDIVIDUAL being bound to JOHN on the target stack.

(vii) v"y"---Without loss of gesnerality assume that "¢
precedes a target element. Then "¢" informs the matcher +hat
the source element must be a SUB~INSTANCE (as just defined) of
the target =lement. Thus, YSELLER will match only instances (or
execution Instances) of SELLER or instances (or execution
instances) of <subsets of SELLER. The matching SUB-INSTANCE is
assigned as value of SELLER. Finally, note that ¢X matched
against ?Y will result in the creation of a new instance of X to
be assigned to Y (see macro conflict table, Figure 3.1).

(viii) “eg¥W---This macro charactar precedes an atomic
target elemant and binds it to the corresponding source element
as long as that scurce element is the name of the source object.
Thus, the target (BEATS ¢ME) matches the source (BEATS YOU) if
YOU is +the source object. This is us2ful mainly in accessing
data from internally named | PEXPRs or yet to be named |PEXPRs

Chapter III

44

(such as new execution instances).

This set of macros is a preliminary set which has been
found to be useful in the examples I have considered. Many more
could no doubt be contrived. Although they cannot be nested,
they <can be used together in the same pattern provided they are
attached to separate elements, And when such features are used
many standard programming langquage features can be simulated.
"2" allows parameter passing and +the binding of arguments;
"1 gives a procedural capability and when a "!" is opposite a
"?" then a call-by-result is evident, For example, the source
{FWIMP X 1Y ?ANSWER) matches the target
(FWUMP ?PARAM1 PARAM2 !(CCNS PARAM1 PARAM2)) with PARAM1 being
bound in the +target object to X; PARANM2 being bound in the
target object to the value (in the source object) of Y (say
VAL-Y) (effectively call by value); and ANSWER being bound to
th2 result of CONSing PARAM1 TO PARAM2, =.g9. (X . VAL-Y) (i.e. a
procedure in the target object and a call by result in the
source) .

This brings up the question of what exactly are the
advantages of using pattern matching rather than direct function
calls? There is, first of all, the ability to match
ncn-procedural patterns and the ability to use procedural
information (through the use of "¢, niw, n=0v_ and other
macros) neither of which are normal function calling abilities.,
Moreover, there is the fact that pattern matching is less
definitive about what are arguments, valhes, procedures, etC.
In one cas2 7?PARAM1 might act as a call by value, in another
case something else, depending on its corresponding element,
Another difference is that the use of pattern matching in
message passing between |PEXPRs allows multiple procedures to be
attached to the same object in the sense that more than one
pattern could match (potentially), and the sender has no way of
knowing which one will. Fipally, failure to match techniques

associated with the matcher go well beyond the scope of most

Chapter III

45

prcgramming languages. In summary, matching has been designed
to be more general than the usual procedure calling mechanisms.
The paradigm +hat a subset of the matching capabilities
co-incides with some of the standard programming language

features.

3.4.2 pDifficulties with Macros

Throughout the discussion of macros, an unstated problenm
has existed: what to do if an elament in *the source pattern and
the corresponding element in the target pattern are each
preceded by a macro character., Most of the time the resolution
of the conflict is just common sense, as will be seen if +the
magcro conflict table, Figure 3.1, 1s studied closely. The

occasional difficulties are explained there as well. Note that

the table 1is symmetric with r2spect to source and target

elements.

180 - .
ITA - JEVAL SO; |EVAL TA; if equal, match
siiCceeds, .
$TA - {EVAL SO; EVAL TA; if equal, match
SlicCceeds. i
/TA - _|EVAL SO; expand TA; if -equal, match
succeeds.
TN - +EV&L SO0; TA <-- resul%t; match succeeds.
#TX - TA <-- 150 (un]EVALed); match succeeds.
=ITA cond-TA) - EVAL SO; _TA <-- result; |EVAL
gop%-T!; IT non-NIL, succeed; else unbind and
fail.
*Té - |EVAL SO; if result is_a subjinstance of TA,
TR <-- result and succesed; else fail.,
¢TA - |EVAL SO; TA <-- source object; if equal,
match succeeds; else fail.

$s50 - : . '

= $TA - EVAL SO; EVAL TA; if egual, match succeeds,
T - EVAL sSO; expand TA; 1if equal, match
Sicceeds.
?TA - BVAL SO; TA <-- result; match succeeds.
#TE - TA <-- $S0 (unEviLed) ;_match succeeds.
=TTA cond-TA) - VAL SO; TA <-- result; {EVAL
%ogg—TK; IT non-NIL, succeed; else unbind and

ail.

*Tg - EVAL SO; if result is a subinstance of T&,
K~ <-- result and succeed; else fail.
¢TA - =TVAL_SO; TA_ <-- source object; 1if equal,
Succeed; else fail,

/50 - .
/IA - expand SO; expand TA; if -equal, match
succeeds.
?TA - expand SO; TA <-- result; match succeeds.

Chapter III

A <-- /50 {unexpandedh;

d-TA) - expand SO; TA <
IT" non-RIL, succesd;

tch fails (pattern can't be subinstance

be

match succeeds,
result; EVAL
2lse unbind and

fails (pattern can't source

Ol-3 .3 O3
Ul e -0

Ol Okt Q| i1+

250

1

<..-.
<-- 250
<-- |TN:
succeads,

UN; match succeeds.
match succeeds.
TA <-= jUN; | EVAL

2lse unbind and

l—"?-l?ﬂ'
0

<-- 50 <-- a nevw instance of TA;
G PR, K

match

1D I+
W

@ e Mo Wnln
n @ =300

Q
* ne

o

source object; match

Ql= Ql= S

Q
®

SR ElHD O3
(]

s k= Ol lj3E-9

ltn OS3aAdlo wtunlown

<-- #TA; TA <-- #50; match succeeds.
d-TA) - 80 <-- =(TA cond-TA); TA <-=- |UN;

match succeeds.
TA <-- |UN; match

i -2
Qs
[=
[¢}

succeeds,

_TA -
U'E%d
elsa
g
1f

<-- TA <=~ source object;
NIL succeed; else unbind and

T == 80 <== |UN;
|EVAL of cond-TA are
fail.
50 K== #
non-NIL

if both
non-NIL,
TAS,
unbin

VAL cond-SO;
ail.

| EVAL
then

EVAL
and

d
st

@ 20N

naw instance of
succeed; else

E
If

mﬂmqqmmmnlmnmma
e L E e e (o L L L e
O =se I~ OOCiBO

non

i

TA - match succeeds if TA is a subset of SO or
U0"is a subset of TA; a new instance of the
iowest one is created and bound to both TA and

50,

[SO <-- TA <-- source obgect; it

o is_ a subinstance of he object
else unbind and fail,

A source
bject so,

succeed;

N ct:

A - TA <-- source object;
and

i hey are +the same,

SO <~-- target ob
succeed; else unbin

) 4

T
E
a

rhHl®

b

46

%he iourc eiemen
e target elemen
Y means assign_ X
s a special NIL-1like

c ern

a
e% Ea%%ern
atch fails
eans "unassigned

n %our
n targ
if m

§

are incompatible levels,

Figure 3.1 - Macro Conflict Table

It should be noted that there can be situations when
spacifically
?5C is matched against (TA71 TA2

(1) +se TADN);

there

Chapter III

47

(ii) #SO0 is matched against (TA1 TA2 ... TAn):

(iii) =(SO cond-S0) is matched against (TA1 TA2 ... TAn).
In these cases the source element is uniquely replicated n times
so that we try matching

(2S01 ?2S02 ..., ?50n) against (TA1 TA2 ... TAn):

(#s01 #s502 ,.. #SOn) against (TA1 TA2 ... TAn);

(=(S01 cond-501) =(S02 cond-S02) ... =(SOn cond-sSon))
against (TA1 TA2 ... TAn).

Then the source macro its=21f is match2ad against the list
{sc1 s02 ... SOn) formed as a result of the matching; that is,

?50 against (SO1 SO02 ... SOn);

#S0 against (SO1 S02 ... 50n);

= (SO cond-S0O) against (SC1 S0O2 ... SOn).

Any other multilevel ambiguities are handled by the rules for
pattern matching or the macro conflict table restrictions.

A more serious conceptual problem involving macros can
arise because of the current left-to-right matching of message
pattern e2lements against receiving pattern elements. Assune
there is a nmacro within a pattern that is a call to a
ccmputation full of messages to other |PEXPRs and other
side-effects. Assume further that the pattern macro is executed
during a pattern match and returns a value which successfully
matches the corresponding element of the source pattern.
Finally, assume that the pattern match later fails on some other
element. Then, all the side-effects of the first macro,
including execution instances built during execution, erroneous
patterns asserted, and so on, are still around!

~ There is no way around this in |JLISP, but with sensible
precautions it turns out that the problem can be circumvented.
These precautions involve making sure that a |PEXPR has only a
limited number of "procedural" patterns and that these have
unique first elements. Possible corrections to |JLISP itself
could be made, such as for example, matching all constant
elements first, or re-designing the matcher to have complete
back-up <capabilities including the ability to undo things.
However, this is not an urgent priority, and, in fact, it's ogen

Chapter III

ue

to debate whather it should be since a fundamental philosophy of
|LISP is keeping around all information, including blind alleys,
for later perusal.

3.5 Pointers and Searching

Many times TI've spoken of "links™ or "pointers" between
pattern expressions. TI've relied upon an intuitive grasp of
these terms to get across most of what I have in mind, but there
is a much more precise meaning for "pointer" 1in the systen.
Before giving it, however, I would like to bring out a couple of
interesting features of patterns in general.

One way of regarding a pattern is as essentially an n-ary
predicate whose head 1is a relation and the rest of whose
2lements are the objects filling the relation's slots. 1In this
view, a pattern derives its meaning primarily as a result of how
it matches other patterns, although it can be treated as a more
procedural entity both in failure to match processing and in the
action of macros associated with its elements.

Another equally useful view of a pattern is as an n-ary
"link" among objects in a semantic network. The object
containing the pattern is the source of the 1link; the pattern
e¢lements are the objects connected by the link. Thus, the
pattern (TRADE SELF TICKET-BUYER MONEY TICKET) occurring in the
BUY pattern expression might be diagrammed as shown in Figure
3.2, although many other network realizations are possible.

Thus, the system can be viawed as a large semantic network
of nodes (objects) and arcs (patterné} connecting the nodes.
Frcm any particular pattern expression, only the closely
ccnnected nodes can be accessed directly (i.e. any objects
occurring in patterns of the |PEXPR body can be "seen").

The usual semantic network allows only binary links between
objects, and for good reason: they are often (although not
always) *he most important kind of 1link. Moreover, they are
zasily understood because they break down into three mcre or

less well-defined parts (the sourcs node, the destination node,

Chapter III

TRADE | SELF—T1— | TICKET

BUYER

MONEY

TICKET

BUY

Figure 3.2 - A Small Network

INSTANCE-OF

COMPOSER

BEETHOVEN

Figure 3.3 - INSTANCE-OF Link

49

Chapter III

50

and the arc itself) and also because thay can be drawn, allowing
people to use their spatial intuition in understanding thenm.

In this representation scheme <certain kinds of vpatterns

called pointers take the placs of binary arcs. A pointer is a
three elament pattern, the first element of which is the arc and
can be any relation, the second =2lement of which is the source
and must be the |PEXPP containing the pattern, and the third
element of which is the destination and can be any object, macro
expression, or sub-pattern, Thus,
(INSTANCE~-OF BEETHOVEN COMPOSER) occurring in BEETHOVEN would be
a pointer and could be graphically illustrated as in Figure 3. 3.
This would be termed the "INSTANCE-OF pointer from BEETHOVEN to
COMPOSER". BEETHOVEN may also have a pattern

(STATURE BEETHOVEN ! (|POINTER STATURE 'GREAT-MAN))
which would be a pointer to the macro expression

! (|POINTER STATNRE 'GREAT-MAN)

(unavaluated) ; or could have

(WANT BEETHOVEN (LIKE YPEOPLE YBEETHOVEN-COMPOSITIONS 10))
which would be a pointer to the unsvaluated sub-pattern
(LIKE yPEOPLE ¥BEETHOVEN-COMPOSITIONS 10).

It shculd be noted that the pointers described here are
one-way pointers. Pointers +to objects do sometimes have
inverses, but they must be explicitly stored in the destination
object. Thus, if (R X Y) is a pointaer in X, then (R-INV Y X)
wvould be stored in Y if R-INV were the inverse of the relation
Ris For example, (STPERSET CAMEL DROMODERY) in CAMEL might have
a corresponding (SUBSET DROMODERY CAMEL) in DROMODERY. Now,
fortunately when a pattern is assertéd, the |ASSERT | EXPR (see
Appandix I) executes an IF-ADDED procedure associated with the
head of the pattern, This IF-ADDED procedur2 should know enough
to check if the pattern is a pointesr, if so to check with the
head of the pattern to see if there is an inverse, and if so to
assart the inverse pattern in the destination object. Any other
IF-ADDED processing could also be undartaken.

In the example, then, the relation SUPERSET might contain a
pattern - (INVERSE SYPERSET SUBSET), thus allowing [|ASSERT tc

Chapter III

51

effect the appropriate inverse pattern. This explicit inverse
facility 1is wuseful in allowing ths system to analyze its own
relations {(i.e. it can "see" what the inverss of a relation is),
in forcing the user to recognizz the issue of inverses rather
than hiding it with automatic inversing, and firally ir enabling
tha wuser to <choose names for the inverse relation that are
appropriate to it.

Pointers are very useful for accessing entire environments
surrounding a pattern expression; tha*t 1s, pointers of a
particular type 2z can be followed from A to {Bi} then pointers
of the same type z can be follow2d from {Bi} to {Ci}, and so on.
R1ll objects so accessed are said to be in the z-environment of
A,

There are many possible environments in the system:
PART-OF, THEN, ISA, EX-ENVIRON, stc. Special search routines
have been devised to access data in the latter two., The
ISA-environment is the name for the environment that can be
accessed by following EX-INSTANCE-OF, or SYPERSET pointers from
scme |PEXPR. It is the traditional 'generalization" hierarchy
into which searches can be directed for knowledge that has been
abstracted from instances. Such a search is called an ISA
search and 1is «carried out breadth-first until eventually it
converges on the top object. As Fahlman (1975) has pointed out,
the convergence property of ISA hisrarchies, combined with their
relative shallowness (he argues no more than 20 levels of 1ISA)
gives hope that such searches won't be explosive. Moreover, if
the ISA 1link isn't overused +o delineate every kind cf
dependency, the branching factor should be fairly small, further
enhancing search times.

The other major kind of search is into the dynamic or
execution environment (EX-ENVIRON) surrounding an execution
instance, In this environment are the supergoals for an object
and the top-down decisions that have been made to this point.
It thus forms a notion of context and is consequently often
searched for information as to purpose, current status of

certain features, and so on. Such a search is called an

Chapter III

52

EX-ZNVIRON search and is linear with the number of (|PEXPRs in
“he dynamic context.

These two search types are so vital, that the special
ncn-pattern-matching macros "A"™ and "%" have been set up to
direct them. Thus,

A(w x y z), if seen by |EVAL in OB1 will result in an
ISA-search (breadth-first) £from O0B1 for a pattern matching
(WX Y Z) e

(w x y z2), if seen by |EVAL in 0B1, will result in an
EX-ENVIRON search from 0B1 for a pattern matching (w x y z).
These macros should not be confused with the pattern matching
macros which are only seen by the matching routines and some
other select operations., "A" and "%" are merely convenient
shorthand for actual calls to the general |SEARCH routine (sce
Appandix TI). Thus they can be used wharever a regular call to
| SEARCH could be emploved.

There is still arother non-pattern-matching macro, "-"
which is merely a "'" with *he diffsrence that all *"t!v, wgw,
nan, npn, vLn_ wenw_ and "/" pmacros are executed inside it.
Thus, =(A !B C) would be the same as ' (A BLARNEY C) if the value
of B were BLARNEY in the context of the executing {PEXPR.

3.6

1+

nterrupts

In section 3.3.2 (describing the message passing behaviour
of |PEXPRs), it was mentioned that some message patterns are
fundamentally instructions to the interpreter rather than
patterns to be matched in the body of the |PEXPR. One example
was given showing how the interpreter intercepts a
(1 PRIO= number) message and ass2rts it in the body of the
receiving |PEXPR. There are several other patterns of this kind
which essentially allow a super-|PEXPR to impos= certain limits
on the execution cf a sub~|PEXPR.

One such pattern is (JTIME= number) which puts a limit on
+he time a |PEXPR has to answer a message. The receiving (PEXPR

has "number" wunits of time, where the time is measured in 100s

Chapter III

53

of calls to | EVAL (e.g. number = 1 implies that there is a limit
of 100 clock units imposed on the sub-object's perambulations).
When this limit is exceseded, control returns to the |PEXPR which
set the limit, and it must dacide what to do. Among its options
are to give up, to restart the sub-object (in which <case the
same limits apply again), or to perform further computations irn
an attempt to ascertain what to do.

In more Jetail, +this is what happens. When a (|TIME= n)
pattern is discovered during message passing, <the interpreter
asserts the following two patterns in the body of the receiving
axecution instance:

(JTIME-LIMIT= receiving-ex-instance n)

(|ITIME-NOW= receiving-ex-instarnce n)

Evary 100 times through |EVAL, the EXPR |"PDATE-TIMER reduces
all |TIME-NOW= patterns in the execution environment by 1, i.e.

(|TIME-NOW= receiving-=2x-instance (n-1))
replaces the previous pattern. Note that this means that the
|EVAL count could be out either way by up to 99 |EVALs since all
| TIME-NOW= pa*terns are reduced at once (a simplification
imposed for efficiency). When any given execution instance has
a |TIME-NOW= pattern reduced to 0, than an interrupt is
genarated, | TIME-NOW= is reset to |TIME-LIMIT= (for the
particular interrupted execution instance only), and the
immediate super-goal (in the exacution environment) of the
interrupted execution instance 1is restarted. The return
condition set for this kind of return is

({ RBETURN-COND ex-environ-inst .
{TIME= (interrupted-ex-1nst current-ex-inst) n)

asserted in the super-goal. If the sup2r-goal eventually tries
to restart the ccmputation the same interrupt conditions apply.
(Note also that it must go all ¢the way to the executing
ex-instance <rather than the interrupted ex-instance, since the
executing ex-instance was actually processing at the time of
interrupt).

‘The timing mechanism described here is gquite crude, but
nonetheless is useful. | TIME= interrupts are useful for

Chapter III

54

allocating time resources, especially in simulated parallelism
or for running in "careful" mode, where a process can be run for
a short time before its caller re-imposes control to make sure
it is proceeding on course,

Ther=2 is another kind of condition that can be imposed by
one pattern expression on its descendants: the (COND= pattern)
message pattern. It essentially s*tates that anytime there is a
pattern matching the |JCOND= pattern asserted by the sub-goals
then an interrupt should return control to the super-goal which
set the condition. Much the sam2 kind of processing occurs here
as for the |TIME= interrupts. That is, a

(|ICOND= execution-instance pattern)
is left in the relevant execution instance, and everytime the
| ASSERT functicn 1is called, it 1looks inte the execution
environment for any matching |COND= patterns for the |ASSERT
pattern. Any such match results in an interrupt being
genarated, a return condition

{| RETURN-COND ex-environ-ipst .
|[COND= (interrupted-ex-inst current ex-inst) pattern)

being s2t in +the super-goal to the interrupted execution
instance, ard finally, control being resumed in the super-goal.
As in the |TIME= case, enough information stays around for the
whcle process to be started again if desired. |COND= limits are
helpful when it is known that a certain sub-goal is going wrong
if it asserts certain patterns..

A €final pattern of this type is (|END= n) which just gives
a limit on the number of times a particular sub-goal can bz
interrupted before it can no longer be restarted. Thus, a
{]END= 5) message pattern would allow no more than 5 restarts of
an interrupted sub-goal. After a |END= limit has been exceeded,
the return condition is

(1RETURN-COND ex-environ-inst :)
| END= (interrupted-ex-inst currant-ex-inst) val-int)

where "val-int" is a time limit or a pattern depending on which
kinl of interrupt sent the |END= limit over the top. This is
useful in eliminating potential infinite 1loops of sub-goal

restarts.

Chapter III

55

One final point of interest: the EXPRs |SEMON and |SEMOFF
will turn a flag (semaphore) on or off in the «current pattern
exgression. Before doing any |JTIME= or |COND= interrupt
ckecking, the current status of the nesarest such flag in the
execution environment 1is determined, and if it is c¢n, ne

interrupts are processed anywhere in the execution environment,

3.7 Simulated Parallelisnm

There are two ways to simula*e parallelism in the system.
The first uses |TIME= limits to essantially assign time slices
to each sub-goal., A JEND= limit can be used to limit the number
of restarts for a particular object. Thus,

(1PARALLEL

{ob]ect1 ITIHE= n1; rest-of-message-patterns
object?2 TIME= n2) rest-of-message-patterns

(objectk (ITIME= nk) rest-of-message-patterns))

will send objecti1's message patterns to objectl for time slice
n1, then will send object2's message patterns to object2 for
time slice n2, and so on through objectk. The process is then
repeated, restarting every object which had a |INTERRUPT-TIME=
return condition for another time-slice, but, of course ignoring
those with NORMAL return. This goes on until all have
terminated normally or until |®ND= limits (if any) have been
exceeded.

The other way of simulating parallslism makes use of
priorities and the execute queune, Several objects can be
scheduled at once with differing priorities, and they will
eventually run in the order of their priorities. If these are
to be restarted, however, they must be explicitly resumed by the
pattern expression which scheduled them. The EXPR |SCHEDULE can
be used to accomplish this:

(|SCHEDULE object1 object2 . . . objectk)

Note also that the objects must somehow be initialized with
their messages and so forth in place. This method doesn't tend

Chapter III

56

to be too convenient or to give much control over resource

allocation for each object, but it is useful for a much quicker
kind of breadth-tirst ability than th2 time-slice method gives.

This concludes the description of the capabilities of the
current version of |LISP, In Chapter IV I would 1like to

evaluate the scheme by comparing it to other approaches and by
locking at its strengths and weaknessss.

Chapter III

57

The system for representing knowledge presented in the last
chapter has bz2en described more or lass at face value without
any attempt to evaluate it. 1In this chapter I would first like
tc compare the scheme developed here to some other approaches,
particularly the PLANNER / CONNIVER language development and the
frame proposal in its many guises. In this way the influencss
on this research should be revealed and the strengths and
weaknesses should become clearer. I would then like to focus
back on the repre2sentation and language issues to see if the
approach outlined here does ind22d shed light on any of then.

4.1 The PLANNER / CONNIVER Approach

The most important influence on |LISP has been the
PLANNER / CONNIVER (Hewitt (1972), Sussman and Winograd (1970),
McDermott and Sussman (1974)) development, together with the
Bobrow and Wegbreit (13973) control paradigm. Since CONNIVER
enbodies most of the crucial asp2acts of this line of research, I
will mainly use it for comparison., The essential features of
CCNNIVEER are

(1) a data base of contexts, each containing

assertions and methods, and each representing some

state of the world;

(ii) a pattern matcher, replete with special macros,

to access data in this data base;

(iii) a wvaried set of procedures to manipulate the

assertions;

(iv) a «co-routine control structure to implement all

this.

I would like to lcok at |LISP's capabilities in each of these
areas.

Chapter IV

58

4.1.1 The Data Base

The major differences between |LISP and CONNIVER with regard
to the data base is the separation of context from control. 1In
{LISP there is no separate context mechanism: contexts are
inextricably bound to pattern expressions (since pattern
expressions are the primary object of JLISP, their features will
be used almost always in explanations and justifications), and
cannot exist independen+tly. This is, I feel, an important
ccnceptual point (also illus*rated in many recent systenms,
2.9, Bobrow and Winograd (1976), Hendrix (1975), Havens (1978),
Sandewall (1975)): all data 1is associated with some definite
"ohject" and has meaning only when that object has meaning to
*he system. To b2 sure if it is desired to tie a context to a
particular access environment, CONNIVER <can use a variable
CONTEXT +that can be set in that environment to point to the
context, but this is both awkward and ignores the usefulness of
considering contexts to be objescts that can be reasoned about,
s2nt messages to, and otherwise tr=2ated like other objects. The
assumption of object - context identity is one of the more
unifying concepts in the system, and eliminates the distinction
between data 1in one place and procedures operating on the data
in another.

Contexts also differ from pattern expressions in that
contexts are arranged in a "visibility hierarchy" while |PEXPRs
are on the surface all invisible to one another. But, this is
only on the surface: |PEXPRs consist of patterns which can
contain elements that are the names of other |PEXPRs, and hence
there can be, in essence, arbitrary 1links between |PEXPRs.
These 1links can be traversed by sending messages along them and
receiving replies, thus making data in |PEXPRs available to one
another, Although this is powerful, it does tend to be somewhat
slow for simple data access; hence, the |LISP provisicn of
spacial execution and ISA environment searches that speed up at
least a couple of the more commonly needed access methods.

Chapter IV

59

4.1.2 Pattern Matching

{LISP's matcher varies little in any theoretical way from
CONNIVER's. There are, however, a couple of distinctions.
First, +the macros in |LISP ars somewhat different and seem to
provide a bit more flexibility (especially "=" and "#m),
Second, the matcher is totally symmetric in (LISP, displaying no
preference to source pattern over target pattern. In fact there
is no distinction between patterns and assertions, further
unifying the system. But, most important is the "don't give up"
feature of |LISP's matcher: if it is unable to find a match
within the body of a {PZXPR, it may (at the discretion of the
pattern head) look elsewhere for a match. This gives robustness
and power to the matchar; it also has the drawback of
potentially getting out of hand combinatorially, like any other
such automatic feature., With careful selection of failure to
match conditions, I hope that this drawback will remain only

potential!

In CONNIVER there are at least four dis*inct procedure
types: ordinary LISP functions, CONNIVER procedures, methods,
and generators. In |LISP there are also several different
procedure *ypes, including LISP functioans, |LISP procedures, and
{ PEXPRs. The interesting comparisons are between methods and
generators on the one hand and |EXPRs and |PEXPRs on the other.
Methods are part of the data base and work to keep it consistent
as well as help to access data from it. The problem with them
tends to be one of combinatorial explosion since they are called
in automatically by pattern matching rather than in a nmore
controlled fashion.

IF-ADDED and IF-REMOVED methods have been fairly directly
incorporated as procedural patterns associated with selected
| PEXPRs (i.e. those whose name can appear as a pattern head).
Such "methods" are invoked whenevar a pattern with that head is
| ASSERTed or |REMASSERTed. This differs somswhat from CONNIVER
in +that the pattern matching to find a method is restricted to

Chapter IV

60

only scanning patterns of the he2ad |PEXPR, not the entire data
basza, Of course, the method itself, once activated, could do
any amount of (possibly explosive) further processing, bhut since
I am not overly concerned about the existence of inconsistent
information (as long as it isn't present in the same execution
environment), I don't wvisualize such methods as being too
elaborate.

CONNIVER IF-NEEDED methods have an analogy in the failure
to match processing of |PEXPR message passing; that is, a
failure to match "method" is called in only if it is needed
because of a lack of suitable patterns in a receiving |PEXPR.
Th2 difference between IF-NEEDED methods and failure to match
processing is once again that the search for a FAILUYRE-TO-MATCH
pattern requires the matcher to only look through the "head"
| PEXPR rather than the entire data base.

Generators are CONNIVER co-routines which can be executed
until they produce some datum, and can later be re-entered if
the datum proves unsatisfactory. Both |EXPRs and |PEXPRs give a
similar co-routine ability, |EXPRs by allowing the saving of
stack pieces within a |PEXPR, and |PEXPRs by keeping an
2xecution instance around which can later be restarted. For
efficiency, the usual way of doing generation is by using
| EXPRs:; in fact +the |SEARCH generator capabilities are
implemented in just this way.

The important distinctiorn between |LISP and CONNIVER
procedures 1is, however, the centrality of their role. CONNIVER
is set up as basically a LISP-style procedural 1language with

occasional forays into pattern directed invocation as a
necassary declarative component. |LISP on the other hand, is

basically built around pattern matching, and the procedural
capabilities drop out as more or less a side effect of this
matching, Thus, most procedures are in fact embedded as "!" or
"§" macros in patterns of |PEXPRs, not as separate functions,
This means they are treated much as any data would be (e.g. they
are present or absent only if the |PEXPR containing them can be
looked at). Hopefully, this is one small step along the road to

Chapter IV

61

prcgram / data symmetry, although many global and distinctly
functional objects remain (e.g. TXPEs, SUBRs, [EXPRs).

4.1.4 control

CONNIVER's control 1is fundamentally that described by
Bobrow and Wegbreit (1973). This is also *true of |LISP: that
is, CLINKs are egquivalent +to EX-ENVIRON pointers; execution
instances are Bobrow and Wegbreit frames (except they aren't
separated into two parts, and hence there is no BLINK); there is
a continuation point, return condition, etc. similar to that of
Bobrow and Wegbreit. OFf course, there are differences. There
is no ALINK since its data accessing function has been split
between the CLINK and more semantically relevant (to the domain
being represented) 1links such as SUPERSET, INSTANCE-OF, etc.
That is, it is often necessary to access data in a variety of
environments such as execution, ISA, =tc., rather than in one
all encompassing access environment.

The specific ability that the ALINK / CLINK distinction
provides of allowing a process to access data in one environment
while returning control to another can be accomplished in |LISP
by sending a message to an old named execution instance. To
handle this message a new execution instance of the o0ld
execution instance must be <created. The old execution
environment can be accessed using the old execution instance's
CLINK; the new execution environment can bhe accessed using the
new execution instance's CLINK. Having two execution instances
is necessary if old "episodes™ are to be kept distinct from new
"episodes" (see Appendix I - |RESTART - for a description of how
this methodology can be used to resume execution of a previously
suspended |PEXPR).

This illustrates another major difference between |LISP and
CCNNIVER: execution instance data, including internal pointers,
are stored as patterns like any other data in any other |PEXPR.
In fact execution instances are |PEXPRs like any others. Thus,
the patterns can be accessed using standard matching, and

moreover, old execution instances can be queried to provide

Chapter IV

62

episodic information about what went on in that context. still
ancther distinction between |LISP and CONNIVER control is that
execution instances stay around rather than disappearing upon
return and must be "intelligently"™ garbage collected at sonme
later date.

In CONNIVER all procedures (with the exception of certain
macro-directed LISP calls) have a Bobrow and Wegbreit frame
cr=ated for them; this 1is not the case in |LISP. Except for
messages between |PEXPRs, an exacution instance is not set up
upon a call to a procedure, the current |PEXPR stack being used
instead. Variables are accessed on the <current |PEXPR stack,
and if not found there are bound in stacks of |PEXPRs in the
exacution environment of the current (PEXPR. This use of |PEXPR
stacks 1is somewhat less wasteful on space and time in the many
cases when |PEXPRs are not communicating; in the f2w cases they
are, however, the overhead of initializing and later accessing
data in patterns probably more than makes up for the saving in
the majority of cases.

Another difference between LISP and CONNIVER control is the
explicit use of a scheduler to buffer contact between |PEXPRs.
0f course, it is fairly easy to implement such a scheme in
CONNIVER (as was done 1in the Reference Manual (McDermott and
Sussman (1974))), but |JLISP explicitly does SO. While
engendering some overhead, such a scheme enables
pseudo-parallelism, and adds flexibility to the systenm.

Related +o this 1is the |TIME= and SPACE= conditions that
can be imposed on the execution of a |PEXPR, CONNIVER has an
interrupt Ffeature that seems +to be mainly useful for error
genaration and co-ordinating various conflicting methods. The
one here 1is more fundamental to the problem of a super-goal
limiting the allocation of resources to a sub-gcal or otherwise
imposing conditions on that sub-goal. This is still only a
crude approach (being slow, cumbersome, and inexact), and more
sophistication is needed if a truly us2ful interrupt feature is
to be installed.

Chapter IV

63

In this section I consider work which has gone under
various labels: frames, schemata, scripts, knowledge sources,
social action paradigms, etc., Among other things this work is
centrally concerned with dividing a knowledge base into large
modular wunits each of which contains all the information
relevant to a particular concept. In |LISP, pattern expressions
ara analogous to frames, since they represent large chunks of
semi-independent knowledga.

There are many issues raised by the various frame proposals
and I would like to concentrate on a few important ones: why are
frames neseded, what do frames look like, and how do they connect
to other frames both statically and dynamically. I intend to
ccmpare various cther approaches to |LISP in the hopes of

illustrating some of its contributions.

4.2.1 HWhy are Erames Needed?

As Winograd (1974) has suggested, a system must steer a
middle course between having lots of local heuristics that help
it decide precisely and efficiently what to to in varicus
specific contexts (but perhaps make it incomprehensible), and
using a few widely applicable techniques which are easy to
understand because there aren't many of them (but which 1leave
the system vulnerable to uncontrolled computation). Frames,
hopefully, help to resolve this problem first because they give
a way of packagiﬁg information into distinct modules that can be
considered separately, thus keeping the system comprehensible;
and second because they tend to represent much of their
information declaratively while still allowing enough procedural
information to ensure reasonable processing times.
Winograd (1975) has called the 1issues raised by the latter
trade-off the procedural / declarative controversy.

I fe=l that pattern expressions contribute some things of
worth here. Certainly, they allow information to be packaged
into groups of patterns which contain the basic "facts" about
scme concept, hence allowing the <concept to be (at least

Chapter IV

b4

partially) considered apart from its comrades. Thus, they are
gquite well suited +to the first role above. But what about
information that isn't directly in a |PEXPR but must be accessed
from some other object - is there too much of this kind of
inter-object activity to maintain the modularity? This, of
course, is a crucial problem for all frame systems, and I can
only say that I share the general frame faith that the packaging
can often be done successfully.

The second contribution of frames is to
procedural / declarative 4issues. In this respect there seem to
be two main views of frames:

(1) Frames are uniform, mostly declarative structures
which are processed by a single global interpreter. Most of the
purely procedural aspects are subliminated into the interpreter
and more or less hidden from the user. Systems of this ilk
include Schank and Abelson (19795), Charniak (1975), and
Bruce (1975).

{(ii) Frames consist basically of two parts, one a mostly
declarative section containing static information, and the other
a procedural component which is wused to interpret the
declarative portion and otherwise handle inter-£frame
communication., Among systens of this genre are MAYA
(Havens (1978)) and KRL (Bobrow and Winograd (1976)).

Although there are aspects of both of these approaches in
J]LISP, the main thrust of the scheme is to lower the procedural
aspects of a |PEXPR to the pattern level., Thus, procedures are
encoded as "I!" or "3$" or "=" macro elements which are expanded

when the pattern is being used to answer a message. Such macros
allow a pattern to represent procedural kinds of goaling

information or to represent very specific context dependent
knowledge directly with the pattern that needs to use such
knowledge so that the (PEXPR as a whols doesn't have to be
concerned with it. Since such patterns are accessed using the
sane matching scheme as non-procedural patterns, a basic
procedure / declarative unity begins to emerge. Furthermore

after a |PEXPR has answered a message, the resulting answer

Chapter IV

65

pattern is |ASSERTed in the receiving execution instance as a
declarative residue of procedural activities.

Thus, use o©of pattern 1level macros allows procedural
flexibility to be insertsd into 2xaminable, mostly declarative
structures, It is nonetheless important for anybody using |LISP
to attempt to abstract such low level procedures into a more
declarative plane by somehow representing what they do in ternms
of higher 1level primitives. This is a difficult task but at
least |LISP gives the modeller the choice of level at which to
represent knowledge,

"

4.2.2 What do Frames Look

I

ike

There are as many different representations for frames as
there are frame systems., I don't intend to go irnto a lengthy
discussion of the syntax or th2 semantics of the various
schemes; instead, I would like to discuss some pervasive frame
cencepts, specifically slots, preconditions, post-conditions,
and finally some issues in representation c¢f knowledge that
frames illustrate.

Minsky (1974) has proposed that a frame is composed of
fixed information at the top levels and slots at the bottom
levels which must be filled when the frame is instantiated. A
slot has associated with it markers or other indications as to
how to £ill it, the importance of the slot to the frame, what to
do when the slot is filled, etc. Winograd (1975) and Bobrow and
Winograd (1976) have generated a comprehensive computational
description of slots, complete with attachment of procedures to
£ill the slots (perhaps by inheriting such procedures from other
frames), the designation of important slots (so-called 1IMPs),
the provision of procedures that are executed once the slot is
filled, default values of varying "looseness" that fill the slot
if nothing else can be found to do so, etc.

