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ABSTRACT 

This. rerort .describes an approach to modellina 
conversation. It is suggested that to succeed at thls 
andeavour, t he oroblem must be tackled principally as a problem 
in pragmatics rather than as one in language analysis alone. 
Several pragmatic aspects of conversation are delineated ar.d it 
is shown tha~ the attempt to account for them raises a number of 
genqral issues in the representation o f knowledge . · 
· A scheme f o r resolving som~ of these issu~s is presented 

and given computational description as a set of 
(non-implemented) LISP-based control structures called ILISP. 
Central to this scheme ar e sev~ral 1iff~rent types of object 
that encode knowledge and communicate this knowledge by passing 
messages. one particular kind of ob7ect, the pattern expression 
(IPEXPR), turns out to be the mosf versatile. IPEXPRs can 
encode an arbitrarv amount of procadural or declarative 
information; are capable, as a by-product of their message 
passing benaviour, of provid ing both a context for future 
processing decisions and a record of past processing decisions1• and make contributions to the resolution of several artificia 
int9lligence problems. 

Some e xampl€s of tvpical conversations that might occur in 
the general context of attending a symphony concert are then 
explored, and a particular model of conversation to handle these 
examples is detailed in (LISP. The mod81 is goal oriented in 
its behaviour, and, in fact, is described in terms of four ma!n 
goal levels: higher level non-linguistic goals; scripts 
dir~cting both side s of a conversation; speech acts guiding one 
conversa~t•s actions; and, finally, language level goals 
providing a basic parsing component for the model. In addition, 
a place is dalineated for belief models of the conversants, 
necessary if utterances are to be properly understood or 

froduced. Th e embedding of this kind of language model in a 
LISP ba~e yields a rich pragmatic environment for analyzing 

conversation. 
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CHAPTER I 

Introduction 

This report is concerned with the computational modelling 

of natural language conversation. It is suggested that a 

prerequisite to the study of conversation is determining ho~ to 

represent the vast amount of world an1 linguistic knowledge that 

is required in such an undertaking. A method of representation 

has been devised that allows much of this knowledge to be 

encoded reasonably conveniently in modul~s called Ea!!grn 
exEressions. The representa 1ion probl9m then becomes primarily 

th~ problem of how to organize knowledge into appropriate 

pattern expressions. A basic organizational philosophy for 

conversation is described and is detailed by showing how it can 

be used to handle three conversations which might occur in the 

scenario of attending a symphony concert. 

Several aspects of language and representation are at least 

touched upon in this report. Th~re is a re-categorization of 

linguistic knowledge that tends to meld such traditional 

distinctions as those dividing syr.tax, semantics, and 

pragmatics, and also the division between linguistic and 

non-linguistic knowledge. A suggestion is made as to how to 

combine knowledge from a script, knowledge about intention and 

purpose, knowledge about thP. convarsants, and linguistic 

knowledge. The necessity for explaining or excusing errors, the 

need for a context mechanism, and the usefulness of expectation 

in guiding the processing of natural language is pointed out. 

Finally both task-oriented and non-task-oriented dialogues are 

discussed. 

Although all of these aspects are encountered, nor.e of theill 

is resolved completely; in some cases the analysis is only in 

its preliminary stages. In general I have not been as concerned 

with finding detailed solutions ~o particular problems as I hav~ 

been with trying to accomodate a wine variety of phenomena, at 

the expense of depth in places. This seemed a necessary price 
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to pay in order to look at the problem in some generality. 

l•l Background: Some Trends 

The approach to conversation taken here is b1sed on three 

trends which I perceive in tha study of language. The first 

trena is the ever broadening focus of attention of linguistics. 

After Bloomfield (1933), l:.nguists felt constrained to focus 

th~ir attention on a relatively narrow subset of linguistic 

phenomena, with most attention being paid to phonetics and 

syntax. Th~ Chomskian revolution (see Chomsky (1957) for the 

open:. ng shots) brought an impressive new descriptive power to 

linguistics. Of par.ticula~ importance were the notions of 

"infinite capacity with finite means" (i.e. generating an 

infinite number of sentences using phrase structure rules and 

transformations) whereas previous corpus-based analyses had 

seemed to be attempting the impossible task of collecting all 

valid sentances; the competence/ performance distinction, 

allowing knowledge about la&guag~ itself to be separated from 

the vagaries of people's actual use of language; and the 

discovery 1of the underlying deep structure similarity of many 

seemingly diffe~ent surface descriptions. 

In the mid-sixties the Chomskian revolution itself came 

under attack. Linguists such as G. Lakoff (1971) started what 

became know~ as the generative semantics movement which 

attempted to point out fliws in the Chomskian view of language 

and which expanded thQ scope of ~he linguistic endeavour with 

the hope that this broader view would overcome the problems. 

Gengrative semanticists see a more central role for semantics in 

the study of language to account for things (such as scoping 

phenomena involving quantifiers an1 negation) that directly 

affect the surface structure without any intermediate syntactic 

phase. Chomsky (1971) has responded ~o these criticisms with 

scme modifications to his theory and with the claim that 

genara-t.ive semantics is a umere notational variant" of his 

theory. I don't want to get embroiled in this dispute, my point 
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being merely that in recent times the semantic level is coming 

more ar.d more into play (see Leech (1974) for a comprehensiv~ 

description of the relative merits 

theories) • 

of current semantic 

The second relevant trend to the research reported here is 

the growing realization that the borders separating the various 

levels of linguistic description are not rigorously defined. In 

the last paragraph I mention8d that semantic phenomena can 

influence surface structure without going through deep 

structure. It is also the case that phonetics sometimes seems 

to influance semantics. Thus, discovering pronoun references 

appears to have important semantic aspects, but the process is 

not strictly semantic. For example, 11 George always wanted to be 

a guitarist but it wasn't the instrument that suited him 

best." is acceptable, but "George always wanted to be a 

flautist, bu~ i!* wasn't the instrument that suited him 

best." is not, at least partially because the word "flautist 11 is 

phonetically more distinct from 11 flute" than "guitarist" is from 

"guitar" (thi.s example is based on observations by Lakof f and 

Ross (1972)). 

The second trend has been emphasized in recent times by thP 

appearance of word based case theories of language 

(Fillmore (1968), Chafe (1970)) which place linguistic 

information in case frames associated with words. Each such 

case frame is responsible for "filling in slots" for that word 

appropriate to the context in which the word appeared. Computer 

based case models (e.g. Scha~k (1972), Taylor and 

Rosenberg (1975), Martin (1975)) have tended to deepen case 

frames so they can do S8mantic and even pragmatic processing as 

well as the more syntactic things suggested by the earlier case 

theories. 

The third major line of development has been the increasing 

interest in models of language which treat language as it is 

used rather than as some ideal grammatical abstraction. This 

is, of course, quite contrary to the competence/ performance 

distinction which has enabled la~guage to be studied in relativ~ 
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isolation from the real world. However, I believe this 

~sclation has generat&d many false issues. one such is the 

at tempt to ca. tegorize sentenc~s 

"ungrammatical" in some absolute sense. 

procedure might concentrate instead on 

as "grammatical" or 

A more useful decision 

what situations would 

make a sentence acceptable or unacceptable. Another exampl~ 

concerns the debate that often arises over whether two sentences 

are synonymous when, of course, at some level no two sentenc~s 

mean the same. once again, a determination of the situations in 

which they can be considered synonymous seems to be a more 

useful approach. 

The attempt by philosophers of language to view language in 

terms of its intended effect on the h8arer seems to avoid many 

of these problems by focussing on the purpose of language: the 

communication of ideas. Hence, slight deviations in the surface 

structure which don't affect the meaning are not important; two 

sentences are synonomous if their eff8ct on the hearer is 

identical. Of particular int~rest here are the Gricean 

approaches of giving "rules of conversation" (1968) and giving 

in t,3 n tional definition to utterances ( 19 5 9) , and the speech acts 

theory (Austin (1962), Searle (1969)). 

The trend to viewing language in a more natural setting has 

been evident in artificial intelligence as well. EarliEr 

systems severely restricted the domain of study to question 

a n s we ring ( e • g • s ch war c z g i El ( 1 9 7 O) ) , b 1 o ck s w o r 1 d s 

(e.g. Winograd (1972)), baseball statistics 

(Green §.i 2.1 (1963)), family relationships {Lindsay (1963)), 

belief systems (Tesler ii. ~1 {1968)), and so on. But more 
recently ever broader views of language have been taken, so that 

schank's system (1972), already quite comprehensive, when 

2xtended by scripts (Schank and Ab~lson (1975)) became even more 

general. charnia k I s (197 2) work on stories has been extended to 

full scale frame descriptions (Charniak (1975)) of language 

scenarios. Bruce (1975) has been concerned with large paradigms 

of social action as they apply to language. P. Cohen (1978) 

studies several conve~sational scenarios using a methodology 
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based on a computational description of speech acts. 

Winograd (1976, 1977) is concerned with formulating a gene::::-al, 

pragmatics centred, model of language. This search for 

generality is a manifestation of the third trend: trying to view 

1 anguage in use. 

These three trends are not diverging; rather, they seem to 

be coming together into a single viewpoint: language should bt 

studied as it is used, with semantic and pragmatic information 

being more central th~n the more purely surface aspects. 

However, this shouldn't preclude knowledge from whatever level 

being applied when relevant. These are th~ reasons why 

conversation, a domain in which language is used as naturally as 

possible and a domain in which semantic and pragmatic 

considerations are of utmost importance has been chosen for 

study. 

1•1 Issues and Limitations 

It is probable that fully general computational models for 

conversation are currently intractable. But under certain 

restrictions progress can be made. The first restriction is to 

only consider a particular conversational situation. A 11 concert 

scenario" is proposed which illustrate both the importance of 

conversation as a domain and also narrows the scope of the 

project. The scenario involves conversations which would take 

place during the events surrounding a symphony concert. Three 

particular conversations have been chosen for analysis: 

(i) a conversation between a ticket seller and a concert 
patron who wants to buy a ticket to the concert; 

(ii) a conversation between a bartender and a concert 

patron who wants to buy a drink during the intermission of the 

concert; 

(iii) a conversation between two concert patrons who 

unexpectedly meet during intermission. 

Conversatior..s (i) and (ii) are "task-oriented" (Deutsch (1974)) 

and hence somewhat predictable. Conv~rsation (iii), which is 
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much less predictable and hence much harder to analyze, has been 

given a rather cursory analysis. 

The study of conversation has been further limited by 

considering only a Eew of the possible issues. In line with the 

focus on the pragmatic and semantic levels the following have 

been of cent~al ccncern: 

(i) -L whether world and linguistic knowledge can be 

effectively combined, and in particular whether language can be 

viawed as an activity like any other; 

(ii) -L how the goals of a conversant affect what he says 

and how he understands; 

(iii)-L how the knowledge a conversant has about the o~her 

conv6rsants affect what he says and how he understands; 

(iv)-L how the conversant is able to focus on the relevant 

aspects and ignore the irrelevant aspects of any conversational 

scenario. 

Other potentially relevant issues have not been considered: 

for example, a detailed analysis of linguistic surface 

phenomena; an adequate treatment of the problem of generation; 

the phonetic or morphemic aspects of language; the problem of 

reference; ~he problem of handling massively unexpected 

uttarances (or other surprises); and so on. However, since most 

of these p=oblems unavoidably arise, suggestions as to possibl~ 

solutions are often ske~ched out. 

A third aspect which helps to make conversation a 

reasonable domain to study is the methodology chos1:1n to test out 

ideas: building a computer mo1el of the behaviour of on-s 

participant in a dialogue. While simplifying the problem by 
eliminating half of each dialogue, this viewpoint-dependent 

approach means that thP- issues of goal direction and conversant 

modelling become particularly ralevant, thus further focussing 

the research. 

The attempt to build a computer nodel, 

number of artificial intelligence issu~s. 

following are of crucial relevance: 

however, raises a. 

In particular the 

(i) - R the conglomeratior. of procedural and declarative 
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information of various sorts into on8 place, since the model 

obviously has to both know things and know how to do things; 

(ii)-~ the problem of accessing this knowledge; that is, 

how and when to search for information, wh9n to inherit general 

information (see Levesque (1977) for example), when to make 

inferences, how to attach procedures (Winograd (1975)); 

(iii)-R the necessity ~or some sort of context mechanism 

{of particular relevance to issue (iv)-L) 

(iv) -R the need to keep a record of processing decisions, 

not only to allow the model to keep track of what has just been 

said but also to allow it to reason about its own behaviour {see 

issue (ii) -L pa:.:-ticularly); 

(v)-R the incorporation of robustngss, so that when 

scmething fails, appropriate explanations, excuses, or failure 

precessing can be undertaken; 

(vi)-R the standard artificial intelligence issu~s of 

ccmplexity and combinatorial explosion. 

1-1 What's PrO£OSed? 

An i~vestigation into the issues raised in the last section 

tends to be cyclical, with language issues raising 

reprEsentation issues which reflect back into language and so on 

back and forth. Therefore, this report does not represent some 

"cast in concret<?" final version of my ideas, but is much more a 

snapshot of my current thinking. 

I would like to indicate the major concepts contained in 

the report. The discussion is divided into two parts: concepts 

of representation and concepts of language. 

j.J.1 ConceEts of Re£resentation 

A prerequisite to the study of conversation is th~ 

representation of knowledge. Th2 representation scheme proposeQ 

here has the following main characteristics: 

{i) It is modular, allowing many different kinds of 

Q~j~f!§ to co-exist together. Objects are opaque to one another 
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and can communicate only by passing ~~§§~gg§. Such modularity, 

it is hope1, will help SQlV8 some of the complexity issues 

{issue (vi) -R). 

(ii) The most interesting such object, called a Ea11~£n 
exEression (IPEXPR) is roughly b~sed upon the frame idea of 

Minsky (1974). Most domain knowledge is represented in such 

objects as £~ii~£Il§• Since these patterns can be static or can 

con":ain certain "active" macro elements, either procedural or 

declarative information can be encoded (issue (i)-R). 

(iii) Messages to a IPEXPR are also patterns that are 

handled by matching them against patterns in the f PEXPR. Since 

message passing is d8fined for all kinds of patterns, in 

particular procedural and declarativa information 

accessed uniformly {issues (i)-R and (ii) -R). 

can be 

(iv) If a message pattern ca~not be matched in a I PEXPR, 

failure to match processing {associated with patterns of that 

type) can take p1ace. such failure processing can involve 

trying to "inherit" tha pa-+:.tern, performing appropriate 

inferences to discover the patter&, or in the worst case giving 

up completely (this address9s issues (ii) -R and (v) -R). 

(v) A by-product of message passing is the creation of an 

activation record to which temporary variables and other local 

effects of the message passing are restricted. This activation 

racord is called an executioµ in§il~f~ and is a pattern 

expression like any other (and hence able to be accessed in 

identical fashion to other IPEXPRs (issue (vi)-R)). 

(vi) 

another 

messages 

A pattern expression 

pattBrn expression as 

can be set up this way 

may need to corn:uunica te with 

it handles a message. Chains of 

with corr es ponding chains of 

execution instances. They fo=m a dynamic environment (akin to 

that of ALGOL or LISP) called the execution environment vhich 

turns out to be a very useful focussing and context mechanism 

(issue (iii) - R, issue (iv) -L, as we 11 as allowing the discovery 

of current goals (relevant to issue (ii) -L). 

(vii) Execution instances are not automatically removed 

afte= a messag9 is answered. Instead, they stay around and 
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chains of them are consequently preserved. Such venerable 

execution environments can be accessed if the details of what 

went on in th~ p3st ar~ needed. They thus give the model a sort 

of eEisodic memory {issue (ii)-R). 

1•l•l concegts of 1~ngy£g~ 

The easiest way to describe the approach to language taken 

in this research is in terms of "level of goal", from high8r 

level extra-linguistic goals through lower level goals that are 

called in to understand particular parts of an utterance. Each 

such goal can be more or less separated from other goals, and 

each is therefore 8ncoded as a pattern expression. since goals 

invoke subgoals arbitcarily, it is sometimes difficult to 

classify them precisely; they do seem, however, to fall into 

four main categories: non-linguistic goals, scripts, speech 

acts, and language level goals. 

(i) non-linguistic goals: Goals at this level undertake 

significant plans of actio~ such as attending a concert, buying 

a ticket to the concert, e1:c. Not primarily concerned with 

language, they do, however, know enough to call in linguistic 

subgoals when appropriate (e.g. to talk to the ticket seller). 

Perhaps as importantly, much of what is said is interpretgd or 

produced in the ccntext created by this level, giving it focus 

and direction. 

(ii) §££iE!.§: scripts (a term 

Ab-alson (1975)) are subgoals of 

higher level scripts) called in 

borrowed from 

non-linguistic 

to actually 

Schank and 

goals (or of 

direct a 

conversation (e.g. the script to direct the buying of something 

such as a ticket). They are responsible for keeping track of 

the utterances of all parties to a conversation, for determining 

the sequence of speaking, for recognizing the beginnings and 

endings of a conversation, for using script expectations to aid 

the interpretation and production of utterances, and for meshing 

these expectations with the actual utterances produced. Scripts 

have available to them models of the conversants for us~ in 

performing their varied tasks. 
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(e.g. inquire, respond, 

inform) represent ideas expressible in a single verbal action by 

a lone speaker. The name has been chosen because of the 

similarity of this level to the speech acts approach of 

Austin (1962) and Searle (1969). Speech acts are invoked by 

scripts to in ":.erpret or prod uc-e act11a l utterances, to check that 

the utterance is not in conflict with the special requirements 

of a speech act of its type, and to make sure the utterance 

doesn't violate anything known about the conversant (available 

from the conversant model). Speech acts sometimes deal directly 

with surface linguistic strings, but more often call in language 

level goals to buffer them from th'?. "real world". 

(iv) language level gQ~J2 : The sp~ciality of this level of 

analysis is language itself. Thus, there are pattern 

exprEssions which know about noun groups, verb groups, clauses, 

utterances, etc. This is the tra1itional parsing level, 

although the methods are not as inflexible as the usual parsing 

image suggests. The primary task of any goal at this level is 

to transform a sequence of words into internal concepts, a task 

which involves appropriately grouping words (syntax), performing 

checks that the groups are consonant with known information 

discovered in memory 

environment {semantics), 

perhaps involving such 

or in the currently relevant execution 

and occasionally doing other tests 

pragmatic considerations as looking at 

the conversant model (not directly available, but discoverable 

in the execution environment). 

Much else obviously is involv~d in language analysis, and 

such aspects as enco1ing static (non-procedural) information, 
han1ling associative activation, 1oing bottom-up processing, 

performing morphological trimming, are touched upon in the 

report in varying amounts of 1etail. However, ths analysis 

centres around the four levels just aescribed. 
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1-1 Organization of ih2 R~E2i1 
The rest of the report is organized as follows: in Chapter 

II are further details about conversation as a domain of study; 

in Chapter III a scheme is proposed for representing knowledge; 

and it is evaluated in Chapter IV; an example of the 

representation being used to handle a conversation is shown in 

Chapter V; while in Chapter VI are some generalizations that can 

be extracted from the example as well as some extensions to the 

syste~; finally, Chapter VII sums up all that has gone before. 

Io addition to the main body of the report, there are two 

Appendicss: Appendix I, containing a description of many of the 

important objects in the reprasentation; and Appendix II, with 

scme of the more elaborate pattern expressions used in the 

extended example of Chapter v. Finally, there is an Index of 

important terms and concepts. 
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Analyzing conversation 

12 

Conversation is an ideal ••experimental laboratory" in which 

to study the interaction of linguistic and world knowledge. It 

is an area of linguistic performance where pragmatic 

considerations are uppermost, where things like models of the 

conversant, goals, context, etc. can be studied not as 

aft~rthoughts or in some secondary role, but as central concerns 

that in certain respects ar~ 

actual utterances. Thus, 

more important than the analysis of 

it is important to analyze how 

conversants sequence their utterances, how they make use of 

expectations (both in relation to their goals and in accordance 

with what has been said so far) to guide them and how they can 

focus in on the relevant things at any stage of~ conversation. 

Also occurring in conversations are linguistic phenomena such as 

partial sentences, ungrammatical utterances, and multiple 

sentence constructions which require language to be viewed as 

connected discourse not isolated sentences. 

Perhaps the main reason for studying conversation is to 

show the inseparability of language from the context in which it 

is used. Sometimes the context imposes great control over what 

is said, sometimes less. Thus, there are very rigid 

conversational formats, such as ritualized ceremonial exchanges 

whEre even the actual words are prescribed; less rigid, but 

still top-down, task-oriented dialogues (Deutsch (197~)) such as 

a conversation to ordar a meal in a restaurant or buy a ticket 

to a concert; and, finally, more or less unpredictable 

conversations {e.g. dinner tabla chatter, talking with a friend) 

where it is difficult to determine what is going to be said 

next, but where context still ~as some role to play ir. 

foregrounding concepts as they become relevant. 

In summary, conversation is a good area for 

language because it doesn't a~bitrarily restrict the 

exploring 

domain of 

study. To explain, or even to b~gi~ to explain, what is going 
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on in a conversation, the vast number of things mentioned here 

must be analyzed and unified to yield insights into language use 

at all levels. 

l•l Background 

The attempt to model conversation has not arisen in a 

vacuum. In this section I would like to very briefly look over 

related research in artificial ir.telligence, linguistics, 

philosophy of language, sociolinguistics, and elsewhere. 

Naturally, th~re is a vast amoun~ of relevant work, and in what 

follows I can only hope to suggest various influences rather 

than give a detailed description of every piece of research. 

Mora specific debts are noted at appropriate places throughout 

t.he repo:?:t. 

Sociolinguistics is one area concerned with issues of 

direct relevance to conversation modelling since it is concerned 

with examining language in its social context. Work by 

Schegloff (1971) on sequencing, Garfinkel (1972) on social 

expectations, Linde {1974) on the choica of determiners ir. 

verbalizing internal concepts, Goffman (1974) on "frame 

analysis" of language# and the like, is indicative of the 

importance placed on the non-linguistic aspects of language use. 

Most of this work has been influential to this research in 

delineating gen~ral approaches rather than in yielding specific 

suggestions. 

Philosophy of language also makes a commitment to viewing 

language as it is used. Thus, Grice (1957) defines language in 

terms of its intended effect on the hearer, the speech acts 

paradigm {Austin (1962), Searle (1969)) looks on language as 

ccmposed of primitive units of meaning (the speech acts), and 

Grice (1968) and R. Lakoff (1973) attempt to formulate rules of 

conversation which not only guide speakers but which also form 

the basis for appropriately judging deviant utterances. Once 

again, the influence of philosophy of language research on this 

work has been a general on8 except, of course, for the speech 
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acts model, some aspects of which have been incorporated fairly 

directly. 

The case grammar movement (Fillmore (1968), Chafe (1970)) 

is a major linguistics influence on this research. 

is useful in at least two ways: 

Case grammar 

(i) it suggests a means of handling the partial and 

ungrammatical utterances rampant in conversation, in that a casB 

frame is ~ble to pick and choose what it needs from an 

utterance, ignoring extraneous words and substituting its own 

default values for non-existent parts of an utterance; 

and (ii) the case frame concept can be readily "d~epened" to 

include the necessary semantic and pragmatic checks, an absolute 

necessity in a domain such as conversation. Computational 

linguists such as Martin (1975) and Taylor and Rosenberg (1975) 

hava used deep case frames with considerable success. That case 

frames likely need to be deepened still further is evident from 

the more recent work of Fillmore (1975) and Chafe (1975) who are 

looking at frames for encoding 9Xtremely pragmatic kinds of 

information. Obviously, such considerations are not out of line 

when trying to account for the m~ny real world influences on 

conversation. 

Recently, artificial intelligence has begun looking at 

language in more compre hen si ve terms. Wino grad's ( 19 7 2) work, 

while limiting the domain of study to the blocks world, accounts 

for an interesting array of linguistic phenomena, including the 

use of procedural semantics at appropriate times by the 

syntactic component, the use of history lists that enable the 

model to discuss previous episodes in the dialogue, the 

importance of real world knowledge in helping to disambiguate 

sentences. Moreover, the surface language handled by Winograd's 

system was extremely sophisticated compared to anything that had 

been done before. 