In pattern expressions there are no slots; at least, there
are no explicit distinctions made between patterns which are
unvarying in the sense they contain no macro elements and
patterns which are changeatle because of macro elements. The

Chapter IV

66

role of slots is taken by such macro elenments. These '"slots"
ar2 filled when (and only when) the |PEXPR is being queried for
information by some other |PEXPR., They can be filled by simple
variable binding (as in the macro "?") or filled by complex
procedure (as in thea macro "I or filled wunder certain
ccenditions (as in the macro "=") eatc. And if there is no
pattern in the |PEXPR which matches the incoming pattern, then a
procedural attachment £from some other frame can occur (if the
pattern head recommends it). Certain patterns can be indicated
to be more important by using meta-patterns that contain thenm
(e.g. (IMPORTANCE (TRUNDLE ELMER ROOM4) 9)). This use of
neta-patterns is discussed more fully in Chapter VI, but it does
provide a way to designate IMPs (even though I haven't found
such designations to be all that helpful in the well-constrained
exanples I have explored). So, in |LISP the idea of slots is
generalized so that they can be viewed as any other data is
viewed,

Many frame systems (e.g. Bruce (1975), Charniak (1975),
Schank and Abelson (1375)) talk in terms of pre-conditions which
are rapid checks that must be satisfied before a frame can be
considered to be relevant and post-conditions which are the
residual effects of the frame's activation. These conditions
are usually in declarative form so that they can be -easily
understocd by the user and so that they can be matched against
the data base on entry (for pre-conditions) or asserted in the
data base on exit (for post-conditions). TI believe there is
scmething quite inflexible about the
pre-condition / post-condition scheme as usually outlined: such
processing is done all at once without regard to context. It
seems more practical to provide some much more procedural
capability where a frame is able to pick and choose which +tests
to carry out in deciding whether it is relevant. Moreover, it
should be able to be contextually selective in regard to what it
leaves as residue once it is done. O0Of course, these various
tests would have to be fairly simple or the whole purpose of
pre-conditions (and to a lesser 2xtent post-conditions) would be

Chapter IV

67

obviated.

In |LISP there are no explicit pre-conditions or
post-conditions, although, as always, particular users have the
capability of adding (PRE-CONDITION =-======-) or
(POST~CONDITION —-======) patterns to pattern expressions. What
little pre-condition style testing there is is undertaken by
procedures within elements of patterns as they attempt to
respond to messages; post-condition style processing occurs when
these procedures as a side-effect assert new patterns (usually
in the body of the current execution instance). The key point
is that the processing can be undertaken when wanted by the
relevant receiving pattern, and isn't restricted to an
all-or-nothing lump associated with the entire [PEXPR regardless
of the receiving pattern.

This explanation has suppressed a rather important use of
pre-conditions: their significance in pattern-directed
invocation; that is, it is usually something like pre-conditions
that are used when testing for the relevance of any frame before
letting it loose. While for the areas in which |LISP has been
used so far it has usually sufficed for |PEXPRs to know each
other by name, it is a crucial ability to be able to invoke
JPEXPRs in some 1less direct way. To this end, an associative
activation scheme is in the early stages of development. It
essentially allows |[PEXPRs to contact each other along "links"
in the implicit semantic network in which they are embedded (see
section 4,2.3 for a fuller explanation of this semantic
retwork). Associative activation itself is described to a
greater extent in Chapter VI.

At this point I would 1like to consider some important
issues about how information is represented in a frame. First,
consider the distinction bastween concepts which directly concern
t+he frame and «concepts which are not so central. This is
basically Woods' (1975) discrimination between definitional
properties and assertional properties, a distinction which has
been explicitly included in some systems (e.g. Levesque (1977),
Schneider (1978)). I believe that the

Chapter IV

68

assertional / definitional categorization is really a catch-all
and should be split along many dimensions, each of which
delireates a different aspect of a concept's relevance to a
frame. This is not a new idea, so that Tesler et al (1968)
outline several such dimensions (e.g. charge, significance,
credibility, foundation), Winograd (1975) talks about 1IMPs,
Becker (1969) proroses criteriality. In |LISP, of course, no
ccmmitment has been made to the particular dimensions to choose
(although IMPORTANCE and CORE are two such dimensions wused by
some system procedures); but the user can specify any that he
decsires by using meta-patterns (see Chapter VI).

Another 1issue arises in systems (such as, for example, KRL
(Bobrow and Winograd (1376)) or MAYA (Havens (1978))) which
encode information concerning the containing frame in
attribute / value pairs, while other information is encoded in
asszrtions. Thus, the facts that CASA-LOMA is a castle and is
in Toronto would be kept in the CASA-LOMA frame as
attribute / value pairs (ISA CASTLE) and (LOCATION TORONTO)
while another relevant piece of data (ISA PARAPET TOWER) would
be stored in CASA-LOMA as a thrse element assertion, While
often a useful abbrasviation, such an explicit syntactic
difference can be harmful in that the same piece of information
may have to be represented in two different ways depending on
where it 1is stored (e.g. it would be sufficient to use the
attribute / value pair (ISA TOWER) ir the frame PARAPET). In
|LISP all such information is encoded in "full blown" patterns,
since it it important to failure to match processing that the
number of "arquments" of the pattern that has failed be
consistent.

The use of such full blown patterns also helps point out a
problem which many systems finesse by the use of
attribute / value pairs. This is the problem of distinguishing
information that is about a frame from information that is about
a frame's instances. For example, an attribute / value approach
might put (NUMBER-OF-LEGS 2) with the PERSON frame and be
totally unambiguous. But when it is realized that what is

Chapter IV

69

really being said hers is (NTMBER-OF-LEGS PERSON 2), then a
difficulty becomes apparent: tha class PERSON does not have 2
legs; instances of tha class do. |LISP forces this kind of
distinction to be made explicitly, e.q.
(NUMBER-OF-LEGS YPERSON 2), Ever with attribute / value pairs,
a system will fail if something like (SELLS ALCOHOLIC-DRINK)
were to be associated with the BARTENDER frame., What is really
meant here is that an arbitrary instance of the class of
bartenders sells an arbitrary instance of the class of alcoholic
drinks, i.e. (SELLS ¢¥BARTENDER §ALCOHOLIC-DRINK). To be sure,
frames encoding the SELLS or NUMBER-OF-LEGS relations might keep
this information straight, but for now, at least, it seems to me
to be better to be explicit about what information 1is about
instances and what about obj=cts.

The more so since this has some relevance to a closely
related issue: the problem of discriminating "meta"™ information
about the frame itself from "real world" information about the
object represented by the frame. This distinction has not
always been well delineated in AI or elsewhere for that matter.
Keeping information about instances distinct from information
about classes helps somewhat here. However, it doesn't solve
the whole problem: the pattern (NAME FRAME27 ALFRED) could mean
that the instance FRAME27 itself is named ALFRED or that the
person referred to by FRAME27 is named ALFRED. Which is right
depends on what is meant by NAME in the system. If NAME nmeans
"the name of the object represented by the second element is the
thing in the third element" then fine; but there had better be
another relation INT-NAME, say, indicating "the name of the
internal object that is the second element is the third
element"™, so that (INT-NAME FRAME27 FRAME27) could be used. The
burden for keeping this straight is on the system user, although
once he has decided what's what, he can put information with the
relation itself indicating whether it is a "real world" or "meta
world" relation.

When two |PEXPRs are being compared, it is often
inconvenient to query each pattern head as to whether it is

Chapter IV

70

relevant to the comparison. Thus, a meta-pattern

(CORE ZORK /PAT1 /PAT2 . . . /PATH)
indicating sub-patterns which are the core concepts of ZORK can
he asserted. This, too, is useful in delimiting internal from
dcmain information. No doubt other meta-patterns could be built
to further specify finer distinctions, but this hasn't been of
central concern to the research.

Next an interesting point regarding the type / token
distinction should be noted. When an old execution instance is
sent a message, in order to respond to that message an execution
instance of that execution instance is set up just as it would
be for any message to any other |PEXPR., This allows the o0ld
execution environment to be discriminated from +the new (see
section 4.1.4); it also means <*‘hat effectively there are
instances of instances in JLISP. This approach is similar to
the uniform subset / superset designation of TLC
(Quillian (1969)), differing only in that in |LISP the user is
encouraged to make a distinction between an instance, which
represents an individual, and other |PEXPRs which are not
individuals.

4.2.3 Inter-frame Connsactions

Because a frame cannot know everything about everything, an
important aspect of frame theory involves the manner in which
frames pass information amongst themselves, There seem to be at
least two different aspects to consider: static connections and
dynamic connections., 1In the former case, certain static pieces

of information are contained in several frames at once; in the
latter case, one frame explicitly calls in another frame to

achieve some purpose or gain scme information.

There are two basic issues that concern static connections:
the sharing of static information amongst frames, and the
presence of certain static links connecting frames.
Minsky (1974) and later Charniak (1975) talk in terms of
ccllections of related frames "Ysharing terminals", that is when

a slot is filled in frame A as it recognizes a scene, the sanme

Chapter IV

71

slct may also be filled in frame B automatically. Such shared

information allows frame B to save work if it eventually must be
called in to recognize the scene. This ability also is very
useful in deciding what frames are rslated to one another; that
is, 1f two or more frames share the sam2 information, then this
is persuasive evidence that they are somehow related.

In |LISP "terminal sharing" amongst |PEXPRs is not
encouraged: patterns are contained in "boxes" which aren't
supposed to share their information with one another. Sharing
of patterns should only be undertaken by message passing between
{ PEXPRs., This means that if a |PEXPR turns out to be unsuited
for a particular task, then any patterns it has asserted will
not be automatically copied over to the new |PEXPR which 1is
called in to <tTeplace the unsuitable one. Instead, the new
| BEXPR is given the perogative to decide what things, if any, it
may attempt to salvage from its comrade. This is a procedural
approach %o achieving '"shared terminals™. It is not altogether
satisfactory since, although it allows arbitrary selectivity and
preciseness in information sharing, it may be too complex to be
useful. A purely declarative approach, on the other hand,
probably wouldn't have enough selectivity, implying that some
middle ground should be found.

A similar kind of sharing happens in the Hendrix (1975)
semantic network formalism, where a net is divided irnto
partitions which can share information. Such a division allows
the same information to be M™visible"™ from certain perspectives
but not from others, and hence is of facility in perusing only
those features which are relevant at any time. This is not the
place for a full discussion of context (see Chapter VI), but it
must be pointed out that the "partitions' of |LISP are the
pattern expression "boundaries", and that there is thus no
sharing of data per se between partitions. However, as in the
case of shared terminals, a procedural solution inveclving
message passing can be (rather unsatisfactorily) pressed into
service whenever information is to be shared. It is safe to say
that the lack of shared information is one of the weaker aspects

Chapter IV

12

of |LISP as it stands today. The attempt to keep the system as
modular as possible has perhaps been too severe and although it
has meant greater precision by forcing procedural sharing, it
seems to have contributed to rather than helped to solve the
complexity problenm,

The other static aspect of inter-frame connections is the
attempt to essentially embed frames into a semantic network.
Minsky's (1974) proposal suggests a similarity network
connecting frames, the links of which would be "differencaes" to
fcllow if the frame were not properly matched to a situation.
Winograd (1975) has been keen on investigating how and whether
frames fit dinto a Quillian (1969) s*yle generalization (ISA)
hisrarchys; Levesque (1977) has also been interested in such a
hierarchy as well as other "links" bzstween frames; and
Havens (1978) has a full-scale net surrounding his frames.
These researchers have recognized that it is critical to the
afficient operation of a system that a frame have semantically
close neighbours that it is able to quickly access in a variety
of common situations (e.g. inheritance of properties along 1ISA
links, following a difference pointer when a certain kind of
failure occurs within a frame).

|LISP pattern ‘expressions can also often be profitably
viewed as if they were embedded in a semantic network, but as
will be shown, it 1is a rather strange network. This can be
accomplished by viewing the patterns of a | PEXPR as
(arc node-1 node-2 . . . node-n) combinations. Even though
|LISP doesn't insist on this view (that is it would, for
example, be possible to look at a pattern as
(node-1 arc-1 node-2 . . . arc-n) or some such), it is in most
cases convenient to consider the firs*t element to be an arc and
the rest nodes. In particular, the arc-first notation is most
appropriate for ©patterns which are pointers (see section 3.5);
that is the patterns (SUPERSET DOG MAMMAL) in DOG,
(SUYPERSET MAMMAL ANIMAL) in MAMMAL, and
(SUPERSET ANIMAL PHYSOBJ) in ANIMAL could be viewed as in

Figure 4.1.

Chapter IV

SUPERSETF

SUPERSET

PHYSOBJ

ANIMAL

MAMMAL

SUPERSET:

DOG

Figure 4.1 - SUPERSET Pointers

73

Chapter IV

T4

Although pointers are important, and do illustrate a
relationship between |LISP and semantic networks, it must be
remenbered that they are only on2 particularly nice subset of
the range of useful patterns available for use in a |PEXPR -
there can be n-ary relations, relations which don't involve the
name of the |PEXPR in which they are contained, relations with
macros, etc. These are rathsr hard to draw {(and hence somewhat
opaque), but they do share the connectivity property so
important to a semantic network in that the only other objects
which can be seen from the viewpoint of any |(PEXPR are those
whose names appear in patterns of the |PEXPR.

The other major aspect of interframe behaviour involves
dynamic communication amongst frames +o accomplish various
tasks, such as matching data, achieving a sub-goal,
instantiating a franme. Minsky and most other frame theorists
are not particularly concerned with the many procedural
components that seem necessary; but these aspects are dealt with
by several gronps, including Bobrow and Winograd (1376) in KRL,
Hewitt (1975) in his ACTOR formalism, and Havens (1978) in MAYR.
This research has led to the definition of several important
ccncepts, among them procedural attachment, multi-processing,
messages and message passing.

Procedural attachment is Winograd's (1975) term for
attaching a process to a frame so that it can be "triggered" to
sclve some problem. Bobrow and Winograd (1976) delineate at
least a couple of useful classes of procedure: servants or
TO-FILL triggers used to achieve some goal such as f£illing in a

slot (and closely related to MICRO-PLANNER THCONSEs or CONNIVER
IF-NEEDEDs); and demons or WHEN-FILLED triggers used to derive
+he consequences of achieving a goal (corresponding to THANTEs
or IF-ADDEDs). Such procedures can be directly attached to the
frame they serve or even to parts of that frame, or can be
inherited from other frames.

JLISP, too, has procedural attachment as an automatic
by-product of the message-passing paradigm defined earlier in
the chapter. The procedural attachment for objects other than

Chapter IV

Ib

| PEXPRs 1is trivial (since the object body is automatically the
only procedure to attach); for |PEXPRs, however, things are mcore
interesting, There are no explicit procedures to attach, but
any pattern which matches could contain procedures that need +to
be executed to achieve the match (servants). These sanme
procedures can arbitrarily assert or remove patterns as they
proceed and thns indirectly invoke IF-ADDED or IF-REMOVED
prccessing. Moreover, certain |COND= interrupts have effects
similar to IF-ADDED methods in that control is shifted after the
addition of a pattern; but this is a very constrained kind of
demon which in effect prevents uncontrolled sub-goaling in
contrast to the usual uncontrclled, potentially explosive role
for demons,

ILISP allows the attaching of a pattern in a variety of
ways if there isn't a suitable pattern directly associated with
a |PEXPR. The semantics of such attachment are precisely
defined in the section on the matcher; basically, it is up to
the object represented by the pattern head to decide what to do
in case o0f such a €failure. This gives a fairly general,
knowledge~-dependent way of attaching procedural or declarative
information to a |PEXPR.

KRL also makes a commitment to multi-processing as a
fundamental control paradigm. Details are not specified in the
Bobrow and Winograd (1976) paper, but it appears that processes
are co-operatively scheduled to run (much as are |PEXPRs in
JLISP) on an agenda (exscute queue) with a set of priorities
attached. "Ynlike the |LISP exacute queue, the agenda is layered
to give more £flexibility. KRL processes are capable of sharing
a limited resource pool with one another: how the pool is
incremented or decremented is left up to the processes sharing
1t ; In contrast, |LISP defines only a couple of "resources":
time and conditions on what is to be asserted in sub-]PEXPRs,
and these are controlled by the interpreter or its
sub~functions. The KRL approach has the advantage that a lot of
automatic processing is 1left out at the expense of added
complexity for the usasrs if they are to keep track of resourcsas.

Chapter IV

76

| LISP avoids this complexity by restricting the whole problem of
resource allocation to a small set of useful features.

The concepts of messages and message passing have been most
fully elaborated by Hewitt in his many ACTOR papers
(Hewitt et al (1973), Hewitt and Greif (1974), Hewitt (1975)).
Havens (1978) has implemented a frame system, MAYA, employing
the basic idea of messages and message passing to good effect.
At its most primitive lsvel, the concept is a simple orne: each
actor (or frame) is an independent module which maintains its
own representaticn of whatevar Xnowledge it deems to be
important. The representation can only be accessed by sending
the actor a message (which is itself an actor), and if the actor
then sees fit, it can respond by sending back a message.
Ccnceptually, message passing differs from procedure calling in
that it implies no top-down structure, but in effect allows any
kind of top-down, bottom-up, or other scheme to be undertaken (a
fact exploited especially by MAYA).

This description comes fairly close to describing the |LISP
nessage passing scheme with the following exceptions:

(1) messages are not objects, but are s-expressions

or patterns;

(ii) answers to messages are not messages, but are

arbitrary s-expressions cr patterns;

(iii) answers are quaranteed if a message has been

sent; that 1is, continuations ares not part of the

message.

(iv) activation records (i.e. execution instances)

created by message passing have names and can be

accessed.
Such considerations are 2xtremely useful and non-restrictive if
the purpcse is to model knowledge rather than to produce an
elegant description of process and control. Points (iii) and
(iv) are perhaps the most critical differences between Hewitt's
approach and that of |LISP. By guaranteeing an answer, |LISP
removes the incumbency on the sending object to set up a
continuation, a simplification achievad at the cost of some lack

Chapter IV

77

of control flexibility. However, 1t seems useful that a
super-goal always be required to evaluate the results of its
subgoal, especially so in the case of a failure of some sort,
since as Sussman (1973) has pointed out, profiting from errors
is important.

As to difference (iv), the naming of activation records
allows |LISP to maintain a record of processing decisions, to be
able to restart interrupted processss, and to otherwise
manipulate its process activations. This is useful in many
places, especially 1in execution environment searches and
episodic memory cecnstruction.

4.3 Othar Approaches

In this section, several schemes that have not been as
criterial to JLISP as have frames and PLANNER / CONNIVER will be
ccmpared on at least a few interesting dimensions with |LISP.
MERLIN (Moore and Newell (1973)) *turns out to be quite important
both because of its semantic network data structure and because
of its ability to reason by analogy. Semantic network concepts
have already been discussed; analogy will be taken up in Chapter
VI.

A final comparison will be mads to the production systenm
approach. Production systems (Newell (1973)) were designed as a
psychological model of human short term memory processing and
have more recertly been used in a number of practical
applications (e.g. MYCIN (Shortliffe (13976)) . The aims of the
approach don't really have all that much in common with those of
| LISP, but similarities between the production system
"match =--=> action" kind of control paradigm and |LISP's pattern
matching are fairly obvious. Specifically a pattern of the form
(ANYTHING ! {(-=--~)) seens to essentially encode the same
information as a production might (|LISP's "productions", of
course, can have n elements and more complex kinds of processing
within them). If this analogy were carried out further, then a
| PEXPR would be 2 group of productions and hence a production

Chapter IV

78

systen, Since a system wusing |LISP would have many such
| PEXPRs, it would in effect contain many such "production
systems", The only thing I can't fit in very well is short term
memory, an aspect central to production systems but peripheral
to mry main concerns. Howevar, it is encouraging that a control
paradigm similar in some ways to that of |JLISP has been so
successful in wvarious applications. It gives hope for the
ultimate feasibility of (LISP for actual use in the “"real
world".

4.4 Contributions to the Issues

I would now like to examine the represen*ation scheme in
light of the issues which it was suppos=2d to treat (see issues
(i)-R through (vi)-R in section 1.3).

(i) handling procedural and declarativs information:

Pattern expressions contribute to a wunified view of
declarative and procedural information. There is no distinction
between a procedural |PEXPR body and a separate declarative data
base. All information (procedural or declarative) is stored in
patterns within the body of the |PEXPR and is accessed uniformly
via pattern matching. Moreover, execution instances contain
patterns that are the declarative residu=z of procedural
messages, further blurring the distinction between procedural

and declarative information.

(i) accessing knowledge:

The schenme presented here has several interesting features
involving the accessing of information. Information is only
accessed when some object wants some other object to answer a
message. In trying to respond to a message, a receiving |PEXPR
has a couple of options: it can know the answer directly
(i.e. it has a pattern in its body that contains the answer) or
it may need to 1look elsewhere for an answer, in which case a
strategy is followed that depends on +the kind of information

Chapter 1V

79

being sought, Thus, a search along very specific "links"
emanating from the |PEXPR can be instituted {allowing
inheritance up "ISA"™ 1links for example), or an arbitrary
inferencing scheme can be entered into involving much thrashing
about, or the wusesr can be asked to help out, or any number of
other things can be attempted.

Even if +the {(PEXPR Joes know the answer, it may need to
perform a number of computaticns b2fore providing it. In so
doing it can send out other messages using a variety of control
paradigms ranging from the ordinary serial processing to
simulated parallelism.

(1ii) the necessity for a context mechanism:

The nature of context is rather more complex than has been
suggested at several places dnring the chapter. It has *o dc
with deciding what things are relevant at any time; the nature
of this decision-making process will be made explicit in Chapter
V. Here it suffices to say that the major contribution to
context is the execution environment which extends up EX-ENVIRON
pointers frem any execution instance. The execution environmant
can be accessed whenever contextually varying information such
as purpose, location of real world objects, current tinme,
etc., is needed.

j=

(iv) the need to keep a record of events:

Execution environments are also wuseful in providing an
episodic memory, not only because they don't disappear after
they are complete, but also bscause they can be examined in the
same way as other |PEXPR environments. The first capability
means tha*t all execution instances which «completed still are
there to be queried as to who called them, why they were called,
what they answered to the activation message patterns, what
| PEXPR they are an execution instance of, and sc on. The second
capability is a by-product of having execution instances with
meaningful patterns rather than wuninterpretable internal
pcinters. It means that all the matching routines which work

Chapter IV

80

for ordinary |PEXPRs can also b2 used for execution instances

and that searching old execution environments is as natural as
searching anywhere else,

(v) robustness:

An interesting issue is that of robustness, i.e. how to
cope with anomalcus data. Although capabilities in this regard
are not fully developed, |LISP is presently capable of failure
to match processing if a pattarn isn't directly matchable in a
| PEXPR, In addition, since messages ar2 guaranteed to get an
answer, a sending |PEXPR can plan on getting a failure response
of some sort if the receiving |PEXPR is wunable to handle the
message. With this response, the sender should be able to take
appropriate action. However, even though the machinery has been
provided to handle them, virtually no analysis has gone into the

nature of failure responses,

(vi) combinatorial explosion ¥.s. complexity:

| PEXPRs can conveniently be viewed in several ways, a
flexibility which helps to resolve both efficiency and
complexity problems. For instance, when a |PEXPR is regarded as
a node in a network, then the fact that only nearby objects can
be "seen" means that search can be limited. 1In fact such search
can often be restricted to objects in the ISA or execution
environments, 0f particular interest here are objects in the
executicn environment, the primary means of focussing attention.

But |PEXPRs can also be considered as separate modules
accessible only via their messages, a fact which helps resolve
complexity issues. Such separability is extremely valuable in
localizing effects, and also in dividing wup the domain into
ccmprehensible chunks (moreover, |PEXPRs are flexible emnough
that they don't impose many restrictions on how to break down
world knowledge).

Many of the other non-central issues raised in the
introduction also can be addressed by this approach. For

Chapter IV

81

example, the issue of non-goal-directed processing: while it is
true that most of the examples of Chapter V involve top-down
activation in that a |PEXPR sends a message to another |PEXPR in
order to achieve a sub-goal, this is an external interpretation
put on the message by humans. To {LISP it is just a messags,
indistinguishable (in how they are hardled) from messages that
achieve associative activation (see Chapter VI) or messages that
allow a set of words to be conglomerated bottom-up into a single
phrase or any other kinds of messages. Moreover, since
exacution instances remain after creation, it 1is possible for
several pattarn expressions to communicate with a single pattern
2xpression, or vice versa., This can be essential for bottom-up
or associative activation when 1t is often important that
several messages from different sources be sent before the
receiving |PEXPR <can be considered relevant. Thus, it can be
seen that |LISP defines a message passing paradigm that is
neither bottom-up nor top-down, but either one can be simulated
if desired.

In conclusion, the major contribution of |LISP is perhaps
the confluence of ideas in one place. Though many of the ideas
derive from other approaches, putting them all together is
useful in that the ideas take on a new perspective when viewed
in the context of one another.

The contribution that the representation scheme makes to
conversation will become clearer as the next chapter (Chapter V)
is read. In it, a particular conversation scenario is
delineated, and a modzl to handle several conversations in this

scenario is discussed in detail.

Chapter IV

82

CHAPTER V

Modelling Conversation: A Detailed Example

In this chapter the representation scheme is applied to the
analysis of conversation. To this end, an active participant
carrying out a (simulated) plan of attending a symphony concert
is modelled. During execution of the plan, the model, among
other things, engages in several conversations, including one to
buy a ticket to the concert, another +to buy a drink at
intermission, and one with a frisnd to "pass the time",

My primary concern in this chapter will be to indicate the
tasic nature of the interactions that must go on, and to show
how the kind of analysis described here might eventually be
extended +to a more sophisticated model for conversation. Much
pseudo-code is given, but note that none of it has been fully
dekugged. Moreover, many functions serve as "black boxes" in
the sense that their I/0 behaviour has been delineated but more
elaborate versions are unavailable.

The chapter is organized " along thase 1lines: first, an
environment in which to study conversation (called the concert
scenario) is described. This is followed by a brief overview of
how this scenario has been modelled in JLISP. The model itself
is then presented in detail in terms of the goals it undertakes
to handle a dialogue to buy a ticket. Higher level
non-linguistic goals ars described first, followed by scripts,
speech acts, and the 1language level. Finally, the two other
dialogues the model undertakes, one with a bartender and one
with a friend, are discussed very briefly.

will discuss here a single small scenario in which a
model undertakes conversations that might occur during
attendance at a symphony concert. 1In these conversations the

Chapter V

83

model takes an active role (i.e. is one of the «conversants),
hence forcing it to have a goal oriented viewpoint on ensuing
events.

Before giving more details about the scenario, I would like
to indicate some of the general reasons for choosing 1it. The
"concert scenario" has been chosen because it is complex enough
tc illustrate most of the representation and 1language issues,
yet it remains within finite dimensions. Various kinds of
dialogue can occur including task-oriented (see Deutsch (1974)),
non-task-oriented, formal, informal, etc. Non-linguistic goals
occur and interact with the linguistic goals. Finally, having a
single scenario allows a small amoun* of information to be used
in several, possibly quite different, settings.

The scenario is essentially this: the model is at home and

decides to go to a concert at the Queen Elizabeth theatre. The

mcdel
(1) leaves home;
(ii) goes to the Queen Elizabeth theatre;

(iii) buys a ticket to the concert;

(iv) enters the theatre;
(v) takes in the first half of the concert;
(vi) buys a drink at the bar at intermission;

(vii) drinks it;

(viii) unexpectedly meets a friend;

(ix) takes in the second half of the concert;
and (x) goes hcme.
Three conversations occur: during step (iii) when the model must
talk with the ticket seller in order to purchase a ticket to the
concert; during step (vi) when the model talks with the
bartender in order to buy a drink; and during step (viii) when
the model talks to the friend. These critical steps are treated
in some detail; the other steps are only examired at a very
cursory level, and are included mainly to show continuity in the
plan and to indicate the interaction of linguistic and
non-linguistic goals.,

I will now present sample dialogues which might actually

Chapter V

84

occur in such a situatior. They are fabrications, but my
informal analysis of similar situations convinces me that they
are not unrealistic., They have served as a guide to the kinds
of things that the model must allow for, but many of the
phenomena (linguistic and otherwise) that occur in them have not
been fully accounted for in this version of the model.

@]
10
=
I<
I®
IH
7]
(s
et
I
o]
1=
|

This conversation occurs when the model buys a ticket to

—

Ticket-seller: "Yeg?®
Model: "I'd like a ticket to the concert."

Ticket-seller: "How about K-5? It is right centre about 10
rows back."

Hodel: "Fine. How much is that?"
Ticket-seller: "10 dollars."

Model: "0.K." (hands over the money)
Ticket-seller: (hands over the ticket)
Model: "Thanks."

Tickat-seller: "Thank you sir."

This somewhat innocuous conversation illustrates a number
of interesting things. First, it is a task-oriented dialogue in
the sense that it 1is enteread into to achieve some TrTather
specific goal (i.e. to get a ticket to the concert). Moreover,
the task is a common one, well understood by many people, so
there is a well defined script that can direct the conversation,
The script clearly must be able to handle all the bargaining and
exchange components underlying the conversation, to smcothly
enter the conversation and just as smoothly terminate 1it, to
discover the purpose for the conversation (when asked "Yes?"),
and to interleave non-linguistic actions (handing over the money
or tickets) with the linguistic utterances., Conversant models
must be kept for both the ticket seller and the model so that

the minimal surface utterances seen here can be devised (after

Chapter V

85

seeing what knowledge is stored there) and so that politeness

markers ("sir") <can be attached appropriate to the relative
status of the conversants. As in all these conversations,
ccnversation 1 must be properly integrated into the general plan
of the model.

This conversation has been fairly completely studied in
terms of what knowledge is needed to properly undertake it, how
that knowledge can be represented, and how it interacts to yield
a proper secuence of surface utterances., Later in the chapter
it 1is discussed from +the highest levels right down to how it
handles surface 1level input / output. However, because the
analysis 1is general enough to handle many conversations of this
type, the actual surface utterances suggested by the analysis
wculd differ somewhat from those shown here.

Cenversation 2
This dialogue takes plac2 at the bar in the lobby when the
model decides to obtain a drink.
Bartender: "Sir?"
Model: "Could I have a rye?"
Bartender: "Orn the rocks?"®
Model: "Please."

Bartender: "There_ you oduces drink
RERENES "That'lX be? $1 50 Iease)

Model: (prcduces 2 dollar bill)
Bartender: "Thank you sir."™ (produces 50 cents change)
Model: "Thanks."

This conversation is almost a duplicate of the first one in
its interesting features. The main reason for including it is
to try to show that the analysis proposed for conversation 1
isn't totally "ticket specific". In fact, all the main
structures proposed €for <conversation 1 can also be used for
conversation 2, the only difference being that certain kinds of
ticket information are rteplac2ad by similar kinds of drink

Chapter V

86

information (i.e. the information about the product being bought
is now appropriate to drinks not tickets, the conversant is now
a rtartender not a tickast seller, the mod=l's purpose is to buy a
drink not a ticket, 2tc.) The conversation is discussed briefly
in the same terms as conversation 1, and is shown to be handled
in a similar manner., The subtle differences in surface language
are not at all dealt with.

This conversation 3is entered into by the model when it
unaxpectedly meets a "friend", Jack, at intermission.
Model: "Hi Jack."
Jack: "Model! What's new?"

Model: "Not I didn't k

ou came to these things.
Do you avo Season t*cﬁptsg' 9

Jack: "No - but T couldn't miss this one., I really want to
hear the Mozart concerto.h Y

was lS5a ointe irs

Model: YI came $t1¥ for tge EartgtemY?ﬂlfE ﬁ i I caaﬁg
orghestfa playe g superhly, don't you think k2?9’ i

Jack: "Frankl uas 8 Ee Don't much like Bartok really,
Oor an otn 20t century COmMpOSer,

Kodel: "W 11 I feel th bout Ly I 1
£ee Botsat £3°l:iiRs2B8 "RY 2P2UE H0%aREL) Te B "B 1A
1sn't bad so maybe *11 stay awake for a change,"

Jack: "nggﬂ goes the buzzer. I'd best get back to my

del: "Good . to ee ou again, We'll have to get together
e sometime X g ﬁ g g

Jack: "Sure thing. See ycu soon."
Model: "Take care."

- —— o ———

This conversation illustrates several features not
encountered in conversations 1 and 2. For one thing, it isn't
task~oriented; that is, there is no explicit, detailed goal the
model has for taking part in the conversation. The model has
more genaral goals such as filling in time, being socially
gregarious, trying to win support for its views or arguing

against those of Jack. Because there is a much looser structure

Chapter V

87

to what the model is doing here, the general script overseeing
the discussion is of necessity much less well informed in a
direct sense., Instead, it must make many inferences based on
partial information, must make good use of the belief models of
itself and Jack, must be flexible and ready for unexpected
information, and so on.

This conversation is interesting, as well, in that it isn't
undertaken as part of any pre-d=atermined plan, but is started as
the result of unexpectedly meeting Jack. The plan in control at
that time would have to explain the unreshearsed arrival of Jack
and suggest ways of rectifying the anomaly of his presence.
Such rectification would involve the activation of an
appropriate script to direct the conversation. Moreover, the
ccnversation isn't terminated as part of a plan either (i.e. the
buzzer scunds) and this would have to be accounted for as well,

The conversation has a much more serious need for surface
level linguistic analysis than do the other two. The utterances
are longer, more complex, and more informal. The reference
problems (especially pronoun reference) are more subtle and
quite difficult (e.g. "this one"™ in the fourth utterance).
Special 1linguistic forms ("the Bartok", "the B-flat") peculiar
to classical music further complicate matters.

The sequencing order is much more poorly defined here,
presenting problems even at the 1level of deciding when to
interpret and when to produce utterances, whether to interrupt a
long winded discourse, etc. Several well defined scripts (for
greeting and closing, at least) could be integrated at the
appropriate time if the script were alert to bottom-up cues, an
integration which would save nmuch processing time since
utterances could be much more easily understood and produced by
these scripts.

This conversation also illustrates the need for an episodic
capability. Questions about the first half of the concert would
require the model *to scan over episodes representing what
occurred at that time and extract what seemed relevant.

Most of the things conversation 3 illustrates have not been

Chapter V

88

analyzed in detail, although a preliminary attempt has been made

to analyze some aspects.,

5.2 OQverview of the Model

Most important pieces of knowledge needed by the model for
its task of buying a ticket to the concert are encoded as
pattern expressions. To handle the concert scenario two main
categories of |PEXPR are necessary:

(1) primary pattern expressions to carry out parts of the
main plan of attending a concert including going to the concert,
buying a ticket, taking part in a conversation during the ticket
purchase, and so on.

(ii) secondary pattern expressions, such as those
representing models of the conversant, the agenda of the
ccencert, and the like, that are sources of information for the
primary |PEXPRs but aren't really part of the mainstream plan.
The distinction between (i) and (ii) can be viewed as the
difference between active objects calling in other active
objects to accomplish subgoalis and static objects standing by to
provide certain pieces of "foregrounded" knowledge when asked to
do so by the active objects., The division is not, of course,
absolute in that primary |PEXPRs can ask one another for
information without really giving up control; and secondary
| PEXPRs can be activated as "temporary" subgoals when they are
asked gquestions by primary |PEXPRs or each other.

Some of the primary pattern expressions used by the model
to handle a portion of the conversation to buy a ticket are
shown in Figure 5.1 which outlines in graphic form the important
object / sub-object goal dependencies.!

These |PEXPRs are defined as follows:

(i) TOP-VIEW: overlord to the model; invokes parallel

1In Figure 5.1 the single lines represent subgoal links;

double line just beneath TOP-LEVEL indicates_that META-VIEW and
WORLD-VIEW are spawned as parallel subgoals of TOP-LEVEL; and
the double arrow between INQUIRE and YES indicate that YESZ

replaces INQUIRE as a subgoal of WHAT-DO-YOU-WANT,

z//<::;~iii;ifjfff::>\\\\

META-VIEW

BUY
(ticket)

\

INQUIRE

WORLD-VIEW

e

ATTEND-
CONCERT

1

BUY
(drink)

BUY -
CONVERSAT ION

WHAT-DO-
YOU-WANT

\ YES2

The Dynamic

Figure 5.1 -

FILL-~IN=
TIME

RESPOND

Linkages of Some Concert Scenario |PEXPRs

89

Chapter V

90

subgoals META-VIEW and WORLD-VIEW.

(ii) META-VIEW: the model's "intelligent" garbage
collector; responsible for overseeing all clean-up operaticns on
the system's structures.

(iii) WORLD-VIEW: essentially the ™“consciousness"™ of the
model. Must co-ordinate, at the highest levels, the goals of
the model; must decide what subgoals to achieve when and for
what reasons.

(iv) ATTEND-CONCERT: the |PEXPR that directs the model's
efforts to attend this particular concert. Conceptually, at
least, it has been built by some plan-construction objects at
the request of WORLD-VIEW when it decid=d that attendance at the
concert would be a good idea, It must achieve the many subgoals
necessary to accomplish this goal. The major three of
importance for conversation are buying a ticket, buying a drink,
and filling in time at intermission,

(v) BUY: the model's pattern expression to direct the
buying of something, In this case ATTEND-CONCERT suggests
buying a ticket to the concert and later «calls BUY again to
suggest buying a drink. BUYY must direct the model to the place
of purchase, must recognize the particular seller of the iten,
must access |PEXPRs which represent various bargaining positions
of the two parties to the buying, and finally must engage in a
conversation to effect the purchase.

(vi) BUY-CONVERSATION: is the script that controls a
conversation to bargain for the exchange of one set of goods for
ancther; in this case the exchange is between the money of the

model and the ticket of the ticket seller. The pattern
expression predicts the conversational sequence of events

starting with the greetings which open the conversation, through
bargaining over the location of the ticket, bargaining over the
price, and finally ending with the axchange of the agreed upon
goods and the making of accompanying comments. Each of these
predictions takes the form of calling in a sub-script to direct
the processing, The first is rather poetically named
WHAT-DO-YOQU~-WANT,

Chapter V

M

(vii) WHAT-DO-YOU-WANT: a script that knows about the kind
of language that accompanies a conversational exchange where one
person asks another what he wants (i.e. his purpose). The
script is invoked in this <case by the EXCHANGE-CONVERSATION
| PEXPR to handle the first couple of utterances in the
conversation to buy a ticket. It expects the ticket seller to
inquire into the purposes of the model; and expects the model to
respond appropriately to this inquiry.