Woods gi ~1 (1972} have also achieved impressive 

performance in the LONAR system by using a representational 

scheme (augmented transition networks) which allows information 

to be used when appropriate and which has a perspicuous visual 
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description (i.e. graphs can be c.rawn representing a particular 

ATN's flow of control). 

Schank (1972) has been a pioneer in focussing languaga 

analysis on semantics - almost all interpretation and production 

of surface language in the various Schank systems has been 

directed by the desire to fill in slots in his conceptual 

dependency semantic representation. More recent work (Schank 

and Abelson (1975)) has further deepened the analysis to 

pragmatic issues and has attempted to account for how certain 

kinds of conversations are undertaken with top-down direction by 

processes called scripts. 

Charniak's (1972} model attsmpts to understand connected 

discourse, specifically children's stories. The demon style 

control structure which he proposes there, while containing many 

flaws, has provoked research into how to use more constrained 

kinds of control. For example, Minsky's (1974) frame proposal 

has been, in part, an attempt to overcome 

inferencing of demon based control schemes. 

enough, Charniak (1975) himself has adopted some 

the explosive 

Interestingly 

aspects of the 

frame proposal when modelling episodes in a supermarket, a 

situation where pragmatic context has been considered all 

important to ap?ropriate linguistic processing. Another attempt 

to embed language analysis in a larger context has been 

Bruce's (1975) work with social action paradigms containing 

knowledge about stereotyped social situations. 

Perhaps most directly relevant to the approach taken here 

has been the recent investigations into conversation by 

artificial intelligence researchers, Deutsch (1974) has already 

been mentioned for her work on task oriented dialogues; 

P. Cohen (1978) has be0n concerned with developing a model 

explaining conversations which take place at the checkout 

counters of supermarkets; Horrigan (1977) delineates scripts for 

a couple of task oriented dialogues; Grosz (1977) describes the 

use of focus in understanding task oriented dialogues; CAI 

systems (se2 Collins and Grignetti (1975)) have been simulating 

realistic natural language dialogues between student and tutor. 

Chapter II 



16 

Winograd (1977) 

dialogue • 

suggests some prerequisites for a model of 

.f•.f I.2-21!~§ 

This research concentrates on four issues of central 

concern to the modelling of conversation: 

(i) what her world and linguistic knowledge can 

e f feet ive ly combined (or, in deed, is there a distinction?) ; 

(ii) how the goals of a conversant affect what he says and 

understands; 

{iii) how the knowledge of a conversant about himself and 

the other conversants affect what he says and understands; 

(iv) how the conversant is able to use context to enable 

him to focus on the relevant and ignore the irrelevant. 

(i) combining world and linguistic knowledge: 

Perhaps the w.ain problem tha~ arises when modelling 

conversation is figuring out how to organize a vast amount of 

knowledge of various sorts. There are several dimensions along 

which to categorize this knowledge. A model of conversation 

needs to have information about various different subjects. 

Thus, it needs knowledge about language itself, i.e. how to 

relate words to concepts; how to interpret and produce single 

utterances; how to handle multiple utterances (perhaps by 

several different conv~rsants). It needs knowledge about the 

topic under discussion, so that if a ticket buying conversation 

is initiated, knowledge about ticket prices, ticket locations, 
tradeoffs between these, etc. will be needed. It needs 

knowledge about the conversants, so that in the ticket buying 

situation the desires and motivations of each conversant need to 

be tak€n into account. 

Along the procedural/ dsclarative dimension, a model of 

conversation has to allow for more or less static facts 

(e.g. cost of a ticket, locati-on of a concert), but also must be 

concerned with actually doing ~hings {e.g. interpreting or 
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producing an utterance, engaging in a conversation). 

Another kind of knowledge can ba categorized according to 

what Schank (1974) terms the episodic/ semantic memory 

distinction. Clearly a conversation model needs to have 

episodic capabilities (i.e. a memory of events) not only as to 

what actually happened in the past but also as to how the model 

perceived what happened in the pa st .. But just as clearly, any 

such model would need a semantic memory containing specific 

knowledge about local things (e.g. location of a specific seat 

in a theatre) all the way up to general rules (e.g. the fact 

that people have two legs or a rule for accomplishing some class 

of tasks) • 

There are, no aoubt, many other ki~ds of knowledge needed. 

Regardless, the point is that a major (in many ways !h§ ~ajor) 

problem is to find some sort of scheme that allows appropriate 

information to be available at the right time while still being 

comprehensible to the modeller. 

c ii) gQ s.1.ing: 
The issue of "goaling" breaks down into two sub-issues: how 

a model's non-linguistic goals affect its linguistic goals; and 

vice versa. That non-linguistic goals are crucial to 

conversation is fairly obvious at a number of levels. First, it 

is clear that conversations are entered into to achieve subgoals 

of non-linguistic processes. For example, a ticket buying 

conversation is undertaken to obtain a ticket for some higher 

level goal such as tha goal of attending a concert. And, 

because a non-linguistic goal "sets the stage" for all that 

follows, the interpretation and production of utterances is 

strongly affected by the goal. In the ticket buying 

ccnversation, fer example, there should be no problem 

interpreting things associated with tickets, money, seat 

locations, etc., but talk of zoos, battleships, flying saucers, 

or the like, would seem out of place. Non-linguistic goals are 

often directly queried in a conversation, for instance by a 

ticket seller asking a buyer what he wants at the beginning of a 
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conversation. Finally, the importance of ct non-linguistic goal 

can determine how perservering a conversant is in continuing a 

ccnversa tion. Th 11s, a door-to-door salesperson is very 

persistent in trying to talk to a householdAr despit~ open hints 

of hostility because the goal of selling the product requirBs 

such diligence. 

It is als0 fairly evident that linguistic goals affect 

non-linguistic goals, although in a somewhat less domineering 

fashion. Thus, what is said can reflect back into and perhaps 

even alter a non-linguistic goal, so that if a discussion with a 

ticket seller indicates there are no tickets laft, clearly the 

goal of attending the co~cert cannot be satisfied. More subtly, 

a linguistic goal can actually call in a non-linguistic subgoal 

(e.g. moving closer to a conversant to better hear wha~ he says) 

or can be interleaved with a non-linguistic goal 

(e.g. exchanging money for a ticket during the conversation to 

buy a ticket). 

From this discussion should be clear that the 

intermeshing of linguistic ana non-linguistic goals is an 

important aspect of the modelling of conversation. 

{iii) modelling ccnversan ts: 

Another obviously important aspect in processing 

conversations is using models of the conversants to help in the 

disambiguation and production of utterances. Clearly, who is 

talking is crucial at all levels of the linguistic endeavour: 

the type of conversation itself may be determined by the 

conversants (some married couples, for example, may be unable to 
engage in any kind of conversation except a vigourous debate); 

the particular utterances within a conversation may be strongly 

influenced by the conversant (e.g. when talking to a child 

certain subjects would be avoided); the style may depend on who 

is being talked to (e.g. the language of a clerk when talking to 

his boss is much more constrained and formal than when talking 

to his mate at the next desk); and even certain speech patterns 

and quirks of fhraseology (e.g. "Y'all come back now, 
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y'hear?") could be expected to change as the conversant changes. 

Conversant models seem to b~ useful, as well, i~ 

formulating concepts to verbalize. In certain rather undirecten 

ccnversational scenarios (e.g. coffee break conversations, 

conversations with friends), deciding what to say next can be 

independent of current goals. One possible strategy is to use 

models of the conversants to compare what is said to the beliefs 

of the various conversants. Notable contradictions or 

similarities could form the basis of a response. Altogether, 

conversant models are crucial to adequately handling 

conversation. 

(iv) £2n1§!i= 
From the above discussion it should be clear that some sort 

of context mechanism is needed to focus on the relevant aspects 

of any situation. This is necessary not only for practical 

reasons of time and space, but also for linguistic reasons. 

Thus, the problem of ambiguity ~ay be overcome with a 

sufficiently restrictive context, e.g. "They are flying 

planes." would be totally unambiguous in the situation where a 

fleet of airplanes is buzzing overhaad. Knowing the surrounding 

context may also ease reference problems by limiting the number 

of possible candidates for any referent. For example the 

sentence "The brown hairy animal ran after the dirty green 

car. 11 might actually be referring to a particular dog, "Ruff", 

chasing a particular car, "Smedley Hittite's mangy old 

Vclkswagen" if these concepts have been foregrounded in the 

context in which the sentence is uttered. 

J.]. Levels of Analysis 

The issues of section 2.2 illustrate the need to view 

language in a wider context than just the processing of surface 

strings. one possible analysis involves viewing linguistic 

goals in the same terms as other goals of the model. Generally 

speaking, non-linguistic goals govern lower level linguistic 
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goals such as scripts, speech acts, and language level goals. 

{i) non-linguistic goals: 

Much of any realisitic conversation is concerned with 

things that aren't linguistic at all. As mentioned earlier, any 

conversation is driven by non-linguistic goals such as 

attempting to buy a ticket or trying to buy a drink. In 

addition to this prima~y role, non-linguistic goals do much 

foregrounding of useful extra-linguistic information. It is at 

the non-linguistic level, for example, that the conversants are 

recognized and pointers to conversant models are recorded for 

use at all levels. Also delineated at this level is information 

pertaining to th6 focus of attention of the model. This is 

typical of the non-linguistic level: the , goal itself and 

axtra-linguistic information available from the goal help focus 

things further down in the goal hierarchy. 

{ii) §~£1£!§~ 
scripts are the highest level of linguistic goal. They are 

invoked usually as subgoals of non-linguistic goals (e.g. the 

script to direct the dialogue to buy the ticket is called in by 

the non-linguistic goal overseeing the buying of the ticket 

generally), but can be invoked by other scripts as well (e.g. a 

subgoal of the buy conversation script is a greeting script that 

helps . establish the conversational roles of the speakers). 

A script's primary task is to keep track of utterances on 

all sides of a conversation. It must not only determine who 

should speak when and, depending on the identity of the speaker, 

interpret or produce an utterance, but it must also set up some 

sort of expectation as to what ki~ds of utterances will be 

forthcoming. If the utterance is to be produced, then this 

content forms the basis of the generated utterance; if the 

utterance is to be interpreted, then this expected content 

should serve as an aid to understanding the surface utterance. 

If notable differences are found betw€en expectations and 

reality, the script is responsible for explaining them. A 
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script must also keep a reco=d of any conversation it dir~cts. 

A script has available to it the models of the conversants 

discovered at the non-linguistic level. In many situations 

scripts -will acc-?ss information in these conversant models to 

detBrmine that verbalizations are consonant with the beliefs of 

the conversants, to try to find something to say, etc. 

(iii) S£eech acts: 

It has already been explained that scripts can call in 

subscripts; what hasn't been spellea out is that scripts can 

also call in subgoals that involve interpreting or generating 

the speech of a single speaker. such single verbal subgoals are 

called speech acts {after Austin (1962) and Searle (1969·)). Ii: 

is interesting to note that speech acts are also central to 

other computational approaches to discourse 

(e.g. Bull-winkle {1977), P. Cohen (1978)), thus lending extra 

credence to their usefulness. 

A speech act is responsible for either generating or 

interpreting an utterance, depending on who the speaker is. In 

the former mode it takes an expgctation as to the content of thA 

speech act and buil1s a surface utterance which is then actually 

n s poken11 (i.e. printed) under control of the act. In the latter 

case the speech act reads a surface utterance and tries to 

interpret it in a way which is both consonant with the act 

{e.g. "yes" will be interpreted by an "inquire" act as a 

question but by an "agree" act as a statement) and with the 

expected content (e.g. if the expected object of an "inquire" is 

the health of the hearer, then a statement such as "How about 

you?" must be an inquiry concerning the hearer's health rather 

than, say, into his desire to do something). Conversant models 

are available at this level as well, since to properly undertake 

a speech act may very well involve looking into the beliefs of 

the conversant. Finally, a speech act records for posterity the 

actual surface utterance, the actual meaning, and the speaker of 

and listener(s) to the apeech act. 
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(iv) 1~gggsg~ level goals: 

Sometimes a speech act will itself look directly at surface 

language, but more frequantly it needs the help of a level of 

goals with language handling expertise. Such goals are grouped 

into the language level. 

Language 

interpretation 

level processing 

of utterances or 

involves either the 

the generation of responses. 

The interpretation process involves breaking an utterance into 

groups of related words. Each subgroup is then interpreted 

(which in true top-down parsing fashion may involve still more 

breakdowns) into some internal concept representing the meaning 

of the group (the meaning is not finalized at this point, but 

can be further refined as more information about the concept is 

gained). These various group meanings must be combined into a 

single concept representing the meaning of the entire utterance 

(a process with many case-like aspects). This concept is then 

passed back to whatever higher goal wanted to understand the 

utterance. 

The generation process has not been studied in detail, but 

it would involve a somewhat different kind of processing wherein 

a group would be asked to produce surface words that describe 

scme concept. For example, a noun group might ~roduce a surface 

level noun group ''the brown curly haired animal" to describe the 

internal concept ''Ruff". Clearly such processing would involve 

all sorts of esoteric decisions as to how much to verbalize, 

what words to choose, etc. These decisions would have to be 

made using knowledge about the conversant•s knowledge, 

information about the current goals, and general knowledge about 

words and word groupings. 

Many other kinds of procassing would be needed to fully 

explain convers~~ion, but these four levels do account for most 

of the issues deemed important earlier. The combining of w0rld 

and linguistic knowledge is done at any level by mixing 

extra-linguistic information with the goals at that level; 

moreover, linguistic goals are supervised by non-linguistic 
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goals. The desirea goaling has been achieved by the basic 

organization of the levels of linguistic analysis. conversant 

modelling is handled by discovering the conversants• identities 

at the non-linguistic levels and using the information so 

realized at the lower linguistic levels. The desired context 

abilities are achieved by the successive focussing on ever 

narrower goals with a consequent narrowing of things needing to 

be looked into. The goal tree itself allows access to th~ 

current goals of a conversant at any level. 

1-~ Wher€ to Begin 

There are persuasive reasons for studying conversation 

using a methodology that involves constructing a computer model 

to take an active role in a few simple dialogues. Computer 

modelling enables ideas to be tested, requiras precision in the 

statement of concepts, provides a powerful process metaphor, and 

allows a performance model to be built. Moreover, as section 

2.2 has shown, there is relevant current research which can be 

used to aid the endeavour. 

A number of things must be handled when such a computer 

mcdel is constructed: 

(i) The static information in the conversant model and 

elsewhere must ba handled; so must the dynamic goaling 

activities. This information must be stored in ways that allow 

general rules to be combined with spscific information. 

(ii) Techniques must be found to access knowledge about 

conversants, knowledge about subgoaling, knowledge about 

language, knowledge about the topic of discussion, etc. 

(iii) There must be some way of keeping all this 

information in line so that the system is not overwhelmed by too 

much at once. The goal tree, as has been pointed out, is useful 

in this capacity, but exactly how it is to be represented and 

used must be determin~d. 

(iv) At various levels it is important to record 

information as to what was said, who said it, what the context 
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was then, what processing decisions had to be taken, and so on. 

(v) Naturally, when things go wrong (for example, when a 

sc~ipt or speech act has its expectations violated), the anomaly 

mus~ be excused or explained. 

(vi) There must be a s~tisfactory tradeoff between doing 

all this efficiently and doing it in a way which is 

cc mpre hen sible. 

Now, if the introduction is re-examined, these six 

requirements will be seen there in slightly disguised terms as 

the six representation issues of concern to this research. That 

is, (i) is the procedural / dee.la ra ti ve controversy; ( ii) is the 

problem of accessing information; {iii) is the need for con text; 

(iv) is the necessity for keeping a record of the processing; 

( v) is the issue of rob u stnes3; and ( vi) is the problem of 

devising methods which are non-combinatorially explosive yet 

within the complexity barrier. Therefore it should come as no 

gr~at surprise that before modelling conversation, several 

representation problems must be handled. 

The next couple of chapters will be concerned with doing 

exactly that. Chapter III outlines a scheme for the 

representation of knowledge which enhances the chances of 

achieving (i) - (vi). Chapter IV undertakes an analysis of the 

strengths and weaknesses of this scheme. 
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CHAPTE~ III 

a 2£h2fil~ for Re£resentin~ KnQ!lg~gg 

In this chapter I would like to discuss a scheme for 

representing knowledge that has been developed as a preliminary 

to exploring the many facets of modelling conversation. The 

scheme is being tested by implementing it as a set of programs 

collectively called !LISP (because all system functions are 

preceded by a "l" to distinguish them from other functions). 

System notation is based as closely as possible on LISP, 

complemented where applicable by CONNIVER notation (McDermott 

and Sussman (1974)). The implementation is meant to be an 

extension of LISP in the sense that most of LISP can be invoked 

directly from within it. Finally, it must be emphasized that 

the version of JLISP described here has n2i been coded, although 

several predecessors have been. Hence, all code is "soft" in 

the sense it hasn't bean run on the computer. 

The chapter is organized as follows: section 3. 1 contains 

an overview of the scheme's capabilities which, for all but the 

most intrepid, should provide background sufficient to 

understand the rest of the report. But, for interested readers, 

sections 3.2 through 3.7 describe in detail the various features 

of the scheme: objects, message passing, the matcher, pointers 

and searching, interrupts, and simulated parallelism. When 

reading the rast of this chapter (and for that matter the rest 

of the thesis), an important point to remember is that there are 

algorithms and detailed descriptions of many system functions in 

Appendix I. 

J.j Brief Overview 

The system is divided into fundamental conceptual units 

called g~jgfi§ which can pass fil!§~~g§§ to each other and receive 

£§§EQQ§g2 • All messages and responses are co-ordinated by an 

inter£reter (named tEVAL) which reads messages from sending 
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obj~cts, directs them to the proper receiving objects, and later 

steers the receiving objects• responses back to the appropriate 

sending objects. 

There are many different types of object in the system, 

classified according to their message passing behaviour. The 

simplest are LISP STIBRs and EXPRs with standard LISP argument 

conventions. I EXPRs are similar to EXPRs, except that their 

internal structure is ILISP code and they use stacks local to 

objects called IPEXPRs for their argument binding. These types 

of object are all useful for doing relatively efficient, 

LISP-style processing, but they do 

representation questions than efficiency. 

not resolve many 

The objects that are most crucial to the representation are 

objects called pattern expressions (IPEXPRs) which correspond 

(roughly) to frames in that they each represent a single large 

piece of knowledge in the system. Pattern expressions are meant 

to be major domain-dependent objects: most world and linguistic 

knowledge is contained in pat tern expressions. (Much procedural 

knowledge still remains embedded in EXPRs or IEXPRs rather than 

the mor9 analyzable IPEXPRs because a thorough analysis of the 

semantics of procedures is bayond the scope of the report). 

IPEXPRs are objects whose structure is a list of patterns. 

A pattern is a list whose first element is the name of an 

object, and the rest of whose elements are either the names of 

objects or further sub-patterns. Moreover, any element of a 

pattern ca.n be preceded by a single macro character ("?" "!" 
"$" "=" "f" "#" "it" "/") which has significance in its matching 

behaviour. The patterns in a IPEXPR are the major means of 

defining exactly what that IPEXPR means (another aspect of a 

IPEXPR's meaning comes, of course, from the use of its name in 

the patterns of other fPEXPRs). 

An example of a ]PEXPR is the WIDGET-PEDDLER pattern 

expression 
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<tPDEFUN WIDGET-PEDDLER 
S1 : !SUPERSET WIDGET-PEJDLER SELLER) 
S2: SUPERSET WIDGET-PEDDLER PERSON) 
S3: SELL tW I DGET- ~EDDLER tW I DGET) 
S4: TRADE tW I DGET-PEDDLER t BUYER ?GOODS 

t (I COND ( (SUB-IN STANC E-OF GOODS WIDGET) 

!CBE ATE-NEW 'MONEY)) 
JT CRE~TE-N EW 'SERVIC~S))))) 

S5 : iCOR E WID GET-P EDDL..!.R /S3 /Sij)l 
S6: I NS TANC E WIDGB T-PEPDLER PETE~ 
S7: INSTANCE WIDGET-PEDDLER MARTH) 

> 
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This IPEXPR contains knowledge about widget peddlers. It 

in it self does not have any "real world" ref er ence; that is 

WIDGET-PEDDLSR is not any particular widget peddler or group of 

peddlers, but is ~ather a description of the characteristics 

that widget peddlers have in common. It can be interpre~ed as 

f cl:l-ows: 

(i) the name of the I PEXPR is WIDGET-PEDDLER; 

(ii) the body of the IPEXPR is the collection of 

patterns S1 through S7; 

(iii) each pattern in the body is labelled with a 

pattern name Si; 

(iv) pattern S1 says that the IPEXPR WIDGET-PEDDLER 

has superset SELLER; 

(v) pattern S2 says that the IPEXPR WIDGET-PEDDLER has 

another superset, PERSON; 

(vi) pattern S3 says that an arbitrary instance of 

WIDGET-PEDDLER s~lls an arbitrary instance of WIDGETS; 

(vii) pattern S4 says that an arbitrary instance of 

WIDGET-PEDDLER trades with an arbitrary instance of 

BUYER as follows: the widget peddler exchanges "goods 11 

for either money or services depending on whether the 

goods are widgets. 

(viii) pattern ss says that patterns S3 and S4 are the 

core patterns of the IPEXPR; that is, they are more 

central to its meaning than are other patterns (this 

is useful mainly in comparing JPEX~Rs to one another 

where core patterns are the central patterns which 

must be compared); 
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(ix} patterns S6 and s7 define a couple of instances 

of the widget peddler, namely PETER and MARTHA. 
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The other component of any IPEXPR is how it handles 

messages sent to it from other objects in the system. Another 

object, say the JPEXPR BUY-WIDGET, might formulate the message 

(WIDGET-PEDDL~R 
(TR~DE PETEB SELF SQUIGGLY-WIDGET ?WHAT-COST) 
(ATTITUDE PETER ?WHIT-ATTITTTD~)) 

That is, BUY-WIDGET is interested in seeing what (according to 

~IDGET-PEDDLER) SELF might give to PETER in return for the 

SQUIGGLY~WIDGET; and also to see what attitude PETER should be 

expected to maintain. 

Here is a simplified outline of what happens to the 

message: 

(i) The message is read by the interpreter as it is 

executing code within a pattern of the BryY-WIDGET 

expression. The interpreter (named IEVAL in the 

implementation) acts as a central switchboard whose 

task it is to buffer contact between objects. 

Whenever an object formulates a message, it is read by 

the interpreter and dispatched to the appropriate 

receiving object where it is further processed. If 

this object should desire to send any messages of its 

own, it too must route them through IEVAL. When an 

object is finished answering a message, it notifies 

the interpreter which passes back the response and 

resumes execution of the objsct which sent the 

message. 
(ii) So, in this case the interpreter sees that the 

receiving object 

WIDGE~-PEDDLER. 

is to be a IPEXPR named 

(iii) setting aside for the moment the rather complex 

set of things that happens next, the eventual effect 

of the message is that the message pattern 

(TRADE PETER SELF SQUIGGLY-WIDGET ?WHAT-COST) 

is matched against patterns in the body of 

Chapter III 



WIDGET- P EDDI, ER. 

(iv) The pattern labelled "S4" is discovered and is 

found to match under the assumption that PETER is a 

particular WIDGET-PEDDLER (a fact discoverable by 

looking at the IPEXPR to see if it has a pattern 

(INS TANCE-0.F PETER 'wIDG ET- PEDDLER) ) and SELF is a 

particular BUYER. If the further assumption is made 

that SQUIGGLY-WIDGET is a particular WIDGET, then the 

pattern's last element will be MONEY1, a IPEXPR 

representing an individual price appropriate to the 

widget. Thus, the pattern to be returned in answer to 

the TRADE message is 

(TRADE PETER SELF SQUIGGLY-WIDGET MONEY1). 

This pattern is saved for return to BUY-WIDGET. 

(v) But, first, the message pattern 

(ATTITUDE PETER ?WHAT-ATTITijDE) must also be matched 

in WIDGET-PEDDLER. No match is found, so after a 

further set of rather elaborate machiLations which I 

will go into shortly, the "ISA environment" "above" 

WIDGET-PEDDLER is looked into. 

(vi) The only "ISA" !PEXPRs are SELLER and PEFSON, so 

they are searched in breadth-first fashion (although 

in this case there isn't much breadth for long since 

the superset of SELLER is itself P!!:RSON) for a pattern 

matctiing (ATTITUDE PETER ?WHAT-ATTITUDE). 

(vii) If the knowledge of sellers is complete, it 

will be discovered that the attitude of any particular 

seller is that of politeness, so 

(ATTITUDE PETER POLITE) will be the appropriate 

matching pattern for the message. This pattern will 

be inherited by WIDGET-PEDDLER and will be saved for 

return to BUY-WIDGET. 

(viii) Since there a re no more patterns in the 

message, the two response patterns 

(TRADE PETER SELF SQUIGGLY-WIDGET MONEY1) and 

(ATTITUDE PETEF. POLITE) are appended and returned to 
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BUY-WIDGET where they can be used. 

This, then, has been a general look at some of the features 

of the representation scheme. I would now like to discuss these 

features in more detail. 

d•l The Objects 

l•l•l Pattern Ex]ressions 

A pattern expression is defined as an atom with a property 

list indicator. IPEXPR designating its body. The body is a list 

of patterns, where a pattern is, in turn, a list of elements, 

th9 first element of which is an object name and the rest of 

whose elements can be object names, sub-patterns, or 

single-character macros. A macro indicates that the following 

element is to be treated in a special way by the pattern 

matcher, thus giving the ability to postpone decisions until the 

information in the pattern is actually needed. In particular 

there are macros which allow computations to be carried out, to 

allow matching of any element, to allow expansion to larger 

elements, and others. Macros will be more fully explained in 

tbe section on pattern matching. 

Patterns can also be labell3d so that other patterns can 

refer to them. This is done by preceding a pattern with a name, 

fellowed by a":"; for example, 

S1 : {SUPERSET WIDGET-PEDDLER SELLER) 

designates the pattern (SUPERSET WIDGET-PEDDLER SELLER) with the 

label S1. These labels are local to the pattern expression (so 

that other pattern expressions can use the same name without 

confusion). Finally, only a top-level pattern can be labellen, 

i.e. labels cannot appear inside patterns. 
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J•l•J Other Objects 

Asid~ from IPEXPRs, there are three kinds of object: 

primitives, EXPR~; and IEXPRS. Pri:mitives are named ato,ms with 

ho internal structure. such objects .are primitive in the sense 

they e~nnot be furthar analyzed; but, unlike Schank•s (1975) 

primitives, much information QQ1!J..9: be added t ·o the ,obje,ct if 

some future analysis made it necessary to have :a 111ore ell.a:li>10rat-e 

conceptio n of the obji:ct. Moreover, in many situa tionsr -even 

well endowed objects need b~ considered only in term-s ·cf th-eir 

names, not their con tents, hence making them ef fe·cti.vEly 

primitive at that ti me. The idea ·tha t any object -can ;be 

considered ptimitive or not, as desired, is fundamental to t the 

system and is in conflict with Scha,nk's hypothe'sis :(this :i·s not 

to say that it isn • t oft.en useful to corrs'id-er a •Conven:i--entl·y 

s~all set bf primitives in c~rtain circumstances). 

EXP Rs are objects whose structure is storea •unu'er t'he 

indic·ator EXPR on the proper·ty list o'f the object na111.B. ·T:he 

body of an EXPR is a LISP LAMBDA, NLAMBDJi,, O'R 1'FLAMED'A 

ex Fression. 

I EXP Rs are the same as EXPR s except the ·pro!)'erty list 

indicator is I EXPR and the body is a !LAMBDA, 'INL 'A:M'HD'A, ·o-r 

IFLAMBDA expression. These )LAMBDA expressions have a slightly 

different way of binding their arguments (using the current 

I PEXPR stack, som€thing that will be explained shortly). 

]..] Details of Message E.s.§.§.11rn 

].],1 Introduction 
An object communicates with another object when i-t ,neei:i:s a 

piece of knowledge that it doesn't know directly, when ·it h·as 

information that would be of use to another ·object, ~hen it 

wants to achieve a subgoal, when it wants to associativ-ely 

signal a "neighbouring" object; and so on. Such comm ·uni-cation 

is accomplished by passing a !!!~f§§~.Srn. f'rom one ob je·ct to a:rother 

and receiving a corresponding f~§EQll§'g. 
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To b~ able to send a message to object B, object A must 

know B's nam~. 7his is not quite as much of a restriction as it 

might seem, since many computations can be carried out by A, if 

necessary, to discover the name. Once it has the name, A must 

then compose the message in the format which B expects (be it a 

list of arguments, a list of patterns, or whatever). A ~~§§~gl 

i91!!! 
(B "message") 

is then created by appending the message to the receiving 

object's name and this form is sent off to the interpreter 

IEVAL. 

The basic logic for JEVAL is given in Appendix I, but a 

brief description of its behaviour is in order here. Assume 

that tEVAL has received a message form of some sort. The 

message can either be (i) an atom or (ii) a list. 

(i) If the message form is an atom, IEVAL realizes that no 

message is being sent to any other object; instead the Y~lY! of 

the atom is desired. Atom-value pairs are stored within pattern 

exFressions on a§!~£! which is just a pattern of the form 

(ISTACK object-name (stack-values)) 

whose third element contains the atom-value pairs. To 

understand exactly which stack is to be searched for the value 

of an atom, it is necessary to realize that in some sense all 

processing is done within pattern expressions. Thus, the system 

is initialized with a top-level RE~D-tEVAL-PRINT pattern 

expression in control (see TOP-VIEW in Chapter V) and all 

top-level calls are in some sense embedded within this !PEXPR. 

Whenever a message is sent to some other tPEXPR, the new IPEXPR 

becomes the pattern expression in which subsequent processing 

takes place. It either finishes (in which case a previously 

initialized tPEXPR is resumed, probably the one to which the 

response has been sent) or it calls in still another IPEXPR to 

take control. In any case there is always unambiguously one 

pattern expression in control: it is called the £Y££gai tPEXPR 

and all stack operations are performed on its stack. 

Thus, in the situation where the message form is merely an 
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atom, the interpreter finds its value on the current stack and 

returns it as the response to the mes.saga (or NIL if no value is 

found). 

(ii) If the message fo:rm is a list with message head 

(i.e. first element) either an atom or a lambda expression of 

same sort, then this is a message to be further processed. If 

the message haad is 

(a) the 

unchanged. 

SUBR QUOTE; then the message is returned 

(b) a I PEXPR; then special processing takes place which 

! 1 11 explain shortly. 

(c) a I EXPR; then associated with the object is a I LAMBDA 

expression which accepts the message as actual parameters to be 

bound to its formal parameters on the current stack. The 

binding is done (perhbps requiring the IEVALuation of the actual 

parameters depending on whether the body is a !LAMBDA, JNLAMBDA 

or JFLAMBDA), the object's )LAMBDA body is then IEVALed. 

Eventually, the !LAMBDA body is done, so the bindings are 

undone, and the result of the !LAMBDA IEVALuation is returned in 

re sponsE:. 

(d) an EXPR; then associated with the object is a LISP 

LAMBDA expression accepting the messaga as actual parameters to 

be bound to its formal parameters on the LISP stack. The 

binding is done, requiring first the EVALuation of the actual 

parameters if the LAMBDA is a LAMBDA (but if it is a NLAMBDA or 

FLAMBDA, it is assumed that the programmer has indicated 

explicitly when to EVAL in the body of the function). The EXPR 

is then EVALed, and the value returned is the response to the 

message. 

(e) a SUDR; then the object is APPLYed to IEVAL of each 

element of the rest of the message form. 

(f) a NSUBR or FSUBR; then an error is generated since 

such objects cannot !EVAL the message elements properly. 

(g) a fLAMBDA-expression or LAMBDA-expression; then the 

obvious binding, popping, and EVALing takes place on the PEXPF 

stack and LISP stack respectively, just as in the corresponding 
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EXFR or JEXPR case. 

(h) any other form; will result in error. 

l•d•£ Messages to lPEXPRs 

so, we now return to JPEXPR message handling, both the most 

important and also the most complex kind currently in existence, 

If the function d€scriptions of Appendix I are studied the 

Detailed function descriptions are in Appendix I, so perhaps the 

best way of elucidating the process hara is to do a step by step 

analysis of what would happen to one communication sent from 

object A1 to object B. say the message form 

(B (x y z) (r s t u) ) 

is iEVALed within A1. The !LISP interpreter reads the message 

form, sEes the object B (the message head) is a pattern 

expression (by discovering the attribute IPEXPR on B's property 

list). It creates a new, initially empty pattern expression to 

se=ve as a working-storage area for Bas it answers the message. 

The new I PEXPR is given an internal name (B1, say) and is called 

an execution i£§1~Il£~ of B. Next, three patterns are asserted 

in 31: 

{
EX-INSTANCE-OF B 1 B) 
EX-ENVIRON B1 A1) 
I STllCK B 1 NIL) 

EX-INSTANCE-OF "points" to B, the object which has been 

sent the message; via this pointer all of the ISA environment 

can be accessed (where the ISA environment consists of all those 

JFEXPRs that can be reached by going along EX-INSTANCE-OF, 
INSTANCE-OF, or SUPERSET pointers). EX-ENVIRON 11 pointst1 to the 

sending IPEXPR A1 in the execution !Il!!~gg~gn1 or dynamic 

context of B1. Finally !STACK indicates the local pattern 

expression stack, initially empty. 

Next, the stack must be initialized with a form called the 

~g§§~g~ h~n1l~t• This form can then be EVALed and will direct 

the pattern expression in its hunt for an appropriate response. 
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In this cas~, a form 

(IPEXPR-MH (E (x y z)(r st u))) 

will be pushed onto the stack of B1 as the value of the sp~cial 

atcm IEV. such an atom/ value pair is called a "JEVAL block". 

Whenever the interpreter decides to actually execute a tPEXPR, 

it merely looks for the top tEVAL block on the stack of that 

1PEXPR and executes the form it finds there. In this case~ 

then, the call to th8 

discovered and IEVALed 

message. It would seem 

message 

to carr:y 

reasonable 

handler 

on the 

JPEXPR-MH 

to make 

processing 

B1 the 

can be 

of the-, 

current 

pattern expression and do exactly this, thus effectively 

transferring control. 

But, this is not what happens: B1 is merely §£hgg~l~g to 

run by merging it into an execute queue along with a priority 

indicating its potential importance to the system. This 

priority defaults to 5 (highest priority~ 9, lowest= 0) if it 

isn't explicitly given in the messag~. such an explicit 

priority can be give~ using a pattern 

(JPRIO= prior:.ty) 

which is ess~ntially an instruction to the interpreter rather 

than a pattern to be handled by B1. (Other such messages will 

be seen in section 3.6). The interpret9r checks for all such 

patt~rns, strips them from the message, and acts upon them. For 

(I PRIO= priority), the action is to assert in B1 the priority 

(PRIORITY B1 priority), in this case, by default, 

(PRIORITY B1 5). 

The scheduler is then summoned. After having "aged" the 

execute queue priorities (by increasing all priorities by some 

fixed amount so that eventually all objects will get to run), it 

calls upon the pattern expression with the highest priority to 

be made current and executed. By executing a IPEXPR, I mean 

jEVALing the top IEVAL block on its stack. 

so, in due course B1 is called in, made the current pattern 

expression, and the top form 

(I PEXPR-MH (B (x y 'Z) {r s t u))) 

is J EVALed. fPEXPR-MH, the EXPR which handles most patter~ 
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expression messages is given in Appendix I. It matches each 

message pattern (i.e. {x y z) , (r s t u) ) against receiving 

patterns in the body of B. At the present time, the patterns of 

3 are scanned from n~west pattern to oldest (where the 

sequencing of patterns within a JPEXPR can be determined by 

looking at their position in the list of patterns that 

constitute the body of the IPEXPR). It would be better, in the 

lcng ruL, if JPEXPR-MH used an indexing scheme to access the 

patterns of a JPEXPR body, but the )PEXPRs considered so far are 

small enough to obviate the immediate need for such a feature. 

If pat~erns matching the message patterns are found, they 

are put in an answer list and returned by IPEXPR-MH as the 

answer to the message. JPEXPR-MH also asserts each matching 

pattern in the body of B1 so that they can be later accessed if 

desired. IPEXPP-MH sends the answer list back to A1, and also 

asserts in the body of A1, a return condition of the following 

farm: 

(IizTURN-CON)) 
ex-environ-ob return-type return-codas return-value) 

where return-type is (usually) NORMAL, return-codes is a list of 

sub-jPEXPRs of importance to answe~ing the message {usually the 

receiving object), and return-value is the answer list of 

matching patterns. In this example, 

{RETURN-COND A1 NORMAL (B1) ((x' Y' z') (r' S 1 t• u'))) 

might be asserted in A1. This r-eturn condition is basically 

unimportant :or the NORMAL return, but for other more esoteric 

r9turns, return-codes become crucial. 

The question arises: what would have happened if IPEXPR-MH 

had been unable to discover a match in B for some message 

pattern, say {x y z)? In cases such as this, the matcher does 

not give up. Instead, it looks at the first element of the 

pattern to be matched and asks the object with that nama 

(i.9. x, here) for help. The rationale for consulting xis that 

tte first element of a pattern usually acts as the relation 

ccnnecting all the other elements, and is ~hus the most crucial 

part of the pattern. The hope is that x will have associated 
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with it a failure to match pattern that tells the matcher what 

to do if at any time an x pattern is unmatched. There are 

various possibilities: look into the ISA environment of 81; look 

into the execution env~ronment of B1; perform some sort of 

inference; give up; and so on. The various possibilities for 

search will be elucidated in Chapter VI. With the system. 

For the sake of illustration, assume that x has the pattern 

( 1 ) (~AILURE-TO-MATCH x ?PATTERN ?OBJECT 
! (SEA2CH-ISA PATTERN OBJECT))) 

in its body; that is, if PATTERN has failed to match in OBJECT, 

direct a search (using the EXPR SEARCH-ISA) for PATTERN into the 

ISA environment of object. What SSARCH-ISA does is to search up 

EX-INSTANCE-OF, INSTANCE-OF, and S"PERSET links, breadth-first, 

matching patterns against patterns in the body of each IPEXPR 

encountered until eventually the pattern is matched and the 

matching pattern returned, or until no ISA links remain to be 

traversed in which case the first message (x y z) cannot be 

answered. This eventuality would result in NIL being append8d 

to the answer-list. 

In the present circumstances, the matcher has failed to 

find a match for (x y z) in B1, so it formulates a pattern 

(2) (FAILfJFE-TO-MATCH x (X y z) B1 ?MATCHING-PAT) 

which it matches against patterns in the body of x, finding (1) 

above thus effecting an ISA sear.Gh from B1. Eventually, 

MATCHING-PAT will be bound to a pattern matching (x y z) or NIL 

and this value will be returned as thl:! response to the (x y z) 

message patt~rn. A final point: if x did not contain any 

FAILURE-TO-MATCH pattern, then the matcher would know 

automatically not to undertake failure p~ocessing (thus avoiding 

an infinite regress of attempted matches). 

Failure to match processing means that guite robust 

behaviour can be achieved. A system can be designed so that it 

can, when temporarily stymied, make use of knowledge appropriate 

to the current context and the kin1 of data which is causing the 

trouble rather than relying on some more uniform mechanisms. 

Being able to use local knowledge such as this is one of the 
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strong points of this approach. 

Meanwhile, once it has fini3hed answering the message, 

IPEXPR-MH reschedules the sending pattern expression (discov~red 

by looking up the EX-ENVIRON pointer), which is A1 in this case. 

The priority of A1 on the execute queue is set to its original 

(stored) value, even if A 1 at some time had been given a larger 

queue priority as a result of the scheduler's aging technique. 

Eventually, A1 is re-started where it left off with the value of 

the message being readily available. Thus, if 

( (x y z) (r s t u)) had been emb<?.dded in a call to the I EXPB 

RALPH; e.g. 

(RALPH (B (x y z)(r st u))) 

then RALPH would have access to the value of the message, 

i.e. RALPH would execute with a=gument 

((x' y• z') (r' s• t• u')). 

RALPH could, of course, find out the new execution instance 

created in answering the message, the return type, and so on, by 

looking at the RETDBN-COND pattern. 

one final note here: B1 has not disappeared (although its 

stack has been fully popped of I EVAL bloclcf;) • Execution 

instances stay around so they can {perhaps) be queried later as 

to various pieces of information in them such as the matching 

answer patterns, the axecution anvironment o~ execution instance 

pointers, etc. This is important in many places, especially in 

locking at old execu~ion environments to see the concerns of 

that time. Eventually, of course, some sort of garbage 

ccllection must take place. Moreover, given the potential 

importance of some execution instances, it seems crucial to do 
such coll8ction intelligently. such an intelligent garbage 

collecto~ has not been worked out in any detail, although what 

it would need to do is discussed somewhat more fully in Chapter 

VI. 
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J.!;! The Matche!' 

J.1.1 The Definition of the Pattern Matchin~ Macros 

Throughout the exposition of the representation ·scheme, the 

ccncept of patt€rn matching has cropped up with alarming 

regularity. The most ubiquitous use of pattern matching is by 

the system itself when it handles pattern expression message 

passing. But the pattern matcher can be used elsewher~, by 

other system programs o:::- by the user. Because of this, more 

general terminology than "message patternn, "receiving pattern", 

"sending object", and "receiving object" is needed to describe 

the patterns being compar9d. So, I will speak of 

(i) the source ,2a t tern, the pattern for which a match is 

being sought (corresponding in the message case to the message 

pattern) ; 

(ii) the target ,2attern, the pattern which is a candidate 

as a possible match for the source (corresponding in the me3sage 

case to the receiving pattern); 

(iii) the source object, the pattern expression which is to 

serve as the context for any macro operations in source pattern 

(the sending object in the message case) ; 

(iv) the target object, the pattern expression which is to 

serve as the context for any macro operations in the candidate 

pattern (the receiving object in the message case). 

Whenever a source pattern is matched against a target 

pattern, the source object and target object must be specified 

as well. The basic principle underlying pattern matching can he 

summed up by the fundamental matching rule: 

A source pattern matches a target pattern if each 

element of the source matches the corresponding 

element of the target, unless one of the elements is 

NIL, in which case the patterns fail to match. If a 

source element designates an object, then it matches 

the corr9sponding target element only if they 
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designate the same object. If a source element is a 

sub-patte~n, then it matches the corresponding target 

element only if the sub-patterns match. 
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Under the fundamental matching rule, the following 

source/ target pairs will match: 

(i) (A B C D) : (A B C D) 

(ii) (A (B C) Dl: (I'\ (B C) D) 

(iii) ( ( (A ( ( (8 C)) D)))) : { { (A ( ( (B C)) D)))) 

but, the following will not match: 

(i) (A B C D): (A (B C) D) 

(ii) (A (B} (C) D): (A (B) (C D)) 

(iii) (A (B (C (D)))):(A (B (C (D NIL)))) 

Pattern matching would be a trivial exercise indeed if this 

were all there was to it. But, matching is made more 

complicated by ~1£IQ2 which are special characters (not objects) 

that have meaning to the matcher and certain other system 

functions. A macro character can precede any element in a 

pattern (including a sub-pattern). No more than one macro 

charact8= per element is allowed, however. A macro character 

indicates to the matcher that the element is to be treated 

differently during matching. Th~re are macros that tell the 

matcher to JEVAL the element b9fore matching, or to consider 

that the element matches anything, or to match only elements 

which pass certain tests, or any of a number of other things. 

In the following description of the macros, it should be 

kept in mind that their operation is totally symmetric. The 

macros are often described as if they appear before an element 

in a target p~ttern, but ~heir action if they appear before a 

source pattern elem8nt would be exactly analogous. 

(i} "! "---This macro is an instruction to the matcher to 

IEVAL the following element before attempting to match it 

(because the matcher works in inverse QUOTE mode, JEVALuation 

must be explicitly indicated). If a stack is needed, the stack 

corresponding to the pattern containing the element is used. 
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For example (INSTANCE-OF GEORGE-III KING) will match 

(INSTANCE-OF !KING KING) if and only if KING has value 

GEORGE-III on the stack of the target object. Another example: 

(EXECfJTE GOTO QE'!') 

will match 

(E:XECUTE GOTO ! (I COND ({E~ CONCERT 'SYMPHONY) 'QE'!') 
(T COLISEUM))) 

if and only if the ICOND IEVALs to QET. Note that the target 

stack must be used to find the value of CONCERT. 

It is through the use of "!" macros that a pattern 

expression obtains procedural ability; that is, often a rather 

long computation must be carried out before trying to match at 

el9ment, a computation which could involve sending messages to 

other pattern expressions, etc. In the message passing example 

(sect ion 3. 3. 1) the message to B could have been embedded in 

scme sort of pattern in A1's body, i.e. 

(EXECUTE FOIBLES ! (RALPH (B (X y Z) (r s t u)) l) 

which was being matched in an attempt to answer a message sent 

to A1 by some other pattern 3Xpression. Before the third 

element could be matched, th~"!" forces a IEVAL of the "RALPH" 

expression, thus setting off the chain of events described 

earlier. 

A final note: "?" can oft,an be used outside of patte.rns to 

indicate !EV!L where norm~lly no such tEVAL could take place. 

In particular it can be used in the arguments of !ASSERT {see 

below) and in front of the message head in a message form 

(indicating that a message is to be sent to the ~1!!§ of a name 

rather than to the name itself). 

(ii) "$"---This is almost exactly the same as "!" except 

that it says to the matcher to EVAL the element, rather than to 

IEVAL it. Although using "$" is often useful for efficiency 

reasons, caution should be exercised since no lEXPRs or lPEXPRs 

can be handled nor can any IPEXPR level variables. 

A common use for "$•• is when some EXPR must be executed 

with constant arguments, e.g. when matching 

(COMPUTE FACTORIAL-5 $(FACT 5)), the previously defined LISP 
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function FACT can te called in since it uses no !LISP features. 

(iii) "/"---'!'his macro charact~r assumes that the 

following element is the label of a pattern in the body of the 

target element. "/" merely says to replace the label by the 

pattern itself during matching. Thus, the source 

{CHASE (BROWN DOG) HELICOPTER) will match the target 

(CHASE /S7 HELICOPTER) only if S7 labels the pattern (BROWN DOG) 

it the target object. 

{iv) "?"---The processing for this macro character is 

slightly more complex than for the macros described thus far. 

"?" indicates that the target element is to match anything, but 

with the side-effect that the element is bound to the matching 

element on the target stack. Note that the target element must 

be an object rather than a sub-pattern. 

For example the target pattern (SLOGAN WOMENS-YEAR (?WHAT)) 

will match the source (SLOGAN WOMENS-YEllR ( (WHY NOT)) with WHAT 

being bound to (WHY NOT) on the source stack. 

(v) "#"---Every so often it is desirable to suppress macro 

processing in the corresponding element of the other pattern so 

that the full blown macro code can be looked at. "#" is 

designed to do this. It acts like 11 ? 11 in that it will match 

anything and bind its element to the matching element; however, 

it first turns off macro processing on the other side (except if 

the element has a macro that is itself it - see below). This is 

useful for getting "code" unevaluated so that it can be 

.axarnined. Thusr the ~arget (EXECrJTE PARSER #PARSE-CODE) would 

match the source (EXECUTE PARSER! (1PROG()---)) with PARSE-CODE 

being bound to ! ( I PFOG () ---) in the source. 
(vi) '1 = "- --This is a ma era char c.cter that is restricted in 

th3 kind of element which can follow it. 11 = 11 must precede an 

element of the kind "(object-name message-form)", where object 

is any object in the system and message-form is any form which 

can be jEVALed. Thus, the full macro-element pair is 

"= (object-name message-form)". 