(viii) INQUIRE: a speech act which will either understand
or produce an "inquire" wutterance, depending on whether the
model is listening or speaking. In the <current example, the
WHAT-DO-YON-WANT pattern expression expects the ticket seller to
utter an inquiry into the purpose of the model, so inquire is
activated to wunderstand such an utterance. Achieving this
interpretation requires the |PEXPR to look into the input buffer
for words which have actually been uttered. Discovering the
word "“yes", it checks to see if there is a speech act associated
with +the word "yes?" which could be construed as an inquiry.
Finding that there is (YES2), INQUIRE is supplanted by YES2
which continues the processing (since the actual input should
take precedence over any expectation).

(ix) YES2: represents the meaning of "yes" that corresponds
to an inquiry (rather than the meaning Yaffirmative answer").
It is ~called in to continue the process of understanding the
input. Since "yes?" is a surface string corresponding to the
me€aning of YES2Z, YES2 is able to achieve the proper
interpretation that the utterance is an ingquiry into the current
purpose of the model (available in the execution environment).
It then returns, satisfied, to its calling |PEXPR.

WHAT-DO-YOU~-WANT regains control; sees that the first
utterance 1is Jjust about as expected (if it weren't,
WHAT-DO-YOU-WANT would have had to explain what went wrong);
integrates it into the conversation to date, being recorded in
the script; and then proceeds to the second script utterance,
the generation of a response to the inquiry. Before handling
the next script utterance, however, WHAT-DO-YOU-WANT must first

Chapter V

92

decide if something in the conversation to date is demanding
priority over its script expectations, and if so, what to do
about it. In this case an analysis of the conversation to date
suggests only that the unknown purpose of the first utterance
should be discovered and, since this 1is in accord with the
script's expectations, everything is in order.

(x) RESPOND: contains the model's ideas about responding to
a query, including how to interpret or generate a response.
Since WHAT-DO-YOU-WANT orders RESPOND to generate an utterance
stating the purpose of the model, it does so, sending the
resultant set of words (e.g. "I'd 1l1like a ticket to the
concert.") to the EXPR SPEAK-WORDS. Clearly many other objects
have been called cn here to decida such things as how much
semantic information will express the model's purpose to the
ticket seller (this involves, at least, looking at the beliefs
of the conversant, of the model itself, and into the execution
environment) ; how to phrase the eventual output; and so on.
These issues aren't treated to any great extent: I'm content at
this stage that the system knows generally what to say.

Once RESPOND is done, it returns again to WHAT-DO-YOU-WANT
which must check that the utterance produced is appropriate, tie
it in to the conversation to date, and then procesd to the next
script utterance. But, since the script is now complete,
WHAT-DO-YOU-WANT returns to the EXCHANGE~CONVERSATION script
which, if satisfied with its behaviour, ties the
WHAT-DO-YOU-WANT utterances into its own conception of the
conversation to date. It then proceeds to the bargaining
scripts which carry on. Eventuaily, even the
EXCHANGE-CONVERSATION pattern expression is done, so it returns
to BUY, which, when finished, goes back to ATTEND-CONCERT to
continue with the plan of attending the concert. Among other
things, two more conversations will be undertaken before the
ATTEND-CONCERT |PEXPR is satisfied, and these will be handled in
much the same way as the ticket buying conversation has been.

Once ATTEND-CONCERT 1is done, WORLD-VIEW takes over to
pcnder what to do next. Note that working in parallel to

Chapter V

93

WORLD-VIEW has been META-VIEW cleaning up the large number of
execution instances and other miscellany constructed during the
reign of WORLD-VIEW.

This has been a brief 1look at some of the nmany
action-packed primary pattern expressions in the concert
scenario. But, these |PEXPRs need to access data contained in
other, secondary pattern expressions. Secondary |PEXPRs are
activated mainly for the information contained in their static
patterns and are thus distinguished from primary |PEXPRs which
are activated to achieve some major subgoal.

For any particular set of primary goals, a certain
collection of secondary |PEXPRs 1is needed, constituting in a
sense, the foreground information for the primary goals. The
relevance of each is discovered at various points during the
execution of the primary planning sequence, and pointers from
these primary |PEXPRs are set up to record the relevance of the
various secondaries to the main stream context. Later other
| PEXPRs needing information <can use these links to determine
which secondaries to construct.

So, 1lets loock at some of the secondary pattern expressions
that have proven useful in the concert scenario. The first such
{PEXPR 1is the COHCERT1 |PEXPR, containing all the model's
knowledge about this particular concert such as the agenda, the
location of the concert, the entrance requirements.
Theoretically at least, it has been built sometime in the past
(wvhenever the model discovered that the concert was to be
performed and heard the details of the agenda), and has been
re-discovered by some planning |PEXPR spawned by WORLD-VIEW to
construct the planm to go to this concert. It is passed by
WORLD-VIEW as part of the message that activates ATTEND-CONCERT
and is used extensively in further sub-|PEXPRs (especially in
retrieving characteristics of the ticket to the concert and in
discovering the agenda).

Another secondary pattern expression, the
TICKET-FOR-CONCERT1 |PEXPR (a new instance of the generic
TICKET-FOR-CONCERT) is generated by ATTEND-CONCERT when it is

Chapter V

94

about to BUY the ticket, It inherits from TICKET-FOR-CONCERT
knowledge as to the physical 1location of the ticket (in the
Queen Elizabeth theatre's ticket booth), the desired location
represented by the ticket, and the projected cost for such a
location. Looking further up the ISA environment to TICKET, it
can discover that a TICKET-SELLER sells tickets, Later, once
actual characteristics (location, cost, etc.) of the ticket have
been determined (by the BARGAIN sub-goal of BUY-CONVERSATION),
they are added to TICKET-FOR-CONCERTI1.

Perhaps the most important secondary pattern expression is
TICKET-SELLER1, first created as a new instance of the generic
TICKET-SELLER by the BUY subgoal when it recognizes the
existence of a particular person in the ticket booth. BUY knows
that the person is a TICKET-SELLER because TICKET-FOR-CONCERT1
tells it so. TICKET-SELLER1 constitutes the model's model of
the conversant. It initially contains only the knowledge that
it represents a TICKET-SELLER, but via its INSTANCE-OF 1link it
is able to inherit much information from the ISA environment.
In particular the immediately superior TICKET-SELLER contains
information about ticket sellers: that they sell tickets, that
they're willing to exchange tickets for an appropriate amount of
money, that they are sellers, and so on. This information is of
use later when various bargaining positions must be discovered.
Moreover, a truly complete TICKET-SELLER would contain
information about speaking habits, probable locations, potential
scripts, etc, As time goes on, additional characteristics of
TICKET-SELLER1 can be added as the model constructs an ever more

accurate view of the conversant., A final note: the model also
has a model of itself, the details of which are explained in

section 5.3.3.

The preceding discussion gives a gquick overview of the
various capabilities of the model in the concert domain. I
would now like to present a much more detailed analysis. The
interactions among the various objects gets quite complex, so
rather than following each message as it 1is dispatched, in
general I plan to take the approach of describing each pattern

Chapter V

95

expression fairly completely before going on to other objects.
The order of description is basically breadth-first and is shown
in Figure 5.2,

TOP-VIEW
META-VIEW
WORLD-VIEW
ATTEND-CONCERT
BUY

Scripts: BUY-CONV ATIOQ

2CELRLS WHAT-DO-%B%-E&N%
BARGAIN
EXCHANGE
FAREWELL

Speech Acts: INQUIRE

P = YEgg

Language Level Goals: UTTERANCE

=3nJuage Level boals CLAUSE
NOUN-GROUP
VERB-GROUP
PREP-GROUP

Figqure 5.2 - Order of Presentation

At the highest 1levels the model 1is not concerned with
language at all, but is instead interested in co-ordinating its
various non-linguistic goals. These goals have been drastically
simplified in this presentation in order to illustrate how they
relate to one another and to language without going into the
obviously 1large complexities of representing sophisticated
non-linguistic goals.

The top-most goal in the system is TOP-VIEW whose main
purpose is to co-ordinate the garbage collector and the other
actions of the model. It is called in at system dinitiation by
sending it (EXECUTE TOP-VIEW ?MATCH-PROGRAM), a message which
will match TOP-VIEW's (EXECUTE TOP-VIEW ! (---)) pattern. The
attempt to match the third element will institute the
cconputation which controls the rest of the system's actions.

Chapter V

96

<|PDEF TOP-VIEW
SUPERSET TOP-VIEW SYSTEM-OBJECT)
EXECUTE TOP-VIEW
!t (|PARALLEL
(META-VIEW ff¥§ggTETgE$n—erw ?META-RESULT)
(WORLD-VIEW (EXECUTE YbRLD-vIEN ?WORLD-RESULT)
| TIMNE= 100)))) >

The receiving pattern's third element is a <call to
| PARALLEL that sends EXECUTE messages in pseudo-parallel to
META-VIEW (the name of the garbage collector) and WORLD-VIEW
(the name of the top-level READ-{EVAL-PRINT loop of the systenm).
The time-slicing has been arbitrarily set at 10 to 1 in favour
of the WORLD-VIEW pattern expression; that is the system will
spend 90% of its time din action, the other 10% in garbage

ccllection.
<|PDEF META-VIEW
SUPERSET META-VIEW SYSTEM-OBJECT)

EXECUTE META-VIEW $(RECLAIM))

Currently, the nature of META-VIEW has not been analyzed to
any great detail; all it does to answer an EXECUTE message is to
invoke LISP's garbage collector. Facets of a more sophisticated
garbage collector are discussed in Chapter VI,

The other parallel subgoal of TOP-VIEW is WORLD-VIEW,
potentially the most crucial pattern expression in the model
since it is the top-level co-ordinator of the model's goals.
But, as with META-VIEW, it has for the moment been drastically
cut back and consists mainly of a READ-]EVAL-PRINT loop which
gets entered upon receipt of an appropriate EXECUTE message
(usually from TOP-VIENW).

<|PD?§UEgg%BEvagﬁLD-VIEU SYSTEM-OBJECT)
EXECUTE WORLD-VIEW

' (|PROG é}
L1 !P NT (|EVAL (READ)))
IGO0 'L1))) s
Since the current WORLD-VIEW |PEXPR merely READs a form,
|EVALsS it and PRINTs the result of the form's |EVALuation, it is
up to the user to specify the goals of the system. First, the
pattern (LOCATION SELF HOME) is asserted, indicating that the
nodel (SELF) is at "home". Then, the message form

(ATTEND-CONCERT
(EXECUTE ATTEND-CONCERT SELF CONCERT1 ?ATTEND-RESULT))

Chapter V

97

is entered to call in the ATTEND-CONCERT subgoal.

5.3.2 A Major Subgoal: AITEND-CONCERT

The user asks the model (SELF) to employ a plan of action
called ATTEND-CONCERT 1in order to attend a concert (CONCERT1).
The ATTEND-CONCERT |PEXPR (given completely in Appendix II) has
the form

<|PDE ONCERT
ATTEND-CONCERT ATTENDL
TTEND-CONCERT SELF ?THIS-CONCERT

(EVENT-SEQUENCE =--- 1)) >

The actual steps the model is to undertake are contained in
the ! (EVENT-SEQUENCE -~-) pattern element which will be |EVALed
when the message pattern

(EXECUTE ATTEND-CONCERT SELF CONCERT1 2ATTEND-RESULT)
is matched against the EXECUTE pattern of ATTEND-CONCERT.

Looking at the process in more detail, the first three
elements of t he message pattern trivially match the
corresponding elements of the receiving pattern. Note that the
third element, SELF, names a |PEXPR that contains the model's
kncwledge of itself (it is fully presented in section 5.3.3).
The fourth message element, CONCERT1, matches the fourth
receiving element, ?THIS-CONCERT, with the side-effect that the
variable THIS-CONCERT is bound to CONCERT1 in the context of the
new execution instance (called ATTEND-CONCERT-1) of the
receiving |PEXPR ATTEND-CONCERT.

Diverting attention for a moment to the CONCERT1 |PEXPR

<|PDEF CONCERTI1

INSTANCE-OF CONCERT1 CONCERT)

LOCATION CONCERT1 QETL

AGENDA CONCERT1 AGENDA~-CONCERT1) >
it can be seen that CONCERT1 is a particular CONCERT, located at
the Queen Elizabeth theatre with the agenda AGENDA-CONCERT1. Of
course, CONCERT is also a |PEXPR:

<|PDEF CONCERT

SUPERSET CONCERT EVENT
{ENTRANCE—REQUIREHENT g ONCERT
YTICKET -FOR-CONCERT) >
containing the information that the entrance requirements for a

particular concert is a particular ticket to the concert (note

Chapter V

98

the "¢y" macros indicating instances). Similarly, the QET
| PEXPR:

<|PD

| ENggiﬂCE—OF QET THE
TICKET-BOOTH QET TI
LOBBY QET LOBBY-QET
BAR QET BAR-Q ET%

ANDITORIUM UD% ORIUg-QET)

and AGENDA-CONCERT1:

<|PD AGENDA-CON
t ENSTRNB%- ? SE%EBA =CONCERT1 AGENDA-CONCEHT)
ORCHESTRA CONCERT1 VANCOUOVER SYMPHONY
CONDUCTOR ORCHESTRA CONCERT1 AKIYRHRL
FIRST-HALF CONCERT1 BARTCK-CONCERTO-FOR-ORCHESTRA)

SECOND-HALF CONCERT1 MOZART-PIANO- CONCERTO 27)
SOLOIST SECOND~HALF CONCERT1 BRENDL)

The patterns in these |PEXPRs, of course, contain the names of
other |PEXPRs and these |PEXPRs contain patterns with the names
of still other |PEXPRs, and so on. This connectivity can be
better appreciated by representing the "links"™ among the
previcusly mentioned |PEXPRs as shown in Figure 5.3.!

Returning to the message processing, it can be seen that
SELF dis going to attend CONCERT1 if the fifth element of the
message, ?ATTEND-RESOLT, matches the £fifth element of the
receiving pattern, ! (EVENT-SEQUENCE ---) in the EXECUTE pattern
of ATTEND-CONCERT (above). It, of course, does match, but only
if the |EVALuation of the EVENT-SEQUENCE | EXPR returns non-NIL.
For a fuller explanation of the action of EVENT-SEQUENCE, see
Appendix I, Suffice to say here that it basically |EVALs each
form in its body sequentially (much as would a |PROG), with the
side-effect of asserting (THEN Xi Xi+1) patterns in all
execution instances Xi that correspond to major steps in the
event sequence (designated by a ‘label in the event sequence
body) .

The first such major step encountered in the EXECUTE of
ATTEND-CONCERT is

1The folloulng notatlonal conventions have been used: the_ nodes
are PRs; the arcs represent the patterns contained in
the |PEXPRs; the labels on the arcs are the pattern heads; "e"
means NSTANCE OF; g means SUPERSE "r-iv indicates
RCLE- INSTANCE OF; "§" at the _end of an arc _means _that _the
linkage is to an (arbitrary) instance of the node at that end of
the arc; "!" means that the value of the node at that end of the
arc must be computed.

Chapter V

99

EVENT
S
CONCERTY- EEES?QEEENT Y TICKET- FOR- CONCERT
e
CONCERT 11— LOCATION—SQET AGENDA-CONCERT

VANCOUVER-
- =———OREHESTRA—>
GENDA-CONCERT SYMPHONY

SECOND/HALF

FIRSY-HALF
CONCHRT1

SOLOI
SECOND/HALF

MOZAKT- PIANO- BARTOK - CONCERTO-
BRENDL CONCERTO- 27 FOR-ORCHESTRA AKIYAMA
Figure é.é -

Network for Concert Information

Chapter V

100

STEP1
(GOTO (EXECUTE GOTO SELF !LOC-CONCERT ?GO-PLACE))

In this step the model leaves START-LOCATION (HOME, discovered
by 1looking into the -execution environment for the current
location of self, i.e. %(LOCATION SELF ?START-LOCATION)) to go
to the location of the concert (QET, pointed to from CONCERT1).
GOTO is a |PEYPR which would be concerned with ‘actually
achieving the goal of going from HOME to QET, including managing
all other cues which might be needed to ensure arrival at QET.
GOTO would also be responsible for <changing the current
execution environment LOCATION pointer en-route so that it
continued to accurately reflect changes in location of the
model. Even this part requires some work; that is, there might
be representations of location in the execution environment such
as (LOCATION SELF VANCOUVER) which needn't be changed, but
(LOCATION SELF HOME) certainly needs to be. Generally speaking,
LOCATIONs in the execution environment can be changed according
to the following rule: £find the lowest PART-OF intersection
between the start location (e.g. HOME) and the finish 1location
(e«g. QET), 4in this case VANCOUVER. Then change all execution
environment LOCATION patterns which designate locations below
this intersecting node (e.g. change (LOCATION SELF HOME) and
(LCCATION SELF POINT-GREY) to (LOCATION SELF QET); but don't
change (LOCATION SELF VANCOOUOVER) or (LOCATION SELF CANADA)).
They exist in the execution environment). This is quite
reasonable since the PART-OF intersection defines precisely the
level of detail being changed by the movement.

Similar kinds of automatic execution environment pattern
changes must be carried out at many places in the model, such as
when a timer is advanced (recall the timing of interrupts from
Chapter III), when the model changes position in any way, and so
on., The code to undertake such changes would be embedded in
IF-ADDED or IF-REMOVED methods associated with objects such as
LOCATION or TIME, and would be invoked when patterns headed by
these objects are asserted or deleted by the model's actions.

Oonce GOTO has finished executing, the model has either

Chapter V

101

succeeded or failed in its attempted traversal of some route (of
GOTO's own choosing) Dbetween HOME and QET. If it has failed,
NIL will be returned to ATTEND-CONCERT-1. This eventuality is
allowed for in the ATTEND-CONCERT-1 event sequence by calling in
the |EXPR CHECK-FAILURE which will check for the failure and
suggest a course of remedial action if a failure has indeed
occurred. CHECK-FAILURE is currently quite simple, but it will
eventually be upgraded.

Assume that the first step of the event sequence is
successful; that is, the model is at the QET. Prior to buying a
ticket to the concert, the model must find out the ticket's
characteristics, so it asks CONCERT1 (the value of THIS-CONCERT)

(ENTRANCE-REQUIREMENT !THIS-CONCERT ?DESIRED-TICKETS).
Since CONCERT1 doesn't know this information directly, it must
be inherited from the ISA environment where, stored with
CCNCERT, is a pattern

(ENTRANCE-REQUIREMENT ¢yCONCERT §¥TICKET-FOR-CONCERT)

The attempt to match ?DESIRED-TICKET with §TICKET-FOR-CONCERT
results in the creation of a new instance of TICKET-FOR-CONCERT
(see the macro conflict table in Chapter III) called
TICKET-FOR-CONCERT1, which is bound to DESIRED-TICKET.
TICKET-FOR-CONCERT1 will, once the ticket is purchased, contain
the characteristics of the particular ticket bought for this
concert. Right now TICKET-FOR-CONCERT1 is a blank slate,
containing only an

(INSTANCE-OF TICKET-FOR-CONCERT1 TICKET-FOR~CONCERT) pattern.
It can, of course, inherit from TICKET-FOR-CONCERT information
regarding ticket «costs and information about the QET location
represented by the ticket (dubbed REPN here to distinguish it
frecm the LOCATION of the ticket, i.e. the ticket booth of the
QET) .

Chapter V

102

<{PDEF TICKET-FOR-CONCERT
SUPERSET TICKET-FOR-CONCERT TICKET
LOCATION §yTICKET-FOR-CONCERT TICKET-BOOTH-QET)
REPN §TICKET-FOR-CONCERT =(X (SUBPART X SEATS-QET)))
COST YyTICKET-FOR-CONCERT

1 (JCOND ((EQ 'SEATSQET
2 (O POINTBR REPN TICKET-FOR-CONCERT))
((EQ ' SEADEGETL B L ENTRE
I POTNTER REPN T ICKET-POR-CONCERT))
((EQ ' SERDSGRTR TGN TCENTRE
(P POTNT BR REPN T ICKET-FOR-CONCERT))
" yDOLLARS-5)
(T NIL))) >

At higher levels in the ISA environment there is the TICKET
| PEXPR:

<|PDEF TICKET

UJPERSET TICKET ENTRANCE-RE "IREHENT)
SELLER YTICKET yTICKET-SELLER)

This |PEXPR contains more information about tickets. All this
ticket information can be represented in a network such as that
shown in Figure 5.4,

Having determined its ticket needs, the model proceeds to
the next major step of ATTEND-CONCERT: the purchasing of the

ticket:

STEP2

(BDY (EXECUTE BUY SELF !'DESIRED-TICKET ?BUY-RESULT))
Here, BOY is asked to execute the purchase of
TICKET-FOR-CONCERTI1.

EXPR 1is given in full in Appendix II and has
general form:

(SOPERSET BUY ACTUAL-TRANSACTION)
iEXECUTE BUY ?BUYER ?ITEM '(EVENE SEQUENCE —--- 1)) >

Upon receipt of the EXECUTE message from ATTEND-CONCERT,
?BUYER matches SELF (and is bound to it in BUY-1, the newly
created execution instance of BUY), while ?ITEM, the thing to be
purchased, matches TICKET-FCR-CONCERT1 (and is also bound).
Finally, the fifth element of the receiving pattern,
! (EVENT-SEQUENCE =---) matches ?BUY-RESULT once it has computed
to non-null,

Chapter V

103

ENTRANCE-
REQUIREMENT
S
TICKET—SELLER— T TCKET-SELLER
DOLLARS-10
or
DOLLARS-5
TICKET- FOR 2L saapesn o
CONCERT o—HOEATEON—>T ICKET- BOOTH- QET
e PN
TICKET-FOR- anything which is
CONCERT1 PART-OF SEATS-QET

Figure 5.4 - Ticket Information

Chapter V

104

Before 1looking at this computation in detail, it is

imperative to discuss SELF, the model's model of itself.

<]PD
B FNs?ANEE-0F SELF PERSON)
RDLE INSTANCE-OF SELF
(1 PROG 60BJECT TR&NSRCTION&
% (PURPOSE SELF (2TRANSACTION SELF ?0BJECT))
{COND ((EQ TRANSACTION 'BUY
(ICOND ((SUBINSTANCE OBJECT
'TICKET- FOR-CONCERT)
({RETURN 'SELF-AS-A-BUYER-
OF-CONCERT-TICKET))
((SUBINSTANCE OBJECT
' ALCOHOLIC-DRINK)
(1RETURN YSELF-AS- a BUYER-
OF-ALCHOLIC-DRINK))
{T (|RETORN PSELFoAS AL UYER))))
(T (|RETO

L)) >
It is not feasible to store all the information the model knows
about itself in one |PEXPR. SELF, therefore, acts mainly as a
"central switchboard"™ through which requests for knowledge of
SELF are filtered on their way to |PEXPRs representing views of
SELF which are more appropriate in the circumstances of the
request.

One particular view which the model can have of itself is
in some "role", for example seller, buyer, 1lover, worker. It
seems clear that a person's behaviour can alter drastically
depending on what role he 1is playing. For example, the
interactions between a supervisor and his student are different
from those when the same two people are interacting as friends,
different still when they are housemates sharing the household
chores. Many characteristics, such as sound of voice, size,
height, weight, sex, are invariant over these roles; but many
more, such as attitude, status, kind of vocabulary used, wants
and desires, are variable.

In the SELF pattern expression +the difference between a
rcle and the normal viewpoint of SELF 1is indicated by the
ROLE-INSTANCE-OF pointer (in contrast to the straight
INSTANCE-OF pointer). In all circumstances the model is a
PERSON, but depending on the situation, the model can also take
on various roles. The role variability is indicated by the "I
computational element in the pattern which will return a
different |PEXPR (depending on context) for each role of the

Chapter V

105

model.

ROLE-INSTANCE-OF pointers are accessed when patterns like
(STATUS ---), (ATTITUDE ---), (WANT ---), fail to match in a
| PEXPR like SELF, Since such patterns represent qualities which
are role dependent, a search for a match would be directed up
RCLE-INSTANCE-OF links before anything else is done.

Role-instances (as |PEXPRs from which ROLE-INSTANCE-OF
pointers are followed can often be designated) are interesting
in that they give a way to view an object in many different
lights. There 1is really no restriction on what constitutes a
rcle instance. For example, an instance can be a rcle instance
of another role instance, or of an instance, or of a class, or
of an animate object, or of an inanimate object, etc.

Returning tc the model's attempt to execute BUY, the
attempt to match the ?BUY-RESULT message element results in the
{EVALuation of the (EVENT-SEQUENCE ---) element of the
receiving pattern. Before undertaking any steps, the model
checks that BUYER is SELF and, finds the physical LOCATION of
the ticket (TICKET-BOOTH-QET, inherited from
TICKET-FOBR-CONCERT). The model then executes STEP1:

S?ES%O (EXECUTE GOTO SELF !PLACE-ITEM ?GOT-T HERE))
that is, it goes to TICKET-BOOTH-QET,. Having successfully
ccmpleted this step, the model expects to find the seller of the
item at this place: it thus asks TICKET~-FOR-CONCERT1 for the
seller of the item, the information this time being inherited
from TICKET. It is interesting that matching
(SELLER TICKET-FOR-CONCERTI1 ?SELLER) against

(SELLER ¥TICKET ¢TICKET-SELLER) succeeds with a new instance of
TICKET-SELLER being created when ?SELLER is compared to
YyTIICKET-SELLER (see macro-conflict table, Chapter III).

Chapter V

106

<|PDEF TICKET-SELLER1
(INSTANCE-OF TICKET-SELLER] TICKET-SELLER) >

<|PDEF TICKET-SE R
¥ SUPE%SE%TT Ckﬁ%-SELLER SELLER)
SELL ¢¥TICKET-SELLER Y¢TICKET)
WANT yTICKET-SELLER
(EXCHANGE
TICKET-SELLER-HAS-BARGAINING-POSN
TICKET-SELLER-WANTS-BARGAINING-POSN)) >

This new instance, called TICKET-SELLER1, represents the new
seller of tickets the model expects to find in the ticket booth
and will have information added to it when details of the
particular ticket seller are discovered during the ensuing
transaction to buy the ticket.

Next, certain important patterns are asserted in the BUY-1
execution instance so that the information can be used by
subgoals of BUY-1 to determine the identities of the seller and
buyer, the purpose of the seller, the purpose of the buyer, and
the focus of attention of the buyer.

Finally, the crucial part of executing BUY is encountered:
STEP2, where the model engages in a conversation with the ticket
seller in order to obtain the ticket. To this end, the script
BUY-CONVERSATION is asked to EXECUTE itself:

STEP2
(B%%-CONVERSATION

XECUTE BUY-CONVERSATION !BUYER !SELLER
'ITEM 2CONV-RESULT))

5.4 Scripts

The particular pattern expressions to be discussed in this
section are called scripts (see Abelson (1973)). Scripts
contain expectations regarding both sides of a conversation.
They direct both the interpretation and production of
utterances, structure the sequencing of the utterances, tie
together the various utterances into some coherent whole,
extract relevant information €£from the utterances, and if

necessary act upon this information.

Chapter V

107

S.4.1 BUY-CONVERSATION
The script of most concern here is BUY-CONVERSATION (the
complete version of which is given in Appendix II). Its form is

<|PDEF BUY-CONVERSATION
(SUPERSET BNUY-CONVERSATION

SOCIAL-TRANSACTION-CONVERSATION
(EXECUTE BUY-CONVERSATION 2?BUYER 2SELLER 2ITEM
! (EVENT-SEQUENCE —---)) >

BUY-CONVERSATION is called in EXECUTE mode by BUY. The
message pattern 1is (after |EVALuation of "!" macros in the
context of BUY-1)

(EXECUTE BUY-G QUK ERRORO oRE khr 1" SCORVIRELAEY,

and it clearly matches the BUY-CONVERSATION pattern

(EXECUTE BUY-CONVERSATION ?BUYER ?SELLER
ZITEM ! (EVENT-SEQUENCE ---))

with appropriate bindings for BUYER, SELLER, and ITEM in the
context of the newly created execution instance
BUY-CONVERSATION-1. The matching is subject to the constraint
that ! (EVENT-SEQUENCE ---) |EVALs to non-null.

The event seguence, as 1is usual for EXECUTE patterns,
contains the plan of action to be executed. It consists of the
subgoals labelled STEP1, STEP2, ... , STEP5, denoting calls to
five sub-scripts: WHAT-DO-YOU-WANT, BARGAIN, BARGAIN (again),
EXCHANGE, and FAREWELL, The goal tree would thus look something
like Figure 5.5 (where "ex™ indicates an EX-ENVIRON pointer and
THEN links have been added by EVENT-SEQUENCE) .

STEP1 of BUY-CONVERSATION suggests that a sub-script called
WHAT-DO-YOU-WANT is to be expected as the first conversational
foray. This script will be discussed shortly; it merely
represents a particular kind of “"Hello" - '"How are
you?" utterance exchange which seems necessary in order to
establish (or in this case confirm) conversational roles at the
beginning of a conversation (see, for example,
Schegloff (1971) for a discussion of this phenomenon).

If this step successfully concludes, then the sub-script
{(or utterance) must be "tied-in"™ to some sort of representation
of the conversaticn to date. This promises to be fairly crucial

Chapter V

108

TOP-VIEW-1

eXx

META-VIEW-1 WORLD-VIEW-1

€X

ATTEND-CONCERT-1

GOTO-1 BUY-1

ex

BUY-CONVERSATION-1

RHEE =D Tl BARGAIN 1 BARGAIN-2 EXCHANGE-1 FAREWELL-1

Figure 5.5 <
Goal Tree for the Ticket Buying Conversation

Chapter Vv

109

and will require such abilities as recognizing equivalent
ccncepts in different utterances or performing conversational
implicatures and real world inferences to link up diverse kinds
of discourse. Right now, since the conversation proceeds more
or less as expected, tieing-in is minimized (consisting only of
recording the sequence of sub-scripts) since the EVENT-SEQUENCE
macro code, containing the expected conversational structure, is
available for inspection, and it will correspond closely to the
tailored reality.

The second and third steps of BUY-CONVERSATION involve
haggling over the characteristics of the item to be purchased:
STEP2 over the characteristics the buyer wants; STEP3 over those
the seller wants, Thus, in the ticket buying situation, the
bargaining first involves the theatre 1location represented by
the ticket, ¢then the cost of ¢the ticket., This is a fairly
simplified version of what happens in a buying situation;
BUY-CONVERSATION predicts things at this skeletal level in an
attempt to be as general as possible. People, however, seem to
have many much more specialized scripts that operate in
particular contexts (e.g. department store scripts, oriental
bazaar scripts, probably even ticket buying scripts). Moreover,
even within a script, there seems to be a 1large degree of
flexibility that enables skipping the actual verbalizaticns of
large chunks of the script, allowing them to be inferred
instead.

At any rate, assuming that BUY-CONVERSATION has
successfully carried out the bargaining, the agreed upon
location and cost are added to the model's knowledge of the
ticket (i.e. TICKET-FOR-CONCERT1). Then, an EXCHANGE of the
appropriate amount of money for the desired ticket can take
place (STEP4). This is interesting in that it is not basically
a verbal action, but is instead a motor action. The
indistinguishability of verbal from other actions allows this
kind of intermixture to be easily and conveniently accomplished.
Theoretically at 1least, gestures and any other method of
communication are feasible.

Chapter V

110

The final portion of BUY-CONVERSATION is a call to
FAREWELL, a sub-script which will make utterances that terminate
the conversation much as WHAT-DO-YOU-WANT started it.

This concludes the BUY-CONVERSATION script, which returns
the current execution 3instance, complete with the tied-in
utterance patterns and any other information accumulated during
the execution of the script. Thus, the original message pattern
match and the BUY-~CONVERSATION-1 execution instance is bound to
CCNV-RESULT in BUY-1, and BUY-1 is resumed. It can then make
use of any information that it needs from this execution
instance.

A final note about executing BOY-CONVERSATION: the
execution here has been with the model as buyer and the ticket
seller as seller, but the model could take the opposite role or
in fact take both roles or neither role. This flexibility is
extremely useful since this one script can handle many different
situations.

The subgoals called during execution of - BOY-CONVERSATION
are themselves scripts. The first one to be executed is
WHAT-DO-YOQOU-WANT, a subset of the more general GREETING pattern
expression.

2.4.2 WHAT-DO-YOU-WANT

The WHAT-DO-YOU-WANT script (see Appendix II) is somewhat
different from BUY-CONVERSATION in that it actually calls in
speech act pattern expressions to direct the interpretation or
production of utterances rather than the subscripts above. As

usual, an EXECUTE message is sent, in this case

(EXECUTE WHAT-DO-YOU~-WANT
TICKET-SELLER1 SELF 2?WHAT-WANT-CONV)

which matches the receiving pattern

(EXECUTE WHAT-DO-YOU-WANT
2SPEAKERT ?SPEAKER2 ! (EVENT-SEQUENCE ---))

Everything matches except the last elements where the standard
EVENT-SEQUENCE computation nust take place first. This
computation proceeds by establishing the conversational
identities of the speakers, that 1is determining whether to

Chapter V

111

interpret (expect) an utterance from speaker-i or whether to

produce (execute) an utterance for speaker-i. Essentially, if
speaker-i is SELF, then the script must generate an utterance
whenever it is speaker-i's turn to talk; otherwise, speaker-i is
scmebody else and the script should attempt to comprehend an
utterance from speaker-i. It is possible for the script to be
used in situations where the model takes none, one, or both of
the speaker roles,

The script contains 2 steps:

STEP1: send an EXPECT (or EXECUTE) message to the
speech~act INQUIRE indicating that speaker-1 is to

make an inquiry of speaker-2 as to the purpose of

speaker-2;

STEP2: send an EXECUTE (or EXPECT) message to

RESPOND indicating that speaker-2 should be responding

to speaker-1's inquiry with his purpose.

Thus, for the ticket buying episode, the model should EXPECT
speaker-2 (the ticket seller) %o inquire as to the purpose of
speaker-1 (the model) and should then EXECUTE a response
indicating its purpose (obtained by looking into the execution
environment for some pattern of the form (PURPOSE SELF ?WHAT);
in this case the matching pattern

(PURPOSE SELF (BUY SELF TICKET-FOR-CONCERT1))

would be found).

An interesting problem here is determining just how far up
the execution environment to go when looking for a match, since
even higher order purposes could be strewn about at +the upper
levels (for example, here, to attend the concert). The
assumption has been to go to the nearest such purpose,
presumably the Teason that the current subgoal has been called
in.

Upon completion of the EVENT-SEQUENCE, the pattern matches
and WHAT-WANT-CONY is bound to the new WHAT-DO-YOU-WANT-1
exa2cution instance created to handle the message. Control then
resumes in BUY-CONVERSATION-1 which goes to its next step: to
BARGAIN between what the buyer wants and the seller has.

Chapter V

112

2.4.3 BARGAIN

Before actually calling in the BARGAIN script,
BNY-CONVERSATION must first set up bargaining positions for the
seller and buyer., The essential idea is that in bargaining for
anything (including a ticket) each bargainer has ¢two initial
positions: he owns something and wants somesthing else in
exchange for it. A successful bargaining session will match
what party A wants with what party B owns and also will match
what party A owns with what party B wants. In the ticket buying
situation the model itself wants a ticket representing a certain
desired location and suspects that the ticket seller owns such a
ticket; the model owns a certain small amount of money which it
is willing to exchange in return for the ticket and suspects
that the seller wants money appropriate to the cost of the
ticket.

The model's bargaining positions are role dependent and are
thus accessed up ROLE-INSTANCE-OF pointers from SELF as outlined
earlier. In this case SELF-AS-A-BUYER-OF-CONCERT-TICKET

<|PDEF SELF-AS-A-BUYER-OF-CONCERT-TICKET

(SUPERSET SELF-AS-A-BUYER-OF-CONCERT-TICKET
SELF-AS“A-BUYERL
BOY SELF ¢TICKET-FOR-CONCERT)
WANT SELF
(EXCHANGE
SELF-HAS-TICKET-BARGAINING-POSN
SELF-WANTS-TICKET-BARGAINING-POSN)) >
would be found in which resides the pattern
WANT SELF
((EXCHANGE SELF-HAS-TICKET-BARGAINING-POSN
SELF-WANTS-TICKET-BARGAINING-POSN))
containing the model's bargaining positions.

The ticket seller's bargaining positions, or at least the
model's perceptions of the ticket seller's bargaining positions,
can be accessed from TICKET-SELLER1 by inheriting the
(WANT ¥TICKET~SELLER

{(EXCHANGE TICRKET-SELLER-HAS-BARGAINING-POSN

TICKET-SELLER-WANTS-BARGAINING-POSN))
pattern from TICKET-SELLER (there being no ROLE-INSTANCE-OF
pointer in TICKET-SELLER1).

Thus, the BARGAIN |PEXPR (see Appendix II) 1is sent the

message

Chapter V

113

(EXECUTE BARGAIN TICKET-SELLER1 SELF
TICKET-SELLER-HAS-BARGAINING-POSN
SELF-WANTS-BARGAINING-POSN
TICKET-FOR-CONCERT1 ?BARGAIN1-CONV)

which will match the BARGAIN pattern
EXECUTE BARGAIN 2QUESTIONER 2RESPONDER
e R e e — 1y
if the EVENT-SEQUENCE computation succeeds.