Assume "=" is in the target pattern. It tells the matcher 

1. to temporarily bind object-name (on tha target stack) 
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tc the corresponding source pattern element; 

2. to IEVAL message-form; 

3. if message-form doesn't return NIL, then the binding is 

kept and the elements match; 

4. else, if message-form returns NIL, then tha binding is 

discarded and the elements fail to match. 

This feature allows a "condition" to be imposed on the kinds of 

elements that will match, a condition that can be arbitrarily 

complex. 

For example, the pattern 

(SELLS =lINDIVIOUAL (SUB-INSTANCE INDIVIDUAL SELLER)) 
1ICKET-TO-CONCERT) 

will only match pa~terns whose first and third elements are 

SELLS and TICKET-TO-CONCERT and whose second element is some 

individual who is a SELLER. SUB-INSTANCE is an EXPR which 

returns T if its first argument names a IPEXPR that is an 

instance (or execution instance) of tha tPEXPR specified in the 

second argument; else SUB-I~STANCE returns NIL. 

If JOHN is such an individual, then the source pattern 

(SELLS JOHN TICKETS-TO-CONCERT) would match the target above 

with INDIVIDUAL being bound to JOHN on the target stack. 

(vii) "t"---Without loss of ge!lerality assume that "t 11 

precedes a target element. Then "t" informs the matcher that 

the source element must be a SUB-INST~NCE (as just defined) of 

th~ target ~lement. Thus, tSZLLSR will match only instances (or 

execution :..nstances) of SELLER or instances {or execution 

instances) of subsets of SELLER. The matching SUB-INSTANCE is 

assigned as valu'? of SELLER. Finally, note that fX matched 

against ?Y will result in the creation of a new instance of X to 

be assigned to Y (see macro conflict table, Figure 3. 1). 

(viii) "¢"---This macro character precedes an atomic 

target elemant and binds it to the corresponding source element 

as long as that source element is the name of the source object. 

Thus, the ta:-get (BEATS ¢ME) matches the source (BEATS YOU) if 

YOU is the source object. This is useful mainly in accessing 

data from internally named IPEXPRs or yet to be nam~d IPEXPRs 
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(such as new ex~cution instances). 

This Sl?t of macros is a preliminary set which has been 

£ound to be usefu 1 in the examples I have: considered. Many more 

could no doubt be contrived. Al though they cannot be nested, 

they can be used together in the same pattern provided they are 

attached to separate elements. And when such features are used 

many standard programming language features can be simulated. 

"?" allows parameter passing and the binding of arguments; 

"!" gives a procedural capability and when a "!" is 

"?" thBn a call-by-result is evident. For example, 

{FWrJMP X ! Y ?ANSWFR) matches the target 

opposite a 

the source 

(FWUMP ?PARAM1 PIIRA.M2 ! (CCNS PARAM1 PARAM2)) with PARAM1 being 

bound in the target object to X; PARAM2 being bound in the 

target object to the value (in the source object) of Y (say 

VAl-Y) (effectively call by value); and ANSWER being bound to 

the result of CONSing PARAM1 TO PA~AM2, s.g. (X • VAL-Y) (i.e. a 

procedure in the target object and a call by result in the 

source) • 

This brings up the question of what exactly are the 

advantages of using pattern matching rather than direct function 

calls? There is, first of all, the ability to match 

ncn-procedural patterns and the 

information (through the use of 

ability 

It t", 
to 

It I II . , 
use 

"=", 

procedural 

and other 

macros) neither of which are normal function calling abilities. 

Moreover, there is the fact that pattern matching is less 

defir.itiv~ about what are arguments, values, procedures, etc. 
In one case ?PARAM1 might act as a call by value, in another 

case something else, depending on its corresponding element. 

Another difference is that the use of pattern matching in 

message passing between JPEXPRs allows multiple procedures to be 

attached to the same object in the sense that more than one 

pattern could match (potentially), and the sender has no way of 

knowing which one will. Finally, failure to match techniques 

associated with the matcher go well beyond the scope of most 
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programming languages. In summary, matching has been designed 

to be more general than the usual procedure calling mechanisms. 

The paradigm that a subset of the matching capabilities 

co-inc ides with some of the standard programming 1 anguage 

features. 

J.~.J Difficulties with Macros 

h~s 

the 

Throughout the discussion of macros, an unstated problem 

existed: what to do if an element in the source pattern and 

corresponding element in 

precBded by a macro character. 

the target pattern are each 

Most of the time the resolution 

of the conflict is just common sense, as will be seen if the 

~£fIQ £Qilf1i£i !£Q1g, Figu~e 3.1, is studied closely. The 

occasional difficulties are explained there as well. Note that 

tha table is symmetric with respect to source and target 

elements. 

!§Q -

L2.Q -

!TA - IEVAL SO; 
siiccee~ s. 

IEVAL 

$TA - I EVAL 
succeeds. 

SO; EVAL 

TA; 

TA; 

if 

if 

equal, match 

equal, match 

LTA - JEVAL SO; expand TA; if equal, match 
succeea s. 
?TA - IEVAL so· TA <-- result; match succeeds. 
#Tl - TA <-- !SO (untEVALed); match succeeds. 
~ITA cond-TAt - IEVAL so; TA<-- result; IEVAL 
cof.a-TX;-rr-non-Nit, succeed; else unbind and 
fail. 
tTA - IEVAL so; if result is a subinstance of TA, 
!I-<-- result and succeed; else fail. 
¢TA - !EVAL SO; TA <-- source object; if equal, 
ma~ch succeeds; else fail. 

$TA - EVAL so; EVAL . TA; if equalc match succeeds. 
ZTI - EVAL SO; expand T!; if equal, match 
succeeds. 
?TA - EVAL soi TA<-- result; match succeeds. 
#TX - TA <-- ;iiSO CunEVALed); match succeeds. 
~ITA cond-TAL - !VAL so; TA<- - result; ]EVAL 
cona-Tl;-Yr-non-NIL, succeed; else unbind and 
fail. . . 
tTA - EVAL so; if result 1s a subi~stance of TA, 
TK-<-- result and succeed; else fail. 
¢TA - EVAL so; TA<-- source object; if equal, 
succeed; else fail. 

LI! - expand so; expand TA; if equal, match 
succeeds. 
?!! - expand so: TA<-- result; match succeeds. 
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?2Q -

!~Q -

!~Q -

.!2Q -

#TA - TA <- - /SO ( unexpanded) ; match succeeds. =ITA cond-~At - expand SO· TA<-- result• IEVAL 
cona-TJ;--rr non-NIL, succeed; els~ unbind and 
fail. 
!~A - match fails (pattern can't be subinstance 
or-object). 
¢TA - match fails (pattern can't be source 
oJ5'ject) • 

?TA - so<-- IUN; TA<-- IUN; match succeeds. 
#TI - so<-- ryN; TA<-- ?SO; match succeeds. 
=ITA co n a -T Al. - s o < - - 1 u N • TA < - - 1 u N • 1 Ev A 1 
cona-Tr;-ir-non-NIL, succee~; else unb!nd and 
fail. 
!TA - TA<-- so<-- a new instance of TA; match 
succei:ds. 
¢TA - so<-- TA<-- source object; match 
succeeds. 

#TA - SO<-- #TA· TA<-- #SO; match succeeas. 
=lT~ £Qil~=!!l - SO<-- =(TA cond-TA); TA<-- !UN; 
ma'f:ch succeeas. 
tTA - so<-- tTA; match succeeds. 
!!I - so<-- ¢TA; TA<-- !UN; match succeeds. 

cond-SO} -
=TT~-~~nd-TAL - TA< - - so<-- IUN· if both IEVAL 
ot-cona=~o-and I EVAL o f cond-TA are non-NIL, then 
succeed· else f ail. 
I!A - TA<-- so<-- a new instance of TA· IEVAL 
cond- SO; if non-NIL s ucceed; else unbind and 
fail. 
¢TA - SO<-- TA<-- source object; IEVAL cond-SO; 
rr-non-NIL succeed; else unbind and fail. 

tT~ - match succeeds if TA is a subset of so or 
~o-is a subset of TA; a new instance of the 
lowest one is created and bound to both TA and 
so. 
~TA - so<-- TA<-- source object· if source 
5fi}ect is a subinstance of the 'object so, 
succeed; else unbind and fail • 

tTA - TA<-- source object; so<- - target object; 
I!7 they are the same, succeed; else unbina ana 
fail. 

!&g,gn1 
so is the source e1Iement (contained in source Rattternl. 
TA is the target e ement (conta1nea in target at ern. 
X <-- Y means assi~n X to Y (undone if mate fails. 
fUN is a special NL.,-like atom that means "unassigned'. 
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It should b8 noted that there can be situations when there 

are incompatible levels, spacifically 

(i) ?SO is matched against (TA 1 TA2 ••• TAn); 
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(ii) #SO is matched against (TA 1 TA2 ••• TAn); 

(iii) = (SO cond-SO) is matched against (TA1 TA2 ••• TAn). 

In these cases the source element is uniquely replicated n times 

so that we try matching 

(?S01 ?S02 ••• ?SOn) against (TA 1 TA2 ••• TAn)-; 

(#S01 #S02 ••• #SOn) against (TA 1 TA2 ••• TAn); 

(=(S01 cond-S01) =(S02 cond-S02) ••• =(SOn cond-SOn)) 

against (TA 1 Tl .. 2 ••• TAn) • 

Then th-3 source macro itself is matched against the 

(S01 S02 ... son) formed as a result of the matching; that 

7S0 against (SO 1 S02 ... son) ; 

#SD against (SO 1 S02 ... son) ; 

= (SO cond-SO) against (S01 S02 . . . son) • 

list 

is, 

Any other multilevel ambiguities are handled by the rules for 

pattern matching or the macro conflict table restrictions. 

A more serious conceptual problem involving macros can 

arise because of the current left-to-right matching of message 

pattern elements against receiving pattern elements. Assums 

there is a macro within a pattern that is a call to a 

cc~putation full of messages to other IPEXPRs and other 

side-effects. Assume further that the pattern macro is executed 

during a pattern match and returns a value which succe3sfully 

matches the corresponding el~ment of the source pattern. 

Finally, assume that the pattern match later fails on some other 

element. Then, all the side-effects of the first macro, 

including execution instances built during execution, erroneous 

patterns asserted, and so on, are still around! 

There is no way around this in !LISP, but with sensible 

precautions ~t turns out that the problem can be circumvented. 

These precautions involve making sure that a IPEXPR has only a 

limited number of "procedural11 patterns and that these hav.; 

unique first elements. Possible corrections to fLISP itself 

could be made, such as for example, matching all constant 

elements first, or re-designing the matcher to have complete 

back-up capabilities including the ability to undo things. 

However, this is not an urgent priority, and, in fact, it's open 
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to debate whether it should be since a fundamental philosophy of 

)LISP is keeping arouad all information, including blind alleys, 

for lat~r perusal. 

1•2 Pointers and 2~~££hing 
Many times I've spoken of "links" or "pointers" between 

pattern expressions. I've relied upon an intuitive grasp of 

th~se terms to get across most of what I have in mind, but there 

is a much more precise meaning for "pointer" in the system. 

Before giving it, however, I would like to bring out a couple of 

interesting features of patterns in general. 

one way of regarding a pattern is as essentially an n-ary 

predicate whose head is a relation and the rest of whose 

elements are the objects filling the relation's slots. In this 

view, a patt~rn derives its meaning primarily as a result of how 

it matches other patterns, although it can be ~reatec as a more 

procedural entity both in failure to match processing and in the 

action of macros associated with its elements. 

Another equally useful view of a pattern is as an n-ary 

"link" among objects in a semantic network. The object 

containing the pattern is the source of the link; the pattern 

el8m~nts are the objects co~nected by the link. Thus, the 

pattern (~RADE SELF TICKET-BUYER MONEY ~ICKET) occurring in the 

BUY pattern expression might be diagrammed as shown in Figure 

3.2, although many other network realizations are possible. 

Thus, the system can be view~d as a large semantic network 

of nodes (objects) and arcs (pat terns) connecting the nodes. 

Frcm any particular pattern expression, only the closely 

ccnnected nodes can be accessed directly (i.e. any objects 

occur:ring in patterns of the I PEXPR body can be "seen") • 

The usual semantic network allows only binary links between 

objects, and for good reason: they are often (although not 

always) ~he most important kind of link. Moreover, they are 

easily understood because they break down into three more or 

less well-definea parts (the sourca node, the destination node, 
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TICKET 
BUYER 

MONEY 

Figure 3.2 - A Small Network 

COMPOSER 

BEETHOVEN 

Figure 3.3 - INSTANCE-OF Link 
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an a the arc i tse 1 f) and also because they can be drawn, all owing 

people to use their spatial intuition in understanding them. 

In this r~presentation scheme certain kinds of patterns 

called EQ!llii£§ take the place of binary arcs. A pointer is a 

three element pattern, the first element of which is the arc and 

can be any relation, the second element of which is the source 

and must be the JPEXPP containing the pattern, and the third 

element of which is the destination and can be any object, macro 

e.xFression, or sub-pattern. Th us, 

(INSTANCE-OF BEETHOVF.N COMPOSER) occurring in BEETHOVEN would be 

a Fointer and could be graphically illustrated as in Figure 3.3. 

This would be termed the "INSTANCE-OF pointer from BEETHOVEN to 

COMPOSER". BEETHOVEN may also have a pattern 

(STATURE BEETHOVEN ! (IPOINT~R STATURE 'GREAT-MAN)) 

which would be a pointer to the macr.o expression 

! (I POINTER S'IATTJRE 'GREAT-MAN) 

{unevaluated); or could have 

(WANT BEETHOVEN (LIKE fPEOPLE fBEETHOVEN-COMPOSITIONS 10)) 

which would be a pointer to the unevaluated sub-pattern 

(LIKE tPEOPLE tBE.ETH'JVEN-COMPOSITIONS 10). 

It should be noted that the pointers described here are 

one-way pointers. Pointers to objects do sometimes have 

inverses, but they must be explicitly sto~ed in the destination 

object. Thus, if (R X Y) is a point,~r in X, then (R-INV Y X) 

would be stored in Y if R-INV were the i~verse of the relation 

R. For example, (SIJPERSET CAMEL DROMODERY) in CAMEL might have 

a cprresponding (SUBSET OROMODERY CA MEL) in DROMODERY. Now, 

fortunately when a pattern is asserted, the I ASSERT I EXPR (see 
Appendix I) executes an IF-ADDED procedure associated with the 

head of the pattern. This IF-ADDED procedure should know enough 

to check if the pattern is a pointar, if so to check with the 

head of the pattern to see if there is an inverse, and if so to 

assert the inverse pattPrn in the destination object. Any other 

IF-ADDED processing could also be tmdertaken. 

In the Axample, then, the relation SUPERSET might contain a 

pattern · (INV3.RSE SlJPERSET SUBSET), thus allowing I ASSERT to 
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effect the appropriate inverse pattern. This explicit inverse 

facility is useful in allowing the system to analyze its own 

relations (i.e. it car. 11 s ee" what the inverse of a relation is) , 

in forcing the user to recogniz~ the issue of inverses rather 

than hiding it with automatic inversing, and finally ir. enabling 

the user to choose names for the inverse relation that ar~ 

appropriate to it. 

Pointers are very ·useful for accessing entire environments 

surrounding a pattern expression; that is, pointers of a 

particular type z can be followed from A to {Bi} then pointers 

of the 2~~~ type z can be follow~d from {Bi} to {Ci}, and so on, 

All objects so accessed are said to be in the z-environment of 

A. 

There are many possible environments in the system: 

PAR?-OF, THEN, ISA, EX-ENVIRON, etc, Special search routines 

have been devised to access data in the latter two. The 

ISA-environment is the name for the environment that can be 

accessed by following EX-INSTANCE-OF, or sryPERSET pointers from 

some IPEXPR. It is the tradition3.l "generalization" hierarchy 

into which searches can be directed for knowledge that has been 

abstracted from instances. Such a search is called an ISA 

search and is carried out breadth-first until eventually it 

converges on the top object. As Fahlman (1975) has pointed out, 

the convergence property of ISA hierarchies, combined with their 

relative shallowness (he argues no more than 20 levels of ISA) 

gives hope that such searches won't be explosive. Moreover, if 

the ISA link isn't overused to delineate every kind cf 

dependency, the branching factor should be fairly small, further 

enhancing search times. 

The other major kind of search is into the dynamic or 

execution environment (EX-ENVIRON) surrounding an execution 

instance, In this envi~onment are the supergoals for an object 

and the top-down decisions that have been made to this point. 

It thus forms a notion of context and is consequently often 

searched for information as to purpose, current status of 

certain features, and so on. Such a search is called an 
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EX-ENVIRON search and is linear with the number of tPEXPRs in 

the dynamic cont~xt. 

These two search types are so v~tal, that the special 

ncn-pattern-matching macros 11 ,t. 11 and "% 11 have been set up to 

direct them. Thus, 

J(w x y z), if seen by IEVAL in 081 will result in an 

ISA-search (breadth-first) from 081 for a pattern matching 

(w x y z) • 

%(w x y z), if seen by IEVAL in OB1, will result in an 

EX-ENVIRON search from 081 for a pattern matching (w x y z). 

These macros should not be confused with the pattern matching 

macros which are only seen by the matching routines and some 

other select operations. "i" and "%" are merely convenient 

shorthand for actual calls to the general I SEARCH routine (see 

Appendix I). Thus they ·can be us8d wherever a regular call to 

)SEARCH could be employed. 

There is still ar.other non-patterr.-matching macro, "~" 

which is merely a "'" with ~he difference that all"!", 0 $", 

"%", "J.", ",", ":", and "/" macros ar.e executed inside it. 

':'hus, ,(A !BC) would be the same as '(A BLARNEY C) if the value 

of B were BLARNEY in the context of the executing IPEXPR. 

J • .§ Interru£tS 

In section 3.3.2 (describing the message passing behaviour 

of tPEXPRs), it was mentioned that some message patterns are 

fundamentally instruct~ons to th~ interpreter rather. than 

patterns to be matched in the body of the JPEXPR. One example 
was given showing how the interpreter intercepts a 

( f PRIO= number) message and asserts it in the body of the 

receiving IPEXPR. There are several other patterns of this kind 

which essentially allow a super-lPEXPR to impose certain limits 

on the execution cf a sub-lPEXPR. 

one such pattern is {]TIME= number) which puts a limit on 

the time a IPEXPR has to answer a message. The receiving IPEXPR 

has "number" units of time, where the time is measured in 100s 
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of calls to JEVAL (e.g. number= 1 implies that there is a limit 

of 100 clock units imposed on the sub-object's perambulations). 

When this limit is exceeded, control returns to the IPEXPR which 

set the limit, and it must dacide what to do. Among its options 

are to give up, to restart the sub-object (in which case th~ 

same limits apply again), or to perform further computations in 

an attempt to ascertain what to do. 

In morB detail, this is what happens. When a (ITIME= n) 

pattern is discovered during message passing, the interpreter 

asserts the following two patterns in the body of the receiving 

execution instance: 

(!TIME-LIMIT= receiving-ex-instance n) 

(!TIME-NOW= receiving-ex-instar.ce n) 

Every 100 times through JEVAL, the EXPR JryPDATE-TIMER reduces 

all !TIME-NOW= patter~s in the execution environment by 1, i.e. 

{!TIME-NOW= receiving-~x-instar.ce (n-1)) 

replaces the previous pattern. Note that this means that the 

JEVAL count could be out either way by up to 99 lEVALs since all 

!TIME-NOW= pa~terns are reduced at once (a simplification 

imposed for efficiency). When any given execution instance has 

a fTIME-NOW= pattern reduced to O, then an interrupt is 

generated, !TIME-NOW= is reset to JTIME-LIMIT= (for the 

particular interrupted execution instance only), and the 

immediate super-goal (in the execution environment) of the 

interrupted execution instance is restarted. The return 

condition set for this kind of return is 

(IBETORN-COND ex-environ-inst 
ITIME= (interrupted-ex-inst current-ex-inst) n) 

asserted in the super-goal. If the super-goal eventually tries 

to restart the computation the same interrupt conditions apply. 

(Note also that it must go all the way to the executing 

ex-instance rather than tha interrupted ex-instance, since the 

executing ex-instance was actually processing at the time of 

interrupt) • 

. The timing mechanism described here is quite crude, but 

nonetheless is useful. ITIME= interrupts are useful for 
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allocating time resources, especially in simulated parallelism 

or for running in 11 careful" mode, where a process can be run for 

a short time before its caller re-imposes control to make sure 

it is proceeding on course. 

Thsr~ is another kind of condition that can be imposed by 

one pattern expression on its descendants: the (COND= pattern) 

message pattern. It essentially s~ates that anytime there is a 

pattern matching the JCOND= pattern asserted by the sub-goals 

then an interrupt should return control to the super-goal which 

set the condition. Much the same kind of processing occurs here 

as Eor the ITIME= interrupts. That is, a 

(ICOND= execution-instance pattern) 

is left in the relevant execution instance, and 

!ASSERT function is called, it looks into 

everytime the 

the execution 

environment for any matching JCOND= patterns for the !ASSERT 

pattern. Any such match results in an interrupt being 

generated, a return condition 

{IRETURN-CO~D ex-environ-i~st 
ICOND= (interrupted-ex-inst current ex-inst) pattern) 

being set in the super-goal to th~ interrupted execution 

instance, and finally, control being resumed in the super-goal. 

As in the )TIME= case, enough information stays around for the 

whole process to be started again if desired. ICOND= limits are 

helpful when it is known that a certain sub-goal is going wrong 

if it asserts certain patterns •• 

A final pattern of this type is (IEND= n) which just gives 

a limit on the number of times a particular sub-goal can ba 

interrupted before it can no longer be restarted. Thus, a 

(IEND= 5) message pattern would allow no more than 5 restarts of 

an interrupted sub-goal. After a !END= limit has been exceeded, 

the return condition is 

(JRETURN-COND ex-environ-inst 
!END= (interrupted-ex-inst currant-ex-inst) val-int) 

where "val-int" is a time limit or a pattern depending on which 

kind of interrupt sent the IEND= limit over the top. This is 

useful in eliminating potential infinite loops of sub-goal 

restarts. 
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One final point of interest: the EXPRs !SEMON and ISEMOFF 

will turn a flag (semaphore) on or off in the current pattern 

expr.ession. Before doing any ITIME= or ICOND= interrupt 

ctecking, the current status of the nearest such flag in tha 

execution environment is determined, and if it is en, no 

inteirupts are processed anywhere in the execution environment. 

1•1 Simulated Parallelism 

There are two ways to simula~e parallelism in the system. 

The first uses !TIME= limits to ess~nti~lly assign time slices 

to each sub-goal. A JEND= limit can be used to limit the number 

of restarts for a particular object. Thus, 

(IP~R~LLEL 
(object1 (!TIME= n1) rest-of-message-patterns) 
(obJect2 (l~IME= n2} rest-of-message-patterns} 

. . . . . 
(objectk (!TIME= nk} rest-of-message-patterns)) 

will send object1's message patterns to object1 for time slice 

n1, then will send object2's message patterns to object2 for 

time slice n2, and so on through objectk. The process is then 

repeated, restarting every object which had a !INTERRUPT-TIME= 

return condition for another time-slice, but, of course ignoring 

those with NORMAL return. This goes on until all have 

terminated normally or until IBND= limits (if any) have been 

exceeded. 

The other way of simulating parallelism makes use of 

priorities and the execute gueue. Several objects can be 

scheduled at once with differing priorities, and they will 

eventually run in the order of their priorities. If these are 

to be restarted, however, they must be explicitly resumed by the 

pattern expression which scheduled them. The EXPR !SCHEDULE can 

be used to accomplish this: 

(!SCHEDULE object1 object2 ••• objectk) 

Note also that the objects must somehow be initialized with 

their messages and so forth in place. This method doesn't tend 
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to be too convenient or to give much control over resource 

allocation for each object, but it is useful for a much quick€r 

kind of brea~th-first ability than tha time-slica method gites. 

This concludes the description of the capabilities of the 

current version of !LISP. In Chapter IV I would like to 

evaluate the scheme by comparing it to other approaches and by 

locking at its strengths and weaknesses. 
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CHAPTER IV 

ln Evaluation of the ReEresentation ~£hgmg 

~he system for representing knowledge presented in the last 

chapter has ba~n described more or lass at face value without 

any attempt to evaluate it. In this chapter I would first like 

tc compare the scheme developed he=e to some other approaches, 

particularly the PLANNER/ CONNIVER language development and the 

frame proposal in its many guises. In this way the influences 

on this research should be revealed and the strengths and 

weaknesses should become clearer. I would then like to focus 

back on the representation and language issues to see if the 

approach outlined here does ind~ed shed light on any of them. 

~-1 The PLAN~ER L CONNIVER A££roach 

The most important influence on JLISP has been the 

PLANNER / CONNIVER (Hewitt ( 1972), Sussman and Winograd (1970), 

McDermott and Sussman (1974)) development, together with the 

Bobrow and Wegb:reit (1973) control paradigm. Since CONNIVER 

embodies most of the crucial aspects of this line of research, I 

will mainly use it for comparison. The essential features of 

CCNNIVER are 

(i) a data base of con texts, each containing 

assertions and methods, and each representing some 

state of the world; 

(ii) a pattern matcher, replete with special macros, 

to access data in this data base; 

(iii) a varied set of procedures to manipulate the 

assertions; 

(iv) a co-routine control structure to implement all 

this. 

I would like to look at tLISP's capabilities in each of these 
areas. 
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~-J•l The Data Base 

The major difference between !LISP and CONNIVER with regard 

to the data base is the separation of context from control. In 

!LISP there is no separate context mechanism: contexts are 

inextricably bound to pattern expressions {since pattern 

exfressions are the primary object of JLISP, their featu=es will 

be used almost al wa. ys in explanations and j ustif ica tions) , and 

cannot exist independently. This is, I feel, an important 

ccnceptual point (also illustrated in many recent systems, 

a.g. Bobrow and Winograd (1976), Hendrix (1975), Havens (1978), 

Sandewall (1975)): all data is associated with some definite 

"object" and has meaning only when that object has meaning to 

":he system. ·ro be sure if it is desired to ti.; a context to a 

particular access environment, CONNIVER can use a variable 

CONTEXT that can be set in that environment to point to the 

context, but this is both awkward and ignores the usefulness of 

considering contexts to be objects that can be reasoned about, 

sent messages to, and otherwise tr~ated like other objects. The 

assumption of object - contaxt identity is one of the more 

unifying concepts in the system, and eliminates the distinction 

bstween data in one place and procedures operating on the data 

in another. 

Contexts also differ from pattern expressions in that 

contexts are arranged in a "visibility hierarchy" while IPEXPRs 

are on the surface all invisible to one another. But, this is 

only on the surface: I PEXPRs consist of patterns which can 

contain elements that are the names of other lPEXPRs, and hence 

the~e can be, in essence, arbitrary links between IPEXPRs. 

These links can be traversed by sending messages along them and 

receiving replies, thus making data in IPEXPRs available to one 

another. Although this is powerful, it does tend to be somewhat 

slow for simple data access; hence, the !LISP provisicn of 

special execution and ISA environment searches that speed up at 

least a couple of the more commonly needed access methods. 
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1·1-i Patt~rn Matching 

ILISP's matcher varies little in any theoretical way from 

CONNIVER's. There are, however, a couple of distinctions. 

First, the macros in JLISP are somewhat different and seem to 

p1:ovide a bit more flexibility (especially "=" and "#"). 

second, the matcher is totally symmet=ic in fLISP, displaying no 

preference to source pattern over target pattern. In fact there 

is no distinct~on between patterns and assertions, further 

unifying the system. But, most important is the "don't give up" 

feature of ILISP's matcher: if it is unable to find a match 

within the body of a fPEXPR, it may (at the discretion of the 

pattern head) look elsewhere for a match. This gives robustness 

and power to the matcher; it also has the drawback of 

potentially getting out of hand combinatorially, like any other 

such automatic feature. With careful selection of failure to 

match conditions, I hope that this drawback will remain only 

pot9ntial! 

~-1•1 Procedures 

In CONNIVER there are at least four distinct procedure 

types: ordinary LISP functions, CONNIVER procedures, methods, 

and generators. In !LISP there are also several different 

procedure typesr including LISP functions, !LISP procedures, ana 

1PEXPBs. The interesting comparisons are between methods and 

generators on the one hand and IEXPRs and IPEXPRs on the other. 

Methods are part of the data base and work to keep it consistent 

as well as help to access data from it. The problem with them 

tends to be one of combinatorial explosion since they are called 

in automatically by pattern matching rather than in a more 

controlled fashion. 

IF-ADDED and IF-REMOVED methods have been fairly directly 

incorporated as procedural patterns associated with selected 

IPEXPRs (i.e. those whose name can appear as a pattern head). 

such "methods" are invoked whenevar a pattern with that head is 

IASSERTed or IREMASSERTed. This differs somewhat from CONNIVER 

in that the pattern matching to find a method is restricted to 
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only scanning patterns of the head IPEXPR, not the entire data 

base. Of course, the method itself, once activated, coul1 do 

any amount of (possibly explosive) further processing, hut since 

I am not overly concerned about the existence of inconsistent 

information (as long as it isn't present in the same execution 

environment), I don't visualize such methods as being too 

elaborate. 

CONNIVER IF-NEEDED methods have an analogy in the failure 

to match processing 

failure to match 

of IPEXPR ITTessage passing; that is, a 

"method" is called in only if it is needed 

because of a lack of suitable patterns in a receiving IPEXPR. 

Tha difference between IF-NEEDED methods and failure to match 

processing is once again that the search for a FAILURE-TO-MATCH 

pattern requires the matcher to only look through the "head" 

IPEXPR rather than the entire data base. 

Generators are CONNIVER co-routines which can be executed 

until they produce some datum, and can later be re-entered if 

the datum proves unsatisfactory. Both IEXPRs and tPEXPRs give a 

similar co-routine ability, tEXPP.s by allowing the saving of 

stack pieces within a IPEXPR, and !PEXPRs by keeping an 

execution instance around which can later be restarted. For 

efficiency, 

IEXPRs; in 

the usual way of 

fact the !SEARCH 

implemented in just this way. 

doing generation is by using 

generator capabilities are 

The important distinction between !LISP and CONNIVER 

procedures is, however, the centrality of their role. CONNIVER 

is set up as basically a LISP-style proc~dural language with 

occasional forays into pattern directed invocation as a 
necassary declarative component. !LISP on the other hand, is 

basically built around pattern matching, and the procedural 

capabilities drop out as more or less a side effect of this 

matching. Thus, most procedures are in fact embedded as"!'' or 
' 

tt$'' macros in patterns of IPEXPRs, not as separate functions. 

This means they are treated much as any data would be (e.g. they 

are present or absent only if the JPEXPR containing them can b~ 

looked at). Hopefully, this is one small step along the road to 
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prcgram / data symmetry, although many global and distinctly 

functional objects remain (e.g. :SXPFs, SUBRs, IEXPRs). 

1 · 1 · .!± £2n.1r21 
CONNIVER's control is fundamentally that described by 

Bobrow and Wegbrei t ( 19 73) • This is also ~rue of !LISP: that 

is, CLINKs are equivalent to EX-ENVIRON pointers; execution 

instances are Bobrow and iegbreit frames (except they aren't 

separated into two parts, and hence there is no BLINK); there is 

a continuation point, return condition, etc. similar to that of 

Bobrow and Wegbreit. Of course, there are differences. There 

is no ALINK since its data accessing function has been split 

between the CLINK and more semantically relevant (to the domain 

being re pres en te d) links such as SUPERS ET, INSTANCE-OF, etc. 

That is, it is often necessary to access data in a variety of 

environments such as execution, ISA, etc., rather than in one 

all encompassing access environment. 

The specific ability that the ALINK / CLINK distinction 

provides of allowing a process to access data in one environment 

while returning control to another can be accomplished in !LISP 

by sending a message to an old named execution instance. To 

handle this message a new execution instance of the old 

execution instance must be created. The old execution 

environment can be accessed using the old execution instance's 

CLINK; the new execution environment can be accessed using the 

new execution instance's CLINK. Having two execution instances 

is necessary if old 11 episodes" are to be kept distinct from new 

"episodes" (see Appendix I - I RESTART - for a description of how 

this methodology can . be used to resume execution of a previously 

suspended JPEXPR). 

This illustrates another major difference between !LISP and 

CONNIVER: execution instance data, including internal pointers, 

are stored as patterns like any other data in any other IPEXPR. 

In fact execution instances are IPEXPRs like any others. Thus, 

the patterns can be accessed using standard matching, and 

moreover, old execution instanc~s can be gueried to provide 
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episodic information about what went on in that context. Still 

another distinction between !LISP and CONNIVER control is that 

execution instances stay around r~ther than disappearing upon 

return and must be "intelligently" garbage collected at some 

later date. 

In CONNIVER all procedures (with the exception of certain 

macro-directed LISP calls) have a Bobrow and Wegbreit frame 

created for them; this is not the case in lLISP. Except for 

messages between IPEXPRs, an execution instance is not set up 

upon a call to a procedure, the current f PEXPR stack being used 

instead. Variables are accessed on the current f PEXPR stack, 

and if not found there are bound in stacks of IPEXPRs in the 

execution environment of the current tPEXPR. This use of IPEXPR 

stacks is somewhat less wasteful on space and time in the many 

cases when lPEXPFs are not communicating; in the few cases they 

are, however, the overhead of initializing and later accessing 

data in patterns probably more than makes up for the saving in 

the majority of cases. 

Another difference between LISP and CONNIVER control is the 

explicit use of a scheduler to buffer contact between IPEXPRs. 

Of course, it is fairly easy to 

CONNIVER (as was done in the 

Sussman ( 197ij))), but 1 LISP 

engendering some overhead, 

implement 

Reference 

explicitly 

such a 

such a scheme in 

Manual (McDermott and 

does so .. While 

scheme enables 

pseudo-parallelism, and adds flexibility to the system. 

Related to this is the ITI~E= and SPACE= conditions that 

can be imposed on the execution of a IPEXPR. CONNIVER has an 

interrupt feature that seems to be mainly useful for error 

generation and co-ordinating various conflicting methods. The 

one here is more fundamental to the problem of a super-goal 

limiting the allocation of resources to a sub-goal or otherwise 

imposing conditions on that sub-goal. This is still only a 

crude approach (being slow, cumbersome, and inexact), and more 

sophistication is needed if a truly useful interrupt feature is 

to be installed. 
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1·1 If.sfil!2§ 

In this section I consider work which has gone under 

various labels: frames, schemata, scripts, knowledge sources, 

social action paradigms, etc. Among other things this work is 

centrally concerned with dividing a knowledge base into large 

modular units each of which contains all the information 

relevant to a particular concept. In !LISP, pattern expressions 

are analogous to frames, since they reprgsent large chunks of 

semi-independent knowledge. 

There are many issues raised by the various frame proposals 

and I would like to concentrate on a few important ones: why are 

frames needed, what do frames look like, and how do they connect 

to other frames both statically and dynamically. I intend to 

ccmpare various ether approaches to ILISP in the hopes of 

illustrating some of its contributions. 

~•l•l Why are Frames Needed? 

As Winograd {1974) has suggested, a system must steer a 

middle course between having lots of local heuristics that help 

it decide precisely and efficiently what to to in various 

specific contexts (but perhaps make it incomprehensible), and 

using a few widely applicable techniques which are easy to 

understand because there aren't many of them (but which leave 

the system vulnerable to uncontrolled computation). Frames, 

hopefully, help to resolve this problem first because they give 

a way of packaging information into distinct modules that can be 

considered separately, thus keeping the system comprehensible; 

and second because they tend to represent much of their 

info=mation declaratively while still allowing enough procedural 

information to ensure reasonable 

Winograd (1975) has called the issues 

processing 

raised by 

trade-off the procedural/ declarative controversy. 

times. 

the latter 

I feel that pattern expressions contribute some things of 

worth here. certainly, they allow information to be packaged 

in to groups of patterns which con ta in the basic "facts" about 

some concept, hence allowing the concept to be (at least 
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pa=tially) considered apart from its comrades. Thus, Lhey are 

quite well suited to the first role above. But what about 

information that isn't directly in a JPEXPR but must be accessed 

from some other object - is there too much 1 of this kind of 

inter-object activity to maintain the modularity? This, of 

course, is a crucial problem for all frame systems, and I can 

only say that I share the general frame faith that ~he packaging 

can often be done successfully. 

The second contribution of frames is to 

procEdural / declarative issues. In this respect there seem to 

be two main views of frames: 

(i) Frames are uniform, mostly declarative structures 

which are processed by a single global interpreter. Most of the 

purely procedural aspects are subliminated into the interpreter 

and more or less hidden from the user. Systems of this ilk 

include Schank and Abelson (1975), Charniak ( 1975), and 

Bruce (1975). 

(ii) Frames consist basically of two parts, one a mostly 

ueclarative section containing static information, and the other 

a procedural component which is used to interpret the 

declarative portion and otherwise handle in~er-frame 

communication. Among systems of this genre are MAYA 

(Havens (1978)) and KRL (Bobrow and Winograd (1976)). 

Although there are aspects o~ both of these approaches in 

!LISP, the main thrust of the scheme is to lower the procedural 

aspects of a IPFXPR to the pattern level. Thus, procedures are 

encoded as"!" or"$" or "= 11 macro elements which are expanded 

when the pattern is being used to answer a message. Such macros 

allow a pattern to represent procedural kinds of goaling 

information or to represent very specific context dependent 

knowledge directly with the pattern that needs to use such 

knowledge so that the JPEXPR as a whole doesn't have to be 

concerned with it. Since such pat~erns are accessed using the 

same matching scheme as non-procedural patterns, a basic 

procedure/ declarative unity begins to emerge. Furthermore 

after a IPEXPR has answered a message, the resulting answer 
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pattern is IASSERTed in the receiving execution instance as a 

declarative residue of procedural activities. 

Thus, use of pattern level macros allows procedural 

flexibility to be inserted into examinable, mostly declarative 

structures. It is nonetheless important for anybody using !LISP 

to attempt to abstract such low level procedures into a more 

declarative plane by somehow representing what they do in terms 

of higher level primitives. This is a difficult task but at 

least ILISP gives the modeller the choice of level at which to 

represent knowledge. 

1.1.i What do Frames Look Like? 

There are as many different representations for frames as 

there are frame systems. I don't intend to go ir.to a lengthy 

discussion of the syntax or the semantics of the various 

schemes; instead, I would like to discuss some pervasive frame 

concepts, specifically slots, preconditions, post-conditions, 

and finally some issues in representation cf knowledge that 

frames illustrate. 

Minsky (1974) has proposed that a frame is composed of 

fixed information at the top levels and slots at the bottom 

levels which must be filled when the frame is instantiated. A 

slot has associated with it markers or other indications as to 

how to fill it, the importance of the slot to the frame, what to 

do when the slot is filled, etc. Winograd (1975) and Bobrow and 

Winograd (1976) have generated a comprehensive computational 

description of slots, complete with attachment of procedures to 

fill the slots (perhaps by inheriting such procedures from other 

frames), the designation of important slots (so-called IMPs), 

the provision of procedures that are executed once the slot is 

filled, default values of varying "looseness" that fill the slot 

if nothing else can be found to do so, etc. 

In pattern expressions there are no slots; at least, there 

are no explicit distinctions made between patterns which are 

unvarying in the sense they contain no macro elements and 

patterns which are changeable because of macro elements. The 
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role of slots is taken by such macro elements. These 11 slots" 

are filled when (and only when) the tPEXFR is being queried for 

information by some other IPEXPR. They can be filled by simple 

variable binding (as in the macro"?") or filled by complex 

procedure (as in the macro "! ") or filled under certain 

conditions (as in the macro "= ") etc. And if there is no 

pattern in the IPEXPR which matches the incoming pattern, then a 

proc~dural attachment from some other frame can occur (if the 

pattern head recommends it). Certain patterns can be indicated 

to be more important by using meta-patterns that contain them 

(e.g. (IMPORTANCE (TRUNDLE ELMER ROOM4) 9)). This use of 

meta-patterns is discussed more fully in Chapter VI, but it does 

provide a way to designate IMPs (even though I haven't found 

such designations to be all that helpful in the well-constrained 

examples I have explored). So, in ILISP the idea of slots is 

generalized so that they can be viewed as any other data is 

viewed. 

Many frame systems (e.g. Bruce (1975), Charniak (1975), 

Schank and Abelson (1975)) talk in terms of pre-conditions which 

are rapid checks that must be satisfied before a frame can be 

considered to be relevant and post-conditions which are the 

residual effects of the frame's activation. These conditions 

are usually in declarative form so that they can be easily 

understood by the user and so that they can be matched against 

the data base on entry (for pre-conditions) or asserted in the 

data base on exit (for post-conditions). I believe there is 

scmething quite inflexible about the 

pre-condition/ post-condition scheme as usually outlined: such 

processing is done all at once without regard to context. It 

seems more practical to provide some much more procedural 

capability where a frame is able to pick and choose which tests 

to carry out in deciding whether it is relevant. Moreover, it 

should be able to be contextually selective in regard to what it 

leaves as residue once it is done. Of course, these various 

tests would have to be fairly simple or the whole purpose of 

pre-conditions (and to a lesser extent post-conditions) would be 
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obviated. 

In JLISP there are no explicit pre-conditions or 

post-conditions, although, as always, particular users have the 

capability of adding (PRE-CONDITION -------) or 

(POST-CONDITION-------) patterns to pattern expressions. What 

little pre-condition style testing there is is undertaken by 

procedures within elements of patterns as they attempt to 

respond to messages; post-condition style processing occurs when 

these procedures as a side-effect assert new patterns (usually 

in the body of the current execution instance). The key point 

is that the processing can be undertaken when wanted by the 

relevant receiving pattern, and isn't restricted to an 

all-or-nothing lump associated with the entire fPEXPR regardless 

of the receiving fattern. 

This explanation has suppressed a rather important use of 

pre-conditions: their significance in pattern-directed 

invocation; that is, it is usually something like pre-conditions 

that are used when testing for the relevance of any frame before 

letting it loos~. While for the areas in which ILISP has been 

used so far it has usually sufficed for IPEXPRs to know each 

other by name, it is a crucial ability to be able to invoke 

JPEXPRs in some less direct way. To this end, an associative 

activation scheme is in the early stages of development. It 

ess9ntially allows IPEXPRs to contact each other along "links" 

in the implicit semantic network in which they are embedded (see 

section 4.2.3 for a fuller explanation of this semantic 

network). Associative activation itself is described to a 

greater extent in Chapter VI. 
At this point I would like to consider some important 

issues about how information is represented in a frame. First, 

consider the distinction between concepts which directly concern 

the frame and concepts which are not so central. This is 

basically Woods' (1975) discrimination between definitional 

properties and assertional properties, a distinction which has 

been explicitly included in some systems (e.g. Levesque (1977), 

Schneider (1978)) • I b~lieve that the 
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assertional/ definitional categorization is really a catch-all 

and should be split along many dimensions, each of which 

deliceates a differen~ aspect of a concept's relevance to a 

frame. This is not a new idea, so that Tesler gi .s1 (1968) 

outline several such dimensions (e.g. charge, significance, 

credibility, f ou nda tion) , Winograd ( 19 7 5) talks a bout I MPs, 

Becker (1969) proposes criteriality. In JLISP, of course, no 

ccmmitment has been made to the particular dimensions to choose 

(although IMPORTANCE and CORE are two such dimensions used by 

some system procedures) ; but th~ user can specify any that he 

desires by using meta-patterns (see Chapter VI). 

Another issue arises in systems (such as, for example, KRL 

(Bobrow and Winograd (1976)) or MAYA (Havens (1978))) which 

encode information concerning the containing frame in 

attribute/ value pairs, while other information is encoded in 

assertions. Thus, the facts that CASA-LOMA is a castle and is 

in Toronto would be kept in the CASA-LOMA frame as 

at tribute / value pairs (ISA CASTLE) and (LOCATION TORONTO) 

while another relevant piece of data (ISA PARAPET TOWER) would 

be stored in CASA-LOMA as a th~ee element assertion. While 

often a useful abbreviation, such an explicit syntactic 

difference can be harmful in that the same piece of information 

may have to be represented in two different ways depending on 

whe~e it is stored (e.g. it would be sufficient to use the 

attribute/ value pair (ISA TOWER) in the frame PARAPET). In 

(LISP all such information is encoded in "full blown" patterns, 

since it it important to failure to match processing that the 

number of "arguments" of the pattern that has failed be 

consistent. 

The use of such full blown patterns also helps point out a 

problem which many systems finesse by the use of 

attribute/ value pairs. This is the problem of distinguishing 

information that is about a frame from information that is about 

a frame's instances. For example, an attribute/ value approach 

might put (NUMBER-OF-LEGS 2) with the PERSON frame and be 

totally unambiguous. But when it is realized that what is 
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really being said here is (NryMBER-OF-LEGS PERSON 2), then a 

difficulty becomes apparent: the class PERSON does not have 2 

legs; instances of the class do. !LISP forces this kind of 

distinction to be made explicitly, e.g. 

(NUMBER-OF-LEGS tPERSON 2). Even with attribute / value pairs, 

a system will fail if something like (SELLS ALCOHOLIC-DRINK) 

were to be associated with the BARTENDER frame. What is really 

meant here is that an arbitrary instance of the class of 

bartenders sells an arbitrary instance of the class of alcoholic 

drinks, i.e. (SELLS tBARTENDER f ALCOHOLIC-DRINK). To be sure, 

frames encoding the SELLS or NUMBER-OF-LEGS relations might keep 

this information straight, but for now, at least, it seems to me 

to be better to be explicit about what information is about 

instances and what about objects. 

The more so since this has some relevance to a closely 

related issue: the problem of discriminating "meta" information 

about the frame itself from "real world" information about the 

object represented by the frame. This distinction has not 

always been well delineated in AI or elsewhere for that matter. 

Keeping information about instances distinct from information 

about classes helps somewhat here. However, it doesn't solve 

the whole problem: the pattern (NAME FRAME27 ALFRED) could mean 

that the instance FRAME27 itself is named ALFRED or that the 

person referred to by FRAME27 is named ALFRED. Which is right 

depends on what is meant by NAME in the system. If NAME means 

"the name of the object represented by the second element is the 

thing in the third element" then fine; but there had better be 

another relation INT-NAME, say, indicating "the name of the 

internal object that is the second element is the third 

element", so that (INT-NAME FRAME27 FRAME27) could be used. The 

burden for keeping this straight is on the system user, although 

once he has decided what•s what, he can put information with the 

relation .itself indicating whether it is a 11 real world" or "meta 

world" relation. 

When two IPEXPRs are being compared, it is often 

inconvenient to query each pattern head a~ to whether it is 
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relevant to the comparison. Thus, a meta-pattern 

(CORE ZORK /PAT1 /PAT2 • . . /PATn) 

indicating sub-patterns which are the core concepts of ZORK can 

be asserted. This, too, is useful in delimiting internal from 

domain information. No doubt other meta-patterns could be built 

to further specify finer distinctions, but this hasn't been of 

cent~al concern to the research. 

Next an interesting point regarding the type/ token 

distinction should be noted. When an old execution instance is 

sent a message, in order to respond to that message an execution 

instance of that execution instance is set up just as it would 

be for any me~sage to any other IPEXPR. This allows the old 

execution environment to be discriminated from the new (see 

section 4.1.4); it also means ~hat effectively there are 

instances of instances in )LISP. This approach is similar to 

the uniform subset/ superset designation of TLC 

(Quillian (1969)) , differing only in that in I LISP the user is 

encouraged to 

represents an 

individuals. 

make a distinction between an instance, which 

individual, and other IPEXPRs which are not 

~-~•l Inter-frame Connections 

Because a frame cannot know everything about everything, an 

important aspect of frame theory involves the manner in which 

frames pass information amongst themselves. There seem to be at 

least two different aspects to consider: static connections and 

dynamic connections. Tn the former case, certain static pieces 

of information are contained in several frames at once; in the 

latter case, one frame explicitly calls in another frame to 

achieve some purpose or gain scme information. 