The purpose of the computation is to bring about a
successful compromise between two probably initially distinct
bargaining positions. In this example one of the positions is
TICKET-SELLER-HAS-BARGAINING-POSN

<|PDEF TIC§ ELLER-HAS-BARGAINING-POSN
SIS RRSET HICRET SELLRE RAS B RGAINING-POSN
HAS-BAHGAINING-POSNE
s1 : REPN TICKET ! (|POINTER REPN TICKET))
IMPORT TICKET-SELLER 451 6)
BARGAT N oan(gngchT SELLER-HAS-BARGAINING-POSN

representing knowledge which the model believes the ticket
seller to hold in regard to his wants. Looking at the |[|PEXPR,
the following can be gleaned:

(i) by S1, the nodel believes the ticket seller to
have an individual ticket (¥yTICKET) which represents
any location suitable to that ticket

(! (|POINTER REPN TICKET)) ;

(ii) the model believes the importance of fact (i) to
the ticket seller is 6;

(iii) the model believes that bargaining can take
place in regqgard to the location the ticket represents.
The BARGAIN-ORDER pattern not only designates which
patterns of the bargaining position are suitable for
negotiation, but also indicates the order of
resolution of various pieces of information (for
example in the drink buying episode, the bargaining at
this stage involves settling both the brand of the
drink and the kind of mixer, in that order, rather
than just the single issue of ticket REPN here).

Chapter V

114

The other bargaining position contains the model's own
desires for the characteristics of an ideal ticket:
<]PDEF(§E F-WANTS-BARGAINING

B AT e R R A RS NS AR YN ng-posy
WANTS-BARGAINING-POSN

S1 : (REPN YTICKET-FOR-~CONCERT Y¢SEAT QETCEHTREh
S2 = (REPN §TICKET-FOR~-CONCERT {¢{SEATSQETLEFTCE TRE%
S3 : (REPN ;TICKET-FOR-CONCERT SEATSQETRIGHTCENTRE)
IMPORTANCE SELF /S1 10)
IMPORTANCE SELF /S2 8
IMPORTANCE SELF /S3 8
BARGAIN-ORDER SELF-WANTS-BARGAINING-POSN (REPN)) >
Similar to the ticket seller's bargaining stance, the model has

three positions regarding the 1location represented by the
ticket. The model wants (IMPORTANCE 10) a seat in the centre
portion of the QET; failing that, it would like a seat in QET
left-centre or QET right-centre (with equal IMPORTANCE of 8).
Successful execution of the BARGAIN script (see Appendix II
for the code) involves finding a compromise between these two
initial bargaining positions according to the following steps:

STEP1: the guestioner (the ticket seller) asks the
responder (the model) about the next issue (determined
by the BARGAIN-ORDER in the position of the
questioner, in this case REPN) and goes to STEP2, 1If
there are no more issues to be resolved, the script
terminates successfully, returning the current

BARGAIN-1 execution instance,

STEP2: the responder states his initjial stance on the
current issue (i.e. the most important pattern
appropriate to the issue in his bargaining position).

STEP3: the questioner extracts the responder's stated
stance and matches it to the gquestioner's current
stance (extracted from his bargaining position). b & 4
they match, the agreed upon stance is asserted in iten
and onto STEP5; else the questioner reduces his
demands by taking the next most important stance in

his bargaining position, inquiring as to the

Chapter V

suitability of that, and going to STEP4, If the

demands cannot be further reduced (i.e. he has run out
of patterns), then go to STEP7.

STEP4: the responder goes through a similar process of
extracting a stated stance from the questioner's last
utterance, matching it to his own stance, and, if
successful, asserting the agreed upon stance in iten
before going to STEP6; else, reducing his demands then
stating them then going to STEP3; and finally, 1if

there is no way of reducing the demands, going to
STEPS.

STEPS: the questioner, having matched his position on
the current issue with that of the responder, agrees
with him on the current mutually held stance and goes
to STEP1 so that the next issue (as determined by
BARGAIN-ORDER) can be resolved.

STEP6: the responder, having matched his position with
that of the guestioner agrees with him on the mutually
held position, and goes to STEP1 so that the next

issue can be resolved.

STEP7: the questioner, having found irreconcilable
disagreement on the issue with the responder, says so,
the responder says so as well, and the script

terminates in failure.

STEP8: the responder, having found irreconcilable
disagreement on the issue with the questioner, says
so, the questioner says so as well, and the script
terminates in failure.

When BARGAIN is called the first time by BUY-CONVERSATION

Chapter V

116

the following assignments are made: the questioner is
TICKET-SELLER1, the responder is SELF, the guestioner's
bargaining position is TICKET-SELLER-HAS-BARGAINING-POSN, the
responder's bargaining position 1is SELF-WANTS-BARGAINING-POSN,
and the item is TICKET-FCR-CONCERT1. The initial issue,
extracted from the bargaining |PEXPRs, 4is REPN, that is the
contestants will discuss where the seat for the concert will be.
The bargaining is very co-operative in this case (this is
determined by the closeness of the stances in the bargaining
positions), and the model and ticket seller eventually agree on
a ticket representing a location in the centre of the QET.

Obviously, this is a rather stylized version of bargaining,
but it does illustrate some interesting facets of |LISP and the
analysis of language, For the first time generators are used to
cycle through stances as the questioner or responder compromise
during the course of the bargaining. Thus, the EXPR
MOST-IMPORTANT will return the most important pattern in a
| PEXPR matching a particular other pattern, but MOST-IMPORTANT
is defined as a generator so it can later be restarted to
generate the next most important pattern and so on.

The second interesting thing is how the model is able to
use its expectations to extract the actual stance of its
conversant from his utterances. The EXPR COVER-PATTERN will
look through the execution instance generated in the
interpretation or production of an utterance for a pattern
(CONTENT ex-instance Z?ANYTHING) which will contain the basic
content of what was said devoid of any "extraneous"™ things such
as the speaker, the listener, the motivation for the utterance.
Then, COVER-PATTERN will match its expected stance against
patterns in the third element of the CONTENT pattermn, hoping to
find one which the stance covers in the sense that all elements
of the stance are equal to or in the ISA environment of all
elements of the CONTENT pattern. If such a covering match is
found, the CONTENT pattern will replace the stance in the
model's further deliberations.

If such a covering is not found, then the | PEXPR

Chapter V

117

EXPLAIN-BAD is asked to figure a way around things. As with
CHECK-PAILURE, EXPLAIN-BAD is a largely unspecified failure
handler which needs much more elaboration than has currently
been given it. The whole problem of handling unexpected
information and integrating it into a script is one that has
been given only cursory treatment and clearly needs much more
work. Presently, BARGAIN and other scripts naively assume that
all will go as expected or that CHECK-FAILURE, TIE-IN,
EXPLAIN-BAD, or the 1like will be able to explain anomalies so
that processing can continue according to script.

When BARGAIN-1 is returned to BUY-CONVERSATION-1, the next
step of BUY-CONVERSATION-1 initiates a new round of BARGAINing,
this time with the questioner and responder roles reversed. It
is quite likely, therefore, that the same speaker (the model or
the +ticket seller) will speak back-to~-back utterances as the
last step of BARGAIN-1 and as the first step of the new BARGAIN
(called, say, BARGAIN-2) . This illustrates the ease of
sequencing utterances appropriately, even across script
boundaries.

BARGAIN-2, of course, works 1in a similar manner to
BARGAIN-1 with SELF-HAS-BARGAINING-POSN and
TICKET-SELLER-WANTS-BARGAINING-POSN (see Appendix II) being the
two new bargaining positions, and COST obviously being the issue
at hand. Early agreement will be reached here as well, thus
completing the bargaining.

3.4.4 EXCHANGE

When BARGAIN-2 is finished, the motor-action EXCHANGE is
executed (see Appendix II). Of primary significance here is the
similarity between motor-actions and speech actions, and the
case with which the two can mix. The message

(EXECUTE EXCHANGE SELF TICKET-SELLERI]
DOLLARS-10 TICKET-FOR-CONCERT1 ?EXCH-RESULT)

matches the pattern

(EXECUTE _EXCHANGE ?PERSON1 ?PERSON2
?ITEM1 ?ITEM2 ! (EVENT-SEQUENCE ---))

with the appropriate bindings being made and the execution of

Chapter V

118

the EVENT-SEQUENCE ensuing. This sequence has four steps:

1971

TEP1: where PERSON1 gives to PERSON2 the first itenm,

in this case the model gives to the ticket seller 10
dollars.

STEP2: PERSON2, the ticket seller, says thanks.

itn

TEP3: PERSON2, the ticket seller, gives to PERSONT,

the model, the second item, the ticket for the
concert.

STEP4: PERSON1, the model, says thanks.
Thus, steps 1 and 3 are motor-actions; steps 2 and 4 are speech
acts. Note that if the model is the instigator of a particular
action (speech or otherwise) the message will be EXECUTE;
otherwise it will be EXPECT, 1In the linguistic case an EXECUTE
means to generate an utterance; an EXPECT means to interpret an
utterance. In the non-linguistic case an EXECUTE means to
pecrform the action (e.g. giving); an EXPECT means to expect
somebody else to perform the action, so that if the model is
expecting a give, say, then it should expect to see certain
actions such as hand movements, and should prepare itself to
take the proferred item if the model is the intended recipient.

5.4.5 FAREWELL

After executing the EXCHANGE, the final step in the
BUY-CONVERSATION script is entered: the execution of the
PAREWELL script which merely consists of an exchange of goodbyes
between the two participants. |LISP code for this |PEXPR also
appears in Appendix 1T, This successfully ends the
BUY-CONVERSATION script. BUY-CONVERSATION now returns to BUY
which is also done so it returns to ATTEND-CONCERT to proceed to

the next step in the concert plan.

Chapter V

119

5.5 Speech Acts

Speech acts are a level of linguistic description that form
an interface between the internal meanings of concepts and the
external 1lingquistic realizations of these concepts. Concerned
with single speech actions of a specific speaker, they are less
general than scripts but are more general than the purely
linguistic "language level"™ (described in section 5.6).

During the discussion of scripts, speech acts were those
pattern expressions that were sent a message to EXPECT or
EXECUTE a single utterance. Thus, INQUIRE, RESPOND, AGREE,
DISAGREE, etc. are speech acts; there could, of course, be nmany
nore such as INFORM or REQUEST, in line with the
Austin (1962) / Searle (19639) designations. Obviously, the
level of linguistic description promoted here as the speech act
level has much in common with the speech act concept of Austin
and Searle, although neither Austin nor Searle pursue a
computaticnal approach, nor do I talk in terms of "locutionary",
"jllocutionary”™, or "perlocutionary" forces. Furthermore, I do
not believe that speech acts are the crucial linquistic factor,
but rather I regard them as subgoals of more general plans.
This view is similar to that of P. Cohen (1978) where speech
acts are actually planned much as other actions can be planned.

3.3.1 INQUIRE

To demonstrate speech acts, it would bhe useful to take a
particular example, say INQUIRE, and examine what it does. The
code for INQUIRE is in nppendii II. There are two main types of
message that can be received by a speech act: EXPECT, when the
speech act will be uttered by someone else and thus needs to be
interpreted; and EXECUTE, the old standby, implying the speech
act needs to be produced.

Assume, first, that INQUIBE is ‘a subgoal of the
WHAT-DO-YOU-WANT-1 script activation and has been sent the
message
(EXPECT INQUIRE TICKET-SELLER1 SELF

Chapter V

120

(PURPOSE SELF *UNKNOWN*) ?NEW-UTT)
Then, the receiving pattern
EXPECT INOUIRE 2?SPEAKER ?LISTENER
(gcougéng t (1PRO f?

will match, with SPEAKER bound to TICKET-SELLER1; LISTENER to
SELF; CONTENT (i.e. what the inguiry 'should be about) to
(PURPOSE SELF *UNKNOWN*); and the (|PROG ---), after doing the
actual expectation processing, to NEW-UTT. (A |PROG is used
because speech acts seem a low enough level of analysis not to
require the memory preservation features provided by
EVENT-SEQUENCE) .

The first +thing the |PROG does is to check the execution
environment to see if a surface level utterance already has been
"heard". If not, then the "read buffers", the model's single
"sense™, must be emptied (using the EXPR HEAR-WORDS) of their
words and read into a 1list called UTTERANCE. HEAR-WORDS is
responsible for reading the words, separating them from one
another, performing morphological analysis on them; the
possibility of ambiguities at this level is ignored. A unique
list of words that have to be interpreted by the speech act and
its language subgoals is produced.

A possible extension here would be to have HEAR-WORDS
construct a pattern expression (rather than a 1list) to contain
the words of the input. This |PEXPR would keep a conmplete
record of sequencing and timing information, morphology
decisions, as well as the words themselves. Whenever any other
| PEXPR needed to access the words this |PEXPR could be queried.
Such an extension awaits further experimentation.

Having read the utterance (and asserted it in the speech
act's execution instance for the reference of subgoals) the
speech act checks to see if any subset or subinstance of itself
would be more appropriate for the interpretation of that
utterance. Thus, it calls in the EXPR CHECK-FOR-ACTIVE-SUBSET
which will 1look to see if there is any pattern expression that
is a subset or subinstance of INQUIRE and that has been
activated associatively (or in some other non-goal directed way)

Chapter V

121

and wants to run. Although non-goal directed processing will be
discussed in Chapter VI, a brief introduction to associative
activation is presented now.

S5¢5.2 The Associative Activation of YES2

A pattern expression does not always have to be called in
tc accomplish a subgoal of another pattern expression. It can
instead receive an ASSOC message from a closely related |PEXPR
that itself has been activated in one of three ways:
(i) top-down as a subgoal of another ' pattern expression,
(ii) associatively by the reception of an ASSOC nmessage (see
YES2 in Appendix II for an ASSOC pattern which might receive
such a message), or (iii) (ultimately) directly by the presence
of external stimuli. For example having spawned the BUY |PEXPR,
a natural association might be the BUY-CONVERSATION script even
before it 1is actually called in top-down; recognizing a DOG
might trigger associations to BARK, TAIL, and other "doggy"
things.

If enough of these associative triggers contact a pattern
expression, it would likely consider itself strongly relevant to
the current situation and would consequently 1like to be
integrated into the top-down scheme of things. To this end, it
"turns itself on" ("lights wup") in the hopes that top-down
| PEXPRs will notice it and try to incorporate it. Such
recognition is done by EXPRs like CHECK-FOR-ACTIVE-SUBSET called
in at the discretion of the top-down |PEXPRs (just when to make
such checks is a difficult problenm).

In this case INQUIRE asks if there are any active subsets
of itself which, for whatever reason, want to be integrated into
the model's goals. Assume that the word "YES"! has been read
and has spread an associative activation +trace to the speech
acts YES1 (affirmative agreement) and YES2 (what can I do for
you?), among others., VYES1 and YES2 would both consider the

——

1A notational convention: any |PEXPR whose name is surrounded b
" o parks stands for an actual word, not an internal concep
representing the meaning of a word.

Chapter V

122

presence of the word "YES" as being conclusive evidence they are
relevant to the current situation, so they would "light up".
INQUIRE, looking for only those |PEXPRs which are subsets or
subinstances of itself, would see YES2 (but not YES1) and hence
decide that there is indeed an active subset of itself which
would be appropriate here, It therefore decides to replace
itself by the more specific YES2., Notice that YES1, although
associatively active, will not get incorporated into the
top-down context and hence will eventually atrophy and disappear
(more work for the garbage collector!?)

How does such replacement work? There is an EXPR called
REPLACE to do this, It receives as "argument" the |PEXPR which
is to replace the current |PEXPR. The message currently being
processed (and all other messages 1left to process from the
original message form) is then matched against patterns in the
replacement |PEXPR in exactly the same way as they were in the
original wusing the same execution instance, complete with all
the patterns that are there already. Just two changes are made
to this execution instance: first, the current stack is emptied;
and second, an additional
({EX-INSTANCE-OF ex-instance REPLACEMENT-|PEXPR) pattern is
added. This method of replacement allows results which have
already been computed and asserted to be saved; moreover, the
two execution instance pointers allow access to information from
either of the two "ISA" |PEXPRs, the old one or the replacement
one,

In the current example the execution instance INQUIRE-1
would have its stack emptied' and have a
(EX-INSTANCE-OF INQUIRE-1 YES2) pointer added. The model would
then try to match the message

(EXPECT YES2 TICKET-SELLER1 SELF
(PURPOSE SELF *UNKNOWN*) ?2?NEW-UTT)

against patterns of YES2 as for a normal message; that is, YES2
becomes the new subgoal.

Chapter V

123

2.3.3 XYES2

YES2 (see Appendix II) is the speech act which handles the
specific inquiry "yes?" When YES2 receives the EXPECT message,
it looks to see whether an utterance has been read. It has,
since before ¢the replacement took place INQUIRE had managed to
do the reading of the words and this result has been saved in
INQUIRE-1. Having already checked for associatively active
| PEXPRs, the processing continues immediately to asserting the
speaker of and the listener to the speech act.

The speech act then proceeds to interpret the utterance.
In this case that merely involves looking for the words "YES"
and "?" in order and alone in the input utterance (this hasn't
been done yet top-down by YES2, only bottom-up). If they are
nct found, then the input is not considered to be a YES2 so a
failure pattern is left in the execution instance, and the match
fails. The failure to match processing which ensues may find a
matching EXPECT pattern elsewhere (for example possibly the
INCUIRE EXPECT pattern would be re-instigated); but, if not,
then the failure pattern should provide valuable information to
explanation procedures in the "calling"™ |PEXPR in determining
what went wrong and what to do about it.

If the words "YESY and "?" are found, then this confirms
the YES2 speech act. If somebody says "yes?", then he is
asking what you want, assuming that you already know. Thus, the
"meaning"™ of YES2 is the expected content (passed as part of the
EXPECT message) and this is so indicated by asserting a pattern
which in this case is
(CONTENT INQUIRE-1 (PURPOSE SELF *UNKNOWN*)). If +there is no
expected content, i.e. CONTENT has not been initialized during
pattern matching, then the content defaults to
(PYRPOSE !LISTENER *UNKNOWN*); that is, it is assumed that the
speaker is inquiring as to the unknown purpose of the listener.

Once interpretation has been accomplished, +then the
(|PROG ~-~) is done, so the newly endowed execution instance
INQUIRE-1 is returned as value, the entire pattern matches, and
ccntrol resumes in the calling |PEXPR, in this «case the

Chapter V

124

WHAT-DO-YOQU-WANT-1 script instantiation.

Now, this interpretation has been rather trivial: in most
cases much more complicated kinds of processing need to be done,
so complicated in fact that the speech act usually has to call
on language-oriented processes to "parse"™ the input. For
example if INQUWIRE (Appendix II) is examined, it <can be seen
(after the discovery of speaker, listener, etc.) that to find
the content of the utterance, INQUIRE sends an INTERPRET message
to INQUIRE-CLAUSE in order to extract meaning from surface level
language., In the next section more will be said about this
"lanquage level" of the model's processing.

I will conclude this section with a brief discussion of the
other major message type that speech acts handle: the EXECUTE
message. A |PEXPR representing a regular action, if EXECUTEAQ,
performs the action; similarly, a |PEXPR representing a speech
act, if EXECUTEd, produces the speech act, Thus, 1if either
INQUIRE or YES2 is sent an EXECUTE message with the traditional
speaker, listener, and content slots filled, then it is up to
the speech act to generate the utterance appropriate to the
content (or some default verbalization if the <content is
unassigned). In the <case of YES2, this is simplicity itself:
merely call SPEAK-WORDS to print out the words "YES™ followed by
nen,

SPEAK-WORDS, the generation analogue of HEAR-WORDS, must
insert appropriate punctuation, ensure word ending agreement,
and the like. It currently accepts as argument a list, but as
with HEAR-WORDS, the eventual goal 1is to put the words in a

pattern expression which can contain much meta-information
having to do with the words, and have SPEAK-WORDS work with

that.

For most speech acts, more complex kinds of generation
require GENERATE messages to be sent to language level |PEXPRS.
Of this more in the next section.

A final note indicating the underlying symmetry of
interpretation and generation: regardless of whether it ran in
EXECUTE or EXPECT mode, the speech act, when done, will have

Chapter V

125

asserted four patterns of importance:

(SPEAKER —--- ---)
(LISTENER —--~- —---)
(CONTENT --- —--)
(SURFACE --- ---)

where the CONTENT is given and STURFACE produced for EXECUTE
messages and vice versa for EXPECT messages. The CONTENT
pattern particularly is used by scripts (e.g. BARGAIN) in
discerning the meaning of a speech act, although all other
patterns are also available.

The other speech acts have similar EXPECT and EXECUTE
patterns associated with them. The main ISA-linkages connecting
them are shown in Figure 5.6,

5.6 The Lanquage Level

Letting a specific speech act direct the interpretation or
production of an utterance works well if expectations are
precise enough. Unfortunately, it is the rare conversation
which proceeds as expected, and even when expectations are more
or less met, there can be deviations in phraseology which can
leave the speech act bewildered. Thus, most interpretation and
production 1is done with the help of |PEXPRs whose expertise is
in the area of language rather than in the conceptual domain of
the speech act which called them in. The collection of these
| PEXPRs I call the language level., The language level is not,
as yet, mnuch wmore than a skeleton of the kinds of tHings that
need to go on.

The language 1level corresponds roughly to the syntactic
level of processing. Differences will become obvious as the
description proceeds, but the major ones are that the syntactic
constraints are very loose and that semantic processing is
interleaved throughout the syntax. A further distinction from
traditional parsing strategies is that sometimes there is no
need +to use the language level at all (e.g. the speech act YES2
itself looks directly at the utterance).

Chapter V

126

LINGUISTIC-ACTION

SPEECH-ACT
T,
INTERROGATIVE DECLARATIVE
INQUIRE AGREE DISAGREE INFORM RESPOND
S s
YES2 YES1
Figure 5.6 -

Speech Acts in the Model

Chapter V

1217

The general flow of control at the language level during
interpretation (in traditional top-down style) is to separate an
utterance into clauses, and then divide clauses into noun
groups, verb groups, preposition groups, and sub-clauses (which
are, in turn, further broken down) . Memory concepts
representing the "meaning" of the noun groups, verb groups, and
preposition groups are then built., These memory concepts are
then linked together to yield an interpretation of the clause of
which they are a part. Finally, the clause interpretations are
linked together +to form an interpretation for the whole
utterance which is returned to the speech act for its perusal.
The top-down breakdown of utterances into groups is similar to
Winograd's (1972) parsing strategy; the amalgamation of groups
via message passing has elements of a case approach (e.g. Taylor
and Rosenbherg (1975)).

So, the 1language 1level is concerned with partitioning an
input utterance into sub-groups. There is a pattern expression
for each type of group: UTTERANCE, COORD-CLAUSE, SUB-CLAUSE,
REL-CLAUSE, NOUNG, VERBG, and PREPG. Of course, there can be
more specific groups which refine the processing of their
superiors, for =example a BECAUSE-SUB-CLAUSE, or even more
specifically a BECAUSE-I-HATE-CHEESE-SUB-CLAUSE. Figure 5.7
illustrates an ISA hierarchy of such word group |PEXPRs.

Wword group |PEXPRs receive messages like any other {PEXPRs,
Two of particular interest are INTERPRET and GENERATE, the
former to understand a conversant's words and the latter to
prcduce words for the model. In the following discussion I will
concentrate almost exclusively on interpretation even though
generation is just as crucial to a conversation.

5.6.1 Interpreting UTTERANCEs and CLAUSEs

UTTERANCEs and CLAUSEs are interpreted by being broken into
NOUNGs, VERBGs, PREPGs, and sub-clauses, Certain clauses nmay
have extra punctuation or conjunctions not incorporated into any
group - these are merely noted and have use later when a clause

is asked how it modifies some other concept (see below).

Chapter V

LINGUISTIC-
CONSTRUCT
/
WORD- GROUP
> S S
DEPENDENT- INDEPENDENT -
WORD-GROUP CLAUSE WORD- GROUP
/’//’j/,///,/* ////‘ N\\\ /////ﬁ]
NOUNG VERBG PREPG CLAUSE- CLAUSE- UTTERANCE
DEPENDENT INDEPENDENT
S S S
REL- SUB- COORD-
CLAUSE CLAUSE CLAUSE
5
BECAUSE-
SUB- CLAUSE

S

BECAUSE-I-HATE-
CHEESE-SUB-CLAUSE

Figure 5.7 - Word Group Hierarchy

128

Chapter V

129

A group is asked to break itself into constituent

sub-groups by sending it a message of the form

(INTERPRET lanqpege=38veocdEf*BResorm

For example, suppose a speech act (e.g. INFORM) has read and
wvants to interpret this utterance:

“ 3 -
eggggggglnary SREPTSY Hetols aFégggt pSymRhony with

Then the speech act would send a message
(INT%RPRET UTTEQRHCE
WBEETHOVEN COMPOSE™ MDPASTH BTHEN
"SYMPHONY"™ "WITH"™ "EXTRAORDINARY"™ ™S

n_W ugREW MREN ADAGTH NAW WGREATM WMA
?RESULT-OF~-INTERP)

to UTTERANCE. The double-quoted atoms above name word |PEXPRs
containing patterns linking the word to its internal concept (s)

=R
Hi

and to its part of speech., To illiustrate, "COMPOSE" might look
scmething like
<|{PDEF "COMPOSE"
INSTANCE-OF "COMPOSE" VERB)
CONCEPT “COMPOSE" COMPOSE) >
Upon receipt of an INTERPRET message, UTTERANCE would
divide the list of words into two co-ordinate clauses and pass
INTERPRET messages to each COORD-CLAUSE, i.e.

INTERPRET COORD-CLA'SE “BEETHOVEN“ == 0 "% ’INTERP1)
INTERPRET COORD-CLAUSE ("HE" === ®", W) 2INTERP2

Each of the COORD-CLANSEs could be split into NOUNGs, VERBGs,
PREPGs, or sub-clauses and interpret messages would then be sent
to these constituents; e.q.

INTERPRET PREPG ("WITH" "EI?RAO INARY" "SKILL"™) ZINT14)
INTERPRET VERBG ("COMPOSEY™ %PASTY) 7?INT12)

Returned as a result of any such interpretation is a pnew
| PEXPR representing the concept described by the NOUNG, VERBG,
PREPG, or sub-clause. When all constituents of a clause have
been interpreted, they must be linked together, so various pairs
of them are sent MODIFY-HOW messages. Thus, the new |PEXPR
representing the interpreted main verb of a clause may be asked
how it is modified by the newly interpreted NOUNG just preceding
it; e.qg.

(MODIFY-HOW VERBG-COMPOSE NOUNG-BEETHOVEN ?MOD-HOW1)

In this case, since Beethoven has all the characteristics

Chapter V

130

required of an agent for VERBG-COMPOSE (precedes the verb, is
animate, is a composer), VERBG-COMPOSE would be happy to add to
itself the pattern

(AGENT VERBG-COMPOSE NOUNG-BEETHOVEN)

Similarly, a NOUNG occurring after the VERBG might be
incorporated by asking VERBG-COMPOSE

(MODIFY-HOW VERBG-COMPOSE NOUNG~-SYMPHONY ?MOD-HOW2)
which, since symphonies have all the qualities needed to be a
patient for the verb group would result in VERBG-COMPOSE adding

(PATIENT VERBG-COMPOSE NOUNG-SYMPHONY)

Note the case aspects of MODIFY-HOW processing: the newly
created verb concept (using an inherited MODIFY-HOW procedure)
is making all the decisions about what to check for, what
patterns to add, and what other processing to carry out.

Other NOUNGs, PREPGs, and REL-CLAUSEs are similarly linked
into the NOUNGs or VERBGs which they modify. In addition two
clauses may have to be linked together. For a COORD-CLAUSE and
a SUB-CLAUSE, the message would be to the concept representing
the dominating COORD-CLAUSE, i.e.

(MODIFY-HOW COORD-CLAUS E-concept
UB-CLAUSE-concept ?HOD-HOW3)

while for two COORD-CLAUSEs, the message would be to the concept
representing the first COORD~CLAWSE, In cas=s involving PREPGs,
REL-CLAUSESs, SUB-CLAUSEs, or dominated COORD-CLAUSEs, the
linking word (preposition, relative conjunction, subordinate
conjunction, c¢o-ordinate <conjunction, or punctuation mark) is
available. The |PEXPR corresponding to this 1linking word can
thus be accessed during MODIFY-HOW processing to add precision
to the link-up, For example, the clause "I like stereo because
it beats mono." breaks into two clauses that are interpreted as
COORD-CLAUSE-LIKE and SUB-CLAUSE-BEAT. As a result of
interpretation, SUB-CLAUSE-BEAT would contain a pattern
(SUB-CONJUNCTION SUB-CLAUSE~-BEAT "BECAUSEY)
so that when COORD-CLAUSE-LIKE tries to see how SUB-CLAUSE-BEAT
nodifies it, this pattern can be accessed, and the pattern
(REASON COORD-CLAUSE-LIKE SUB-CLAUSE-BEAT)

Chapter V

131

can be added to COORD-CLATSE-LIKE (REASON being the mearing of
WBECAUSE"™ in this context).

After all constituents of a CLAUSE or UTTERANCE are
connected, the interpretation of the CLAUSE or UTTERANCE is
complete, so the concept associated with the main verb is
returned to whoever wanted the CLAUSE or UTTERANCE interpreted
{another clause or utterance, or a speech act). This is because
the main verb, so central in all MODIFY-HOW processing, and thus
linked so closely to the rest of the «concepts, in a sense
represents the central meaning of any clause or utterance.

Throughout this processing, the CLAUSE and UTTERANCE
| PEXPRs must choose how to divide words into appropriate
sub-groups and must decide on an order in which to relate the
sub-groups to one another. To make such decisions, traditional
parsing expertise must be augmented by the ability to look into
the execution environment for various kinds of information.
Thus, the identity of +the speech act which initiated the
proceedings might be important (an INQUIRE speech act, for
example, might suggest an interrogative grammatical
construction). Similarly, it might be useful to consult the
conversant models in order to discover individual peculiarities
of phraseology. If, despite this information, a mistake is
made, the CLAUSE or UTTERANCE must be able to try alternatives.

5.6.2 Interpreting NOUNGs, VERBGs, and PREPGsS

NOUNGs and VERBGs represent concepts in memory. Thus, a
VERBG usually stands for some relation; a NOUNG for some real
vorld (e.g. BRuff) or abstract (e.g. the present King of France)
object. The basic interpretation strategy for any such group is
therefore to produce a new pattern expression which represents
the concept stated in the group.

NCUNGS:

The interpretation of NOUNGs can best be described with an
example, Assume that NOUNG is sent a message to interpret

Chapter V

132

("THE"™ "FIFTH" "SYMPHONY"). The first thing is to find concepts
that are candidates for the meaning of each word (using the
words' (CONCEPT ---) patterns). In the case of multiple
candidates for a word, the NOUNG makes some choice, based on the
importance of the concept to the word if such is available. (Of
course, the NOUNG must be prepared to make another choice if the
first one fails tc work out).

After doing this "dictionary look-up", the NOUNG picks off
the concept associated with the noun (say SYMPHONY) and adds the
pattern

(ROLE-INSTANCE-OF NOUNG-SYMPHONY SYMPHONY)
to the current execution instance (called NOUNG-SYMPHONY here);
that is, the execution instance 1is playing the "role" of
SYMPHONY in this context. Although it is debateable whether
ROLE-INSTANCE-OF is the appropriate pointer name to use here, I
feel it is more convenient to use an already existing link type
with an inheritance feature built in (since much information
relevant to the new concept will have to be inherited from
SYMPHONY as well as from NOUNG). Of interest is that when
future generations look at NOUNG-SYMPHONY, they will know by the
EX-INSTANCE-OF peointer that it is a NOQUNG, by the
RCLE-INSTANCE-OF pointer that it represents the concept SYMPHONY
in this particular "role"™, and finally by the EX-ENVIRON pointer
the context in which the words were issued.

Next, the NOUNG must take care of all modifiers
{adjectives, classifiers, determiners, etc.) in the group.
Thus, the concept FIFTH (associated with the adjective "FIFTH")

is sent a message
(MODIFY-HOW FIFTH NOUNG-SYMPHONY ?MOD-HOW7)

i,e. how does FIFTH mnmodify a new role instance of SYMPHONY?
FIFTH knows that it is the fifth number of whatever it modifies,
so it adds

(NUMBER-OF NOUNG-SYMPHONY 5)

to NOUNG-SYMPHONY., TE the modification means that
NCUNG-SYMPHONY is now recognized to be a role instance of some
more specific |PEXPR (e.g. FIFTH-SYMPHONY), then the old

Chapter V

133

RCLE-INSTANCE-OF pointer is removed and a new one added that
pcints to the more specific |PEXPR. This, too, is done by the
adjective concept during receipt of a MODIFY-HOW message.

NOUNG-SYMPHONY now resumes execution and checks if there
are any other modifiers in the group. 1Indeed there is one more:
the determiner "THE", The concept associated with "THE", THE,
is sent

(MODIFY-HOW THE NOUNG-SYMPHONY ?MOD-HOWS8)
THE performs an analysis similar to that for adjectives except
that the main task of a determiner is to determine whether the
noun group is a role instance of a new instance or merely a role
instance of an old instance. The usual case with THE is that it
designates an old instance (although not always). 1In fact here
THE does signify that NOUNG-SYMPHONY is a role instance of an
existing instance, so THE proceeds to try to find the instance:
the candidates are instances of SYMPHONY or its subsets. If THE
is able to find the particular symphony that fits, for exanple
BEETHOVEN-SYMPH-FIVE, then a

(ROLE-INSTANCE~OF NOUNG-SYMPHONY BEETHOVEN-SYMPH-FIVE)
is added to NOUNG-SYMPHONY and the ROLE-INSTANCE-OF pointer to
SYMPHONY is removed., If THE is unable to find <the particular
symphony that fits, then

(ROLE-INSTANCE-OF NOUNG-SYMPHONY ¥SYMPHONY)
is added to NOUNG-SYMPHONY (i.e., NOUNG-SYMPHONY 1is a role
instance of some subinstance of SYMPHONY yet to be determined)
and the o0ld ROLE-INSTANCE-OF pointer is removed. Later, when
other pieces of information become available, this pointer can

be further specified. A final note: if a NOUNG refers to a new
instance (as is sometimes the case with the article "a"), then

the new instance is created (using the EXPR CREATE-NEW) and the
RCLE-INSTANCE-OF pointer is directed to this new instance.

VERBGS
Verb groups are handled in a manner similar to noun groups:

the execution instance created when VERBG is sent an interpret
message 1is a role instance of some particular action concept

Chapter V

134

associated with the main verb of the verb group. Adverbs and
auxiliaries in the group further specify the time of the action,
the manner of the action, the importance of the action, etc. To
handle this, the «concepts associated with verb modifiers are
sent MODIFY-HOW messages which result in extra patterns adorning
the verb group execution instance.

PREPGs:

A preposition group is interpreted by separating its object
noun group and interpreting it., An additional pattern
(PREPOSITION NOUNG-ex-instance "prepostion")
indicating the preposition that heads the PREPG is asserted in
the NOUNG's execution instance (and later used, perhaps, during
MODIFY-HOW processing). The NOUNG execution instance is then
retarned as the "meaning" of the PREPG.

2.6.3 Generation

I will give here only a brief suggestion of what I have in
mind for generation at the language level, A speech act
receives an order

(EXECUTE SPEECH-ACT SPEAKER LISTENER CONTENT ?20UT-WORDS)
where CONTENT is either a |PEXPR name or a list of |PEXPR names
representing the concept to be spoken. The speech act can
scretimes directly output the CONTENT (as for THANKS, say, or
YES2), but most often it must call on the 1language level
UTTERANCE, CLAUSE, NOUNG, VERBG, etc., | PEXPRs to help it
prcduce nice output. Thus, INQUIRE needs to use a subset of

UTTERANCE, INQUIRE-UTTERANCE perhaps, to generate its output.
INQUIRE~UTTERANCE would thus be sent a message

(GENERATE INQUIRE-UTTERANCE CONTENT 7?0UT)
In response it would be expected to take the CONTENT description
containing one or more |PEXPRs and figure out what patterns in
the |PEXPRs to verbalize and what to leave non-verbalized (this
would require, among other things, the examination of the belief
mcdels for the model itself and the conversant, available in the
execution envircnment). For each pattern that 1is to be

Chapter V

135

verbalized, sub-clauses, adjectives, adverbs, preposition
groups, must be constructed, and these must modify verbs and
nouns in proper groups. Thus, at various stages PREPG,
COCRD-CLAYSE, SUB-CLAUSE, NO' NG , VERBG, etc. can be sent
GENERATE messages. '

When the time comes to get surface words for internal
concepts, patterns such as

(SURFACE BUY "“BUYY)
associated with the concept |PEXPRs can be used. As each clause
or group 1is completed, the words in that conglomeration are
returned in a list to be amalgamated into other words returned
from other clauses or groups. Eventually, words are returned to
the speech act, which, using SPEAK-WORDS, outputs them.

Obviously, this is a very brief outline of the potential of
the model in the difficult task of generation, Much further
analysis needs to be done before any claims can be made in this
area. For a good description of the problems that lurk in
generating natural language output, read Wong (1975).