There are two basic issues that concern static connections: 

the sharing 

presence of 

M ins k y ( 1 9 7 4) 

of static information amongst frames, and the 

certain static links connecting frames. 

and later Charniak ( 197 5} talk in terms of 

ccllections of related frames ''sharing terminals", that is when 

a slot is fill~d in frame A as it recognizes a scene, the same 
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slot may also be filled in frame B automatically. Such shared 

information allows frame B to save work if it eventually must be 

call~d in to recognize the scene. This ability also is very 

useful in deciding what frames are related to one another; that 

is, if two or more frames share the same information, then this 

is persuasive evidence that they are somehow related. 

In !LISP "terminal sharing" amongst lPEXPRs is not 

encouraged: patterns are contained in "boxes" which aren't 

sapposed to share their information with one another. Sharing 

of patterns should only be undertaken by message passing between 

tPEXPRs. This means that if a fPEXPR turns out to be unsuited 

for a particular task, then any patterns it has asserted will 

not be automatically copied over to the new IPEXPR which is 

called in to replace the unsuitable one. Instead, the new 

f PEXPR is givan the perogative to decide what things, if any, it 

may attempt to salvage from its comrade. This is a procedural 

approach to achieving "shared terminals". It is not al together 

satisfactory since, although it allows arbitrary selectivity and 

preciseness in information sharing, it may be too complex to be 

useful. A purely declarative approach, on the other hand, 

probably wouldn't have enough selectivity, implying that some 

middle ground should be found. 

A simila~ kind of sharing happens in the Hendrix (1975) 

semantic network formalism, where a net is divided into 

partitions which can share information. such a division allows 

the same information to be "visible" from certain perspectives 

but not from others, and hence is of facility in perusing only 

those features which are relevant at any time. This is not the 

place for a full discussion of context (see Chapter VI) , but it 

must be pointed out that the "partitions" of !LISP are the 

pattern expression "boundaries", and that there is thus no 

sharing of data£~£§~ between partitions. However, as in the 

case of shared terminals, a procedural solution involving 

message passing can be (rather unsatisfactorily) pressed into 

service whenever information is to be shared. It is safe to say 

that the lack of shared information is one of the weaker aspects 
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of !LISP as it stands today. The attempt to keep the system as 

modular as possible has perhaps been too severe and although it 

has meant greater precision by forcing procedural sharing, it 

seems to have contributed to rather than helped to solve the 

complexity problem. 

The other static aspect of inter-fr.ame connections is the 

attempt to essentially embed frames into a semantic network. 

Minsky's (1974) proposal suggests a similarity network 

connecting frames, the links of which would be "differences" to 

fellow if the frame were not properly matched to a situation. 

Winograd (1975) has been keen on investigating how and whether 

frames fit into a Quillian (1969) style generalization (ISA) 

hierarchy; Levesque (1977) has also been interested in such a 

hierarchy as well as other "links" between frames; and 

Havens (1978) has a full-scale net :3Urrounding his frames. 

These researchers have recognized that it is critical to the 

efficient operation of a system that a frame have semantically 

close neighbours that it is able to quickly access in a variety 

of common situations (e.g. inheritance of properties along ISA 

links, following a difference pointer when a certain kind of 

failure occurs within a frame). 

ILISP pattern expressions can also often be profitably 

viewed as if they were embedded in a semantic network, but as 

will be shown, it is a rather strange network. This can be 

accomplished by viewing the 

(arc node-1 node- 2 • • • node-n) 

patterns of 

combinations. 

a IPEXPR as 

Even though 

this view (that is it would, for 

to look at a pattern as 

!LISP doesn't insist on 

example, be possible 

(node-1 arc-1 node-2 •• • arc-n) or some such), it is in most 

cases convenient to consider the first element to be an arc and 

the rest nodes. 

appropriate for 

that is the 

(SUPERSET MA(llMAL 

(SUPERSET ANIMAL 

Figure 4.1. 

In particular, the arc-first notation is most 

patterns which are pointers (see section 3. 5) ; 

patterns (SUP ER SET DOG MA. MMAL) in DOG, 

ANIMAL) in MAMMAL, and 

PHYS OBJ) in ANIMAL could be viewed as in 
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PHYSOBJ 

ANIMAL 

MAMMAL 

DOG 

Figure 4.1 - SUPERSET Pointers 
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Although pointers are important, and do illustrate a 

relationship between )LISP and semantic networks, it must be 

remembered that they are only one particularly nice subset of 

the range of useful patterns available for use in a f PEXPR -

there can be n-ary relations, relations which don't involve the 

name of the IPEXPR in which they are contained, relations with 

macros, ~tc. These are rather hard to draw (and hence somewhat 

opaque), but they do share the connectivity property so 

important to a semantic network in that th~ only other objects 

which can be seen from the viewpoint of any f PEXPR are thos@. 

whose names appear in patterns of the IPEXPR. 

The other major aspect of interframe behaviour involv€s 

dynamic communication amongst frames to accomplish various 

tasks, such as matching data, achieving a sub-goal, 

instantiating a frame. Minsky and most other frame theorists 

are not particularly concerned with the many procedural 

components that seem necessary; but these aspects are dealt with 

by several gronps, including Bobrow and Winograd (1976) in KRL, 

Hewitt (1975) in his ACTOR formi:1.lism, and Havens (1978) in MAYfl .• 

This research has led to the definition of several important 

concepts, among them procedu~al attachment, multi-processing, 

messages and message passing. 

Procedural attachment is Winograd's (1975) term for 

attaching a process to a frame so that it can be "triggered" to 

sclve some problem. Bobrow and Winograd (1976) delineate at 

least a couple of useful ~lasses of procedure: servants or 

TO-FILL triggers used to achieve some goal such as filling in a 

slot (and closely related to MICRO-PLANNER THCONSEs or CONNIVER 
IF-NEEDEDs); and demons or WHEN-PILLED triggers used to derive 

the consequences of achieving a goal (corresponding to THANTEs 

or IF-ADDEDs). such procedures can be directly attached to the 

frame they serve or even to parts of that frame, or can be 

inherited from other frames. 

!LISP, too, has procedural attachment as an automatic 

by-product of the message-passing paradigm defined earlier in 

the chapter. The procedural attachment for objects other than 
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tPEXPRs is trivial (since the object body is automatically the 

only procedure to attach); for IPEXPRs, however, things are more 

interesting. There are no explicit procedures to attach, but 

any pattern which matches could contain procedures that need to 

be executed to achieve the match (servants). These same 

procedures can arbitrarily assert or remove patterns as they 

proceed and thus indirectly invoke IF-ADDED or IF-REMOVED 

precessing. Moreover, certain ICOND= interrupts have effects 

similar to IF-ADDED methods in that control is shifted after the 

addition of a pattern; but this is a very constrained kind of 

demon which in effect prevents uncontrolled sub-goaling in 

contrast to the usual uncontrolled, potentially explosive role 

for demons. 

tLISP allows the attaching of a pattern in a variety of 

ways if there isn't a suitable pattern directly associated with 

a I PEXPR. The semantics of such attachment are precis·e ly 

defined in the section on the matcher; basically, it is up to 

the object represented by the pattern head to decide what to do 

in case of such a failure. This gives a fairly general, 

knowledge-dependent way of attaching procedural or declarative 

information to a tPEXPR. 

KRL also makes a commitment to multi-processing as a 

fundamental control paradigm. Details are not specified in the 

Bobrow and Winograd (1976) paper, but it appears that processes 

are co-operatively scheduled to run (much as are IPEXPRs in 

tLISP) on an agenda (execute queue) with a set of priorities 

attached. Unlike the l~ISP execute queue, the agenda is layered 

to give more flexibility. KRL processes are capable of sharing 

a limited resource pool with one another: how the pool is 

incremented or dec~emented is left up to the processes sharing 

it. In contrast, !LISP defines only a couple of "resources": 

time and conditions on what is to be asserted in sub-JPEXPRs, 

and these are controlled by the interpreter or its 

sub-functions. The KRL approach has the advantage that a lot of 

automatic processing is left out at the expense of added 

complexity for the ussrs if they are to keep track of resources. 
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ILISP avoids this complexity by restricting the whole problem of 

resource allocation to a small set of useful features. 

The concepts of messag~s and message passing have been most 

fully elaborated by Hewitt in his many ACTOR papers 

(Hewitt 21 ~1 {1973), Hewitt and Greif (1974), Hewitt (1975)). 

Havens (1978) has implemented a frame system, MAYA, employing 

the basic idea of messages and message passing to good effect. 

At its most primitive level, the concept is a simple one: each 

actor (or frame) is an independent module which maintains its 

own representaticn of whatevar knowledge it deems to be 

important. The representation can only be accessed by sending 

the actor a message (which is itself an actor}, and if the actor 

then sees fit, it can respond by sending back a message. 

Ccnceptually, message passing differs from procedure calling in 

that it implies no top-down structure, but in effect allows any 

kind of top-down, bottom-up, or other scheme to be undertaken (a 

fact exploited especially by MAYA). 

This description comes fairly close to describing the !LISP 

message passing scheme with the following exceptions: 

(i} messages are not objects, but are s-expressions 

or patterns; 

(ii) answers to messages are not messages, but are 

arbitrary s-expressions er patterns; 

(iii) answers are guaranteed if a message has been 

sent; that is, continuations are not part of the 

message. 

(iv) activation records (i.e. execution instances} 

created by message passing have names and can be 

accessed. 

such considerations are extremely useful and non-restrictive if 

the purpose is to model knowledge rather than to produce an 

elegant description of process and control. Points (iii) and 

(iv) are perhaps the most critical differences between Hewitt's 

approach and that of I LISP. By guaranteeing an answer, I LISP 

removes the incumbency on the sending object to set up a 

continuation, a simplification achieved at the cost of some lack 
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of control flexibility. However, it seems useful that a 

super-goal always be required to evaluate the results of its 

subgoal, especially so in the case of a failure of some sort, 

since as Sussman (1973) has pointed out, profiting from errors 

is important. 

As to difference {iv), the naming of activation records 

allows ILISP to maintain a record of processing decisions, to be 

able to restart interrupte1 processes, and to otherwise 

manipulate its process activations. This is useful in many 

places, especially in execution e~vironment searches and 

episodic memory ccnstruction. 

~-1 Other A££roaches 

In this section, several schemes that have not been as 

criterial to !LISP as have frames and PLANNER/ CONNIVER will be 

ccmpared on at least a few interesting dimensions with !LISP. 

MERLIN (Moore and Newell (1973)) turns out to be quite important 

both because of its semantic network data structure and because 

of its ability to reason by analogy. Semantic network concepts 

have already been discussed; analogy will be taken up in Chapter 

VI. 

A final comparison will be made to the productior. system 

approach. Production systems (Newell (1973)) were designed as a 

psychological model of human short term memory processing and 

have more recently been used in a number of practical 

applications (e.g. MYCIN (Sho:-tliffe (1976)). The aims of the 

approach don't really have all that much in common with those of 

!LISP, but similarities between the production system 

"match---> action" kind of ccnti:ol paradigm and JLISP's pattern 

matching are fairly obvious. Specifically a pattern of the form 

(ANYTHING ! (---)) seems to essentially encode the same 

information as a production might (fLISP's "productions", of 

course, can haven elem~nts and more complex kinds of processing 

within them). If this analogy were carried out further, then a 

)PEXPR would be a group of productions and hence a production 
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system. since a system using ILISP would have many such 

I PEXPRs, it would in effect cont.a in many such II production 

systems". The only thing I can't fit in very well is short term 

memory, an aspect central to production systems but peripheral 

to my main concerns. Howev~r, it is encouraging that a control 

paradigm similar in some ways to that of !LISP has been so 

succ8ssful in various applications. It gives hope for the 

ultimate feasibility of !LISP for actual use in the "real 

world". 

1-~ Contributions to the Issues 

I would now like to examine the represen~ation scheme in 

light of the issues which it was supposad to treat (see issues 

(i)-R through (vi)-R in section 1.3). 

(i) ha~£1in~ £rocedural and declarativa information: 

Pattern expressions contribute to a unified view of 

declarative and procedural information. There is no distinction 

between a procedural IPEXPR body and a separate d9clarative data 

base. All information (proc~dural o~ declarative) is stored in 

patterns within the body of the 1PEXPR and is accessed uniformly 

via pattern matching. Moreover, execution instances contain 

patterns that are the declarative residue of procedural 

messages, further blurring the distinction between procedural 

and declarative information. 

(ii) accessing knowledge: 

The scheme presented here has several interesting features 

involving the accessing of information. Information is only 

accessed when some object wants some other object to answer a 

message. In trying to respond to a message, a receiving IPEXPR 

has a couple of options: it can know the answer directly 

(i.e. it has a pattern in its body that contains the answer) or 

it may need to look elsewhere for an ans~er, in which case a 

strategy is followed that depends on the kind of information 
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being sought. Thus, a search along very specific "links" 

emanating from the IPEXPR can be instituted (allowing 

inheritance up "ISA" links for example), or an arbitrary 

inferencing scheme can be entered into involving much thrashing 

about, or the user can be asked to help out, or any number of 

other things can be attempted. 

Even if the lPEXPR does know the answer, it may need to 

perform a number of computaticns b~fore providing it. In so 

doing it can send out other messages using a variety of control 

paradigms ranging from the ordinary serial processing to 

simulated parallelism. 

(iii) the necessity for~ r.ontext mechanism: 

The nature of context is rather more complex than has been 

suggested at several places during the chapter. It has to de 

with deciding what things are relevant at any time; the nature 

of this decision-making process will be made explicit in Chapter 

v. Here it suffices to say that the major contribution to 

context is the execution environment which extends up EX-ENVIRON 

pointers from any execution instance. The execution environment 

can be accessed whenever contextually varying information such 

as purpose, location of real world objects, current time, 

etc. is needed. 

(iv) 1h~ gggg to kee£ a record Qf gygni2: 
Execution environments are also useful in providing an 

episodic memory, not only because they don't disappear after 

they are complete, but also because they can be examined in the 

same way as other !PEXPR environments. The first capability 

means that all execution instances which completed still are 

there to be queried as to vho called them, why they were called, 

what they answered to the activation message patterns, what 

IPEXPR they are an execution instance of, and so on. The second 

capability is a by-product of having execution instances with 

meaningful patterns rather than uninterpretable internal 

pcinters. It means that all the matching routines which work 
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for ordinary IPEXPRs can also ba used for execution instances 

and that searching old execution environments is as natural as 

searching anywhere else. 

(v) robustness: 

An interesting issue is that of robustness, i.e. how to 

cope with anomalous data. Although capabilities in this regard 

are not fully developed, !LISP is presently capable of failure 

to match processing if a pattarn isn't directly matchable in a 

IPEXPR. In addition, since messages are guaranteed to get an 

answer, a sendir.g IPEXPR can plan on getting a failure response 

of some sort if the receiving JPEXPR is unable to handle the 

message. With this response, the sender should be able to take 

afpropriate action. However, even though the machinery has been 

provided to handle them, virtually no analysis has gone into the 

nature of failure responses. 

(vi) combinatorial ex£losion !•§• £2fil£1gxii:£: 

IPEXPRs can conveniently be viewed in several ways, a 

flexibility which helps to resolve both efficiency and 

complexity problems. For instance, when a IPEXPR is regarded as 

a node in a network, then the fact that only nearby objects can 

be "seen" means that search can be limited. In fact such search 

can often be restricted to objects in the ISA or execution 

environments. Of particular interest here are objects in the 

execution environment, the primary means of focussing attention. 

But IPEXPRs can also be considered as separate modules 

accessible only via their messag~s, a fact which helps resolve 
complexity issues. Such separability is extremely valuable in 

localizing effects, and also in dividing up the domain into 

ccmprehensible chunks (moreover, !PEXPRs are flexible enough 

that they don't impose many restrictions on how to break down 

world knowledge). 

Many of the 

introduction also 

other 

can be 

non-central 

addressed by 

issues 

this 

raised in 

approach. 

the 

For 
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example, the issue of non-goal-directed processing: while it is 

true that most of the examples of Chapter V involve top-down 

activation in that a IPEXPR sends a message to another IPEXPR in 

order to achieve a sub-goal, this is an external interpretation 

put on the message by humans. To fLISP it is just a message, 

indistinguishable (in how they are har.dled) from messages that 

achieve associative activation (see Chapter VI) or messages that 

allow a set of words to be conglomerated bottom-up into a single 

phrase or any other kinds of messages. Moreover, since 

execution instances remain after creation, it is possible for 

several pattern expressions to communicate with a single pattern 

expression, or vice versa. This can be essential for bottom-up 

or associative activation when it is often important that 

several messages from different sources be sent before the 

receiving f PEXPF can be considered relevant. Thus, it can be 

seen that fLISP defines a message passing paradigm that is 

neither bottom-up nor top-down, but either one can be simulat~d 

if desired. 

In conclusion, the major contribution of !LISP is perhaps 

the confluence of ideas in one place. Though many of the ideas 

derive from other approaches, putting them all together is 

useful in that the ideas take on a new perspective when viewed 

in the context of one another. 

The contribution that the representation scheme makes to 

conversation will become clearer as the next chapter (Chapter V) 

is read. In it, a particular conversation scenario is 

delineated, and a model to handle several conversations in this 

scenario is discussed in detail. 
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CHAPTER V 

In this chapter the representation scheme is applied to the 

analysis of conversation. To this end, an active participant 

carrying out a (simulated) plan of attending a symphony concert 

is modelled. During execution of the plan, the model, among 

other things, engages in several conversations, including one to 

buy a ticket to the concert, another to buy a drink at 

intermission, and one with a friend to "pass the time". 

My primary concern in this chapter will be to indicate the 

basic nature of the interactions that must go on, and to show 

how the kind of analysis described here might eventually be 

extended to a more sophisticated model for conversation. Much 

pseudo-code is given, but note that none of it has been fully 

debugged. ~oreover, many functions serve as "black boxes" in 

the sense that their I/0 behaviour has been delineated but more 

elaborate versions are unavailable. 

The chapter is organized· along these lines: first, an 

environment in which to study conversation (called the concert 

scenario) is described. This is followed by a brief overview of 

how this scenario has been modelled in !LISP. The model itself 

is then presented in detail in terms of the goals it undertakes 

to handle a dialogue to buy a ticket. Higher level 

non-linguistic goals are described first, followed by scripts, 

speech acts, and the language level. Finally, the two other 
dialogues the model undertakes, one with a bartender and one 

with a friend, are discussed very briefly. 

~-1 !h§ Concert Scenario 

I will discuss here a 

model undertakes conversations 

single small scenario in which a 

that might occur during 

attendance at a symphony concert. In these conversations the 
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model takes an active role (i.e. is one of the conversants), 

hence forcing it to have a goal oriented viewpoint on ensuing 

events. 

Before giving more details about the scenario, I would like 

to indicate some of the general rgasons for choosing it. The 

"concert scenario" has been chosen because it is complex enough 

tc illustrate most of the representation and language issues, 

yet it remains within finite dimensions. Various kinds of 

dialogue can occur including task-oriented (see Deutsch (1974)), 

non-task-oriented, formal, informal, etc. Non-linguistic goals 

occur and interact with the linguistic goals. Finally, having a 

single scenario allows a small amoun~ of information to be used 

in several, possibly guite different, settings. 

The scenario is essentially this: the model is at home and 

decides to go to a concert at the Queen Elizabeth theatre. The 

model 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

( vi) 

(vii) 

leaves home; 

goes to the Queen Elizabeth theatre; 

buys a ticket to the concert; 

enters the theatre; 

takes in the first half of the concert; 

buys a drink at the bar at intermission; 

drinks it; 

(viii) unexpect~dly meets a friend; 

(ix) takes in the second half of the concert; 

and (x) goes heme. 

Three conversations occur: during step (iii) when the model must 

talk with the ticket seller in order to purchase a ticket to the 

concert; during step (vi) when the model talks vith the 

bartender in order to buy a drink; and during step (viii) when 

the model talks to the friend. These critical steps are treated 

in some detail; the other steps are only examined at a very 

cursory level, and are included mainly to show continuity in the 

plan and to indicate the interaction of linguistic and 

non-linguistic goals. 

I will now present sample dialogues which might actually 
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occur in such a situatior.. They are fabrications, but my 

informal analysis of similar situations convinces me that they 

are not unrealistic. They have served as a guide to the kinds 

of things that the model must allow for, but many of the 

phenomena (linguistic and otherwise) that occur in them have not 

been fully accounted for in this version of the model. 

conversation 1 

This conversation occurs when the model buys a ticket to 

-!: h e c once I"t • 

Ticket-seller: "Yes?" 

Model: "I'd like a ticket to the concert." 

Ticket-seller: "How about K-5? It is right centre about 10 
rows back." 

Model: "Fine. How much is that? 11 

Ticket-seller: "10 dollars." 

Model: 11 0. K." (hann.s over the money) 

Ticket-seller: (hands over the ticket) 

Model: "Thanks." 

Tickat-seller: "Thank you sir." 

This somewhat innocuous conversation illustrates a number 

of interesting things. First, it is a task-oriented dialogue in 

the sense that it is entered into to achieve some rather 

specific goal (i .-e. to get a ticket to the concert). Moreover, 

the task is a co~mon one, well understood by many people, so 

there is a well defined script that can direct the conversation. 

The script clearly must be able to handle all the bargaining and 

exchange components underlying the conversation, to smoothly 

enter the conversation and just as smoothly terminate it, to 

discover the purpose for the conversation (when asked "Yes?"), 

and to interleave non-linguistic actions (handing over the money 

or tickets) with the linguistic utterances. Conversant models 

must be kept for both the ticket seller and the model so that 

the minimal surface utterances seen here can be devised (after 
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seeing what knowledge is stored th9re) and so that politeness 

markers ("sir") can be attached appropriate to the relative 

status of the conversants. As in all these conversations, 

conversation 1 must be properly integrated into the general plan 

of the model. 

This conversation has bean fairly completely studied in 

terms of what knowledge ~s needed to properly undertake it, how 

that knowledge can be represented, and how it interacts to yield 

a proper sequence of surface utterances. Later in the chapter 

it is discussed from the highest levels right down to how it 

handles surface level input / output. However, because the 

analysis is general enough to handle many conversations of this 

type, the actual surface utterances suggested by the analysis 

would differ somewhat from those shown here. 

Ccnversation 2 

This dialogue takes place at thB bar in the lobby when the 

model decides to obtain a drink. 

Bartender: "Sir?" 

Model: "Could I have a rye ?11 

Bartender: "On the rocks?" 

Model: -"Please." 

Bartender: "There you go." (produces drink) 
"That'll be $1.50 please." 

Model: (produces 2 dollar bil 1) 

Bartender: ''Thank you sir. n (produces 50 cents change) 

Model: "Thanks." 

This conversation is almost a duplicate of the first one in 

its interesting features. The main reason for including it is 

to try to show that the analysis proposed for conversation 1 

isn't totally "ticket specific". In fact, all the main 

structures proposed for conversation 1 can also be used for 

convErsation 2, the only difference being that certain kinds of 

ticket information are replac~d by similar kinds of drink 
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information (i.e. the information about the product being bought 

is now appropriate to drinks not tickets, the conversant is now 

a l:artender not a tick,2t seller, the model's purpose is to buy a 

drink not a ticket, ~tc.) The conversation is discussed briefly 

in the same terms aB conver3ation 1, and is shown to be handled 

in a similar manner. The subtle differences in surface language 

are not at all dealt with. 

cc n versa ti on 3 

This conversation ~s entered into by the model when it 

unexpectedly meets a "friend", Jack, at intermission. 

Model: "Hi Jack." 

Jack: "Model! What•s new?" 

Model: "Not much. I didn't.know iou came to these things. 
Do you have season tickets." 

Jack: "No - but I couldn't miss this one. I really want to 
hear the Mozart concerto.if 

Model: "I came mo$tly fQr the Bartek myselfl AndfI canh•t 
say I was rt1sappo1ntad by the firs haI • T e 
orchestra pJ.ayea superbly, ~on't you think?" 

Jack: "Frankly, I.was bored. Don't much like Bartek really, 
or any otner 20th century composer." 

Model: "Wellt I feel the same way aboutfMozart,
11

I•~ usually 
bored to tears by hls stu f. Sti the B-fiat 
isn't bad so maybe I'll stay awake for a change. 11 

Jack: "There aoes the buzzer. I'd best get back to my 
seat." 

Model: "~gg~ti~g ,~~ xoge:i!~n. We'll have to get together 

Jack: "Sure thing. See you soon." 

Model: "Take care." 

This conversation illustrates several features not 

encountered in conversations 1 and 2. For one thing, it isn•t 

task-oriented; that is, there is no explicit, detailed goal the 

model has for taking part in the conversation. The model has 

more general goals such as filling in time, being socially 

gregarious, trying to win su~port for its views or arguing 

against those of Jack. Because there is a much looser structure 
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to what the model is doing here, the general script overse~ing 

the discussion is of necessity much less well informed in a 

direct sense. Instead, it must make many inferences based on 

partial information, must make good use of the belief models of 

itself and Jack, must be flexible and ready for unexpected 

information, and so on. 

This conversation is interesting, as well, in that it isn't 

undertaken as part of any pre-determined plan, but is started as 

the result of unexpectedly meeting Jack. The plan in control at 

that time would have to explain the unrehearsed arrival of Jack 

and suggest ways of rectifying the anomaly of his presence. 

Such rectification would involve the activation of an 

appropriate script to direct the conversation. Moreover, the 

conversation isn't terminated as part of a plan either (i.e. the 

buzzer sounds) and this would have to be accounted for as well. 

The conversation has a much more serious need for surface 

level linguistic analysis than do the other two. The utterances 

are longer, more complex, and more informal. The reference 

p~oblems (especially pronoun reference) are more subtle and 

quite difficult ~.g. ''this one" in the fourth utterance). 

Special linguistic forms ("the Bartek", "the B-flat") peculiar 

to classical music further complicate matters. 

The sequencing order is much more poorly defined here, 

presenting problems even at the level of deciding when to 

interpret and when to produce utterances, whether to interrupt a 

long winded discourse, etc. Several well defined scripts (for 

greeting and closing, at least) could be integrated at the 

appropriate time if the script were alert to bottom-up cues, an 

integration which would save much processing time since 

utterances could be much more easily understood and produced by 

these scripts. 

This conversation also illustrates the need for an episodic 

capability. Questions about the first half of the concert would 

require the model to scan over episodes representing what 

occurred at that time and extract what seemed relevant. 

Most of the things conversation 3 illustrates have not been 
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analyzed in detail, although a preliminary attempt has been made 

to analyze some aspects. 

~-1 overview of the Model 

Most important pieces of knowledge needed by the model for 

its task of buying a ticket to the concert are encoded as 

pattern expressions. To handle the concert scenario two main 

categories of IPEXPR are necessary: 

(i) ]ri!!!S;f! pattern expressions to carry out parts of the 

main plan of attending a concert including going to the concert, 

buying a ticket, taking part in a conversation during the ticket 

purchase, and so on. 

(ii) 2g£QnQ~fY pattern expressions, such as those 

representing models of the conversant, the agenda of the 

concert, and the like, that are sources of information for the 

primary fPEXPRs but aren't really part of the mainstream plan. 

The distinction between (i) and (ii) can be viewed as the 

difference between active objects calling in other active 

objects to accomplish subgoa~s and static objects standing by to 

provide certain pieces of "foregrounded" knowledge when asked to 

do so by the active objects. The division is not, of course, 

absolute in that primary tPEXPRs can ask one another for 

information without really giving up control; and secondary 

tPEXPRs can be activated as "temporary" subgoals when they are 

asked questions by primary tPEXPRs or each other. 

Some of the primary pattern expressions used by the model 

to handle a portion of the conversation to buy a ticket are 

shown in Figure 5.1 which outlines in graphic form the important 

object/ sub-object goal dependencies. 1 

These JPEXPRs are defined as follovs: 

(i) TOP-VIEW: overlord to the model; invokes parallel 

lin Figure 5.1 
double line just 
WORLD-VIEW are 
the double arrow 
replaces INQUIRE 

the single lines represent subgoal links; the 
beneath TOP-LEVEL indicates that META-VIEW and 
spawned as parallel subgoals of TOP-LEVEL; and 
between INQryIRE and YES2 indicate that YES2 
as a subgoal of WHAT-DO-YOU-WANT. 



BUY 
(ticket) 

INQUIRE 

META-VIEW 

. . . 

YES2 

TOP-LEVEL 

ATTEND­
CONCERT 

BUY 
(drink) 

BUY­
ONVERSATIO 
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YOU-WANT 
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subgoals META-VIEW and WORLD-VIEW. 

(ii) META-VIEW: the model's "intelligent" garbage 

collector; responsible for overseeing all clean-up operaticns on 

the system's structures. 

(iii) WORLD-VIEW: essentially the "consciousness" of the 

model. Must co-ordinate, at th9 highest levels, the goals of 

the model; must decide what subgoals to achieve when and for 

what reasons. 

(iv) ATTEND-CONCERT: the f PEXPR that directs the model's 

efforts to attend this particular concert. conceptually, at 

least, it has been built by some plan-construction objects at 

the request of WORLD-VIEW when it decided that attendance at the 

concert would be a good idea. It must achieve the many subgoals 

necessary to accomplish this goal. The major three of 

importance for conversation are buying a ticket, buying a drink, 

and filling in time at intermission. 

(v) BUY: the model's pattern expression to direct the 

buying of something. In this case ATTEND-CONCERT suggests 

buying a ticket to the concert and later calls BUY again to 

suggest buying a drink. BijY must direct the model to the place 

of purchase, must recognize the particular seller of the item, 

must access JPEXPRs which represent various bargaining positions 

of the two parties to the buying, and finally must engage in a 

conversation to effect the purchase. 

(vi) BUY-CONVERSATION: is the script that controls a 

conversation to bargain for the exchange of one set of goods for 

ancther; in this case the exchange is between the money of the 

model and the ticket of the ticket seller. The pattern 

expression predicts the conversational seguence of events 

starting with the greetings which open the conversation, through 

bargaining over the location of the ticket, bargaining over the 

price, and finally ending with the exchange of the agreed upon 

goods and the making of accompanying comments. Each of these 

predictions takes the form of calling in a sub-script to direct 

the processing. The first is rather poetically named 

WHAT-DO-YOU-WANT. 
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(vii) WHAT-DO-YOU-WANT: a script that knows about the kind 

of language that accompanies a conversational exchange where one 

person asks another what he wants (i.e. his purpose). The 

script is invoked in this case by the EXCHANGE-CONVERSATION 

jPEXPR to handle the first couple of utterances in the 

conversation to buy a ticket. It expects the ticket seller to 

inquire into the purposes of the model; and expects the model to 

respond appropriately to this inquiry. 

(viii) INQUIRE: a speech act which will either understand 

or produce an ''inquire" utterance, depending on whether the 

model is listening or speaking. In the current example, the 

WHAT-DO-YOP-WANT pattern expression expects the ticket seller to 

utter an inquiry into the purpose of the model, so inquire is 

activated to understand such an utterance. Achieving this 

interpretation requires the JPEXPR to look into the input buffer 

for words which have actually been uttered. Discovering the 

word "yes", it checks to see if there is a speech act associated 

with the word "yes?" which could be construed as an inquiry. 

Finding that there is (YES2), INQUIRE is supplanted by YES2 

which continues the processing (since the actual input should 

take precedence over any expectation). 

(ix) YES2: represents the meaning of "yes" that corresponds 

to an inquiry (rather than the meaning "affirmative answer''). 

It is called in to continue the process of understanding the 

input. Since "yes?" is a surface string corresponding to the 

meaning of YES2, YES2 is able to achieve the proper 

interpretation that the utterance is an inquiry into the current 

purpose of the model (available in the execution environment). 

It then returns, satisfied, to its calling IPEXPR. 

WHAT-DO-YOU-WANT regains control; sees that the first 

utterance is just about as expected (if it weren't, 

WHAT-DO-YOU-WANT would have had to explain what went wrong); 

integrates it into the conversation to date, being recorded in 

the script; and then proceeds to the second script utterance, 

the generation of a response to the inquiry. Before handling 

the next script utterance, however, WHAT-DO-YOU-WANT must first 
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decide if something in the conversation to dat~ is demanding 

priority over its script expectations, and if so, what to do 

about it. In this case an analysis of the conversation to date 

suggests only that the unknown purpose of the first utterance 

should be discovered and, since this is in accord with the 

script's expectations, everything is in order. 

(x) RESPOND: contains the model's ideas about responding to 

a query, including how to interpret or generate a response. 

Since WHAT-DO-YOU-WANT orders RESPOND to generat~ an utterance 

stating the purpose of the model, it does so, sending the 

resultant set of words (e.g. "I'd like a ticket to the 

concert.") to the EXPR SPEAK-WORDS. Clearly many other objects 

have been called en here to decide such things as how much 

semantic information will express the model's purpose to the 

ticket seller (this involves, at least, looking at the beliefs 

of the conversant, of the model itself, and into the execution 

environment); how to phrase the eventual output; and so on. 

These issues aren't treated to any great extent: I'm content at 

this stage that the system knows generally what to say. 

Once RESPOND is done, it returns again to WHAT-DO-YOU-WANT 

which must check that the utterance produced is appropriate, tie 

it in to the conversation to date, and then proceed to the next 

script utterance. But, since the script is now complete, 

WHAT-DO-YOU-WANT returns to the EXCHANGE-CONVERSATION script 

which, if satisfied with its behaviour, ties the 

WHAT-DO-YOU-WANT utterances into its own conception of the 

conversation to date. It then proceeds to the bargaining 

scripts which carry on. Eventually, even the 
EXCHANGE-CONVERSATION pattern expression is done, so it returns 

to BOY, which, when finished, goes back to ATTEND-CONCERT to 

continue with the plan of attending the concert. Among other 

things, two more conversations will be undertaken before the 

ATTEND-CONCERT IPEXPR is satisfied, and these will be handled in 

much the same way as the ticket buying conversation has been. 

Once ATTEND-CONCERT is done, WORLD-VIEW takes over to 

pcnder what to do next. Note that working in parallel to 
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WORLD-VIEW has been META-VIEW cleaning up the large number of 

execution instances and other miscellany constructed during the 

reign of WORLD-VIEW. 

This has been a brief look at some of the many 

action-packed primary pattern expressions in the concert 

scenario. But, these IPEXPRs need to access data contained in 

other, secondary pattern expressions. secondary JPEXPRs are 

activated mainly for the information contained in their static 

patterns and are thus distinguished from primary IPEXPRs which 

are activated to achieve some major subgoal. 

For any particular set of primary goals, a certain 

collection of secondary IPEXPRs is needed, constituting in a 

sense, the foreground information for the primary goals. The 

relevance of each is discovered at various points during the 

execution of the primary planning sequence, and pointers from 

these ·primary I PEXPRs are set up to record the relevance of the 

various secondaries to the main stream context. Later other 

IPEXPRs needing information can use these links to determine 

which secondaries to construct. 

So, lets look at some of the secondary pattern expressions 

that have proven useful in the concert scenario. The first such 

IPEXPR is the CONCERT1 JPEXPR, containing all the model's 

knowledge about this particular concert such as the agenda, the 

location of the concert, the entrance requirements. 

Theoretically at least, it has been built sometime in the past 

(whenever the model discovered that the concert was to be 

performed and heard the details of the agenda), and has been 

re-discovered by some planning lPEXPR spawned by WORLD-VIEW to 

construct the plan to go to this concert. It is passed by 

WORLD-VIEW as part of the message that activates ATTEND-CONCERT 

and is used extensively in further sub-lPEXPRs (especially in 

retrieving characteristics of the ticket to the concert and in 

discovering the agenda). 

Another secondary pattern 

TICKET-FOR-CONCERT1 IPEXPR (a new 

TICKET-FOR-CONCEFT) is generated 

expression, the 

instance of the generic 

by ATTEND-CONCERT when it is 
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about to BUY the ticket, It inharits from TICKET-FOR-CONCERT 

knowledge as to the physical location of the ticket (in the 

Queen Elizabeth theatre's ticket booth), the desired location 

represented by the ticket, and the projected cost for such a 

location. Looking further up the ISA environment to TICKET, it 

can discover that a TICKET-SELLER sells tickets, Later, once 

actual characteristics (location, cost, etc,) of the ticket have 

been determined (by the BARGAIN sub-goal of BUY-CONVERSATION), 

they are added to TICKET-FOR-CONCERT1. 

Perhaps the most important secondary pattern expression is 

TICKET-SELLER1, first created as a new instance of the generic 

TICKET-SELLER by the BUY subgoal when it recognizes the 

existence of a particular person in the ticket booth. BUY knows 

that the person is a TICKET-SELLER because TICKET-FOR-CONCERT1 

tells it so, TICKET-SELLER1 constitutes the model's model of 

the conversant. It initially contains only the knowledge that 

it represents a TICKET-SELLER, but via its INSTANCE-OF link it 

is able to inherit much information from the ISA environment. 

In particular the immediately superior TICKET-SELLER contains 

information about ticket sellers: that they sell tickets, that 

they're willing to exchange tickets for an appropriate amount of 

money, that they are sellers, and so on. This information is of 

use later when various bargaining positions must be discovered. 

Moreover, a truly complete TICKET-SELLER would contain 

information about speaking habits, probable locations, potential 

scripts, etc. As time goes on, additional characteristics of 

TICK~T-SELLER1 can be added as the model constructs an ever more 

accurate view of the conversant. A final note: the model also 

has a model of itself, the details of which are explained in 

section 5.3.3, 

The preceding discussion gives a quick overview of the 

various capabilities of the model in the concert domain. I 

would now like to present a much more detailed analysis. The 

interactions among the various objects gets quite complex, so 

rather than following each message as it is dispatched, in 

general I plan to take the approach of describing each pattern 
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expression fairly completely before going on to other objects. 

The order of description is basically breadth-first and is shown 

in Figure 5.2. 

Non-linguistic i2A1§: 

Language Level 2-2~12: 

~-] Non-linguistic Goals 

2•1·1 !h~ Bighg§! Q2Al2 

TOP-VIEW 
META-VIEW 
WORLD-VIEW 
ATTEND-CONCERT 
BUY 

BUY-CONVERSATION 
WHAT-DO-YOTJ-WANT 
BARGAIN 
EXCHANGE 
FAREWELL 

UTTERANCE 
CLAUSE 
NOUN-GROUP 
VERB-GROUP 
PREP-GROUP 

At the highest levels the model is not concerned with 

language at all, but is instead interested in co-ordinating its 

various non-linguistic goals. These goals have been drastically 

simplified in this presentation in order to illustrate how they 

relate to one another and to language without going into the 

obviously large complexities of representing sophisticated 

non-linguistic goals. 

The top-most goal in the system is TOP-VIEW whose main 

purpose is to co-ordinate the garbage collector and the other 

actions of the model. It is called in at system initiation by 

sending it (EXECUTE TOP-VIEW ?MATCH-PROGRAM), a message which 

will match TOP-VIEW's (EXECUTE TOP-VIEW ! (---)) pattern. The 

attempt to match the third element will institute the 

computation which controls the rest of the system's actions. 
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<I PDEF TOP-VIEW 
(SUPERSET TOP-VIEW SYSTEM-OBJECT) 
(EXECUTE TOP-VIEW 

! (I PARALLEL 
(META-VIEW (EXECUTE META-VIEW ?EETA-RESULT) 

(ITIME= 10)) 
(WORLD-VIEW (EXECUTE WORLD-VIEW ?WORLD-RESULT) 

(ITIME= 100)))) > 
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The receiving pattern's third element is a call to 

!PARALLEL that sends EXECUTE messages in pseudo-parallel to 

META-VIEW (the name of the garbage collector) and WORLD-VIEW 

(the name of the top-level READ-IEVAL-PRINT loop of the system). 

The time-slicing has been arbitrarily set at 10 to 1 in favour 

of the WORLD-VIEW pattern expression; that is the system will 

spend 90% of its time in action, the other 10~ in garbage 

ccllection. 

<IPDE:F META-VIEW 
(SUPERSET META-VIEW SYSTEM-OBJECT) 
(EXECUTE META-VIEW $(RECLAIM)) > 

Currently, the nature of META-VIEW has not been analyzed to 

any great detail; all it does to answer an EXECUTE message is to 

invoke LISP's garbage collector. Facets of a more sophisticated 

garbage collector are discussed in Chapter VI. 

The other parallel subgoal of TOP-VIEW is WORLD-VIEW, 

potentially the most crucial pattern expression in the model 

since it is the top-level co-ordinator of the model's goals. 

But, as with META-VIEW, it has for the moment been drastically 

cut back and consists mainly of a READ-JEVAL-PRINT loop which 

gets entered upon receipt of an appropriate EXECUTE message 

(usually from TOP-VIEW). 

<IPD~sui~R~~TVR~iLD-VIEW SYSTEM-OBJECT) 
?EXECUTE WORLD-VIEW 

! (I r, 0
1PJiNT ( I EV AL (READ) )) 
(I GO • L 1))) > 

Since the current WORLD-VIEW IPEXPR merely READS a form, 

IEVALs it and PRINTs the result of the form's IEVALuation, it is 

up to the user to specify the goals of the system. First, the 

pattern (LOCATION SELF HOME) is asserted, indicating that the 

model (SELF) is at "home". Then, the message form 

(ATTEND-CONCERT 
(EXECUTE ATTEND-CONCERT SELF CONCERT1 ?ATTEND-RESULT)) 
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is entered to call in the ATTEND-CONCERT subgoal. 

2•1·1 A H~jQ£ ~YBg2~l: !II~!Q=£Q!'!f~E! 
The user asks the model (SELF) to employ a plan of action 

called ATTEND-CONCERT in order to attend a concert (CONCERT1). 

The ATTEND-CONCERT IPEXPR (given completely in Appendix II) has 

the form 

<fPDEF ATTEND-CONCERT 
(SUPERSET ATTEND-CONCERT ATTEND) 
(EXECUTE ATTEND-CONCERT SELF ?T~IS-CONCERT 

! (EVENT-SEQUENCE --- ) ) > 
The actual steps the model is to undertake are contained in 

the! (EVENT-SEQUENCE --- ) pattern element which will be IEYALed 

when the message pattern 

(EXECUTE ATTEND-CONCERT SELF CONCERT1 ?ATTEND-RESULT) 

is matched against the EXECUTE pattern of ATTEND-CONCERT. 

Looking at the process in more detail, the first thr€e 

elements of the message pattern trivially match the 

corresponding elements of the receiving pattern. Note that the 

third element, SELF, names a f PEXPR that contains the model's 

knowledge of itself (it is fully presented in section 5.3.3). 

The fourth message element, CONCERT1, matches the fourth 

receiving element, ?THIS-CONCERT, with the side-effect that the 

variable THIS-CONCERT is bound to CONCERT1 in the context of the 

new execution instance (called ATTEND-CONCERT-1) of the 

receiving IPEXPR ATTEND-CONCERT. 

Diverting attention for a moment to the CONCERT1 IPEXPR 

<IPDEF CONCERT1 

{
INSTANCE-OF CONCERT1 CONCERT) 
LOCATION CONCERT1 QET) 
AGENDA CONCERT1 AGENDl-CONCERT1) > 

it can be seen that CONCERT1 is a particular CONCERT, located at 

the Queen Elizabeth theatre with the agenda AGENDA-CONCERT1. Of 

courser CONCERT is also a IPEXPR: 

<IPDEF CONCERT 
(SUPERSET CONCERT EVENT) 
(ENTRANCE-REQOIREMENT tCONCERT 

tTICKET-F08-CONCERT) > 
containing the information that the entrance requirements for a 

particular concert is a particular ticket to the concert (note 
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the "t" macros indicating instances). Similarly, the QET 

!PEXPR: 

<!PD !N~,INcE-oF QET THEATRE) 
TICKET-BOOTH QET TICKET-BOOTH-QET) 
LOBBY QET LOBBY-QET) 
BAR QET BAR-Q ET ) 
AUDITORIUM QET AUDITORIOM-QET) 
SEATS QET SEATS - QET) > 

and AGENDA-CONCERT1: 

<IPDEF AGENDA-CONCERT1 
INSTANCE-OF AGENDA-CONCERT1 AGENDA-CONCERT) 
ORCHESTRA CONCERT1 VANCOUVER SYMPHONY) 
CONDUCTOR ORCHESTRA CONCERT1 AKIYAMA) 
FIRST-HALF CONCERT1 BARTCK-CONCERTO-FOR-ORCHESTRA) 
SECOND-HALF CONCERT1 MOZART-PIANO-CONCERT0-27) 
SOLOIST SECOND-HALF CONCERT 1 BREN DL) > 

The patterns in these tPEXPRs, of course, contain the names of 

other IPEXPRs and these IPEXPRs contain patterns with the names 

of still other IPEXPRs, and so on. This connectivity can be 

better appreciated by representing the "links" among the 

previously mentioned JPEXPRs as shown in Figure 5.3.1 

Returning to the message processing, it can be seen that 

SELF is going to attend CONCERT1 if the fifth element of the 

message, ?ATTEND-RESULT, matches the fifth element of the 

receiving pattern, ! (EVENT-SEQUENCE ) in the EXECUTE pattern 

of ATTEND-CONCERT (above). It, of course, does match, but only 

if the IEVALuation of the EVENT-SEQUENCE IEXPR returns non-NIL. 

For a fuller explanation of the action of EVENT-SEQUENCE, see 

Appendix I. Suffice to say here that it basically IEVALs each 

form in its body sequentially (much as would a IPROG), with the 

side-effect of asserting (THEN Xi Xi+ 1) patterns in all 

execution instances Xi that correspond to major steps in the 

event sequence (designated by a label in the event sequence 

body). 

The first such major step encountered in the EXECUTE of 

ATTEND-CONCERT is 

1The following notational conventions have been used: the nodes 
are the fPEXPRs· the arcs represent the patterns contained in 
the IPEXPRs· the labels on the arcs are the pattern heads; "e" 
means INSTANCE-OF; "s" means SUPERSET; "r-i" indicates 
RCLE-INSTANCE-OF ; "f" at the end of an arc means that the 
linkage is to an (arbitrary) instance of the node at that end of 
the arc; "!" means that the value of the node at that end of the 
arc mus~ be computed. 
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STEP1 
(GOTO (EXECUTE GOTO SELF !LDC-CONCERT ?GO-PLACE)) 

In this step the model leaves START-LOCATION (HOME, discovered 

by looking into the execution environment for the current 

location of self, i.e. %(LOCATION SELF ?START-LOCATION)) to go 

to the location of the concert (QET, pointed to from CONCERT1). 
I 

GOTO is a JPEXPR which would be concerned with actually 

achieving the goal of going from HOME to QET, including managing 

all other cues which might be needed to ensure arrival at QET. 

GOTO would also be responsible for changing the current 

execution environment LOCATION pointer en-route so that it 

continued to accurately reflect changes in location of the 

model. Even this part requires some work; that is, there might 

be representations of location in the execution environment such 

as (LOCATION SELF VANCOUVER) which needn't be changed, but 

(LOCATION SELF HOME) certainly needs to be. Generally speaking, 

LOCATIONS in the execution environment can be changed according 

to the following rule: find the lowest PART-OF intersection 

between the start location (e.g. HOME) and the finish location 

(e.g. QET), in this case VANCOUVER. Then change all execution 

environment LOCATION patterns which designate locations below 

this intersecting node (e.g. change (LOCATION SELF HOME) and 

(LOCATION SELF POINT-GREY) to (LOCATION SELF QET); but don't 

change (LOCATION SELF VANCOUVER) or (LOCATION SELF CANADA)). 

They exist in the execution environment). This is quite 

reasonable since the PART-OF intersection defines precisely the 

level of detail being changed by the movement. 