2.1 Conversations II and III

At the beginning of the chapter two other conversations,
the drink buying episode and the conversation with a "friend" at
intermission, were proposed for analysis. I do not intend to do
very much explanation here because the basic principles have
already been presented and the complexities of the third
cenversation have not yet been sufficiently well aralyzed for
detailed discussion. Howevér, it is essential to demonstrate
the generality of the apprecach outlined in the previous
discussion.

The drink buying episode takes place as STEP7 of the
ATTEND-CONCERT plan (see Appendix II) after the model has
listened to the first half of the concert and gone out for a
break at intermission. It turns out to be almost identical to
tbte ticket buying episode: BUY is called with SELF as the agent,
and with the desired drink heing computed by asking

Chapter V

136

PRE-DINNER-DRINK (see Appendix IT) the question

(WANT SELF (DRINK SELF 2?DESIRED-DRINK)). Since the model is
attending a «concert, PRE-DINNER-DRINK computes the model's
desires to be a mnew instance, JOHNWNY-WALKER-SCOTCH1, of the
JCHNNY-WALKER-SCOTCH | PEXPR (see Appendix II).
JOHNNY-WALKER-SCOTCH is, in turn, a subset of SCOTCH (see
Appendix II). Thus, the ITEM to B7Y is JOHNNY-WALKER-SCOTCH1,

BUY then 1is EXECUTEA &and it finds the location of the
drinks (QETBAR, discovered by asking JOHNNY-WALKER-SCOTCH1 which
inharits it £from PRE-DINNER-DRINK which computes it by asking
for the location of the BAR at the location of the current
event) . The model goes to CETBAR where it expects to find the
seller of JOHNNY-WALKER-SCOTCH1 +to be a new instance,
BARTENDER1, of BARTENDER (see Appendix II). This knowledge has
been inherited by JOHNNY-WALKER-SCOTCH1 from the generic
ALCOHOLIC-DRINK { PEXPR (see Appendix 1II). The people in
Figure 5.8 are thus known to the model.

The BUY-CONVERSATION script is then EXECUTEd exactly as in
the ticket buying episode to achieve the desired drink. As for
ticket buying, bargaining positions mnust be obtained. The
bargaining positions for BARTENDER!1 can be determined by asking
BARTENDER1, which inherits it from BARTENDER by accessing the
EXCHANGE pattern there. The bargaining positions for the model
are determined by asking SELF what it wants to exchange, and
this information is inherited along ROLE-INSTANCE-OF links from
SELF-AS-A-BUYER~-OF-ALCOHOLIC-DRINKS in this situation. Thus,
the model owns SELF-HAS-DRINK-BARGAINING-POSN and wants in

exchange SELF-WANTS-DRINK-BARGAINING-POSN while the bartender
has BARTENDER-HAS-BARGAINING-POSN and wants in exchange

BARTENDER-WANTS~BARGAINING-POSN (all these "bargaining position"
| PEXPRs are in Appendix II). It is interesting to note the ISA
ccnnections of the various bargaining positions known to the
model, displayed in Figure 5.9.

The two BARGAIN sub-scripts of BUY-CONVERSATION (see
section 5.4.3) are once again the most interesting aspects of
the script. The first matches SELF-WANTS-DRINK-BARGAINING-POSN

Chapter V

B

PERSON
&
SELLER BUYER
S s
TICKET-
SELLER BARTENDER SELF-AS-A-BUYER
e e s s
TICKET-
SELLER1 BARTENDER1 SELF-AS-A-BUYER- SELF-AS-A-
OF-CONCERT-TICKET BUYER-QF-
DRINK
Figure 5.8 - People
Figure 5.9 - Bargaining Positions
BARGAINING-
POSN
/\
HAS-BARGAINING- WANTS-BARGAINING-

POSN POSN
s s s////f- s

SELF-HAS-DRINK- SELF-HAS-TICKET- SELF-WANTS-TICKET-| | SELF-WANTS-DRINK
BARGAINING-POSN BARGAINING-POSN BARGAINING-POSN BARGAINING-POSN

5 s S S

BARTENDER-HAS - TICKET-SELLER- TICKET-SELLER- BARTENDER-WANTS-
BARGAINING-POSN HAS-BARGAINING- WANTS-BARGAINING- BARGAINING-POSN
POSN POSN

138

with BARTENDER-HAS~BARGAINING-POSN and the second matches
BARTENDER-WANTS-BARGAINING-POSN with
SELF-HAS-DRINK-BARGAINING-POSN,. The first bargaining differs
from the ticket buying in that +two things must be settled,
namely the brand, then the mixer (see +the BARGAIN-ORDER
pattern). The second bargaining settles the cost of the drinks
much as did the ticket buying situation.

The speech act and language level |PEXPRs are more or 1less
the same as in the ticket buying situation so need not be
discussed.

Upon completion of the drink-buying conversation, the
ATTEND-CONCERT pattern expression resumes execution at STEPS
where the model, in parallel, fills in time and drinks its drink
until it hears the buzzer marking the end of intermission. This
particular set of subgoals has only been added to show the
|DO-PARALLEL |EXPR (see Appendix 1I) in operation and the
possibility of the model doing several things at once. The
FILL-IN-TIME |PEXPR would be a very liberal plan which more or
less allowed bottom-up suggestions to direct it as to how to
pass the time. Thus, if the model "sees" an interesting mural
on the wall, FILL-IN-TIME might decide to build and call a
subplan to go look at the mural, or if the model is a smoker,
FILL-IN-TIME might invoke a subgoal to light up a pipe.

When the model encounters a friend, FILL-IN-TIME would have
to first of all recognize the friend and bring in its model of
the friend, and secondly discover some script which would enable
the model to talk with the person. Details as to how this would
be accomplished have not been worked out, although it 1is <clear
that bottom-up and associative capabilities would be strongly
employed in doing both tasks.

Assuming the <conversant model and the script have been
built, what would such a script look like? It would start with
scme sort of greeting script akin to WHAT-DO-YOU-WANT which
would launch the conversation, to be followed by the most
general two-person script DIALOGUE (see Appendix II)., The
DIALOGUE script expects SPEAKER1 to produce some speech act,

Chapter V

139

then SPEAKER2 to perform some speech act, then SPEAKER1, and so
on, until a failure occurs. Note that a special failure
checking routine called CHECK-FAILURE-DIALOGUE is used that
would explain a lack of input by suggesting that DIALOGUE is
done rather than as an error as CHECK-FAILURE might do.

COMPUTE-EXPECTATIONS is used to discover what to say at any
stage based or what the speaker has said (available from the
script), what he believes (available from his belief model),
what the other speaker has said, what the other speaker
believes, and on the model's knowledge about the various topics
of discussion (ccntained in objects accessible in searches fron
| PEXPRs whose names can be found in the execution environment).
This is, of course, extraordinarily difficult, and I can at best
speculate on how it would work.

Probably one of the major ways of deciding what to say is
to compare patterns in one speaker's belief model with those in
the other's model, and also to compare their beliefs with their
utterances in the conversation to date, Depending on their
attitude towards one another, either contradictions or
similarities could be emphasizad in choosing amongst the
ccmparisons., If the two parties are in an adversary position
(e.g. in a debate), then important contradictions would be
crucial; if the +two are in a co-operating mood (e.g. in
purchasing something), +then important similarities would be
emphasized; if one person 1is in authority over the other
(e.g. in a job interview), the subservient one would be
co-operative, the authority would be perhaps contrary; and so

on. Some of the ideas in my first progress report
(McCalla (1973)) would be relevant here.
Some sort of general «conversation takes place, is

concluded, the model and the convarsant exchange farewells, and
the model returns from FILL-IN-TIME to the execution of the
ATTEND-CONCERT plan. The plan continues with the nmodel
listening to the second half of the concert, then going back
home. Control at 1last returns to the execution of WORLD-VIEW
where some other plan must be constructed and undertaken.

Chapter V

140

Thus, "one day in the 1life"™ of the model has been
presented. Discussed has been the scope of the representation
scheme, the type of 1language processing I envisage, and the
probléms which arise in using |LISP to undertake the processing.
In the next chapter I examine some of the generalizations which
can be extracted from these examples, and indicate some of the
ways a system such as this can be extended to handle other kinds
of phenomena.

Chapter V

141

CHAPTER VI

Generalizations and Extensions

The examples of the last chapter indicate in detail how the
various parts of the model fit together. In this chapter I
discuss some of the more general representation features in the
model, to suggest what the model means for the analysis of
language, and +to illustrate some potential extensions to this
kind of systenm.

6.1 Bepresentatiocn Properties of the Model

Chapter V has exposed a plethora of patterns, pointers, and
macros which together define the relevant information in the
model., A surprisingly small number of dimensions suffice to
delineate the bulk of this information. I would 1like to
investigate the following major categories: the ISA hierarchy,
the PART-OF hierarchy, the -execution environment, "one-shot"
relations, and procedural knowledge.

6.1.1 The ISA Hierarchy

The ISA hierarchy consists of pattern expressions connected
by INSTANCE-OF, ROLE-INSTANCE-OF, EX-INSTANCE-OF, or SUPERSET
pcinters. It is the standard generalization hierarchy
(e.g. Quillian (1969), Levesque (1977), Fahlman (1975),
Roussopoulos (1976)) which allows lower «concepts to inherit
information from concepts higher in the hierarchy.

It 1is generally a property of the ISA hierarchy that the
higher up a |PEXPR is, the 1less specific 1is its information
since (potentially) many sub-|PEXPRs can inherit from it. For
example, 1looking at the 1ISA environment emanating from
JOHNNY-WALKER-SCOTCH, it can be seen that stored with
JOHNNY-WALKER-SCOTCH is very specific information as to the
cost, the brarnd, and other features of this kind of Scotch; with
its superset, SCOTCH, is more general knowledge about mixers
that go with Scotch, and the model's preferences among Scotches;

Chapter VI

142

with SCOTCH's superset, PRE-DINNER-DRINK, is more general
information yet about the contexts in which the model wants to
drink pre-dinner drinks; with its superset, ALCOHOLIC-DRINK, is
the rather broad knowledge that bartenders serve alcoholic
drinks; and so on up the hierarchy. Of course, it is always
possible (although the examples have not shown it) to override
any general information by placing more specific information
lower down in tke hierarchy; ST I

(MIXER ¢yTEACHERS-SCOTCH ¢YWATER) in TEACHERS-SCOTCH would be an
exception to the general "scotch-mixer" being ice.

Inheritance occurs during pattern matching when a source
pattern has failed to match any target patterns. If this
happens it 1is possible to look into the ISA environment
surrounding the target object for a matching pattern. The two
interesting things here are that inheritance is only attempted

(i) a particular piece of information is needed by some
other |PEXPR and it can't be found directly;
and (ii) when the information is of a type appropriate for
inheritance to be tried (determined by failure to match
processing associated with the information itself).

The examples in Chapter V illustrate at least two types of
ISA inheritance which I 1label direct ISA inheritance and

dependency ISA inheritance. Direct inheritance occurs when the

unmatched source pattern can be directly matched to pattermns in
the ISA environment without modifying the source pattern. Thus,

in the drink-buying episode when it Dbecomes important to
discover the SELLER of the newly created SCOTCH1, the source
pattern (SELLER SCOTCH ?WHO) is cohstructed, and an attempt is
made to match it in SCOTCH1. This fails, so SELLER directs that
the INSTANCE-OF pointer ¢to JOHNNY-WALKER-SCOTCH be followed,
where a direct match is undertaken for a pattern matching the
source. This also fails, so the SUPERSET pointer to SCOTCH is
followed (and another failure to match occurs), the SUPERSET
pointer to PRE-DINNER-DRINK is followed (and still another
failure to match cccurs), and finally its SUPERSET leads to
ALCOHOLIC-DRINK. There, the pattern

Chapter VI

143

(SELLER yALCOHOLIC-DRINK ¥BARTENDER) is discovered which matches
(SELLER SCOTCH1 ?WHO) directly since SELLER = SELLER, SCOTCH1 is
a SUB-INSTANCE of ALCOHOLIC-DRINK, and ?WHO matches ¢BARTENDER
by creating a new instance of BARTENDER, say BARTENDER1, that is
bound to WHO in the source object. The pattern

(SELLER YALCOHOLIC~-DRINK Y{BARTENDER) has been in some sense
"directly" inherited by SCOTCH1.

It 1is typical of most directly inheritable patterns that
they are stored with a class, but their pattern elements pertain
to instances (as indicated by "¢y" macros in front of their
elements). Thus, the class ALCOHOLIC-DRINK contains the pattern
(SELLER YALCOHOLIC-DRINK {¥BARTENDER) indicating that the SELLER
of any sub-instance of ALCOHOLIC-DRINK is a sub-instance of a
BARTENDER. An interesting observation is that use of =(--=-)
macros would allow the placement of arbitrary conditions on a
pattern element just as "y" imposes the condition "sub-instance
of"™ on its element, enabling the user of JLISP to more finely
tune inheritance to his particular needs.

The other %kind of inheritance, dependency inheritance,
involves modifying the source pattern as ISA 1links are
traversed. This most frequently occurs when the item being
inherited 1is a property of the class itself rather than being a
property of the instances of the class with which it is stored.
The second element of the pattern is, thus, usually the class
name and when a sub-class (or instance) is trying to inherit the
pattern it must take this into account,

The most commonly inherited such patterns are the
"procedural patterns" designafed by EXECUTE, EXPECT, INTERPRET,
etc., which are associated with their containing | PEXPR
regardless of whether or not it is an instance. For example if
the message pattern

(EXECUTE ATTEND-CONCERT SELF CONCERT1 ?ATTEND-RESULT)
were sent to ATTEND-CONCERT, and there was no matching pattern,
EXECUTE would be <called in to suggest what to do. EXECUTE
patterns are dependently inheritable with the second element
being dependent on (in fact equal to the name of) the |PEXPR

Chapter VI

144

which contains the pattern. So, in this case the ATTEND |PEXPR
(SUPERSET to ATTEND-CONCERT) would be searched for a pattern
matching the modified source

(EXECUTE ATTEND SELF CONCERT1 ?ATTEND-RESULT)

and if this failed, the superset of ATTEND, say PLAN-OF-ACTION,
would be searched for a pattern matching

(EXECUTE PLAN-OF-ACTION SELF CONCERT1 ZATTEND-RESULT).

The next most common situation requiring dependency
matching is when an execution instance or role instance is
inheriting from an instance or another execution instance or
rcle instance, 1In this case any references to the execution
instance or role instance must be considered to be dependsnt, at
least until the instance is encountered. Thus, if RUFF-1 is an
execution instance of RUOFF, a pattern (HOWL RUFF-1) would be
modified to (HOWL ROFF) when searching ROFF, Note that,
although the match is dependent when going from RUFF-1 to ROUFF,
it would be direct if the search were carried out in the 1ISA
environment above RUFF, since this is above the instance level.

Dependency matches illustrate the value of forcing tke
semantics of failure to match processing to be explicitly stated
in the pattern head, since the pattern head can do anything
appropriate to the kind of information represented in patterns
of that kind., In fact, it would even be possible to do away
with pattern elements such as "y" and let the pattern head
realize that the relation it represents connects instances
rather than classes. For example the |PEXPR SELLER might know
that (SELLER ALCOHOLIC-DRINK BARTENDER) actually is meant to
relate instances of ALCOHOLIC-DRINKS to instances of BARTENDERS.
I felt, however, that it would be better to explicitly suggest
via macro modification the conditions on various elements in a
pattern., Another user of |LISP is, as always, able to make his
own decisions in this regard.

Chapter VI

145

6.1.2 The PART-OF Hierarchy

The PART-OF hierarchy connects pattern expressions by the
peinter PART-OF, a 1link of recognized importance (see, for
example, Levesque (1977), Havens (1978)). A {|PEXPR, Y, 1is
cconnected by PART-OF to another |PEXPR, Z, if the referent for 2
is an aggregate consisting at least in part of the referent for
Y (e.g. a pattern (PART-OF LEG-OF-RUFF RUFF) in RUFF).

As with ISA searches, PART-OF searches can be carried out
in response to a failure to match; for example in the case of
certain "attribute" patterns such as {COLOUR ===) or
(TEXTURE ---), etc. where the attribute of the part is likely
to be the same as the attribute of the aggregate. Moreover,
such searches should be carried out with dependency PART-OF
inheritance in force, if applicable. Thus, to find a pattern
matching the source (TEXTURE LEG-OF-RUFF 2?WHAT) might require
patterns in LEG-OF-RUFF to be considered, then, if this failed,
patterns in RUFF. The source would have <to be changed to
(TEXTURE RUFF ?WHAT).

PART-OF is also instrumental in intersection searches where
it is necessary to see if several {PEXPRs are all PART-OF sone
more general |PEXPR. For example in the discussion of how the
mnodel updates its LOCATION pointer (section 5.3.2), PART-OF
intersection was used to determine the level of geographic
detail affected by a change in the model!s position. Many other
uses can be envisaged. Interestingly, there is a similar
necessity for ISA intersection. For instance it is necessary in
the semantic portions of +the language level to check whether
certain word concepts intersect up ISA links with the concept
ANIMAL (i.e. to see if something is animate). For many examples
of this phenomenom see Quillian (1969) and Fahlman (1975).

6.1.3 The Execution Environment

The execution environment is accessed from any particular
execution instance by following EX-ENVIRON pointers to execution
instances of higher level goals. Patterns can be matched in the
execution environment (using direct matching techniques) if they

Chapter VI

146

represent the type of information which changes as subgoals are
undertaken. Thus, the LOCATION of the model, the current object
on which the model's ATTENTION is focussed, and the like, would
require looking up EX-ENVIRON pointers if necessary.

In addition the wexecution environment forms the basic
context mechanism of the model in that it focusses the model's
attention on the things relevant to the current goals. Thus, at
the language level, the model can discover the current speaker
by 1looking into the execution environment for the controlling
speech act where a pointer to the relevant model of the speaker
is recorded. Knowledge gained from this model may enable the
current utterance to be more weasily interpreted or generated
than it would be without the contextually relevant speaker
model. This 1is a fairly typical use of the execution
environment: execution instances in it contain patterns pointing
to relevant |PEXPRs which in turn contain patterns pointing to
slightly 1less relevant {PEXPRs further away from the execution
environment, and so on.

Thus, contextually relevant information is that information
you can get at from the current execution environment. Deciding
when +to put something into the execution environment then
becomes a major problem. There is no hard and fast rule about
putting things into the context, but by far the most common way
is for a script, or plan, or whatever to know directly by nanme
the "foregrounded™ |PEXPR to choose., The next most common way
is by simple search up ISA or EX-ENVIRON 1links for data of
certain kinds (e.g. to find (SELLER TICKET1 ?WHO) look up ISA

pointers). Sometimes other searches can be used, as in the case
of top-down expectations using associative activation (combined

with ISA intersection) to exclude the YES1 affirmative answer
meaning of "YES". Many more possibilities exist.

Execution environments also form the basis for a sort of
episodic memory, consisting of particularly relevant execution
environments incarnated when the model was achieving previous
goals. These o0ld episodes not only still maintain their
EX-ENVIRON and EX-INSTANCE-OF pointers, but they also still

Chapter VI

147

contain all other relevant patterns that were asserted during
their active existence.

Accessing information in an o0ld execution environment
allows the entire context to be seen as it was then, with the
exception, of course, that it is being viewed from the changed
perspective of the current context. This gives a facility
similar to the ALINK / CLINK distinction of Bobrow and
Wegbreit (1973) frames in that it allows processes in one
context to access information from another, Moreover, it
extends this facility, since it is perfectly possible to have
execution instances of execution instances of execution
instances, and so on, and hence have many levels of context.

If an execution instance has been created as a subgcal of
an EVENT-SEQUENCE, there will be a THEN link connecting it to
the next subgoal at 1its level. Thus, o0ld episodes are often
stored as graphs looking something like Figure 6.1 (where each
box is an execution 4instance created during EVENT-SEQUENCE
processing).

Various episodic memory searching procedures can be
visualized (EX-ENVIRON searches from some execution instance;
scans from execution instance to execution instance along THEN
links; searches along THEN links with EX-ENVIRON searches at
each stage; etc.) Which search is suitable would depend on the
reasons for undertaking the search. Since episodic memory
hasn't been actualized in the examples I have considered,
further detail as +to its properties will have to await
experimentation,
6.1.4 One-Shot Relations

There are a number of ‘“relations" in the model called
"one-shot relations" which are crucial but which don't connect
to one another in long chains as do ISA, PART-OF, or EX-ENVIRON.
Examples include concepts such as COMPOSER, SELLER, BUYER,
CONCEPT, SURFACE, AGENDA, etc., which constitute the major
portion of the model's knowlsdge base. These "relations" in
their very ubiquity indicate that the model is not based on

Chapter VI

148

y,
ex ex
—THERN—
e ex

Figure 6.1 - An Episode in Memory

Chapter VI

149

universal primitives but rather that any convenient domairn
dependent "primitives" «can be chosen, can be endowed with a
relevant name, given appropriate semantics (in how they handle
failure to match, in how many elements patterns headed by thenm
take, in IF-ADDED or IF-REMOVED processing, etc.), and used
appropriately.

6.1.5 Procedural Knowladge

The final important aspect of the model's memory
organization are the overtly procedural patterns in the memory.
Thus, EXECUTE, EXPECT, INTERPRET, ASS0C, ... 2ll designate
patterns which undertake most of the model's active processing.
The future hope is to reduce the number of COND, CDR, CAR,
CONS, ... primitives and submerge them into higher 1level
"knowledge-based™ primitives, This would not only prune the
size of +these patterns and make them more readable, but would
also go a long way towards making the model self-examinable.
The following main types of procednral pattern have been used
thus far:

(i) EXECUTE: The main top-down aspect of the model, such
patterns are used to undertake the "action" of +the containing
|PEXPR 1if the intended actor is the model itself, Thus, an
EXECUTE sent to ATTEND-CONCERT puts into action the concert
plan; an EXECUTE sent to a speech act will have the model speak
the act; and so on.

(ii) EXPECT: The "dual" to EXECUTE, this kind of pattern
is used when somebody else is expected to do the action. If
scmebody other than the model were to EXCHANGE an item with the
model, then the model would EXPECT it; if the conversant were to
undertake a speech act, then *he model would EXPECT it. The
clcse relationship that sometimes exists between EXECUTE and
EXPECT 1is wevidenced by the fact that an EXPECTed GIVE of a
ticket from the ticket seller *o the model is almost egquivalent
to the model EXECUTEing a TAKE of a ticket from the ticket

Chapter VI

150

(1) GENERATE: This type of pattern is just the EXECUTE
for the language level, distinguished from EXECUTE because this
is a mnore traditional name in language processing, and also
because GENERATE patterns do not take the speaker or listener as
"argquments",

(ii) INTERPRET: This is the EXPECT for the language level,
distinguished from EXPECT for reasons similar to those given for
the EXECUTE / GENERATE distinction.

(iii) MODIFY-HOW Mcase" procedures: These are the case
style messages (elucidated in section 5.6) to be used to check
the semantic relationships among linguistic concepts.

Patterns Associated with Pattern Heads:

(1) IF-ADDED: This procedural pattern is associated with
| PEXPRs that can be used to designate the head of a pattern
(e.g. FIND in (FIND GOD)). Whenever a pattern is asserted, its
head is asked if there are any IF-ADDED "by-products® which need
to be done.

(ii) IF-REMOVED: This procedural pattern is similarly
invoked to take care of side-effects resulting from the removal
of a pattern.

(iii) FAILURE-TO-MATCH: This procedural pattern is
associated with | PEXPRs that can be used as pattern heads and is
called into play when a pattern with the appropriate head has
failed to match in some |PEXPR (in é sense this makes it an
IF-NEEDED method). It is this kind of pattern which determines

whether inheritance, inference, or something else entirely must
be undertaken in an attempt to overcome the failure.

Other Procedural Patterns:
(1) ASSOC: This pattern type contains the procedural
information that is necessary when a |PEXPR is contacted in a

ncn-goal-directed way. One example of this was indicated in

Chapter VI

151

Chapter V where the YES2 speech act replaces INQUIRE because of
ASsOCiative information. More non-top-down message types would
be needed to handle sensory input, bottom-up PART-OF
amalgamation, etc. (see section 6.2.4 for further speculation on
this and the use of ASSOC messages to give a demon capability to
the model).

(ii) context dependent patterns: Any pattern can contain a
procedural element (such as "=%" cr "¢y" or "!"), especially when
it is necessary to encode context dependent information. The
examples of the last chapter illustratsd numerous such patterns
(¢e.g. ROLE-INSTANCE-OF, drink preferences, bargaining
rositions).

6.2 Possible Extensions

In this section I would like to suggest several additional
features which would enable the model of the last chapter to to
handle a wider and more interesting array of problems. Scme of
these extensions involve figuring out how to use features
already provided by |LISP; other extensions require ar expansion
of JLISP's abilities, The suggestions here are meant to be
evocative of +the kind of things that would be needed, rather

than to be rigorous proposals with solid solutions.

6.2.1 Using Meta Patterns

|LISP provides the wuser with the ability to arbitrarily
nest patterns through the use of meta patterns, i.e. patterns
which contain labelled patterns within them. In the model of
Chapter V minimal use was made of meta patterns and no thorough
classification of the kinds of things they could be used for was
attempted. There are a number of possible uses for meta
patterns.

(i) IMPs: Winograd (1975) uses the term wInp" when
discussing certain patterns that are in some sense nmnore
important than others. Various kinds of IMPs can be encoded
using meta patterns. Already sesn in Chapter V have been IMPs

Chapter VI

152

such as

arnn

S3 [MPORTANCE SE
311 MPORTANCE SF
2 = t

I LE 731 8
where S1 and er

c

C

are pat ns such as

S

33 i (EB3F JHIGRET-FOR-CBNEERT JBOEERARICTD,

One possible extension of IMPs is to sven higher order nestings:

S5 3 (IMPORTANCE SELF /S3 4)

Another possible extension is to allow different kinds of IMPs.
Thus, as will be seen in section 6.2.4, it would be possible to
designate certain patterns as being core patterns of a
| PEXPR; e.qg.

(CORE |PEXPR-name (/S1 --- /Sn))

Such patterns would be crucial to the definition of a {PEXPR,
and would fill a3 role similar to Becker's (1969) criterial
concepts or to the definitional concepts discussed by
Woods (19795) .

But, such a binary distinction is, perhaps, too simplistic
and more subtle distinctions of relative importance among
patterns may be needed. For example, psychological markers akin
to those proposed by Tesler et al (1968) could be incorporated
as meta patterns such as

CHARGE_SELF /51 9
{SIGNIFICANCE/SELF)/S1 T)

(ii) seguencing: There are many places where the sequence
of some set of +things is a key factor. Thus, the pattern
matcher could be told to follow some sequence in choosing a
target pattern; the conversation to date (in the script) could
be kept as a sequence of elements, etc. - This could be indicated
using sequence meta patterns:

SEQUENCE MATCH]PEXPR-name (/S1 /S52))
SEQUENCE CONVERSATION | PEXPK-name (/52 /S1))

showing that the pattern matcher should try to match pattern S1
+hen pattern S2, but that S2 preced=d S1 in the conversation.
(iii) time: The myriad problems involved in handling time
have been, by and large, ignored. The only refearence to time
has been the |TIME-LIMIT= and |TIME-NOW= patterns used by |LISP

in the processing of interrupts. Clearly, it is necessary to

Chapter VI

153

keep track of other times: the time when the model undertook
various tasks, the time of internal =events in the processing
{interrupts, garbage collection, etc.), the time of events
mentioned in discourse (historical time, the time of occurrence
of various happenings in a story or movie).

An approach to handling this variety would be to devise
"clock™ |PEXPBs to represent different kinds of time. For
example, there could be timers, internal <clocks, historical
clocks, story clocks, and so on. Such clocks would be
responsible for keeping track of events relevant to them in time
units appropriate to the events (seconds, days, eras). They
could be queried for the time of occurrence of these events,
could be sent messages to update themselves, and so forth.

Once such clocks were defined, meta patterns could be
employed to record times associated with events. Thus,

(TIME ASSERTION WORLD-VIEW-CLOCK27 /S1 296)
might 1indicate the time of assertion of pattern S1 to be 296
according to an internal clock instantiation called
WORLD-VIEW-CLOCK27.

(TIME OCCURRENCE TIME-LINE3 /S1 PAST)
might show that the event represented by the pattern S1 occurred
in a PAST era according to TIME-LINE3, an instantiation of an
historical clock; but

(TIME OCCURRENCE TIME-LINE2 /S1 FUTURE)
indicates that the same event occurred in a FUTURE era from the
perspective of TIME-LINE2., Time is an interesting area needing
much further exrploration (see Bruce (1972), Kahn (1975) or
R. Cohen (1976) for discussions of the problems of time).

6.2.2 Garbage Collection and Learnirg

Because many of the "temporary" |PEXPRs (execution
instances, new instances, etc.) set up during processing turn
out to be wuseful 1later in episodic and other considerations,
I've talked of the necessity for doing garbage collection
intelligently. Such processing 1is undertaken by a goal
hierarchy headed by META-VIEW running in parallel to the

Chapter VI

154

main-line WORLD-VIEW goals.

META-VIEW currently just calls the LISP garbage collector,
clearly a much too 1limited capability. The first extension
would be to <clean up most execution instances <created by
WORLD-VIEW processing, It seems reasonable that all execution
instances below a certain level of detail should be
automatically destroyed (except, perhaps, in exceptional
circumstances when the most trivial details might remain vividly
in the system's memory). A general rule of thumb might be that
if it hasn't been spawned as a subgoal of an EVENT-SEQUENCE,
then it isn't worth keeping around, since the episode hasn't
been deemed important enough by the user to warrant being
connected up with THEN 1links. In the model of Chapter V the
cutoff would occur beneath the script level. This heuristic
presents problems (what happens if an EVENT-SEQUENCE is used in
a subgoal of a non-EVENT-SEQUENCE?), and moreover ignores the
fact that even mary EVENT-SEQUENCE episodes should be destroyed,
but otherwise seems reasonably appropriate.

Once execution instances are destroyed, other |PEXPRs will
become expendable since they will be pointed to only from the
destroyed execution instances (e.g. perhaps new conversant
models would be eliminated when the episode in which they were
created was destroyed). Furthermore, each time a pattern is
removed during the destruction of an execution instance, its
IF-REMOVED side-effect will be called to keep things consistent.

Many execution instances created as a by-product of
accessing static pieces of data from secondary |PEXPRs are not

records of subgoals in the same sense as are execution instances
of primary |PEYPRs called in as subgoals. Such "secondary"
execution instances should also be destroyed either wusing the
EVENT-SEQUENCE <criterion or, perhaps on the basis of having no
"I or "g" pacros in the receiving pattern. Of interest here is
the fact that this kind of garbage collection is unnecessary if
| PATTERN or |POINTER {EXPRs are us2d when accessing patterns
believed to be static. These |EXPRs violate modularity by
locking directly into pattern expressions to match patterns; and

Chapter VI

155

being |EXPRs, they <create no new execution instances {(using
instead the current execution instance) and hence avoid the
garbage <collection problem by not creating any garbage in the
first place. Obviously these are just preliminary suggestions:
the whole garbage collection problem remains a major one.

A precblem related to garbage collection is Low to achieve
the subtle kinds of memory modifications which loosely fit under
the label "learning™. The most basic kind of learning is the
addition of new information to a2 system. Already it has been
seen how WORLD-VIEW subgoals could create new |PEXPRs (such as
TICKET-SELLER1 and BARTENDER1) and these could then be endowed
with patterns as knowledge about them was gained. META-VIEW,
not having direct access to the "real world", would have limited
responsibilities for this kind of learning.

However, META-VIEW subgoals would be directly concerned
with the kind of learning that 4involves generalization (a 1la
Winston (1970)) wup the ISA hierarchy. For example if every
instance of PERSON had a pattern

(NUMBER-OF-LEGS instance 2)
then the concept

(NUMBER-OF-LEGS YPERSON 2)
should probably be added to PERSON, and the patterns with each
instance could be removed. The "¢" macro would be used often as
various specific elements in instances were "abstracted out".
0f course, there remain many difficulties here.

META-VIEW would also have to undertake more devious kinds
of learning, involving such things as the construction of plans
from old episodes; the discovery of reasonable kinds of
excrlanations for failure that can be incorporated into plans;
the creation of "new" information based upon inferences made
from already existing information; the recognition of the
underlying similarity of two concepts and perhaps their
amalgamation into one concept; and so forth. How to do these
kinds of learning is clearly a major research question that has
not been tackled at all. I mention the subject merely to
indicate that META-VIEW will have to be at least as complex and

Chapter VI

156

sophisticated as WORLD-VIEW.

6.2.3 Non-Goal Directed Processing

Most of the.model‘s procassing has been goal directed. In
this section I would 1like to discuss three non-goal directed
aspects (bottom-up processing, associative activatior, and
demons) and consider what effect they would have on the system.

When words are read by the model, the actual words are not
ccntrolled by any goal of the model bhut have an external source.
"sing PART-OF links, they could (theoretically) be amalgamated
into groups, into <clauses, and perhaps even higher up, often
without reference to any top-down goal. Certain groups of words
could even be critical parts of scripts and when they occur
would strongly suggest that these scripts be activated. This
scrt of bottom-up processing is diametrically opposed to the
strong top-down emphasis of the model.

The question arises: where would bottom-up information meet
top-down information? The top-down / bottom-up point could be
fixed almost anywhere. If the model were to expect an
utterance, but had no further details, then the UTTERANCE | PEXPR
would be sent an INTERPRET message, and no further strong
top~down direction need ensue. If the model were to expect a
particular kind of nutterance (e.g. a "Because I ate the
cheese." clause), on the other hand, it could send the |PEXPR
BECAUSE-I-ATE-THE~CHEESE an INTERPRET message to process the
utterance from its own specific viewpoint. Similarly, the
bottom-up processing could amalgamate words into groups, into
clauses, and even suggest the relevance of certain scripts or
non-linguistic goals., These bottom-up traces, however, would
have to be integrated into some sort of top-down interpretation
of the world; and choosing which top-down |PEXPR to contact to
do this integration is a problem I have not attempted, except to
say the currently active execution instance. Nonetheless,
tcp-down or bottcom-up processing can dgravitate toward one
another as they 1like, a flexibility that is crucial for an
intelligent systenm.

Chapter VI

157

There are other places wher2 non-goal directed processing
must be taken into consideration. Whenever a |PEXPR is
activated top-down, many closely connected |PEXPRs (perhaps
| PEXPRs whos= names are contained in patterns of the top-down
| PEXPR) may b2 relevant. To discover which are relevant,
(ASSOC ---) messages would have to be sent out to spread an
associative activation to nearby |PEXPRs (this is similar to
Rieger*s (1974) idea of inference waves spreading out from
concepts) . In responding to an ASSOC, a target |PEXPR would
decide whether or not it considered itself relevant (in which
case it would communicate its desire to be processed (and in
what way - EXECUTE, GEXPECT, or whataver) to the top-dowrn
activation source) and also it would need to decide to whom (if
anybody) to spread the activation.

There is probably a need, as well, for |PEXPRs that act
essentially as demons (a la Charniak (1972)) in +hat they are
created at one time for =execution later when conditions are
appropiate, Npon creation, such a demon would have an
(ASSOC ---) pattern added to it, containing the activation
conditions for the demon along with the message it is to handle
whan it is activated (all of this likely contained in some sort
of procedural element in +thes pattern). In addition, at
creation, pointers

(DEMON |PEXPR-i new-demon)
to the new demon would be added to all |PEXPR-i considered to be
relevant to its eventual activation. When any of these |PEXPR-i
happened to be <called 1in top-down, they would associatively
contact the demon "new-demon'" (because of the DEMON pointer)
which can then decide whether or not conditions are right for it

to be activated tcp-down.

6.2.4 Comparing |PEXPRs

In much of the model's processing, to talk to or about a
pattern expression has required scmebody else to know its name.
On many occasions it Dbecomes important to be able to compare

antire pattern expressions to one another by content rather than

Chapter VI

158

merely by name., This happens, for 2xample, during recognition
or associative activation, in delineating ever more precise
referents for concepts at the language level, and in finding
contradictions and similarities between concepts as part of a
non-directed conversation or debate.

This 1s a very difficult process when virtually no
restrictions have been placed on the patterns that can go into a
|PEXPR, when knowledge about a |PEXPR itself is mixed in with
knowledge about the |PEXPR's rs=ferent, when patterns are varied
in length and content, and when the presence of macro elements
in patterns virtualliy eliminates any possibility of
self-examinability or comparison with other patterns at the
lexical 1level., These difficulties can be partially overcome by
the clever use of things 1like m2ta patterns, but the real
sclution will not come until much more declarative realizations
of information can be devised to replace the all too frequent
occurrence of long, procedural patterns.

In a manner similar to MERLIN (Moocre and Newell (1973)),
the fundamental comparison technique might involve viewing one
pattern sexpression as another. Thus, it would be possible to
viaw a dog as an animal, or a cat as a rock, or a car as a
freight train, etc. Direction of view is important since, for
example, the opposite view of a freight train as car, a rock as
a cat, an animal as a dog, is quite different.

The fundamental comparison rule outlined below is hased on

the intersection technique described in Quillian's TLC (1969).
The rule goes as follows:
Pattern expression A can be yviewed as pattern
expression B if
(i) B = A or is in the ISA environment of Aj;
or (ii) tltere is some "nearby" pattern expression C
in the ISA environment of both A and B, and moreover
each pattern in A has a comparable pattern in B,
“"Nearby" is determined by counting the number of ISA
links traversed from each |PEXPR before intersection

is achieved. The number of such links varies with the

Chapter VI

159

importance of the viewing. Two patterns X and Y are

comparable if for sach atomic el2ment E in X there is

an atomic element F in Y such that E can be viewed as

F.

These rules can be tuned, if desired, to reflect a
particular set of assumptions, as the following examples
illustrate. Trivially, if the |PEXPRs are RUFF and ANIMAL, then
by "view-as" rule (i), BRUFF can be viewed as an ANIMAL. Next,

assume the |PEXPR SMOKEY (a CAT) is to be viewed as ROCK1 (a

STONE) . Thus, SMOKEY could be
(IPDEF SMOKEY
INSTANCE-OF SMOKEY CAT)
S1 = (NOISE SMOKEY MEOW)
S2 ¢ (SHAPE SMOKEY FOUR-LEGGED)
CORE SMOKEY (/S1 /52)))
and ROCK1 could be represented as
(}PDEF ROCK1
INSTANCE-OF ROCK1 STONE)
S1 : (NOISE EOCK1 NOSOOUND)
S§2 : (SHAPE ROCK1 ROUND%
CORFT ROCK1 (/S1 /S52)))

So, the command (VIEW-AS SMOKEY ROCK1) is issued and the
intersection technique carried out r2sulting in an intersectiorn
at THING. Assuming this is near enough (i.e. not more than a
user specified number of ISA 1links have been €followed), the
search for comparable patterns begins. Comparing the respective
S1 and S2 patterns, the following first-level viewpoint can be
built:

((PDEF SMOKEY-YIEWED-AS—-A-ROCK1
SGPERSET SMOKEY-VIEWED-AS~A-ROCK1 VIEWPOINT)
s1 : (NOISE ! (VIER SMOKEY ROCK1
1 (VIEW MEOW NOSOTND))
S2 : (SHAPE ! {VIEW SMOKEY ROCK?1
1 (VIEW FOUR-LEGGED ROUND))
(CORE SMOKEY-VIEWED-AS-A-ROCK1 (/S1 /52)))

which can be reduced still further to

(IPDEF SMOXFY-VIEWED-AS-A-ROCK1
SUPERSET SMOKEY-VIEWED-AS-A-ROCK1 VIEWPOINT)
S1 : (NOISE SMOKEY-VIEWED-AS-A-ROCK1
!évxzw MEOW Nosounn)k
S2 : (SHAPE SMOKREY-VIEWED-AS-A-ROCK1
1 (VIEW FOUR-LEGGED ROUND))
(CORE SHMOKEY-VIEWED-AS-A-ROCK1 (/S1 /S52)))

since SMOKEY-VIEWED-AS-A-ROCK1 1is the result of axacuting
I (VIEW SMOKEY ROCK1). Thus, SMOKEY can be viewed as ROCK1 if a
MEOW can be viswed as NOSOUND and FOUR-LEGGED can be viewed as

Chapter VI

100

RCOND, Clearly, each of thesa computations could be carried out
to get second-level viewpoints and so on.

Obviously much has been left unsaid. Firs%, "nearby" has
been defined in *this example to b2 quite far =apart since the
intersection at THING is very high in the ISA hierarchy. The
decision as to how many links to *raverse would depend on
exactly how crucial the comparison is in the currant contaxt.

Second, how did VIEW know that S1 and S2 wers grist for the
ccmparison mill while +the INSTANCE-OF and CORE patterns were
not? The answer lies in the CORE patterns mentioned in section
6.2.1. Recall that the meta pattern (CORE ---) defines the
patterns which are central to a |PEXPR. Thus, one way to refine
the fundam2ntal comparison rule is to use only CORE patterns in
the comparison. A further refinement of this might also take
into account <certain other meta information such as IMPs,
etc,, in decidirng which patterns to compare and which to 1leave
alone.

A third refinement illustrated by the example is the fact
that the comparison was stopped at the first level of viewpoints
rather than being carried out ad infinitum. The decision as to
how far to go with this would be depend=nt (i) on the degree of
differencs between the resultant views (e.g. if MEOW and NOSOTUND
were to intersect at too great a distance, then further
ccmparison might seem futile); (ii) on the importance of finding
a very refined match in the current situation; and (iii) on the
reluctance of the model +to posit (a term from MERLIN) the
necessary views rather than to produce a further level of

viewpoints (e.g. without further search FOUR-LEGGED could be
posited as ROUND). All these parameters could be specified as
arguments at the time of VIEW invocation.

Many difficulties have not been illustrated by the example.
First, there is the absence of procedural pattern elements.
These might be handled by testing for LISP EQUALity; but this
seems a bit rigourous and a mors flexible means of comparison
would be desirable, The eventual hoped-for reduction in the

number of such procedural patterns would certainly go a long way

Chapter VI

161

towards alleviating this problen.

A second problem is how to choose the B pattern to compare
to the A pattern, something that is fairly easy if a B pattern
starting with the same head and of the sam2 1length as +he A
pattern can he found, but somsthing that is very difficult
otherwise. If no comparable pattern is found for A, then
presumably some scrt of pattern (NOVIEW PATTERN A) would need to
be assertsd in the VIEWPOINT |PEXPR., Too many such unmatched
patterns, especially if <+hesy were IMPs, would be grounds for
rejecting the VIEFWPOINT. Similarly, too many extra B patterns
could be cause for VIEWPOINT rej=sction.

Obviously the work on |PEXPR comparison is in a preliminary
stage, Mary issues have besn ignored and even the ones that
have been discussed have been only briefly examined. If the
model 1is to be extended to racognition and other more general
arzas, |PEXPR comparison will have to b2 confronted mors

seriously.

6.2.5 Miscellaneous Considerations

Clearly the system here ignor2s many interesting areas that

could use further elaboration. One such area is short ternm
memory. Is the short term memory limitation to 7 plus or
minus 2 items a limitation on the number of patterns in a
| BEXPR? Or, perhaps, the number of execution instances on the
exicute queus? Or is there a szparat2 short term memory where
certain concapts must be placed bafors being considered? I
don't have any idea except that short term memory seems a fairly
important concept and would prdbahly be helpful in cutting down
on the vast number of things being considered at any given time
by the model.

Other problems are planning (*that is actually building such
| PEXPRs as ATTEND-CONCERT in <response to goals); deciding
amongst many goals; dsciding on what goals to undertake in the
first place. Once again I can at best speculate on these
things.

Work on so-called ™analogical" representations, such as

Chapter VI

162

carried out by Funt (1976) and others, suggests that perhaps a
place should be found for such a level of dsscription. Adding a
new kind of object (2.9. some sort of direct representation of
the Queen Elizabeth thesatres or a motor-action) could be
accomplished quite easily with minimal disruption to the
interpreter; bnt deciding on what message passing semantics to
enforce for the new object would be difficult. In sum this
woulé probably be moras trouble than it was worth, given the
flexibility and power of the current object definitions,
particularly the pattern expression,

This concludes the description of the generalizations and

extansions. In Chapter VII I conclude with a discnussion of the
contributions and future directions of this research.

Chapter VI

In the preceding chapters a scheme for representing
knowledge was delineated and given computational description as
a set of LISP-based control structures called |LISP. Then, an
approach to modelling conversation was described and a
particular example illustrating the approach was detailed in
terms of |LISP. In this chaptar I would like to summarize the
contributions and shortcomings of the representation scheme and
the language model; I would then like to conclude with sone
thoughts on how to improve and extend the ideas presented hers.

7.1 Contributions to Eepresentation

The object centred representation allows a modularity which
should enable large systems to be built. The pattern expression
in particular is interesting in that it comes in so many guises:
it can be seen as an indivisible primitive or as a node in a
semantic network or as an examinable set of patterns or as a
basically procedural object. Often the same pattern expression
can be viewed in any or all of the four guises, depending on
circumstances.

A pattern expression is also interesting in how it responds
to a message. The incoming message is a pattern that is matched
against patterns in the |PEXPR'body. The message pattern has
exactly the same restrictions as the |PEXPR patterns so the
pattern matching is completely symmetric. Through the use of
macros, the pattern matcher can be given instructions that can
involve binding variables, computing something, or performing an
action only if certain conditions are met. These capabilities
allow a decision regarding the exact meaning of a pattern to be
postponed until the information in the pattern is needed. This
is useful when encoding context dependent knowledge.

Chapter VII

164

Because of macros, the user of the representation schene

also has the <choice of whether +to encode information in a
tasically procedural way (using 1lots of macros) or in a
basically declarative way (using very few macros). In the early
stages of any research it may be <easier to throw much of a
system's knowledge into procedural patterns at the expense of
2xaminability, but this should disappear as familiarity with the
domain increases and the natural dimensions of +the domain
manifest themselves. As these dimensions are discovered, the
procedural patterns can be replacaed by wmore declarative
patterns., Moreover, the transition <c¢an be smooth since all
patterns (macro-filled or macro-less) are accessed in a similar
fashion, using the same pattern matcher. Furthsr contributing
to the procedural / dJdeclarative intermixture is the fact that
the answers to all messages are themselves patterns (containing
virtually no macros) that are left in the execution instance of
the |PEXPR which received the messag2 as declarative fallout of
procedural capabilities.

One final feature of the pattern expression is its
capability of being "run" in several different modes merely by
endowing it with several different patterns, one for each mode.
Thus, in the language example of Chapter V, speech acts could be
run in EXECUTE, EXPECT, or ASSOC modes; language level |[PEXPRs
could be INTERPRETed or GENERATEdA; etc. This capability allows
all information relievant to an object to be easily incorporated
within the object.

The "multiple mode" feature 1s even more useful when
combined with the representation‘ scheme's failure +to match
processing, If a particular message pattern cannot be handled,
the pattern head 1is contacted for its advice. The user can
specify that the pattern head is to perform arbitrary
inferences, but this would in general be explosive, so he is
encouraged (by the provision of special search routines) to
restrict failure to match processing to execution environment
searches (for context dependent information) or to ISA searches
{(for information thkat «can be inherited down a generalization

Chapter VII

165

hierarchy). This kind of failure to match capability provides a
way of performing procedural attachment (see Winograd (1975));
ensures that information is inherited if and only if it is
nerded; and defines the pattern head (usually acting as a
relation) as the foremost authority on what to do in failure to
match situations.

The representation scheme is substantially enhanced because
its execntion instances are themselves |PEXPRs that don't
disappear after execution unless explicitly garbage collected,
This allows them to be accessed using the same message passing
paradigm as any other {PEXPR, a nice bit of uniformity that
turns out to be very useful in episodic considerations (see
below) . Because of this featurse, the power that an
ALINK / CLINK distinction provides (Bobrow and Wegbreit (1973))
tc execute in one environment and return control to another can
be simulated by having an execution instance of an execution
instance, each with its own execution environment. In fact, the
ability can be extended by having arbitrary chains of execution
instances, all of which have different execution environments.
Finally, keeping o0ld execution instances around allows them to
be nsed in pseudo-parallelism, where an old execution instance
can be stopped and later resumed in the exact same context it
was inhabiting before it was halted.

The execution environment of active execution instances is
basically a LISP or ALGOL style dynamic context, but the fact
that the execution instances in the environment are |PEXPRs that
can contain patterns implies it can be used in a knowledge-based
way. In particular, patterhs that contain context dependent
information (e.g. the identity of the conversants, the purpose
of one of these conversants, the current focus of attention) can
be stored and accessed. Once control returns from an ex=acution
instance containing such patterns, they disappear from view,
The active execution environment thus provides a focussing
mechanism. Tt 1is also useful if the current goals of a system
need to be accessed - the goals are strung wupwards in the
execution environment, attached (via EX-INSTANCE-OF pointers) to

Chapter VII

166

+he execution instances there.

But, perhaps the most interesting feature of execution
environments arises in combination with the examinability and
non-disappearance of the execution instances contained there.
This combination of features allows the construction of an
episodic memory (Schank (1974#), Tulving (1972)) consisting of
trees of o0ld execution environments, If any particular
execution instance in this environment is picked out, the entire
context in which it was originally active can be seen. Although
+he mechanics of how much of old execution senvironments to save
and how to search them have not been worked out, this seems to
be a promising approach to episodic memory and one that is
perfectly compatible with semantic memory (in contrast to
Schank's (1974) arguments) since all execution instances have
EX-INSTANCE-OF pointers to the '"semantic™ ISA environment as
wvell as EX-ENVIRON pointers to the ‘“episodic" execution
snvircnment.,

A final aspect of the representation scheme is the fact
that it allows arbitrary 1levels of detail along several
dimensions (ISA, PART-OF, the subgo2als created by message
nassing). In addition there is an implicit “containment"
hierarchy stretching beneath a |PEXPR consisting of the |PEXPRs
referred to in its patterns, the |PEXPRs referred to in those
| PEXPRs* patterns, and so on. This ability means that a | PEXPR
can always be broken down if necessary into subcomponents of
scme kind, in direct opposition to the primary tenet of
primitive based systems (Schank (1972), Wilks (1973)). The
ability to go into detail whan deceésary seems an essential
component of intelligence, a point that is further argued by
Rowat (1974).

7.2 Contributions to Language Analysis

The language model described in Chapter V has served a dual
role: first, it has acted as a test bed for {LISP; second it has
suggested an approach to modelling conversation. I would like

Chapter VII

167

to describe the main contributions that the model makes to the

analysis of conversation and also to suggest how |LISP has
helped and influenced the construction of the model.

The model 1is founded on the principle that the problem of
conversation must be treated as essentially a problem in
pragmatics. This viewpoint is not unique - it 1is arqgued
persuasively by Winograd (1978), by sone philosophers of
language (Grice (1968), Searle (1969)), and by linguists such as
Fillmore (1975) - but it differs markedly fronm traditional
linguistic approaches. The view 1is reflected in a couple of
ways in the model: the indistinguishability of linguistic from
non-linguistic goals (they are all |PEXPRs, and except at the
language level all receive EXECUTE and EXPECT messages); and the
emphasis 1in ths model on scripts, speech acts, and conversant
models rather than on more standard language aspects such as
parsing, parts of speech, etc.

The model's emphasis on goals is not accidental. Other
researchers (P, Cohen (1978), Levin and - Moore (1877),
philosophers of language) have suggested the importance of
conversants' goals in the interpretation and production of
utterances, although the rather rigid hierarchical structure of
non-linguistic goals calling scripts calling speech acts calling
language level goals is not emulated elsewhere. Aside fronm
this, the most interesting general features distinguishing the
model are |LISP-based: +the ability to encode all goals as
| PEXPRs and run them in EXECUTE mode (to produce utterances) or
EXPECT mode (to understand utterances); the fact that from any
gocal all superior goals can be accessed in the execution
environment and that the execution environment acts as a focus
for all 1linguistic endeavour; the usefulness of being able to
abstract processes into the ISA hierarchy and later inherit then
when necessary; the fact that execution instances at all levels
can act as repositories of information and in that way encode
the "meaning" of the conversation.

However, at each 1level there are interesting features.

Non-linguistic goals drive other goals and form the context for

Chapter VII

168

all that follows. They can be accessed from all 1lower levels
and are thus influential on what 1is said. Occasionally
non-linguistic goals can be called by linguistic goals
(e.g., EXCHANGE calls GIVE in the Chapter V examples) as well as
vice versa. This flexibility is crucial in many linguistic
situations (especially when language is being used to aid in the
accomplishment of some task).

The script 1level is interesting in the model because it
diracts the entire conversation, Scripts are responsible for
spawning sub-scripts or speech acts, making sure they have run
correctly (although the model has a trivial "explanation"
ccmponent at the present time), and in general keeping track of
the sequencing of a conversation. Scripts also keep a record of
the entire conversation by making assertions in the execution
instances (this, too, is pretty trivial at the moment). of
particular note is the flexibility of scripts in regard to the
identities of the speaker: the model itself can be identified
with none, one, or both of the conversants. There is also no
theoretical limit in the model to having only two conversants
(although no n-person conversations were given).

The speech act level is not nearly so central in the model
here as it is in, say, P. Cohen's (1978) work. Speech acts,
nonetheless, form an interesting interface between scripts and
the language level. Perhaps speech acts are most interesting
here in that they take an active role in carrying out the act of
speaking just as would a motor action when carrying out some
scrt of physical act. Because of the "multiple mode" aspect of

|LISP, speech acts can be asked to either EXPECT (understand) or
to EXECUTE (produce) a speech act. 1In EXPECT mode a speech act
must rTead an utterance and interpret it in any way it sees fit
(perhaps by calling in the language level); in EXECUTE mode a
speech act must generate a surface utterance in any way it sees
fit (perhaps with the help of the language level) and then print
it

The language level is the least developed of the model, but
does have a couple of interesting features. 1It's syntactic

Chapter VII

169

component, insofar as it can be distinguished, is more or less a
top-down parser that groups words for its case-like semantic
component. The combination of the two approaches isn't too
ccmmon (but see Taylor and Rosenberg (1975) for one example) and
seems to be a workable hybrid. The general ability of |LISP
objects and message passing to accomodate successfully to this
level is gratifying. Of particular effectiveness is the
conceptualizing of a noun group or verb group as an e€xecution
instance with an EX-ENVIRON pointer to the context in which the
words were uttered, an EX-INSTANCE-OF pointer to the linguistic
object (NOUNG or VERBG) of which they are an instantiation, and
a ROLE-INSTANCE-OF pointer to the concept which they represent.
This allows information about the context of the word group, the
wcrd group itself, and the concept represented by the word group
all to be accessed.

The conversant models in the model are not sophisticated at
the present time, the main idea having been to find out how to
connect conversant models into all tha other processing rather
than to build an intricate web of conversant knowledge. Scripts
and speech acts have directly available to them conversant
mcdels for all conversants, whereas language level goals do not.
0f course, for any subgoal of a script or speech act, the
conversant models are indirectly available from the script or
speech act. Conversant models have at l2ast two interesting
aspects: first, the use of ROLE-INSTANCE-OF patterns (often with
context dependent macros embedd=2d in them) allow conversants to
be viewed in particular roles (e.g. seller, buyer) as well as in
their standard “"person" role; second, the existence of a
conversant model for the model itself. Both these aspects are
important for the completeness and symmetry of the processing.

Chapter VII

170

7.3 Future Directions

There is, of course, much still to be done. The first step
is to implement |LISP and then see how well it works by running
through the currently pseudo-implemented ticket buying and drink
buying conversations. This would doubtless raise several
issues, most importantly the efficiency of execution. Failure
to match processing and IF-ADDED and IF-REMOVED methods may be
ccmputationally expensive unless controlled with draconic
prudence, Also arising here would be the problem of explaining
the failure of subgoals in a much more serious way, a step which
would become even more important in less directed conversations.

After running through the ticket buying and drink buying
cenversations, the next step would indeed be to try out less
task-oriented dialogues such as the conversation with a friend.
Handling such conversations would bring up many of the
ncn-goal-directed 1issues raised in the last chapter. It seems
clear that a much larger role for bottom-up processing and, if
scme version of it can be made combinatorially sound,
associative activation is crucial if the model is to be extended
to handle more £fluid conversations. The need for |PEXPR
ccmparison would also arise.

Crucial in conversation modelling would be a working
episodic capability so that references to previous utterances
wculdn't leave the model perplexed. First, an exploration of
when and how to search episodic memory would have to be carried

out, But, more important would be the need to figure out which
0ld episodes to '"remember™ and which ones to "forget" (by
freeing then for garbage collection). As Schank and

Abelson (1975) have pointed out, and as the proposals presented
here illustrate well, a theory of forgetting promises to be a
central concern of much future work in artificial intelligence.
Because the current model of conversation and its |LISP
tase have been designed with generality and extensibility in
mind, their <further development along these lines seems to be
possible., The research undertaken so far should provide a solid

foundation for the endeavours to come.

Chapter VII

171

BIBLIOGRAPHY
Abelson (1973)., . R. P. Abelson, "The Structure of Belief
Systems“, in R, C, Schank, K, M. Colby (eds.), Computer
#gg%lg of Thought and Language, Freeman, San Francisco,

Austi 1962) . . £ H

aauaa éx%or& Un ve %?SP%gés, 8%fo*8 Englanéngigﬁglth Nords,

Beck 1969) 3eck “Th dell i

seker (n e&uctgve broogEech it a0 gma%QECOngﬁggle ?g eﬂac
Proc. IJCAIl, wWashington, D C., May 1969, pp. 6 -68

Bloomfiﬁég 19%3)i933.. Bloomfield, Language, Holt, Rinehart,

Bobrow and Collins,K (1975 D. w and_A. 1113 ds
Rggrgsenba;;ég ahd ggg Egng, acadensc BEedS%%1ky
YoTk, T975%

Bobrow and We el 1973 w) breit, "A Mo
and St CE {ementatlon ot Hu %gple Env1 onments", E 8
16, 10, Octo er 1973, pp. 591-602,

Bobrow and Win ogra% (197b). D, G. ngrow and Wino rad, kn
Overview of Knowle Qeagﬁreééﬂtéﬁéon Language,
Tech, _Rpt’, CSI—?b Xerox Palo HeSearch™ Center
Palo Alto, calif., 19‘56.

Bruce (1972) B. Bruce, “A Model for Temporal, References and

Its Appllcatlon in gues+1on Ansuerlng Progran",

Artificial Intelllqence, 9724

Bruce (1975). B. Bruce lief stems gg axgggge
Understanding, BBf Reﬁf ?2973, TB5Tt fie and
¥ewman, 1Inc., Cambridge, Mass., 1975.

Bullwinkla (1977). C, Bullwinkle, "Levels of Comglex1t in
Discourse for Anaphora _Disambiguation_ and peech’ Act
Integ retation", Proc. IJCAI5, "Cambridge, Mass., 1977,
PP- —% 7.

Chafe (1970). W. Chafe, Mea and uct Language
(u. o% Chicago Présg_‘ agﬁ" I%%lnéfs--%Sso =213ua3e.

Chafe (1 . W, hafe “Some ts on h ta", Proc.
(zlgk_g, cambridge, flass., Junﬁ ?ggg PP. 35-?8?. PoEEs=

Charniak {1972E E. Charniak, Towa r% a_ _Model £ Chl% £§n'§
Story omprehension, nA =TR=51, " MIT BEI Lab., rTagE;
Hass,, December T197Z.

Charniak (197? E, Charnlak “Organlzatlfn and Inferenceg_in
Frame-like System of° Common Knowledge™, Proc. FINLARS
Cambridge, Mass., June 1975, pp. 46-55,

Chomsky (1957) N. Chomsky, Syntactic Structures, Mouton, The
ague, 1957.

Chomsky (19?1% N. Chomsk¥ "Deep Structure, Surface Structure,
emant *c erpretation®, in Steinberg and
Jakobovzts (197

P. Cohen (1978£ P, Cohen On Knowing
Speech Acts Ph.D. TheSis “Depts
U. of~ TO”OD%O, Toronto, ontfari 1

io,
R. Cohen (1976). R. Cohen, Computer

Bibliography

172

[

L i

I+
[=
ola

M.Sc. Thesis Dept. of Comguter Science,
to, Toronto, 6ntaglo, Dec. 1976,

=)
rTon
1aSEt IRt e dd? T Bl pore P 3TB 11 PHa1e GocSEiETthia
Inc. Cambrldge, Hass., Oc{obar, 9975.

bes", B'Igﬁﬁtsgxﬁg

ie-Mel13Tn Unive

== o)

Ccllins

=
- Il-l

Deutsch Struetgre

Reech [
. Plttsﬁu gh, Penn

N
uaE Sk
I-'ﬁ"'"

-r: DD~ O H~ D
~ = DO mlH:i HiH

Fahlman

tnlr—-m s sBjoe Olo
(5]
S

=
nip = JH P Aﬂ

-

R
"
Feigenbaum

9
F
J Felgman ée
New York, 6

Fillmore (1968).
R, Harms (
Rinehart, a

d
d
Fillmore égglgg C
L
P

eanlng
Berkele;S

£
ng ulsgl
« 123-%

EEEEQQ,& PP FRE s£g, 1eh8:
ancouver, B.C.,, March 1976
=
u

"Studies of th Rou
Rfin b, Sadnow 3 %ﬁ_a
e Free Press, New YOTK

PP. 1-30,

Goffman (1974 E Goffman Frame Anal H
éw Yo%k, « Frame Anal ysis, arper Colophon,

Green et al (1963). Gr A, C. W
=K. Laughery, nBASEBALL: An Automat i Q
in Feigenbaum and Feldman (1963), pp

9 57 " L 5 1 3
Grice (1)i957, pp. gaﬁcgg Meaning", Phi ophical Review,

July
Grice (1968 ice onvers
(ecthre, Unpub E:hed Hgﬁ keEEY‘*CE%Eibrﬁla, yg33nes
Grosz (1977), B. Grosz, "The Re esenta ion apd Use of Focu n
(377 8bseant F52%%fng erstangr b fogsH Broc. TJCh %
Camb idge, Mass., 7, pp. 67-76
Havens (1978). « S. Haveans Com tatlon del for Frane
av §1§;_£s H.D. rhaleS peope. SOBRUERRSRAL UodRd, FOT Ipgpe
Vancou B.C., 1978 (1n preparatlon}.
Hendrix (1975). G. Hendrix, “Expandlng the Utility of Semantic
Networks through Partitioning" LOoC. IJCAI4, Tbilisi,
USSR, Sept. pp. 115-12
Hewitt 1972) C. Hewitt, Description and Theoretical gng%§s;§
§ng Schemata)of PLENNERT K ~Langiage Iof_ ~Proving
69£9E§ and Manipul3ating Models In a~ Kobot, MIT KI"Memo
257, Cambridge, HMass,, ApriI T97Z.
Hewitt 419?5). C. Hewitt, "Stereotypes as an ACTOR Approach
owards Sol?lng the Problem of Procedural Attachment in
FRAME Theories", Proc. TINLAP, Cambridge, Mass., June

Bibliography

173

1975, pp. 108-117.

Hewitt or:98:81773ksau1al" "REEEE: pBraBiflgP. et Stgrglgiclai

Intelll ence“ Proc., IJCAI3, Stanford Calif.
Aug. ppl 235""2E5-

Aewbt REO.p NNgFt;gzu)ﬁIT AIHE bt denSRg bapehoEYT c38R2RELSS
kass., Novemher, 1

Horr an 1977 « K. Horr n ode
ig éc Le31s, Dept oﬁpu% %C%ﬂgce ggleof 8%2%3
Toronto, Ontario, Jan. 1977

Hurtublse 197bL Se % Hurtublse "A Model an stack
Implementation o Conversdtion Betwéen Some Man an% a
Smart-Aleck Computer“ Third CSCSI / SCEIO Newsletter,

August 1976, pp. 46-56. ===

B LakOfEe{Agg;% and Jakokov1ts (19 9?)-

Lakoff d (197 "
akott an ap 385 ¢ 15tlsas aakgauéa+1ves £§n§ _gg??teg, 1
Summer 197 2 pp. 121-

R. Lakof 973). E. Lakoff “"The Logic _of Polit .
mfn&%n) our P¥s ’ FhCHghY 01%L§5?551973f

Generative Semantics", in

and Proc.
PP. 292-30
Leech (1 %3). G. Leech, Semantics, Penquin Books, England,
Levesque (1977). H. Levesque, A Procedural a tc Se ti
* Ngﬁggrié. M.5c. Thesis , . DePt. -BE-CD MPU ? __Egﬂ_ﬁg
Toronto, Toronto, Ontario, Jan. 1977.

Levin and Moore 977}« Ja Ae Lev1n noore Dla o} mes:
Hgta—Cgmguéicatlon Structures’ Teof E% g‘taﬂﬁ_&gg
Interacticn IST /RE=T77=53," Informatlon Sciences
Tnstitute, 0. of Southern California, Marina del Rey,
Calif, ; Jan. 1977,

Linde (1974 C. Linde, "Informati¢n Structu in Discourse"
(anvk I1L, Georgeﬁoun Unfversgty, Oct. QS?u. !

Lindsa 1963 R. K. Lindsa "Infer n+1a1 Memory as the Basis

1 é Hachlnes which gnderstanﬁ uraT Zanguage" %n

Felgenbaum and Feldman (1963), PPs 21

Martin (1975). W. A. Martin tual ramma Automatic
é gr%mmlng Group Inﬁ C2hEm3= 28“' rﬁﬁéct MAC, HI%,
Cambridge, Mass., B

McCalla « I. McCalla A Mode for Man Machine
;gigg_g, ﬁ Eesis ProgfesS‘HEport “Depti~Of campu%gr
Sc1ence, 7BC, Vancouver, B.C., Nov, 993,

McDermott and Sussman (1974). D. V. McDermott, G. J. Sussman,

The CONNIVER R ggen ce Manual, MIT AI Memo 259%;,
Cambridge, "HasSs., Uap. 1974,

Minsk 1974) . M. _HMi A Framework for Representin

¥ f oathdge, Mari AT Réno oo, ERRBERES., ®SEs., SREES9E53M

Moore and Newell (1973) J. Moore, A. Newell, ggg Can MERLIN

Understand?, t. of Computer Science Carnegie-HMeIIon
University, Plt sburgh, Penn., Nov. 19713.

Newell (1973). A. Newell, "pProduction Systems: Models of

Bibliography

174

Control Structures", in We G, Chase éed.&, Visual
%%ggﬁ%%glgg Processing, Academic Press, w York, 7973,

ullllan 19 M. K = "Th T
S é gender: i QuS%mﬁiaizon srogrgﬁChgg = Th%ggguag%
Language“ CACH, 12, 8, August 1969, pp. 459-u476,
Riege 1974y . C. J. Rie &
te9eT dnputsr Cprdarin” 9%y SBRSERLEds: PERSFSaningTEEREIN 20
Hgﬁgggg_ nggugge Jfferances, hTD, Thesis, ~ Stanford
University, Stanford, Calii., 1 .
R 1976) . « _R
oussopoylps, (1316b: of:pRoHEEROIoPE,.A SeR2NbiS Natuork, Hodel
. "of Toronto, Toronto, Ontario, November 1976
R 9 u .) i i :
b (&gggkf og gx R%E%gig 9&%%-&& 1, aPh—899§heg%§trslle§esé
Report, " Dept, of Tomputer Scisnce, UBC, Vancouver, B.C.,
Match 1974 .
S 1975 E._Sand ll n
andevalio{1978Le, B j3gndpnally ordeas dpys, the tagegenenys gt
Sept. 19755 pp. 585-592
Schank 972) . Schank, "Conceptyal Depend
(% turai Language Ung rstgnggngp pﬁ. fg&¥ g_z_h ,e°§¥
G, October 1972, 'pp. 552-631.
Schank (1974 R. Schank I Th ?
¢ ée orL #3, Isiltﬁtgnpér ??l cwgvE SEmaﬁ%?C%zﬁ“Cogn%8§¥1:
castagnola, Switzerland, 1974.
Schank (1975 » Cu Schank, "The Primitive ACTs of Conce ¢ |
6epenhenc proc. TENLAP, Cambridge, HassS., June ?89%,
pp. 38-41.
Schank Abel 1975 . « Schank
TR "Sg%g pts, ians(KnowEedge“,ngacf ;ggg;ﬁ A l?ggﬁ
USSR, Sept. 19?5, pp. 151=-157.
Sckegloff (1971 E. A. Sche

of £ "Sequenci in
conv ersaklonal Openlnggk “in ﬁq A, %Eghman (ed.
Advances in the Socwolog* of Language, VYol. II, Mouton,

The Hagque, 1977, pPp. J7

r W h
schnelder, (1978 : a1 sehan PER7 §LlE0, OgRRG2ALLEE OF Kugulagge, dn
DeparTtment ™ of Computer c1°nce,'UT foronto, Toronto,

Ontario, January 1978.

warcz et a 1970 Schwarc J. F., Burger

Sehne £.5F %1 mons’ na Deductive 0acS¥{on Ahswérer for’Natural
Language erence", CACH, 13, 3 March 1970,
pp. 16

Searle (1969). Je. R. Searle Speech Acts An Essa in the
; hil oéoggx of Laan %e,'BCEEE iH@é"Uni?er§ifo PTeSSs,
Cambridge, England,

Shortliffe (1976 E. H. Shortliffe Computer-Based Medica
Conséltations- MICIN, American-Elsevist, Naw York, 1978

Steinberg = and Jakobov1ts (1971) . .D. D. Steinberg,. _.
L. A, Jakobovits_ (eds.) Semantics, an Igtggd;gglgl;gggl
Reader, U. of Illinois PreSs, Urbana, I1IIN0IS, 1977,

Sussman (1973 G. J. Sussman, A Computational Model of Skill

é$u1§i§;gg, MIT AI tR=297, Cambridge, Mass., AUQUSE

Bibliography

145

Sussman , and Winograd (1970). G. Jd. Sussman T. Winograd,
Micro-Planner Refergence _Manual, MIT At Memo 203,
Cambridge, Mass., July 1970,

Taylor _and Rgsenber 1973) » o« Ha . "

Yio% and Rgoonberdndidin) * £Br W ulifiid Prafruigserbetacrt
Microfiche 31, 13975.

Tesler ¢ al_(1969). L. Tesler H, "
Ugrgcféd(sra Re resen%a%%o. fol go ﬁteL sPauifilEs of
Belief Systems" Mathematical Blosc1ences, 2y 1968,
PP 19-40.

Tulvin 197 . vin “E isgdic = i n i

gE‘ fblng é i! Dohaldson 1 3 ngana%ggﬂiﬁgilcﬁ %E
gggorx, Rcademlc Press, New York, 1972. i

Wilks (1973). Y, Wilks "Understandin jthout r "
(3203! *racads, "atiStora, CRATTEE O 000 e T5H9°05,. B989595;

Winograd (1972). T. Winograd rstandi Natural Languag

g Acédemié Press, Nengori qg%%? “““ il 2at3iral Lahduags.

Winograd (1974)._ T. Winograd, "Br=akin & lexit i

Iradgdint,) s1cbiak NoZieds, "Jaagarys 85, Conplexity Barrier
Winograd (1975). T, Wipograd “"Frames an the
I Précgdu%al-ngciaratgge Controversy", gn Bobrow and
Collins (1975), pp. 185-210.

Winograd &1976 . T Hinogra "Towards a Procedural
Understanding of Sémanfics", 'Revie Internationals de
Philosphie, 76.

Winograd,K (1977). T. Hlno rad A _Framework _for Ungerstandi§ﬂ
Discourse, to ap B SAIL Remd,” AI- Lab., Stanto
Oniversit¥y, Stanford, Callf., 1977.

Winston (1970). P. H. Wlnsto Learning Structural Descriptions
féog g%_:a.mp;gg, MAC TR-16, ATToC mﬁrfrx'g =, "Mas 377-%%7

Wong (1975). .,H. K. T. ¥ong, Generatlng E glish Sentences from
Semantic Structures, S Dept. " I COnpUTET
S¢cience, 0. of Toronto, Toronto, Ontarl i 1915,

Woods (1375)., W. A. Woods, "What's in Link; Foundations for
Qoaahiic Networksf,’in Bobrow and Collins (19%%).

Woods et al (19?2%._ W. A, Woods, R. M. Kaplag, B, Nash-Webber,
Th&~Lunar sSciences Natural Lang_ag Information System:
Final Report, BBN Heport NumbeT 2388 BoIE,‘Herane%?“aﬁd
Newman, Inc., Cambrid ge, Mass., June §972.

Abbreviations:

AJCL: American Journal of Comgutatlonal Linguistics
CACM: Communications of the

CLS: Chicago Linguistics Society

IJCAI: Intérnational J01nt Conference on AT

JACM: Journal of the AC

J., Cog. Psych,: Journal of Cognltlve Psychology
SIGPLAN: ACHM Special Interest Group on Programming

anguages
TINLAP: Conferencé on Theoretical Issues in Natural
Language Processing

Bibliography

176

In this Appendix several system objects are presented in
terms of their input / output behaviour and also, for certain
important objects, in terms of their logic flow. The Appendix
forms a handy reference, especially when reading the detailed
examples of Chapter V.

The following notational conventions have been used
throughout the Appendix: Ai is an atom (i.e. a single name); Si
is an s-expression; Li is a list; Pi is a pattern; Ni is a
number; NIL is the null 1list () which stands for "false" or
failure to match depending on the context; |U is a special
NIL-1like atom which stands for "un-initialized" and is used to
assign a value to certain pattern matching macros before they
are bound in the match; T is the "true" atom; EXPR indicates an
object of type EXPR and has three possible sub-classifications:
LAMBDA, NLAMBDA, or FLAMBDA; |EXPR indicates an object of type
| EXPR and has three possible sub-classifications: |LAMBDA,
| NLAMBDA, oT | FLAMBDA. In addition to these standard
assumptions, there are many special forms whose names are given

meaningful mnemonics.,

Al1.1 Basic Interpreter Objects

(|EVAL ressage-forn)
EXPR
(LAMBDA)

|EVAL is the |LISP interpreter. Its basic logic
follovs:

Call in (|UPDATE-TIMER) before proceeding.

Then, if message-form is an atom, its value on the
current execution instance's stack is returned; if none is

Appendix T

177

found, an error is generated.
If the CAR of message-form is an atom, then

-if it is QUOTE, message-form is returned;

-if it is the name of a | PEXPR, then
(ISCHEDULE message-form) and resume execution of scheduler;

-if it is the name of a |EXPR, then construct the
appropriate {LAMBDA expression, returning result of
| EVALing this |LAMBDA expression with CDR of message-fornm
as arguments;

-similarly, if it is the name of an EXPR, construct
the appropriate LAMBDA exprassion returning the result of
JEVALing this LANBDA expression with the CDR of
message-form as arquments;

-if it 1is the name of a SUBR, APPLY CAR of
message-form to [EVLIS of the CDR of message-form and
return the resulting value;

-if it is anything else, there is an error.

If the CAR of message-form is a list and the CAAR is

-|LAMBDA, then bind the |LAMBDA parameters to |EVLIS
of the arquments (using the current |PEXPR stack); |EVAL
the body of the |LAMBDA; return the result;

~|NLAMBDA, then bind the |NLAMBDA parameters to the
arquments (not |[EVALed) (using the current |PEXPR stack);
| EVAL the body of the | NLAMBDA; return the result;

-|FLAMBDA, then bind the |FLAMBDA parameter to a list
of the arguments (not (EVALed); |EVAL the body of the
JFLAMBDA; return the result;

-LAMBDA, then APPLY the LAMBDA expression to |EVLIS
of the arguments and return the result;

-NLAMBDA or FLAMBDA, then APPLY the NLAMBDA or
FLAMBDA expression to the arguments (neither |EVALed nor
EVALed) and return the result.

If message-form is anything else, then there is an

error.

Appendix I

178

(1SCHEDULE. message-form)

If message-form is not a list or its CAR 1is not the
name of a |PEXPR, then there is an error. Otherwise, let
CAR of message-form be known as the I'receiving-object".
| SCHEDTLE first of all creates a new execution instance,
"new-object", of receiving-object in which will be asserted

(EX-INSTANCE-OF new-object receiving-object)
(EX-ENVIBON new-object current-ex-instance)
(STACK new-object ())
Then, message-form is chacked to see if there are any
special messages:

(1PRIO= priority): if found, strip it from
message~form and |ASSERT (|PRIO= new-object priority) in
new-object; if not found, |ASSERT (]PRIO= new-object 5);

(1TIME= time-limit): if found, strip it from
message-form and |ASSERT (|TIME-LIN= new-object time-1limit)
and (|TIME-NOW= new-object time-1limit) in new-object;

(]COND= pattern): if found, strip it from message-form
and |ASSERT in new-object (|COND= new-object pattern);

{|END= end-limit): ir found, strip it from
nessage-form and]ASSERT in new-object
(1END= new-object end-limit).

After completing the search for special messages, the
(reduced) message-form is embedded in a call to |PEXPR-MH,
the standard | PEXPR message handler. Thus,
(]PEXPR-MH message-form) is pushad onto the stack of
new-object under the indicator |EV indicating that it is
the top |EVAL block on the stack of new-object, A list
(new-object priority) is then merged into the execute queue
according to its priority.

Finally, |SCHEDULE returns new-ob ject.

Appendix I

179

(JOJPDATE-TIMER)

EXPR
(LAMBDA)

Every 100 times |EVAL is called, |UPDATE-TIMER reduces
all |TIME-NOW= patterns in the current execution
environment by 1. If any |TIME-NOW= patterns are at O,
then call

(Il INTERRUPT-PROCESSING '|TIME= 0 ex-instance-int)
where "ex-instance-int" is the execution instance in which
the time violation occurred.

(IINTERRUPT-PROCESSING type-int val-int ex-instance-int)

EXPR
(LAMBDA)

This object is called in when an interrupt of type-int
(either |TIME= or | COND=) has been detected in
ex-instance-int. val-int is either 0 in the case of a
| TIME= interrupt or, in the case of a |COND= interrupt, the
pattern which matched the |COND= interrupt pattern,

|{INTERRUPT-PROCESSING first looks into the execution
environment of the current execution instance for the
nearest semaphore (if there is none, assume the semaphore
is "OFFY). If it is '"ON", vreturn NIL; else, reduce
| END-LIN= pattern in ex-instance-int by 1. If the
| END-LIM= pattern is 0, then no interrupts are left, so set
up a return condition in the EX-ENVIRON execution instance
of ex-instance-int to be

(IRETORN-COND ex-environ-inst, .
| END= (ex-instance-int ex-instance-current) val-int)

If it is not 0, then set up a return condition in
ex-environ-inst to be

(IRETYRN-COND ex-environ-inst . .
type-int (ex-instance-int ex-instance-current) val-int)

If type-int is |TIME= then reset |TIME-NOW= pattern to be
the same as |TIME-LIM=.
Merge ex-environ-inst into execute gueue with its storad

Appendix I

180

priority and resume execution of the scheduler.

EXPR

| (1SCHEDULER)
(LAMBDA)

This object removes first object / priority pair from
the execute queue, sets the current execution instance to

be this object, takes the top |EVAL block from the stack of
the object, and |EVALs the form there.

(|PEXPR-MH message-form)
EXPR
(LAMBDA)

|PEXPR-MH is the usual message handler for |PEXPRs.
The receiving object is the first element of message-form;
the rest of the elements of message-form are patterns %o be
matched in the body of receiving-object. For each such
mess-pattern, |PEXPR-MH calls
(I1MATCH mess-pattern ex-environ-inst

receiving-pattern current-inst)

for all receiving-patterns in the current execution
instance until a match is found. If no such match is
discovered, failure to match processing ensues; i.e. a
message
NRR e G IR Eﬁﬁﬁéﬁiégngis.EE%éﬁﬁﬁg-pattern)
is sent to mess-head, the first element of mess-pattern).
IE this still fails to find a matching pattern
(i.e. matching-pattern is NIL), then NIL is concatenated to
an answer list. If a matching pattern is found, the result
of |MATCH is concatenated to answer list and |ASSERTed in
the execution instance.

When all meséage patterns have been handled, a return
condition is set in ex-environ-inst
(|RETURN-COND ex-environ-inst

Appendix I

181

NORMAL {(current-inst) answar-list)
and its stack is modified so that answer-list will also be
the value returned from the message sent to
receiving-obiject. ex-environ-inst is then merged into the
execute queue with its stored priority and the scheduler is
resumed.

21.2 Redefined LISP SUBRs

Many LISP functions can be used directly as objects in
|LISP. This is not the case for LISP FSUBRs or NSUBRs
which must be redefined so that their arguments can be
JEVALed rahter than EVALed. In addition certain SUBRs
which depend on EVAL for their meaning (e.g. EVAL, APPLY,
APPLY1, +a.s) O which ordinarily wuse the LISP stack
(e.g. SET, SETQ, ...) or which use the property list
features of LISP (e.g. PUT, GET, ...) must also be
redefined. The rest of the STBRs (e.g. CAR, CDR, CONS, EQ,
ATOM, ...) can be wused as is, since the |LISP interpreter

automatically |EVALs their arguments.

The following are rewritten versions of the
corresponding LISP functions (all are EXPRs) :

(IEVAL S1): see section A1.1;

(JEVLIS S1 ... Sn): like EVLIS, but | EVALs its
arguments;

(IAPPLY FN S1 ... Sn): the same as APPLY except |[EVAL
used ;

(1APPLY1 FN S1 ... Sn): the same as APPLY1 except
|EVAL used;

{ISET 31 S1 ... AR Sn)s uses current execution
instance's stack;

(ISETQ A1 S1 ,+. An Sn)s: uses current execution
instance's stack;

(JUNEVAL A1 <S1>): uses current execution instance's
stack;

(IMAP FN L1): uses |EVAL rather than EVAL; similarl}

Appendix I

182

the other MAPping functions;

{{COND (S11 .e. S10) ... (Sk1 ... Skm)):z: uses | EVAL
rather than EVAL;

(IAND S1 ...Sn): uses |EVAL rather than EVAL;

(IOR S1 ...5n): uses |EVAL rather than EVAL;

(IPROG L1 S1 ... Sn): works like PROG only binds on
the current execution instance and |EVALs the Sig

(160 A1): works like GO except goes to label inside of
{ PROG or |EVENT-SEQUENCE and argument is (EVALed;

(IRETURN A1 <A2>): works like RETURN but uses current
execution instance stack. If A2 is the keyword |HANDLER,
then control will resume in the matcher of the message
handler of the current execution instance with the value of
the current pattern element being A1. Thus, for example,
if there were a pattern
(X ¥ ?(]PROG () (JRETURN 'DOG |HANDLER)) 2Z)
in the |PEXPR FO0O0, and if the message (X Y ?VAL Z) were
sent to FOO, then at the point the |RETURN was executed,
control would resume in the message handler of FOO's
execution instance with the value of the third element
being DOG and the match continuing to the fourth element.
To force failure of the match, |RETURN NIL to the |HANDLER.

Al.3 Objects Which Create Objects

(IDEFUN A1 <A2> L1 S1 ... Sn)
EXPR
(FLAMBDA)

This object works like LISP's DEFUN except that in
addition to EXPRs, |EXPRs can be defined by using the
indicator |EXPR, |NEXPR, or |FEXPR for A2 (default |EXPR).
Note that A1 is globally defined as a |EXPR, |NEXPR, or
whatever, since the LISP atom 1is modified. It seems

Appendix I

183

unnecessary to me to have a procedure defining capability
that defines procedures only within a given |PEXPR, since
it 1is usually the case that a procedure name is something
that remains fixed throughout the system (especially true
here since EXPRs and |EXPRs are defined to be objects known
system wide). The situation where locality is important
can be adequately handled by either renaming the procedure
or by using "!" or "$" macros in patterns of a |PEXPR.

(1PDEF A1 P1 ... Pn)

EXPR
(FLAMBDA)

This object creates A1 as a pattern expression. Each
pattern Pi 1is either of the form "name-i : («..)™ Or
simply "(...)". These patterns can contain sub-patterns
of either type as well, so that

(DOG CHASE DESC : (CAR COLOUR RED))
would work perfectly well (without, I should add, the DESC
sub-pattern being added as a top-level pattern, but being
labelled nonetheless). Using |ASSERTLIS, each pattern Pi
is asserted in A1 (with appropriate IF-ADDED checks - see
below), resulting in a string of patterns being attached to
the LISP property list of A1 under the attribute |PEXPR.

(ICREATE-NEW A1)

EXPR
(LAMBDA)

This object will create a new instance of A1 with
appropriate (INSTANCE-OF new-inst A1) pattern being
asserted in the new instance along vith a
(CREATION-ENVIRON new-inst ex-instance-current) pattern.
The name of the new instance is returned.

Appendix I

184

Al.4 Objects for Communicating with Objects

(|DYNAMIC A1 mess-1 ... mess-n)

This will send a set of messages to A1 and return the
appropriate answer 1list. It is used when the receiving
object or messages need to be [EVALed.

(| RETURN-COND)

EXPR
(LAMBDA)

This object will return as value th2 return condition
of the current execution instance. The possibilities:
- (|RETURN-COND ex-inst-current
NORMAL (ex-inst-receiving) value)
- (JRETURN-COND ex-inst-current
ATU-REVOIR (ex-inst-receiving restart-name) value)
- (] RETURN-COND ex-inst-current
|TIME= (ex-inst-interrupt ex-inst-executing) value)
~ (] RETURN-COND ex-inst-currant
{COND= (ex-inst-interrupt ex-inst-executing) value)
- (] RETORN-COND ex-inst-current
| END= (ex-inst-interrupt ex-inst-executing) value)
The following can be used to access particular parts
of the return condition:
(] RETURN-TYPE) = will return third element of return
condition;
(]RETURN-CODES) : will return fourth element of return
condition;
(I RETORN-VALUE) : will return fifth element of return
condition;

Appendix I

185

Al.5 0Objects Involved in Matching

(]MATCH source-pat source-obj target-pat target-obi)

| EXPR
(1 FLAMBDA)

Of the "arguments" to this object, source-pat and
target-pat are not |EVALed; source-obj and target-obj are.
source-pat 1is matched against target-pat, with macros of
source-pat elements being expanded in the context of
source-obj while those of target-pat elements are expanded
in the context of target-obj. Returned is either NIL (if
there is no match) or the matching pattern (if there is a
match). The basic logic flow of |MATCH follows:

If souvrce-pat 1is not the same length as target-pat,
the match fails S0 return NIL. Otherwise, set
answer-pattern to NIL and compare each pair of
source / target elements until all are handled (in which
case return answer-pattern) or until comparison fails for
some pair (in which case return NIL). The comparison for
two elements:

e EE a macro precedes both elements, do
macro-conflict processing (sce macro-conflict +table in
Appendix II) and proceed; else if a macro precedes one
element, expand it and replace the element by the result
returned from the macro expansion (macros use the
appropriate source-obj or target-obj for binding and
{EVALuation if necessary); .

2. 1if either element is NIL, the element comparison
fails;

3. if both elements are atoms, then element
comparison succeeds if they are the same atom in which case
append the atom to answer-pattern and get the next
source / target pair; else element comparison fails;

4, if both elements are lists, then
(IMATCH source-el source-obj target-el target-obj)

Appendix I

186

and if NIL is returned then element comparison fails;
otherwise append the value returned to answer-pattern and
get the next source / target pair;

5. in any other situation element comparison fails.

(IPATTERN pat <|EBEXPR>)

| EXPR
(1 FLAMBDA)

pat is not |EVALed; |PEXPR, if given, is. | PATTERN
will match pat against patterns in |PEXPR (default the
current execution instance) with the first matching pattern
returned as value (using the standard |PEXPR-MH order of
matching). Context for all macros is the current execution
instance; failure to match processing takes place.

| (|PATTERN-ALL pat <]PEXPRD)
XPR
DA)

| E
{|FLAMB

pat is not |EVALed; |PEXPR, if given, is. This object
will match pat against all patterns in | PEXPR (default the
current execution instance) with a 1list of matching
patterns returned as value. Any assignments in pat are
made to the 1last value; <the current execution instance
forms the context for macro-expansion; €failure to match
processing does not take place,

| EXPR
(I FLAMBDA)
A1 is not |EVALed; {PEXPR is, if given; (POINTER will find
the first pattern in |PEXPR (default the current execution
instance) matching (A1 (PEXPR #X) and will return the X if
successful (NIL otherwise). The current execution instance

[(}POINTER A1 <]PEXPR>)

is used for macro expansion; failure +to match processing
takes place.

Appendix I

187

(IPOINTER-ALL A1 <|PEXPR>)
{ EXPR

(] FLAMBDA)
A1 is not |EVALed; |PEXPR is, if given; |POINTER-ALL will

find all patterns in |{PEXPR (default the current execution
instance) matching (A1 |PEXPR #X) and will return a list of
all the X's so found (or NIL if none are found). Macros
are expanded in the context of the current execution
instance; failure to match processing does not take place.

(IUNASSIGNED A1)
EXPR
(LAMBDA)

This simple object will return T if A1 has the value
|0 (L.e. it has been unassigned as part of a

macro-conflict); NIL otherwise.

Al.6 O0Objects Which Manipulate Patterns

| (1ASSERT pat <|PEXPR <int-flag>>) R
(| FLAMBDA)

|PEXPR (default the current execution instance) and
int-flag (default NIL) are |EVALed; pat is not, but any
ngn, nyn, mn, wguH, or "-" macros are expanded (note that
":" and "/" designate pattern labels in |PEXPR, not in the
current execution instance, unless they are the same). pat
itself can be an ordinary pattern "(...)" or it can be a
labelled pattern "name-i : («..)",

|ASSERT will assert pat in |PEXPR; i.e. will add it on
to the beginning of the list of patterns already attached
to |PEXPR under the marker |PEXPR on its property list.
The order is important since |PEXPR-MH just scans down this
list when locking for a match for a message. Adding more

Appendix I

188

recent patterns to the beginning of the list effectively
gives a "most recent to least recent" search order. ([COND=
interrupt checking will be carried out if int-flag is T,
After adding the pattern, |ASSERT executes any
IF-ADDED procedure that may be associated with the head of
pat. Such patterns look like
(IF-ADDED head ?pattern ! (|PROG () ---))
and allow such things as inverses and other ™automatic"®
side-effects to be accomplished for a particular type of
pattern, When it is finished, |ASSERT returns pat (with
appropriate macro expansions substituted for macro
elements).

| (1ASSERTLIS list-of-pats)
{ EXPR
(1 FLAMBDA)

This object will assert each pattern in the 1list of
pats using |ASSERT. Each such pattern looks like

(pat <] PEXPR <int-flag>>)
and |ASSERTLIS returns the list of results returned from
each |ASSERT.

(IREMASSERT pat <]PEXPR>)

| EXPR
(1 FLAMBDA)

The rules for |EVALing and macro-expanding are the
same as those for |ASSERT exéepi that pat can also be of
the form "/pattern-label™., If this is the case the pattern
of that name in {PEXPR will be removed; for any other kind
of pattern, JREMASSERT will 1look through {PEXPR for a
pattern matching pat and remove the first one it finds (no
failure to match processing takes place). After removing
the pattern, |REMASSERT 1looks to the pattern head for a
pattern of the form

(LF-REMOVED head ?pattern ! (JPROG () ++¢))

Appendix I

189

Which will take care of any side-effects of the pattern
removal,

JREMASSERT returns the pattern which was removed.

EL N1 pat
(1 pat) —
(LAMBDA)

Returned as value from this EXPR will be the ©N1-th
element of pat.

A1.7 Objects for Searching

(ISEARCH test-fn expand-fn <start-|PEXPR <restart>>) | EXPR
(ILAMBDA)

This is |LISP's breadth-first searching routine.
test-fn and expand-fn are either |EXPRs or (LAMBDA
expressions cf one argument, start-|PEXPRs (default a list
containing the current execution instance) is given as
argument to test-fn which either returns NIL or non-null.
If non-null, the search terminates with that as the answer.
If NIL, the search continues with =2xpand-fn being executed
with the list start-|PEXPRs as argument. expand-fn returns
either NIL or a list of |PEXPR names into which the search
is to expand. In the former case the search terminates
with a NIL answer; in the latter case the 1list of newly
expanded names is passed to test-fn to see if it approves.
If not, then another round of expansion must take place; if
so, the value returned from test-fn is returned as answer.
Note that all |EVALing takes place in the execution
instance which initjated the search (although, naturally,
the functions themselves can send messages to other objects
if so desired).

The last argument, "restart"™, if given indicates that

Appendix I

190

the search can be restarted. It is the name under which is

stored all data needed to restart a search. Thus,

if +the

answer returned from a supposedly successful search later

turns out to be inadequate, new answers can be generated.

This 1is just the capability for generators (see CONNIVER,

McDermott and Sussman (1974)). If no restart is specified,

or if expand-fn ever returns NIL, then no data is stored

for restart.

(INEXT-SEARCH search-nane)

(ILAMBDA)

| EXPR

This is used to restart any search formerly suspended

under the name "search-name". The search proceeds normally

from where it left off.

|
{ FEY
L]

{oo}

objects Involved in Saving Stacks

(|AU-REVOIR AO A1 <A2>)

A1 and A2 are arguments like those of |RETURN,
they indicate a value and a return point on the
execution instance stack, If A2 is omitted, the
enclosing |PROG or | EVENT-SEQUENCE is assumed to

that is
current
nearest
be the

return point. The additional argument A0 designates the
place to save the portion of the stack stretching back from

the |AU-REVOIR form to the A2 form. A pattern

(] STACK-SAVE current-ex-inst A0 ("the stack"))

is used for such storage.
As is the case with |RETURN, if A2 is the

keyword

| HHNDLER, control goes back to the matcher within the

message handler for the current execution instance;
A1 1is ©NIL, the match will fail at that point. 1If

and if
failure

Appendix I

191

to match processing fails to rectify the situation, then an
{AU-REVOIR return condition
(|RETURN-COND ex-environ-ex-inst

{AU-REVOIR (current-ex-inst A0) NIL)
is set up in the execution environment execution instance.
If, on the other hand, failure to match does succeed in
finding a matching pattern, *then
(]RETURN-COND ex-environ-ex-inst

|AU-REVOIR (current-ex-inst A0) matching-pat)
will be set up in ex-environ-ex-inst. In either case, the
stack has been saved so that control can be resumed if
somebody wup there wants +to |RESTART the |AU-REVOIRed
execution instance,

{|RESUME A0 <S51>)

EXPR
(LAMBDA)

This is the object used to resume the execution of the
stack stored with A0, The stack is restored by replacing
the |RESUME |EVAL block with the o0ld stack and the old
{AU-REVOIR |EVAL block by S1, if given (if not given, the
value originally returned by |JAU-REVOIR is substituted).
Execution can then resume with the restored portion of the
stack going first. The use of |RESUME in conjunction with
| AU-REVOIR effectively gives a co-routining capability
within an execution instance.

Note that incompatibilities are all too possible
between the current stack ard the restored stack; it is up
to the user to be careful when using these functions. Also
do not confuse |RESUME, used within an execution instance,
with |RESTART, used from one execution instance to restart
another.

Appendix I

192

(|RESTART old-ex-inst <A0 <S1>>)
EXPR
(LAMBDA)

This object allows the restart of an execution
instance previously suspended by an interrupt or an
|AU-REVOIR., If old-ex-inst was suspended by an interrupt,
A0 and S1 cannot be specified and the execution instance
from which the command was issued should 1lie in the
execution environment of old-ex-inst. If these criteria
are met, old-ex-inst is schz2duled with all its pointers
intact and control is passed to the scheduler.

If old-ex-inst was suspended by an |AU-REVOIR, then
A0, the marker under which the old stack is stored, must be
specified. S1 has the same meaning as for |RESUME.
| RESTART will create a pnew execution instance, with
EX-INSTANCE-OF pointer to old-ex-inst and EX-ENVIRON
pointer to the execution instance which 1issued the
|RESTART. The stack of this instance will be initialized
to the stack stored under A0 in old-ex-inst, with the same
restrictions as in |RESUME. This new execution instance is
put on the execute queue (with the same priority as
old-ex-inst) and control resumes in the scheduler.
Eventually, the new execution instance will run and when
finished will return to the |RESTART execution instance
rather than the original old-ex-inst EX-ENVIRON execution
instance.

Note that what has been created here is an execution
instance of an execution instance where the "higher"
execution instance points to the o0ld EX-ENVIRON and the
"lower" execution instance points to the new EX-ENVIRON.
This allows a similar distinction to the ALINK / CLINK
distinction of +the Bobrow and Wegbreit (1973) <ceontrol
scheme in that it allows the |RESTART and |AU-REVOIR
environments to be kept distinct, However, most searches,

as currently designed, will always search the new execution

Appendix I

193

environment even if (as would often be the case after a

| RESTART) the old execution environment is more
appropriate., Similar problems would arise when 1looking
through o0ld episodes in memory.

Al.9 Special Purpose Objects

[(]EVENT-SEQUENCE (locals) S1 S2 ... Sn)
| EXPR
| (I FLAMBDA)

This is a special purpose objsct whose format is very
similar to that of a |PROG., The action of the object is
very similar to |PROG in that the locals are bound to NIL
on the current stack, and the Si are executed in segquence
51, S2, ... (unless over-ridden by a |GO). The difference
lies in the meaning of an atomic Si, say STEPk; whereas in
a |PROG STEPk would be ignored except as a label for a |GO,
in an JEVENT-SEQUENCE it is a signal that another "step" in
the |EVENT-SEQUENCE is about to take place. The next Sj,
|]PEXPR-call, which is a call to a |PEXPR is considered to
be that step, and after it is taken (that 1is after the
messages have been sent and the answer returned)
| EVENT-SEQUENCE does some special processing. It asserts
the following two patterns:

(STEP current-ex-inst STEPk |PEXPR-call-ex-inst)

is asserted in the current execution instance; and

(THEN STEPk-1 |PEXPR-call-ex-inst)

is asserted in the execution instance of the previous step
(i.e. STEPk-1).

These two types of pattern essentially allow the
preservation of a permanent record of the episode
undertaken by the |EVENT-SEQUENCE, a .record which can be
accessed from the current execution instance by looking at
STEPk patterns and which can be traversed in sequential

Appendix I

194

order from beginning to end along THEN links. The
following idiosyncracies should be noted: there is
obviously no THEN pattern to the first step; if no |PEXPR
calls are found before the next step 1is encountered,
| EVENT-SEQUENCE ignores the missing step; if more than one
| PEXPR call is entered into before the next step,
| EVENT-SEQUENCE ignores all but the first as far as keeping
a record of them is concerned. Termiration conditions for
and values returned from |EVENT-SEQUENCE are identical to
{ PROG,

I(lDO-PARALI.EL (L1 ... Ln) <UNTIL test-cond>) o
L (1 FLAMBDA)

|DO-PARALLEL is a |EXPR which directs the (simulated)
parallel execution of L1 through Ln each of which is
assumed to be a call to a |PEXPR. On the first pass
| DO-PARALLEL will {EVAL each of the Li in turn, and will
also |EVAL test-cond (an arbitrary atom, |JEXPR, |PEXPR,
EXPR, or lambda of some description - if unspecified, it is
assumed to always be NIL). When test-cond |EVALs to
something other than NIL, |DO-PARALLEL is finished and
returns the value returned £from test-cond as result.
Otherwise, it keeps cycling around the Li, |RESTARTing any
that have been interrupted. It may eventually be the case
that none of the Li can be |RESTARTed, having exceeded
their |END= <conditions, in which case |DO-PARALLEL will

also cease and return NIL as value,
|DO-PARALLEL is wuseful if several things need to be

done pseudo-simultaneously. Note that the user can specify
the interrupt conditions on the Li to achieve any kind of
time slicing desired.

Appendix I

195

APPENDIX II

This Appendix presents some of the more elaborate pattern
expressions which arise in the examples of Chapter V. The
Appendix is ivided into two parts, the first part outlining
| PEXPRs which are needed for Conversation I (the ticket buying
conversation), and the second part outlining |PEXPRs which are
needed for Conversations II and III (the drink buying
ccnversation and the conversation with a friend at
intermission).

k2.1 Conyersaticn I
<{PDEF ATTEND-CONCERT
SUPERSET ATTEND-CONCERT ATTENDL
EXECUTE ATTEND-CONCERT SELF ?THIS-CONCERT
! (|EVENT-SEQUENCE {&
JASSERT (ATTENTION SELF !THIS- CONCERT)&
ASSERT (PURPOSE SELF (ATTEND SELF !TH ONCERTEg
- ?ETQ LOC-CONCERT (|POINTER LOCATION THIS-CONCER
;go to theatre
GOTO (EXECUTE GOTO SELF !LOC-CONCERT ?GO-PLACE1))
CHECK-FRAILURE)
fTHIS-CONCERT (ENTRAHCE-RE%UIREHEHT ! THIS~-CONCERT

RED-TICKET))
(IASSERT (EVENT !DESIRED-TICKET !THIS-CONCERT)
DESIRED-TICKET)

STEP2
sbuy ticket
Uy éEXECUTE BOY SELF !DESIRED-TICKET ?BUY-RESULT})
CHECR-FAILURE)
STEP3
;go into lobb¥
SETQ LOBB éIPOINTER LOBBY LOC-C ONCERTEE
OTO (EXECUTE GOTO SELF !'LOBBY 2GO-PLACE2))
CHECK-FAILURE)
STEPY
;go to seat
SETQ SER |POINTER REPN DESIRED-TICKET
OTO (EXE UT GOTO SELF 1SEATS ?GO-PLACE3
%HECK FAILTRE)
ST
:listen to first half of concert
SET% THIS-AGENDA &LPOINTER AGENDA THIS-CONCEETﬁk
|PATTERN (FIRST- EISFAé%gIS CONCERT ?BEGIN-PROGRAM)
LISTEN (EXECUTE SELF 'BEGIh -PROGRAM ?FIRST-DONE})
CHECK-FAILURE)
STEP6
;go back to lobby
GOTO (EXECU TE GOTO SELF YLOBBY ?IN-LOBBY))
CHECR-FAILURE)
STEP7)
;buy a drink
(fSETQ BAR-WHERE (|POINTER BAR LOC-CONCERT))

Appendix II

196

(1PATTERN (WANT SELF
BUY (EXECUTE BUY SE
CHECK-FAILTRE)

STEPS

£ill in time and drink beverage until buzzer
(1DO-PARALLEL

((FILL-IN-TIME éEKECUTE PILL-IN-TIME SELF ?END-FILL)

TIME=
(SIP EX%CUTE P)SELF !LESIRED DRINK ?DRINK-RESULT)

ELF ?DESIRED-DRINK))

(DRINK S
2R~ DRINKE
F IDESIRED-DRINK ?BUY-DONE))

=z

(ot (NULL (CHECK-FOR-ACTIVE-SUBSET BUZZER-SOUND))))
CHECK- FAILURE)

back to seat
OTO0 (EXECUTE GOTO SELF !SEATS ?IN-SEATS))
HECK- FAILUR)

ST
39

.cm

3
%
sten to second half of the concert
| PATTERN (SECOND—-HALF !THIS-CONCERT ?END-PROGRAM)
THLS—~ AGEND&%

LISTEN (EXECUTE LISTEN SELF !END-PROGRAM ?SECOND-DONE))
CHECK-FAILURE)
P11

back honme
GOTO (EXECOTE GOTO SELF HOME ?BACK-HOME))
CHECK- FEILURE

|[RETURN (|CURRENT)))) >

ST
39

£
e
é
t

<|PDEF BUY
SUPERSET BUY ACTUAL-TRANSACTION)
EXECUTE BUY ?BUYER 2ITENM
! (EVENT-SEQUENC éh
(| AND NEQ BUY 'SELF h
ASSERT (FAIL (NOT SELF BUYER)))
RETURN NIL
PATTERN (LOCATION !ITEM ?PLACE-ITEM) ITEM)
i PATTER? SELLER 'ITEM ?SELLER) ITEM
=
:go to ticket booth
GOTO (EXECUTE GOTO SELF !PLACE-ITEN ?GOT-THERE))
CHECK-FAILUR k
ASSERT (BUYER !ITEM 'BUYEREL
ASSERT (SELLER !ITEM !SELL {
ASSERT (PURPOSE ISELLER (SELL ISELLER !ITEN)))
ASSERT (PURPOSE !'BUYER é UY !BUYER !'ITEM)))
S ASSERT ATTENTION !BUYER !TITEM))
ake part in conversation to buy ticket
(BUOY- CONVERS&TION EXECUTE BUY-CONVERSATION
BUYER !SELLER 'ITEM ?CONV-RESULT))
CHECK- FHILU h
[RETURN (]CURRENT)))) >
<|{PDEF BUY-CONVERSATION
SUPERSET BUY-CONVERSAT SOCIAL-TRANSACTION- CON?ERRTION)
EXECUTE BUY-CONVERSATI ?BUYER ?SELLER ?ITE

!éEVENT-SEQUENCE ()
sstart ugoconversatlon

(WHAT- YOU-WANT
(EXECUTE WHAT-DO-YOU-WANT !SELLER !BUYER

Appendix II

2WHAT-WANT-CONV))
CHECK-F&ILUREL
TIE-IN WHAT=-WANT-CONV)
IPATTERN (WANT 1BUYER (FXCHANGE ?BUYER-AAS
?BUYER-WANT)), BUYER
(]1PATTERN (WANT !SELLER (EXCHANGE ?SELLER-HAS
gt ?SELLER-WANTS)) SELLER)

;bargain over what buyer wants
(BARGAIN
(EXECUTE BARGAIN !SELLER !BU
!BUYER-WANTS !ITEM
CHECK-FAILUREL
TIE-IN BARGAIN-1-CONV)
STEP3 _
;bargain over what seller wants
(BARGAIN
(EXECUTE BARGAIN !BNYER !S
!SELLER-WANTS !I
CHECK—FBILUHEh
EEE-IN BARGAIN-2-CONV)
xchange cost of item for ite
(EXCHANGE
(EXECUTE EXCHANGE !'BUYER !SELLER
!(LPOINTER COST ITEM) !ITEM ?CONV-EXCHANGE))
éCHECK- AILURE

Hit
g
=

ws U0

T
e

ggE—IN CONV-EXCHANGE)
lose out the conversation
(FAREWELL
EXECUTE FAREWELL !BUYER !SELLER ?GOOMBYE))
CHECK-FAILURE
TIE-IN GOOMBY E
IRETURN {|CORRENT)))) >

ST
:C

<|PDEF WHAT-DO-YOU-WANT
SUPERSET WHAT-DO-YOU-WANT GREETING)
EXECUTE WHAT-DO-YOT-WANT ?SPEAKER1 ?SPEAKER2
! (EVENT-SEQUENCE éh
({SETQ DIRECTIONS (ESTABLISH-IDENTITIES
SPEAKER1 SPEAKER2))
SETQ DIRECTION-FIRST (CA DIRECTIONS&E
- %ETQ DIRECTION-SECOND (CADR DIRECTIONS))
;speaker1 inguires as to purpose of speaker2
(|APPLY '"INQUIRE DIRECTION-FIRST 'IRQUIRE
SPEAKER1 SPEAKER2
ﬁéPURPOSE ISPEAKER2 *UNKNOWN*) *2NEW-UTT1)
C ECK-FAILURE%
TIE-IN NEW-TTT1)
STEP2 . .
;speaker?2 resgonds with his purpose
%IAPPLY "RESPOND DIRECTION-SECOND *RESPOND
SPEAKER2 SPEAKER]
%éPURPOSE !SPEAKER2 ?WHAT-PURPOSE) '2?NEW-UTT2)
C ECK-F&ILURE%
TIE-IN NEW-UT ZL
JRETURN (JCURRENT)))) >

197

Appendix II

198

=

oo
=
W
o

Oullh==tatalnn W= [

RANSACTION-CONVERSATION)
ER 2RESPONDER

EM
A
R

3
I
W HQ |

N

1 =0
-

D
T

HWueo
H O
O~ 0
= a
4]

5]

TABLISH-IDENTITIES
UESTIONER RESPONDER L&
ON-OUESTIONER (CAR RECTIONS
ION-RESPONDER ADR DIRECTIONS
E POINTER BARGAIN-ORDER POSN-

POINTER BARGAIN-ORDER POSN

ial bargaining positions
UE (CAR ORDER-Q))

RENT"ISSEE éChR ORDER~-R))
L CURRENT-I

IR "AGAIN (&CURRENT)))
CDR ORDER~-
CDR ORDER-Q))

TEH ’WHAT1%
'¥EXT STANCE=-Q))
EM ?WHATZE
EXT-STANCE-R
%)

IH3 HoEe

HEEE 2lrg 3
L&

"oHH HQ | QX

!
)}

I
=

(1]
~0 O0go TCO=oo>

OtHet HEEE EEWthED
—~

=
oocun oK Ouuow

St
- O—20Dmk

Qz
St
=
]
=

(ol N =

—

o
| Zoma=on

(1SETQ é

(1SETQ S

=
o
wn

=
t
-
o
H
OO Wi = | = | un=unsHnAEw

- clels e
«ZONnHEHE EHOQDEOO HMgogS 101 L =0

(
P
1
R
P
!

O O IEE o4 438
=
l
~
v

=
=
wn
g
o

NULL STRN%% -R))
|CURRENT)))

(1COND { (NULL

L STANCE
STA

o B | DEnE o=l

0
0
fpoaTA
I
E
MPOR
IT
R 'N
NCE-
AGAT

2 OO e =TS OO0 DEOEG
- |

—
PR = P L P e |

B
b4t
-3
TS
a
=

C
G
9

HI

ISSUE ITEM '=(X T))))

R
T-ISSUE ITEN '=(X T))))

P 22 == | o=

ANCE-R!
8onder s stance
IgN—QUESTIONER '"INQUIRE

!ITEM *UNKNOWN%*) *20UTT-Q)

e r
"INQUIRE D
ESTIONER RE
CURRENT-ISS
CHECKR-FAILURE)
TIE-IN UTT-Q)

onder replies with his current stance

PPLY "RESPOND DIRECTION-RESPONDER 'YRESPOND

RESPONDER QUESTIONER STANCE-R '2UTT-R)
CHECK—FRILURE)
TIE-IN UTT-R)
P3
e

=]
=

¢0U}

,!
3

ST
;questioner concocts a regl¥
(|SETQ STANCE éCOVER LATTERN STANCE-R
OINT R CONTENT UTT-R)))
(1AND {NULL STANCE=-R)
EXPLAIN-BAD
EXECUTE EXPLAIN-BAD !UTT-R ?EXPLAIN-ANS)))
(1SETQ COMP-PAT (|MATCH STANCE-R CURRENT
STANCE-Q (]| CURRENT)))
(1COND ((NULL COMP-PAT)
SETQ STANCE-TEN-0Q (&RESUNE '"NEXT-STANCE=-Q))
COND ((NULL STANCE- EH-QE
(1 AND (NULL STANCE-TEM-R)
SET? FIRST-IN T)
GO STEP?E%%
(T J SETg STANCE-Q NCE-TEM-R)))
(JAPPLY *'INQUIRE DIBECTION—%UESTIONER
QUE TIONER RESPONDER STANCE-Q
20TT-0Q)
CHECK-FAILURE)
TIE-IN UTT-Q)
|GO 'STEPU))

Appendix II

199

(T (JASSERT !COMP-PAT ITEM)
GO 'STEPS)))
STEPY
;responder concocts a repl K
(ISETQ STANCE-Q (COVER-PATTERN
STANCE=-Q EPOINT”R CONTENT UTT-Q))
(JAND (NULL STANCE- E
EXPLAIN-BAD (EXECUTE EXPLAIN-BAD !UTT-Q
?EXPLAIN- ANS%E
(|SETQ COMP-PAT (|MATCH STAHCE-Q RENT
STANC CURRENT)))

NCE-
(|COND ((NULL comp PAT)
SET% TANCE-TEM-R
ST T
N
L

é ME *NEXT-S ANCE-R)%
OND ((NULL STANCE-TEM-R)
ULL STANCE-TEM-Q)
FIRST-IN T)

GO 'STEPS8)

| AND (N S
|SETQ
STANCE-R E%ANCE—TEH-R)))

T SE
(]APPLY('Bé§POND DIRECTION-RESPONDER
RESPONDER QUESTIONER STANCE-R '"?UTT-R)
CHECK-FAILURE)
TIE-IN UTT-R)
GO ‘STEPB%&
(T ASSERT !COMP-PAT ITEM)
GO 'STEP6)))
STEPS)
;agreement reached b %uestloner
?IAPPLY " AGREE DIRECTION-QUESTIONER 'YAGREE
QUESTIONER RESPONDER COMP-PAT '?2UTT-Q)

TIE-IN UTT-Q)
1o 'STEP1)

;agreement reached bg responder
?lRPPLY " AGREE DIRECTION-RESPON
RESPONDER QUESTIONER COMP-PA
!CHECK FAILURE)

scnzcx FAILTRE)
ST

1w

TIE-IN UTT-R)

éGD '*'STEP1)
STEPT _
squestioner 1rreconc1lab1¥ dlsaarees with STANCE-R

(1APPLY "'DISAGREE DIRECTION-QUESTIONER 'DISAGREE

QUESTICNER $ESPONDER STANCE-R '2?UTT=Q)

CHECK-FAILURE)

TIE=IN TUTT=- 8

|COND (FIRST-IN

SFT? FIRST-IN NIL)
STEPS
(T (IGO 'STEPY)))

STEPB

:responder irreconcilably disagrees with STANCE-
(1APPLY *DISAGREE DIRECTION-RESPONDER *DISAGRE
RESPONDER QUESTIONER STANCE-Q '2UTT-R)

CHECK-FARILURE)
TIE-IN UTT-R)
|COND (FIRST-IN
ISETQ FIRST-IN NIL)
GO 'STEP?E;
(T (16O "STEPYB)))
STEP9 . i
;:finis with failure
ASSERT ﬂéFAIL ISTANCE-Q !STANCE-R))
AU-REVOIR '"AGAIN NIL)
GO 'STEP1))) >

Appendix II

200

<|EDEF SELF-HAS-TICKET-BARGAINING-POSN
(SUPERSET SELF-HAS-TICKET-BARGAINING-POSN
HRS-BRRGAINING POSN

S1 : (COST §TICKET-FOR-CONCERT ;DO LARS-5

82 3 (COST TICKET*FDR-CO NCER DOLLARS-10)
IMPORTANCE SELF /S1 10)
IMPORTANCE SELF /S2 9)
BARGAIN-ORDER SELF-HAS-TICKET-BARGAINING-POSN (COST)) >

SN
ATNING-POSN

NG-PO
~BARG
SN&
1T18KET)]
HANTE BARGAINING-POSN

<|PDEF TICKET-SELLER-WANTS -BARGAI

(SUPERSET TICKET*SE LER-WAN

ANTS BARGAINING—-

S1 : (COST YTICKET é&POINTER co

IMPORTANCE §TICKET-SELLER é
BARGAIN-ORDER TICKET SELLE

ST)) >

N
'
P
S

1 O wuIH

HANGE ACTUAL-TRRNSACTION&

NGE ?P;RSON1 ?PERSONZ2 ?ITEM1 2ITEMN2

ECTIONS (ESTABLISH-IDENTITIES
PERSON1 PER

RSON2
ECTION-FIRST (CAR DIRECTIO&%L%
ECTION-SECOND (CADR DIRECTIONS))

es item1 to person?
VE DIRECTION-FIRST 'GIVE PERSON1
ON2 ITEM1 2GIVE-RESULT)

éCHECK i3 E)
P

A
4]
]
R
R
iv
GI
ERS
ILO
ank
THA ECOND 'THANKS
ERS M1 ?THANKS-UTT1)
IL"

H
L
v
G
i
a
u

TIE-IN N

gaun (N

:personz
(1APPLY

éCHECK FA

person1 th
(ICOND {%

R
S
N
0
R
K

(

CHECK-F
TQ RUDE-FLAG T})

Yo
D e ORI =D g s i H!O'L‘EO

ND 'GIVE
M2 ?GIVE-RESULT2)
it if person2 was polite

or

'"THANKS DIRECTION-FIRST 'THANKS
%gg1 PERSON2 ITEMZ2 Z?THANKS-UTT2)
?AN

Eglurmz)))
) >

A
L
e
I

ER
L
n
D

(|RETURN (]CT

WELL DIALOGUEL
ELL 7PERSOH1 PERSON2

ARE
FAREW
S gUE L
Q DIRECTIONS (ESTABLISH-IDENTI
8 DIR
DIR

TIES
PERSON1 PERSON2§)
ONS
TIO

kb))

CTION-FIRST (CAR DIRECTI
CTION-SECOND (CADR DIREC

(caley]

Appendix II

STEP1
spersonl sag 300 bge to Eersonz
(|APPLY OODBYE DIRECTICN-FIRST 'GOQDBYE
PERSON1 PERSONZ #ANY ?CONV-1)
CHECK-FATILYRE
TIE-IN CONV-1
STEP2
;person2 sag %oodb e to %erson‘l
(| APPLY OODBYE DIRECTION-SECOND *GOODBYE
PERSON2 PERSON1 #ANY ?2CONV-2)
CHECK-FAILURE
TIE-IN CONV=2
|RETURN (]CUR ENT)))) >
<| PDEF INEUIRE
SUPERSET INQUIRE INTERROGATIVE&
?%PE%EGI¥QUIRE 2SPEAKER 2?LISTENER ?CONTENT
*{SUSF%EE ZWHAT-| PEXPR ?UTTERANCE)
CON
: ((NULL UTTERANCE)

ASS SORFACE $| CURRENT leTERaNCE))
SETQ AP ROP—SUBSE

SET% UTTERANCE (HEAR WORDS
RT
CHECK-FOR-ACTIVE-SUBSET ' INQUIRE))

(1COND ™ { (NULL APPROP-SUBSET)
REPLACE APPROP-S SETE%L%
(T ()ASSERT (ST JRFACE $|CTRRENT !UT NCE))))
IASSERT (SPEAKER s;cuaaﬂ T 'spznxzaég
ASSERT (LISTENER $]CURRENT ILISTENER))
AND (NEQ (LAST UTTERANCE '?"L
ASSERT JFRIL (NOT INQUIRE !UTTERANCE)))
RETURN NIL))
(INQUIRE-CLAUSE
(INTERPRET INQUIRE-CLAUSE ' UTTERANCE ?RESULT))
CHECK-FAILURE)
|ASSERT (CONTENT $]CURRENT
'é&POINTER CONTENT RESOULT)))
é6BETUR {ﬁc RE TLEL
(ngPHgg %NQU E 2SPE ?LISTENER 2CONTENT
(l(]COND)((lUNASSIGNED CONTENT)
SETQ CONTENT f*NKNOWN*
OUNG (GENERATE NOUNG *UNKNOWN* ?OUTLEE
(T (INQUIRE-CLAUSE (GENERATE INQUIRE-CLAD
1ICONTENT 200T))))
SETQ DOWN-|PEXPR (CAR RETCODES)
SETQ OUT (SPERK-HORDS PPEND1 OUT "2m)))
ASSERT (SPEAKER s&euaa NT !SPEAKER L;
ASSERT (LISTENER éCURRENT 1SPEAKER))
ASSERT (STRFACE $|CURRENT !0UT))
ASSERT (CONTENT $|CURRENT
!d&paqu R CONTENT DOWN-|PEXPR)))
(1RETURN (|CURRENT))))
<|PDEF YES2
SUPERSET YES2 INQUIRE)
EXPECT YES2 ?SPEAKER ?LISTENER 2CONTENT
1'(} PROG &E
SURFACE WHAT-|PEXPR 2UTTERANCE)
ICOND ((NULL UTTERANCE
| SETQ UTTERANCE (HEAR- wonnslb
|ASSERT (SURFACE $|{CURRENT 1UTTERANCE))

201

Appendix II

(ISETQ APPROP-SUBSET
SCHECK-FOR-ACTIVE-SUBSET 'YES2))
(ICOND ((NULL ADPROP-STBSET
(T (REPLACE APPROP UBSETkkkE
4T {LASSERT (SURFACE $éCURREHT 1UTTE E))))
|ASSER EAKER $LCURRENT ! pEAKER%h
ASSERT (LISTENER §|CURRENT ILISTENER))
AND (|UNASSIGNED C NTENT)
SETQ CONTENT ﬂépua 0SE 'LISTENER *UNKNOWN*)))
(J1COND ((EQUAL UTTERANCE '4"rms" “vﬂ&
ASSERT (CONTENT $]|CURRENT !CONTENT))
RETURN ([CURRENT) g
(T (|ASSERT (FAIL (NOT YES2 IUTTERANCE)))
RETTRN .IL%%LEL
EXECUTE YES2 ?7SPEAKER ?LISTENSR ?CONTENT
' (1PROG .
asséﬁw SPEAKER $£CURHENT SPEAKER))
ASSERT (LISTENER 8|CURRENT ILISTENER))
AND (|UNASSIGNED C NTENT%
SETg CONTENT ﬂépua OSE ILISTENER *UNKNOWN*)))
ASSE {C NTENT $|CURRENT LCONTENT))
SETQ OUTPUT (SPEAK-WORDS 'f'f wonGhy gy
ASSERT (SURFACE $|CURRENT fOUTPUT))
RETURN (]CYRRENT))))
(ASSOC YES2
P(IPROC ()
(1CON

((EQ (|POINTER EX-INSTANCE-OF
(| POINTER EX- ENVIRON&E uyESH)
él SSERT (WANT-TO-GO YES2
(T (SPREAD-ASSOC 'PART-OF 'DEMON))))) >

EF PRE-DINNER-DRINK
SUPERSET PRE-DINNER-DRINK ALCOHOLIC-DRINK)
WANT SELF
!(*PROG ﬁ%
ATTENTION SELF 2CUR-EVENT
((SUBINSTANCE CUR-EVENT 'CONCERT)
(| RETURN ' (DRINK SELF
EJOHNQY WALK ER-SCOTCH)))
(T (|RETURN * (DRINK SELF
FIVE-STAR-RYE))))))
PRE-DINNER-DRINK

h §
fhton sELF 2coR- EVENT)
URN (|POINTER BAR

(| POINTER LOCATION CUR-EVENT))))) >

T.‘J

JOHNNY-WAL

EF K TCH
SUPERSET JOHN

BRA Y=

Ccos

SCO

WALKER-SCOTCH SCDTth
LEER-SCOTCH JOHNNY-WALKER)
KER-SCOTCH ¢¥DOLLARS-3) >

ER-
NY
ND yJOHNN g

A
T yJOHNNY-WAL

<|PDEF SCOTCH
SUPERSET SCOTCH PRE-DINNER—DRINKk
SUPERSET SCOTCH RFTER-DINNER-DRINK)

202

Appendix II

203

>
>

G-POSN
ING-POSN))

K
I

F SEL C-DRIN
SUPERSET SELF-AS-A-BUYER-OF-ALCOHOLIC-DRINK
INING-POSN))

ING-POSN

GAINTIN
BARGAIN

K-BARGAINING-POSN

ING-POSN
G-POSN)

INK-BARGAIN
DRINK-BARGA

-HAS-BAR
-WANTS-
ko

IN
IN
IN

>
HOLIC-DRINK

R

SELF-HAS-D
SELF—-HWANTS
INK-BARG
LF-HAS-D
AS-BARGAIN

R
E

SELF-AS-A-BUYER
(EXCHANGE
D
S
H
0

BUY SELF yALCOHOLIC-DRIN

{QANT SELF

F-AS-A-BUYER-OF-ALCOHOLT
-HAS
RSET

(MIXER ¥SCOTCH YICE)

<] PDEF SELF-HAS-
(SUPERSE

<|PD%

-DRINK))

)

RCER SELF-HAS-DRINK-BARGAINING-POSN

OINTER COST ALCOHOLIC

DO

>

(COST))

=

[72]

o

[=7]

= — - |

1] - v

@] M =

2y = = -

! H H =

(4] 2T =~ H

= A A =5

- I 1 (4]

= (S 6] ~
= L o <A

Nt~ =1 g m

o= O O i

Ay o b
1 =<0 O O =~
oo UL H o
=11 [| o] o]
HXD = = (e ca]
=== 1 >4
HHH A o8 -
LM ZME O =

A== Zbd 0
el HEHH on
AU AEOMGERE D=

MEHMEA A o=
| =t |) NN
MamUR R 1M

Al e P e

=0 EHEH

I O | ek

el = B Qow

el TR - S R =T =Y.

B> o H =EEm<

thin @ = HHM
— et S

By

jca e e

[]

(=¥] - o™

— n wn

v

Appendix II

S-BARGAINING-POSN
-POSN)
R ALCOHOLIC-DRINK))

ING-POSN
NG

204

S2 : (BRAND YALCOHOLIC DRINK
éﬁPOINTER BRAND
{IHPORTAN gBAPTENDEH /S

AL
1
IMPORTANCE yBARTENDER g
E

HOLIC-DRINK))

Co
5
BARGAIN-ORLER BHRTENDE AS-
(BRAND MIX)

BARGAINING-POSN
R) >

<|PDEF BARTENDER-WANTS-BARGAINING-POSN
(SUPERSET BARTENDER-WANTS-BARGAINING-POSN
WANTS-BARGAINING-POSN)
S1 : (COST YALCOHOLIC-DRINK
! (INCREASE-BY DOLLARS-2
é&POINTER COST ALCOHOLIC-DRINK)))
S2 : (COST tALCOHOLIC-DRINK

POINTER COST ALCOHOLIC-DRINK))
IMPORTANCE yBARTENDER /s1 9
IMPORTANCE yBARTENDER {5 6
BARGAIN-ORDER %égzgy?E -V N S-BARGAINING-POSN

<|PDEF DIALOGUE

SUPERSET DIALOGUE MULTIPLE-SPEECH-ACTION)
EXECUTE DIALOGUE ?SPEAKER1 ?SPEAKER2
! (EVENT-SEQUENCE (L
(1SETQ DIRECTIONS (ESTABLISH-IDENTITIES
SPEAKER1 SPEAKERZ
SETQ DIRECTION-FIRST (CAR DIRECTIO)
SETQ DIRECTION-SECOND (CADR DIRECTIO $))
SETQ EXPECTI
p——— (COMPUTE-EXPECTATIONS SPEAKER1 SPEAKERZ2))
;speaker1 makes an utterance
(i APPLY 'SPEECH-ACT DIRECTION-FIRST 'SPEECH-ACT
SPEAKER1 SPEAKER2 EXPECT1 ?FIRST-UTT)
CHECK-FAILURE-DIALOGUE)
TIE-IN FIRST—UTTB
o EEETQ EXPECT2 (COMPUTE-EXPECTATIONS SPEAKER2 SPEAKER1))

;s?eaker2 makes an uttarance

{APPLY *SPEECH-ACT DIRECTION-SECOND 'SPEECH-ACT
SPEAKER2 SPEAKER1 EXPECT2 ?SECOND-UTT)

CHECK-FAILURE-DIALOGUE)

TIE-IN SECOND-UTT)

]GO YSTEP1))) >

Appendix II

Y1

TLIS 4 B ® 8 9 B e 8 BE s B
VOIR a8 4 9 8 % 585 8O e 8B 8D
TE-NEW
DEFUH &% 8 %8 8 5 P BB SN
DC-PARALLEL
DYNAMIC

EL o % 9% 0 &5 88 % @ B0 FoE DRSS B

)) e D o B (i 10

HOoOcuwndm=

E= | Lilndrog

B O B b b e e
=

e % P & B O 8BS R BES PR RS
LN B
. 8 8 8 & 5 88 0800 b as
S 8 " & & 0 & 8 8 588 0 98 00 0N
* 80

e 8 9 80 8 8 0 F S B ES S SR BN

EVAL block 4 8 8 0 % S 80 08 e e
EVENT-SEQUENCE
L%S

LN
" 5 4% 8 88w e a8
d W9 890 PO P4 9P e e R BE e R
L R RT AE B I B R RN B R R B A LA B A]
IEE R E N R RN R

RUPT-PROCESSING

& @ 29 9% & & 0% % 8 0 " 0 8 00N 0

LR B
LR)
a0

LI O B O T N B B DN BB B DN N N B A

SEARCH

® % & 8 % & % 48 B 880 BB 8RN

"SR S NS EE Y R
LU

e
z

Niiil.l.l'......‘

8 8 9 4% 5 2 VE S 4B B0 NS 80

98 8 & 08 80NN Eean
L
00000|0000t.-.0.l "8 wa
LR B SR B R B B IR B B N
ST s 8BS A0 8 bae oo

-ALL

..........II.."'

LI
& 9 0 9 % 00 8 8 00N O WR
L
"% 5 949 060 0 BT S0P RS
@@ % 0 8 8 59 5 808 800 88 b
LI IR BN B R BN B B BN N BB B BN L

CON

ULER ® 0 o &% 8 8O0 4 0 e e

CH ® 2 @9 % " P Y RN 08 S 88 8D

® & % 8 4 % & % % 89 s 0 e
L
LI]
L

S99 8 B S A AP A SRR

v
X
0
N
A
A
E
R
A
A
D
E
E
0
0
R
E
E
E
E
E
C
C
E
E
E

4 & % & 8 % 8 F 9 8 & 0 A s S 000 8 e

N SIGNED & & 98 & 8 8 8 8 B B
UNEVAL e 9% 9 4 9 9 00 0
UPDATE-TIHER "8 8 P09 B O BE RN
Lonversation with a friend .
Drink buying conversation ..
Ticket buying conversation .
Associative activation , ...
AGENDA-CONCERT1
ALCOHOLIC-DRINK
ASSOC message
ATTEND-CONC
Bargaining stance
BARGAIN
BART ENDER

CSnununnoowhogdoUPYPNOZEEHOE T

P
TE
P

TC
XT
TT
TT
EF
Xp
XP
IN
IN
0G
MA
ST
SUM
TU
T0O
HE
HE
AR
T

TQ
AS

LEE B B B BB O B B
® o 28 888" 9 e

" 88 % 80 W 8 8F e N e

Qmwmm
ﬂ

A
]
U
lause inter

Y-CONVERSATION <3040
retation

L]
L]

L]
-
-
.
L]
.
.
L
-
L]
-
L]
L]
L]
L]
[
L]
[
L]
L]

.
L4
-
-
-
L]
L]
»

»
-
-
-
L]
-
L]
L]
L]
L]
.
L4
L]
L]

INDEX

8% 9 @ 8 A8 % WA S 4 A8 S e S BSOS O S & 00T W TSNS SN e S PO A SR YA
Y....‘........I....I...l.ll.ll.
® % 8 8 5 8 % B 4 BB S ST SRS SN A

BT ® 9 8 8 8 9 &4 8 4 RS DSBS S A NS P BRSO A0SR EN e Re A eSS e

s e s e 00
LR I B A
"8 88 000N
(R AE B BY
LRC BB I B BB
ar e s
CRU R B N A
4088008
¢ 9 s e 80
" es 0 9000
L B B
40 808
COC B N B B R
LRI B R
ee s 0 800w
LR I)
sE s e w80
Be 08 08w
L I B BB B
LRI B B
® e e % 800N
e e 9 P e e
"8 8w 08N
e a8 e 00
e e s 000
L L RN
LI N B O A
LRI B B)
0% 0 &0 0 0
"e 89 0980
"e e 83000
LRI B B B A
se 8 m 8w
L B B B B A
LI U I B O AR)
s s e e a8
mEse e
asa v o9 0w
(B O BB A
e s 00 8w
CEL B B B A
A e R e.
"m 48 008
LA B O O B A]
LRC S O B O O A]
s 80 0 s 0N

RT # @ PO " 8 8 8 "0 BEE 8N BE P EDE DN
" 9 8 9 &% B8 P8 PR SO ESS N
® 8 0 8 § 8 8 B S B A S E W SR 9B S8 0SSN PN
@ % 4 B B 0 W 889 S8 PSS NS EREBe

ARTENDER-HAS-BARGAINING-POSN
RTENDER-WANTS-BARGAINING-POSN

S8 9 8 B 8 8 PO SO WA W NS WNE DS O8FBERS BN

"E 8 400 8 Fe s B e e

.‘I..l..l."'l.

Ccmparing pattern e€XpressSions eseeeese

Concert Scenario ececssconsos
Conversation with a friend .

PEXPR 4 % & &5 8 & B8 88 e
CHECK-FA LURE 488 0w 0 BPES OO S
HECK=-FOR-ACTIVE-SUBSET «¢ss
OHCERT o 9 5 2 " 4 88 8 &0 S a9 80 e
CNCERT1

as " 8 8888
4% 89 8 s8>
LA B B B L J
"o 9 e 000
a8 8" 88 8H
.88 880 a0

EE RN ENE I R R R A N R I N B O O R B A B R BN BB R B BB B LR B B

205

%% B 8 % 0 & 0 80 0 DS O E DO SO S B
e 8 8 9 8 8 00 % 80 B B S E 0 80 RS 88N

@ 8 8 @ % 8 %8 % 0 08 A0S 8 eSS0
2 8% 8 8 4 9 ° B BW IO BS P SER 0
® % 80 5 98 90 BS S P OE NS SE 0N
5 S0P % 8 PSS BRSPS TE SN SS AR D
® "9 8 OB 00T S S 0E 40 0B aDN
4 5 88 89

80 0 B 080 80 a8 se e
48 @ B 08 0 QS e 0O 8
® 90 8 4 8 PE e PH BB SRS BN
[I O R R R B R I R B I R R]
P 0 00 00 00 SN SO TS ABH SN
U I B T I S S I I T O
o809 89

26

e 8 84 8% 89 800 e P8 e
& 9 ¢ 8 0 F 0SS O 8RS e 0 a
o 4% & 8 8 e 8B e D
4 2% % 0% 9% & P BRSO B AS N A A
® ® " 8 B 8 8w de R RE @S0 e AN
9 P 2 8 & 08 B0 S B E BN S0 s E e
m e e B EWE PO A T EE DS S
® 88 5 % 8 80 8 %P e O 88 P 008 e
LT B R T S I I B I R B N A
* B8 96 B PSSR E A S e

® % 9 % & & 58 & 0 80 S B SE PO SE S B

[3*]
o
e e d e dmd b e ik e o D el e M e e o e i d By e) e) e e e) ek e B d

® &8 8 B 9% & 0 00 0 S S 09 00 BB

® @ % ° 0 B OW 8O 09 S 8 S S 9SSR 8B
® &0 T B 0SS 2 NE s ERE I SE e
e 2 9 8 & & @ & B PSS W S %S 8eR e a
@ % 8 % 4 8% B8 UGS PP NP S SRS WD
® 4 8 % & 8 8D 88 F SO A S S e R e R e
® & 0 3 & 4 &0 0 8 08 0w OGS WSS R 8N
" 9 &8 & B 3F S 00 S S A0 0 B e BR e BN
® 8 ¢ 8 % 3B E S0 AN S0 S8 DE eSS
® 58 0 B 808 & 00 S OSP4 e ReB R e
@ 8 % B 8 % 48 4B S 8 e e S Ae e
@ 50 8 ¢ % 9 F 0 " 00 5 H O SO PNE B eSS
% % 8 & 9 AE B B0 @0 0S8 e AeE RN
® 4 20 & & S PO S S E S BEDR e e
" 8 % B 0 0 80 9S8 00 08 Es &S0 8 AN
9 9 9 8 ® 8O D800 NS e TR A
4 4 8 8 " 8 88 8 8 e N8 A 40 Be 0000
e 9 0 & 8 8O 08 0 8" SR SE PSS B
"B U e S EE S P PSS A e A E
® 48 & 9 ¢ 0 80T e O B8 008 S0 e 8
IR RN N R NN RS LN

121,150,

9 % 88 2 8 "8 & 8 00 % SR & 09 S e e

8 % 8 08 S0 B e BSe S 80

a5 9 & OO 40 00 AT 00 00 e e

® 8 & & 5 8 28 Y AR B SEsE e 121‘
90,97,

........-....-.........2
’

S % @ % & 8 %8 48 A0 80 80 B0 8 e e

28 49 0 PW 490 S PR Se @
8 8 % % 0 00 & 08 8 S eV D

® S0 b & 5 B 00 88 08 EE &8 OB WA
® % 8 % 8 @ Fe 0SS S SEe D B0 E 8N

1107

@ 28 @ % 0% 00 S0 PO R S HEE L 0N

(=
N

LI

kb Aﬂ-Ld-ﬂthu—hd_th).d
OO RO W LW UMD W O O OND =20 N O W UNAD 00 00 ~J 00 00 00 00 Q0 0D ~J 0D G0 WD WO 00 00 0o 0o 00 () 00 00 00 00 WL 0D 0D ~J 00 L 00 WO) < OO QD WO 00 00 0D WD 00 00 00 000

NNOSNONONONAF WWOENOWOSNEFUVIONW S ~J=a OO EN<NON IO OO WRNN OUNI W N =2 = LW LT £ £ N W N O 00 =)

8 & % % 8 0% 9 8 8RS B e

L BN B B R B B B BN B BN A]

9 2 8 8 8 & 0 e 8 8 BB E 5SS S S e SR aAs
8 P ® A0 RS S EE N TSR E e RN
® 28 8 8 8 08 4 000 0B 8P D ERE NN
® 8 8 8 B &P E S WY S PE SN S SN N
® % 8 8 & 8 89 % 90O B ASS 0 EF N =
® @9 & P9 PSSP PR B SBO NS 0SE RN

93,

Index

206

D?Pendel}cg il}heritance ® % 9 8 8 2B %O EE S SRS RS R B RS AN
Dlrect ln'erltance - ..?. T 8 4 0F 0 08 PR PE S S ST PSR DR NE SRS D S
Drink buying conversation siesesesssscasasasvsbosionsaveinsesnss
DI&LOGUE 2 4 8 & 8 4% 8 ® %A WO B AP AN S S AR A RS RS YRS B SRS e e
Eplsod;c emo;y L B B B B B BT N BN BN B N N B BN B RN R NN RN T B RN OB N RN R BN O B NN R B B NN ORE B I N B AN)
Execut.lon ?nVlron ment 8 % 8 % 48 4 5 88 % 8 H 8 8 8 B 0 RS DA S SO eSS
Executlon lnstance L B B B I I BN R B O DN B R B L D R I B BN N B O BN BN B B B BN RN B N B B A]
EXCHANGE 9 8 2 8 & 0 4% 8 00 9 00 0 S BE S P S0P BRSO T O R0 O S SE W O F M S0 eS BN

EXECUTE message @ 0 % 0 % & 0 F O OE S BRSNS E P EE S SRS A A 95'
EXEECT message ® % & 0% S 4 09 & 5969 F P S e 9T P e S BN RS S AP TSR TS YRR

Fallure to matCh ‘l % % e 9% 20 S0 % 0O AT SO E O SRS 084S PE S FOE RS e S
Fundamental matching rule cissesscasssesnvcsssasossassasonss
FAREWELL ..l.llr...CIII.'C.I...IQ.II...l.....'...ll.ii.. 11
Garbage.COllectlon ® 4 9 & 8 0 8 A8 5 B 8 S E 8B E e AP DR E SO e e e
Generatlng language LI B B B BN I B B B BN B B BN N R B A BN B B I B BT B BN RN B RN B B BN B A B A B RN]
GENERATE message @ % 29 % 28 & e # & @R W AN AT S Pe RS SE S BRSSO

HERR-HORDS @ % 9 4 869 0 08 0 8 B BB SRS R AE S BRSSO e PR SRS S ES

8

-
we
e

-

el o ®
[V P -
— ek)
W ey yowmw Py

P T T PR Y X R R Y [G 1 R Y

Qo

Interpreter & 5 48P0 S8 SR S0 ST AE S BEE P OSSN D YO P EE PR e e R RS
Interrupts P 80 00 PRS00 BEE B B
IH UIRE ® S @ 8 S 8 PO 9P HS SO TSP A TES TS E S S SO NSNS SRR EY AR 91'119
INTERPRET message A5 0 AS S B 4 RAE S S S Be eSS RS R RS e
ISA enVernment U 68D SO0 N S8 QS S0 LY EE NS AT S AD NS R SR RS TR R 3“,
2

® 88 0 59 0 ® O 0O RS S PSR S SRR

w5 ®

— e N b 2 N

JOHNNY‘HRLKEB-SCOTCH % 85 2 9S8 9 S0 B B O 8 e R B BRSO BN R RS S SRS YRR E S
Langque level ® % 9 9 % 0 5 00 &0 0SS B A OE PSR S S SE A BA DR S

r
Learnlg? o8 8 & 4 d 80 08 s e @ a8 P SAs S S S eSS e T S S PSS A e DR

Macro "
Macro "¢"

Hacro l'c" LB R N O B I I O B R B BN N R BN R R B BN RN RN R RN RN N N R RN B RN NN ORE B B R B N BN R NN B B B N]

LR B B B B B I B B B B B B BN B B D R R I BN B R R B BN N B R OB B R B B RN B BN NN A N BN N RN BN A]

P éa® ¢ 088 B OO SO ST RS TR0 PSS A E S PSSR TR S A SRS e RS RS SR

ﬂacro "$“ LI O LR B A AL A A BT I I O B R IR BN B B R I T R RN R R R N BT R N A AN R R RN NN B BN N IR S N
Hacro gn 8 @ 9906 20N NG 0N 00 0N S O8NS0 0SS B0 S E e PN EY OSSO0 P ES
Hacra "o #8988 8 0TS A PSP ODT S FEE RS S EEE S SRS SRS A S EREE A
Macro “/" LI EE L RE BN B N T BN I B I T BT O IR R R R I RN TR TN T T R T I S ST)
Hacro “?" 29 8 89 8T $ 6T P EE S0 0E B S0 RIS PSS S S TE SO0 EE e P PSSR
Hacro “#" €0 8 99 5T 8PN A 00 O VSN STOT SO FRANE SO SN ENES O PAG
Hacro = 49 0 0 88T 00 880 S0 0 0 EE R 00N PSS 0L S0e NP0 STEE eSS0
Macro “%“ R Rl N R R Nl R R
Macro Confllcts ® &8 5 0 8 St P BPOW B S E S DS E ST B S EENE A NS E R
HaCIO_“:“ 0 3 0 W 9% 3 HRN S SS NN ES S AN A ER YRS NS SRS A RSN
Hatchlng LI Y B B B RO IR R B R Y R R B R R R R A A A R A R N N N N N NN NN
Hessage 4 889 99990 S DSOS EE D S LSS SES DI IO DR PE A R OES DS 25,31,3“,
Hessa e form 29 0 0 E 0 B e T S0 BE Y IE S IO BRSSO ST YOS LGNSR AN
HETA- IE“ 28 8 BB TP O NSNS VAT S ED P AN VSAP S UE SRS P EOYTEESS NSO 90
HODIFY-HOH message L T I I R B I TN T N B A R B T TR I NI I R R IO N RS 129'
HGST-IHPORTBNT RN RN N N N N N NN NI N R

NOQH group lnterpretatlon P A BTSN 0P T AT TSSO SO EE Y RS

ObjeC 2% 000 000 E0 0 0E0ENT 00O PN ONG 00NN B EN AN EY OO N
Parallellsm 2 8 9 09 22 E %0 S8 280§ S OOV SO N ST TR S SN DO N EEETE T NS
Pattern L N N R R A B R N N N NN NN N NN RN
Pattern ex rE$$lOH 29 8 84 0 4D B SRS S NS S A NS STDBEEEYD IS NE NS SO 26'
Pattern ma Chlng MACTO o ¢ seo5 0 s00saso2se9s 0080 vem9s00bassssss
Polnte¥ % 90 0 090N 00 NS PN S BE0 N PEN NI OSSN NS T RPN
Pr$p031t10n group lnterpretatlon 20 2 0 S TO PP NBI U RN DT BN

Primary pattern €XpreSSION scseecscsessesssvsososssansssssssnss
Procedural attachment scesveevesnscrscsnccccesosasnsssscocsennss
PART-OF en?lronment @ 0 08 0 P U E B G0V N EED S0 BS9 0 0 00 a0 0RA 0SS0

PRE-DINNER’DRI“K ® 40 0 P AR B OVD P BRSSP AD LSS DL PN AR OB NP

QET B e 00 e BB OS QDS B AE R PSR EESEE S B S S E P EEN SO RE SR
Replacement Of IPEXPRS ® 8990 8 00 B G0 TO 00O S0 OTE N SO PN IS PSSO S 0

RES onse L E R R R R NN N N N RS N R 25
Return Condltlon LI N I R I R R T U O O T B N R T N N N I R T R R I R BN R R L]
Role lnstance ® % 0 90 B8 EE N NSNS FEEEEDEE SO0V G IR AE 10“,

RESPOND " 8 8% & 888 ¢ 88 SH S FANESEE 0 S e S PSS E S SEE T TSRS ST AN

el et Iy

]

=

—_ u =
W= W= d O WOWWWN WO FNOWE S WHUVIN WSO WNWW eSS EENE S S ENIUVNOEUIOUINNDUIWULIOWUONE ECWE FOWE &

NOWOINOOUINWR=SNONNEFOFOOOTUIUNI=2 0OV N MO O UINNRNNNNW SO WNUVNN =0 20NI00 £ WOWOWOO £ NI~IEUINW

Sch?duling @ % & 0 48 08 29 S O R0 S 8 BE T B PSS S S e R PO S 0S eSS SR S
Scrlpt B & &0 0 B 8 8 OSSR SR E FE S S BF TR R RS ST S E SRS e A 0'1

Secondary pattern eXpreSSI1ON sssevsscessssccsscscssassssenasns
Semantlg net"ork ® 8% % 888 8 % P8 8 FERTE 0SS ED AT 0T R PE OSSR SR e
SequenClnq Of utt erances ® 8 8 & 90 & % 980 G P 8BS SO T O A TR E e Y

Source O.b ect e & 99 & 04 §0 & HeE 8 0SS S 0SS ® S BT RO S S EE S AE BePEES e
Source pa tern S 8 9 8 8 % 248 ¢ 9 2% 5 0SS 0 ES S % S SO R S S E S S B AR T AS 88 008 0 e
ggeeCh act & 8 0 58 8 580 BB SR B S 0 PES SIS 0N S PR AN SR 21'1

ack (!PEXPR) o % @ 0 4 8 84S W S0 S E POV T T P EERE ST PRI E R FEE SRS

—=

Index

207

SCOTCH 4% %48 8 FaF P PR S S AT FE 0SSN S P SE S S PE R PSR eSS A
SELF ® 48 & 8 & e L I L A O B D B B B B B O D B BN B BB BN BT B B BB B I B

SELF-AS- B'BUYER OF_ALCOHOLIC DRINK 73 % es 8 s e s e BEes SR BSRRS 0N
SELF-AS-A-BUYER-OF-CONCERT-TICKET sassaccancncssscsassacncenss
SELF—HaS‘DRINK“BRRGAINING'POSN P 803 09 8 P e S0 O BeEOSSsRBATRBRS
SELF-HAS-TICKET-BARGAINING'POSN LRI I B B B I T S B B I B R I R R R B N NN NI]
SELF_HANTS‘BARGAINING-POSN " ® 29 8 0 G883 ESR LSS ED P OGN AN SO B S
SELF_HANTS-DRINK”B&RGAINING"POSH R I I I S T N B IO S S R I B I
SPEAK=WORDS st tesensscsssssnsssssnnsssrsasssansnsssensenasnansaes
Target Ob eCt # % 9 5 B8 S S B ST TSRS A SO RS PENO NS AP R
Target tern S8 %A eSS N 8 A T e R EE RS S OIT PN OSSR RS A e YRS
Tlc et uylng ConVersatlon $ 8 S8 B2 98 WS A WSS H0 6L ENS WSO

Tlme ® & & 0 B98P % PN 08 E RS PTG S RE S S E eSS RS EE S SRR NS e P

- P A DI P =2 N =2 D

NCEBT ® 5 2 0 0 48 & 00 & 80 A S8 0 8 s " PR 0 e AT SRS A e 3
NCERT1 % % 49 48 &9 B B O FES B EE T PO 0SS H ESE SO RS S

% & % 5 4 0 5 B B S BT S 08D S S Se 0PRSS RS S BEY ee

. 4
_HAS-BARGAINING‘POSN 8 0 % 89S e S 0E N NS eSO EEY
ER"HANTS—BARGRINING_POSN l.'ll..!l....!....l..l.&

LER1 - % & 8 P % A 0 EEE AR R ET S EE A SRR AT 8 r
TEN 4400948 vonsdsshnbbaspeisaive senserssssnnssionsne 90
erance 1nterpretatlon e s s sssssssscasesesssessassssone s as
rou nterpretatlon C...ll-l.'.l.ll..l.l....l.llll....
T OYUWRNT L B B I B B I B B B I I I O B B B B D R R RN BN I B B BB B BN B 91 b

r

MD

IID VIFW ..I'U.........l.lI....l.‘l........O.........l‘.
(B E NN AEEEEREEEEEEEESEEEREBEENNENEEREEENEREREE B SRR R S '123

OCYURWNECOOO=OWOOUIOWWNO OO 00O0
SOJWNO-NNOCWT IWNNNNOO FREWEOWNWEN

Pe St DaNeded bbb

Index

208

Index