Similar kinds of automatic execution environment pattern 

changes must be carried out at many places in the model, such as 

when a timer is advanced (recall the timing of interrupts from 

Chapter III), when the model changes position in any way, and so 

on. The code to undertake such changes would be embedded in 

IF-ADDED or IF-REMOVED methods associated with objects such as 

LOCATION or TIME, and would be invoked when patterns headed by 

these objects are asserted or deleted by the model's actions. 

once GOTO has finished executing, the model has either 
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succeeded or failed in its attemp~d traversal of some route (of 

GOTO's own choosing) between HOME and QET. If it has failed, 

NIL will be returned to ATTENO-CONCERT-1. This eventuality is 

allowed for in the ATTEND-CONCERT-1 ev~nt sequence by calling in 

the !EXPR CHECK-FAILURE which will check for the failure and 

suggest a course of remedial action if a failure has indeed 

occurred. CHECK-FAILURE is currently quite simple, but it will 

eventually be upgraded. 

Assume that the first step of the event sequence is 

successful; that is, the model is at the QET. Prior to buying a 

ticket to the concert, the model must find out the ticket's 

characteristics, so it asks CONCERT1 (the value of THIS-CONCERT) 

(ENTRANCE-REQUIREMENT !THIS-CONCERT ?DESIRED-TICKETS). 

Since CONCERT1 doesn't know this inform~tion directly, it must 

be inherited from the ISA environment where, stored with 

CCNCERT, is a pattern 

(ENTRANCE-REQUIREMENT tCONCERT tTICKET-FOR-CONCERT) 

The attempt to match ?DESIRED-TICKET with tTICKET-FOR-CONCEBT 

results in the creation of a new instance of TICKET-FOB-CONCERT 

(see the macro conflict table in Chapter III) called 

TICKET-FOR-CONCERT1, which is bound to DESIRED-TICKET. 

TICKET-FOR-CONCERT1 will, once the ticket is purchased, contain 

the characteristics of the particular ticket bought for this 

concert. Right now TICKET-FOR-CONCERT1 is a blank slate, 

containing only an 

(INSTANCE-OF TICKET-FOR-CONCERT1 TICKET-FOR-CONCERT) pattern. 

It can, of course, inherit from TICKET-FOR-CONCERT information 

regarding ticket costs and information about the QET location 

represented by the ticket (dubbed REPN here to distinguish it 

frcm the LOCATION of the ticket, i.e. the ticket booth of the 

QET). 
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<JPDEF TICKET-FOR-CONCERT 

!
SUPERSET TICKET-FOR-CONCERT TICKET) 
LOCATION tTICKET-FOR-CONCERT TICKET-BOOTH-QET) 
REPN !TICtE~-FOR-CONCERT =(X (SUBPART X SEATS-QET))) 
COST TICKET-FOR-CONCERT 

!(IC ND ((EQ 'SEATSQET 
(!POINTER REPN TICKET-FOR-CONCERT)) 

1 tDOLLARS-10) 
((EQ 'SEATSQETLEFTtENTRE 

(!POINTER REPN TICKET-FOR-CONCERT)) 
1 tDOLLARS-5) 

((EQ 1 StATSQETRIGHTCENTRE 
(!POINTER REPN TICKET-FOR-CONCERT)) 

• ,oo LL ABS -5) 
(T NIL) ) ) > 
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At higher levels in the ISA environment there is the TICKET 

IPEXPR: 

<tPDEF TICKET 
(SUPERSET TICKET ENTRANCE-REQUIREMENT) 
(SELLER tTICKET tTICKET-SELLER) > 

This IPEXPR contains more information about tickets. All this 

ticket information can be represented in a network such as that 

shown in Figure 5.4. 

Having determined its ticket needs, the model proceeds to 

the next major step of ATTEND-CONCERT: the purchasing of the 

ticket: 

STEP2 
(BUY (EXECUTE BUY SELF !DESIRED-TICKET ?BUY-RESULT)) 

Here, BUY is asked to execute the purchase of 

TICKET-FOR-CONCERT 1. 

~.J.J Ih~ ggx 2~£g2s1 
The BUY IPEXPR is given in full in Appendix II and has 

general form: 

<IPDEF BUY . . 
(SUPERSET BUY ACTUAL-TRANSACTION) 
(EXECUTE BUY ?BUYER ?ITEM l (EVENT-SEQUENCE --- )) > 

Upon receipt of the EXECUTE message from ATTEND-CONCERT, 

?BUYER matches SELF (and is bound to it in BUY-1, the newly 

created execution instance of BUY), while ?ITE~, the thing to be 

purchased, matches TICKET-FCR-CONCERT1 (and is also bound). 

Finally, the fifth element of the receiving pattern, 

! (EVENT-SEQUENCE ) matches ?BUY-RESULT once it has computed 

to non-null. 
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Figure 5.4 - Ticket Information 
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Before looking at this computation in detail, it is 

imperative to discuss SELF, the model's model of itself. 

<) PDEF SELF 
(INSTANCE-OF SELF PERSON) 
(ROLE-INSTANCE-OF SELF 

! (IPROG {OBJECT TRANSACTION) 
%(PURPOSE SELF {?TRANSACTION SELF ?OBJECT)) 

(ICOND ((EQ TRANSACTION 'BUY) 
(ICOND ((SUBINSTANCt OBJECT 

'TICKET-FOR-CONCERT) 
(!RETURN 'SELF-AS-A-!UYER­

OF-CONCERT-TICKET)) 
((SUBINSTANCE OBJECT 

'ALCOHOLIC-DRINK) 
(!RETURN 'SELF-AS-A-BUYER~ 

OF-ALCHOLIC-DRINK)) 
{T {!RETURN 'SELF-AS-A-BUYER)))) 

(T ( I RETUBN N!L) ) t) ) > 
It is not feasible to store all the information the model knows 

about itself in one IPEXPR. SELF, therefore, acts mainly as a 

"central switchboard" through which requests for knowledge of 

SELF are filtered on their way to IPEXPRs representing views of 

SELF which are more appropriate in the circumstances of the 

request. 

One particular view which the model can have of itself is 

in some "role", for example seller, buyer, lover, worker. It 

seems clear that a person's behaviour can alter drastically 

depending on what role he is playing. For example, the 

interactions between a supervisor and his student are different 

from those when the same two people are interacting as friends, 

different still when they are housemates sharing the household 

chores. Many characteristics, such as sound of voice. size, 

height, weight, sex, are invariant over these roles; but many 

more, such as attitude, status, kind of vocabulary used, wants 

and desires, are variable. 

In the SELF pattern expression the difference between a 

rcle and the normal viewpoint of SELF is indicated by the 

ROLE-INSTANCE-OF pointer (in contrast to the straight 

INSTANCE-OF pointer) • In all circumstances the model is a 

PERSON, but depending on the situation, the model can also take 

on various roles. The role variability is indicated by the tt?" 

computational element in the pattern which will return a 

different I PEXPR {depending on context) for each role of t.he 
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model. 

ROLE-INSTANCE-OF pointers are accessed when patterns like 

(STATUS --- ) , (ATTITUDE --- ) , (WANT --- ) , fail to match in a 

IPEXPR like SELF. Since such patterns represent qualities which 

are role dependent, a search for a match would be directed up 

RCLE-INSTANCE-OF links before anything else is done. 

Role-instances (as IPEXPRs from which ROLE-INSTANCE-OF 

pointers are followed can often be designated) are interesting 

in that they give a way to view an object in many different 

lights. There is really no restriction on what constitutes a 

rcle instance. For example, an instance can be a role instance 

of another role instance, or of an instance, or of a class, or 

of an animate object, or of an inanimate object, etc. 

Returning to the model's attempt to execute BUY, the 

attempt to match the ?BUY-RESULT message element results in the 

I EVALuation of the (EVENT-SEQUENCE --- ) element of the 

receiving pattern. Before undertaking any steps, the model 

checks that BUYER is SELF and, finds the physical LOCATION of 

the ticket (TICKET-BOOTH-QET, inherited from 

TICKET-FOR-CONCER~). The model then executes STEP1: 

STEP1 
(GOTO (EXECUTE GOTO SELF !PLACE-ITEM ?GOT-THERE)) 

that is, it goes to TICKET-BOOTH-QET. Having successfully 

completed this step, the model expects to find the seller of the 

item at this place: it thus asks TICKET-FOR-CONCERT1 for the 

seller of the item, the information this time being inherited 

f~om TICKET. It is interesting that 

(SELLER TICKET-FOR-CONCERT1 ?SELLER) against 

matching 

(SELLER fTICKET fTICKET-SELLER) succeeds with a new instance of 

TICKET-SELLER being created when ?SELLER is compared to 

tTICKET-SELLER (see macro-conflict table, Chapter III). 
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<IPDEF TICKET-SELLER1 
(INSTANCE-OP TICKET-SELLER1 TICKET-SELLER) > 

<IPDEF TICKET-SELL ER 

lSUPERSET TICKET-SELLER SELLER) 
SELL !TICKET- SELLER tTICKET) 
WANT TICKET- SELLER 

(EXC ANGE 
TIC KET-S ELLER - HAS-BARGAINING-POSN 

TICKET-SELLER-WANTS-BAR GAIN ING- POSN) ) > 
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This new instance, called TICKET-SELLER1, represents the new 

seller of tickets the model expects to find in the ticket booth 

and will have information added to it when details of the 
I 

particular ticket seller are discovered during the ensuing 

transaction to buy the ticket. 

Next, certain important patterns are asserted in the BUY-1 

execution instance so that the information can be used by 

subgoals of BUY-1 to determine the identities of the seller and 

buyer, the purpose of the seller, the purpose of the buyer, and 

the focus of attention of the buyer. 

Finally, the crucial part of executing BUY is encountered: 

STEP2, where the model engages in a conversation with the ticket 

seller in order to obtain the ticket. To this end, · the script 

BUY-CONVERSATION is asked to EXECUTE itself: 

STEP2 
(BUY-CONVERSATION 

(EXECUTE BUY-CONVERSATION !BUYER !SELLER 
!ITE~ ?CONV-RESULT)) 

.2•.!! 2£IiEtS 
The particular pattern expressions to be discussed in this 

section are called 2~iE1.§ (see Abelson (1973)). Scripts 
contain expectations regarding both sides of a conversation. 

They direct both the interpretation and production of 

utterances, structure the sequencing of the utterances, tie 

together the various utterances into some coherent whole, 

extract relevant information from the utterances, and if 

necessary act upon this information. 
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j.~.1 BUY-CONVERSATION 

The script of most concern here is BUY-CONVERSATION (the 

complete version of which is given in Appendix II). Its form is 

<IPDEF BUY-CONVERSATION 
(SUPERSET BUY-CONVERSATION 

SOCIAL-TRANSACTION-CONVERSATION) 
(EXECUTE BUY-CONVERSATION ?BUYER ?SELLER ?ITE~ 

! (EVENT-SEQUENCE --- ) ) > 
BUY-CONVERSATION is called in EXECUTE mode by BUY. The 

message pattern is (after JEVALuation of "!" macros in the 

context of BUY-1) 

(EXECUTE BUY-CONVERSATION SELF TI~KET-SELLER1 
TICKET-FOR-CONCERT1 .CONV-RESULT) 

and it clearly matches the BUY-CONVERSATION pattern 

(EXECUTE BUY-CONVERSATION ?BUYER ?SELLER 
?ITEM ! (EVENT-SEQUENCE --- ) ) 

with appropriate bindings for BUYER, SELLER, and ITE~ in the 

context of the newly created execution instance 

BUY-CONVERSATION-1. The matching is subject to the constraint 

that ! (EVENT-SEQUENCE --- ) I EVALs to non-null. 

The event sequence, as is usual for EXECUTE patterns, 

contains the plan of action to be executed. It consists of the 

subgoals labelled STEP1, STEP2, ••• , STEPS, denoting calls to 

five sub-scripts: WHAT-DO-YOU-WANT, BARGAIN, BARGAIN (again), 

EXCHANGE, and FAREWELL. The goal tree would thus look something 

like Figure 5.5 (where "ex" indicates an EX-ENVIRON pointer and 

THEN links have been added by EVENT-SEQUENCE). 

STEP1 of BijY-CONVERSATION suggests that a sub-script called 

WHAT-DO-YOU-WANT is to be expected as the first conversational 

foray. This script will be discussed shortly; it merely 

represents a particular kind of "Hello" - "How are 

you?" utterance exchange which seems necessary in order to 

establish (or in this case confirm) conversational roles at the 

beginning of a conversation (see, for example, 

Schegloff (1971) for a discussion of this phenomenon). 

If this step successfully concludes, then the sub-script 

(or utterance) must be "tied-in" to some sort of representation 

of the conversation to date. This promises to be fairly crucial 
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Figure~-~ -
Goal Tree for the Ticket Buying Conversation 
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and will require such abilities as recognizing equivalent 

concepts in different utterances or performing conversational 

implicatures and real world inferences to link up diverse kinds 

of discourse. Right now, since the conversation proceeds more 

or less as expected, tieing-in is minimized (consisting only of 

recording the sequence of sub-scripts) since the EVENT-SEQUENCE 

macro code, containing the expected conversational structure, is 

available for inspection, and it will correspond closely to the 

tailored reality, 

The second and third steps of BUY-CONVERSATION involve 

haggling over the characteristics of the item to be purchased: 

STEP2 over the characteristics the buyer wants; STEPJ over those 

the seller wants. Thus, in the ticket buying situation, the 

bargaining first involves the theatre location represented by 

the ticket, then the cost of the ticket. This is a fairly 

simplified version of what 

BUY-CONVERSATION predicts 

happens in a buying situation; 

things at this skeletal level in an 

attempt to be as general as possible. People,- however, seem to 

have many much more specialized scripts that operate in 

particular contexts (e.g. department store scripts, oriental 

bazaar scripts, probably even ticket buying scripts). Moreover, 

even within a script, there seems to be a large degree of 

flexibility that enables skipping the actual verbalizaticns of 

large chunks of the script, allowing them to be inferred 

instead. 

At any rate, assuming that BUY-CONVERSATION has 

successfully carried out the bargaining, the agreed upon 

location and cost are added to the model's knowledge of the 

ticket (i.e. TICKET-FOR-CONCERT1). Then, an EXCHANGE of the 

appropriate amount of money for the desired ticket can take 

place (STEP4). This is interesting in that it is not basically 

a verbal action, but is instead a motor action. The 

indistinguishability of verbal from other actions allows this 

kind of intermixture to be easily and conveniently accomplished. 

Theoretically at least, gestures and any other method of 

communication are feasible. 
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The final portion of BUY-CONVERSATION is a call to 

FAREWELL, a sub-script which will make utterances that terminate 

the conversation much as WHAT-DO-YOU-WANT started it. 

This concludes the BUY-CONVERSATION script, which returns 

the current execution instance, complete with the tied-in 

utterance patterns and any other information accumulated during 

the execution of the script. Thus, the original message pattern 

match and the BUY-CONVERSATION-1 execution instance is bound to 

CCNV-RESULT in EUY-1, and BUY-1 is resumed. It can then make 

use of any information that it needs from this execution 

instance. 

A final note about executing BUY-CONVERSATION: the 

execution here has been with the model as buyer and the ticket 

seller as seller, but the model could take the opposite role or 

in fact take both roles or neither role. This flexibility is 

extremely useful since this one script can handle many different 

situations. 

The subgoals called during execution of · BOY-CONVERSATION 

are themselves scripts. The first one to be executed is 

WHAT-DO-YOU-WANT, a subset of the more general GREETING pattern 

expression. 

~-~•i WHAT-DO-YOU-WANT 

The WHAT-DO-YOU-WANT script (see Appendix II) is somewhat 

different from B~Y-CONVERSATION in that it actually calls in 

speech act pattern expressions to direct the interpretation or 

production of utterances rather than the subscripts above. As 

usual, an EXECUTE message is sent, in this case 

(EXECUTE WHAT-DO-YOO-WANT 
TICKET-SELLER1 SELF ?WHAT-WANT-CONV) 

which matches the receiving pattern 

(EXECUTE WHAT-DO-YOU-WANT 
?SPEAKER1 ?SPEAKER2 !{EVENT-SEQUENCE --- )) 

Everything matches except the last elements where the standard 

EVENT-SEQUENCE computation must take place first. This 

computation proceeds by establishing the conversational 

identities of the speakers, that is determining whether to 
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interpret (expect) an utterance from speaker-i or whether to 

produce (execute) an utterance for speaker-i. Essentially, if 

speaker-i is SELF, then the script must generate an utterance 

whenever it is speaker-i's turn to talk; otherwise, speaker-i is 

scmebody else and the script should attempt to comprehend an 

utterance from speaker-i. It is possible for the script to be 

used in situations where the model takes none, one, or both of 

the speaker roles. 

The script contains 2 steps: 

~!~fl: send an EXPECT (or EXECUTE) message to the 

speech-act INQUIRE indicating that speaker-1 is to 

make an inquiry of speaker-2 as to the purpose of 

speaker-2; 

.fil'.~fl: send an EXECUTE (or EXPECT) message to 

RESPOND indicating that speaker-2 should be responding 

to speaker-1's inquiry with his purpose. 

Thus, for the ticket buying episode, the model should EXPECT 

speaker-2 (the ticket seller) to inquire as to the purpose of 

speaker-1 (the model) and should then EXECUTE a response 

indicating its purpose (obtained by looking into the execution 

environment for some pattern of the form (PURPOSE SELF ?WHAT); 

in this case the matching pattern 

(PURPOSE SELF (9UY SELF TICKET-FOR-CONCERT1)) 

would be found). 

An interesting problem here is determining just how far up 

the execution environment to go when looking for a match, since 

even higher order purposes cou+d be strewn about at the upper 

levels (for example, here, to attend the concert). The 

assumption has been to go to the nearest such purpose, 

presumably the reason that the current subgoal has been called 

in. 

Upon completion of the EVENT-SEQUENCE, the pattern matches 

and WHAT-WANT-CONV is bound to the new WHAT-DO-YOU-WANT-1 

exacution instance created to handle the message. Control then 

resumes in BUY-CONVERSATION-1 which goes to its next step: to 

BARGAIN between what the buyer wants and the seller has. 
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~ • .!f.J. ~AJ!QA!li 
Before actually calling in the BARGAIN script., 

BUY-CONVERSATION must first set up bargaining positions for the 

seller and buyer. The essential idea is that in bargaining for 

anything {including a ticket) each bargainer has two initial 

positions: he owns something and wants something else in 

exchange for it. A successful bargaining session will match 

what party A wants with what party B owns and also will match 

what party A owns with what party B wants. In the ticket buying 

situation the model itself wants a ticket representing a certain 

desired location and suspects that the ticket seller owns such a 

ticket; the model owns a certain small amount of money which it 

is willing to exchange in return for the ticket and suspects 

that the seller wants money appropriate to the cost of the 

ticket. 

The model's bargaining positions are role dependent and are 

thus accessed up ROLE-INSTANCE-OF pointers from SELF as outlined 

earlier. In this case SELF-AS-A-BOYER-OF-CONCERT-TICKET 

<IPDEF SELF-AS-A-BUYER-OF-CONCERT-TICKET 
(SUPERSET SELF-AS-A-BUYER-OF-CONCERT-TICKET 

SELF-AS-A-BUYER) 
(BOY SELF fTICKET-FOR-CONCERT) 
(WANT SELF 

(EXCHANGE 
SELF-HAS-TICKET-BARGAINING-POSN 
SELF- WANTS-TICKET-BARGA! NING- POSN}) > 

would be found in which resides the pattern 

(WANT SELF 
(EXCHANGE SELF-HAS-TICKET-BARGAINING-POSN 

SELF-WANTS-TICKET-BARGAINING-POSN)) 

containing the model's bargaining positions. 

The ticket seller's bargaining -positions, or at least the 

model's perceptions of the ticket seller's bargaining positions, 

can be accessed from TICKET-SELLER1 by inheriting the 

(WANT tTICKET-SELLER 
(EXCHANGE TICKET-SELLER-HAS-BARGAINING-POSN 

TICKET-SELLER-WANTS-BARGAINING-POSN)) 

pattern from TICKET-SELLER (there being no ROLE-INSTANCE-OF 

pointer in TICKET-SELLER1). 

Thus, the BARGAIN I PEXPR (see Appendix II) is sent the 

message 
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(EXECUTE BARGAIN TICKET-SELLER1 SELF 
TICKET-SELLER-HAS-BARGAINING-POSN 
SELF-WANTS-BARGAINING-POSN 
TICKET-FOR-CONCERT1 ?BA8GAIN1-CONV) 

which will match the BARGAIN pattern 

(EXECUTE BARGATN ?QUESTIONER ?RESPONDER 
?POSN-Q ?POSN-R 
?ITEM! (EVENT-SEQUENCE --- )) 

if the EVENT-SEQUENCE computation succeeds. 
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The purpose of the computation is to bring about a 

successful compromise between two probably initially distinct 

bargaining positions. In this example one of the positions is 

TICKET-SELLER-HAS-BARGAINING-POSN 

<IPDEF TICKET-SELLER-HAS-BARGAINING-POSN 
(SUPERSET TICKET-SELLER-HAS-BARGAINING-POSN 

HAS-BARGAINING-POSN) 
S1 : (REPN tTICKET ! (I POINTER RtPN TICKET)) 

(IMPORTANCE tTICKEt-SELLER /S1 6) 
(BARGAIN-ORDER TICKET-SELLER-HAS-BARGAINlNG-POSN 

(REPN)) > 
representing knowledge which the model believes the ticket 

seller to hold in regard to his wants. Looking at the fPEXPR, 

the following can be gleaned: 

(i) by s 1, the mode 1 believes the ticket seller to 

have an individual ticket (tTICKET) 

any location suitable to that 

(! (I POINTER REPN TICKET)); 

which represents 

ticket 

(ii) the model believes the importance of fact (i) to 

the ticket seller is 6; 

(iii) the model believes that bargaining can take 

place in regard to the location the ticket represents. 

The BARGAIN-ORDER pattern - not only designates which 

patterns of the bargaining position are suitable for 

negotiation, but also indicates the order of 

resolution of various pieces of information (for 

example in the drink buying episode, the bargaining at 

this stage involves settling both the brand of the 

drink and the kind of mixer, in that order, rather 

than just the single issue of ticket REPN here). 
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The other bargaining position contains the model's own 

desires for the characteristics of an ideal ticket: 

<tPDEF SELF-WANTS-BARGAINING-POSN 
(SUPERSET SELF-WANTS-BARGAINING-POSN 

WANTS-BARGAINING-POSN) 
S1 : REPN tTICKET-FOR-CONCERT lSEATSQETCENTRE) 
S2 : REPN tTICKET-FOR-CONCERT SEATSQETLEFTCENTRE) 
S3 : REPN tTICKET-FOR-CONCERT fSEATSQETRIGHTCENTRE) 

IMPORTANCE SELF /S1 10) 
IMPOFTANCE SELF /S2 Bt 
IMPORTANCE SELF /SJ 8 
BARGAIN-ORDER SELF-WA TS-BARGAINING-POSN (REPN)) > 

Similar to the ticket seller's bargaining stance, the model has 

three positions regarding the location represented by the 

ticket. The model wants (IMPORTANCE 10) a seat in the centre 

portion of the QET; failing that, it would like a seat in QET 

left-centre or QET right-centre (with equal IMPORTANCE of 8). 

Successful execution of the BARGAIN script (see Appendix II 

for the code) involves finding a compromise between these two 

initial bargaining positions according to the following steps: 

~I~fl: the questioner (the ticket seller) asks the 

responder (the model) about the next issue (determined 

by the BARGAIN-ORDER in the position of the 

questioner, in this case REPN) and goes to STEP2. If 

there are no more issues to be resolved, the script 

terminates successfully, returning the current 

BARGAIN-1 execution instance. 

~I~fl: the responder states his initial stance on the 

current issue (i.e. the most important pattern 

appropriate to the issue in his bargaining position). 

~!~fl: the questioner extracts the responder's stated 

stance and matches it to the questioner's current 

stance (extracted from his bargaining position). If 

they match, the agreed upon stance is asserted in item 

and onto STEPS; else the questioner reduces his 

demands by taking the next most important stance in 

his bargaining position, inquiring as to the 
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suitability of that, and going to STEP4. If the 

demands cannot be further reduced (i.e. he has run out 

of patterns), then go to STEP7. 

~I~f.!!,: the responder goes through a similar process of 

extracting a stated stance from the guestioner•s last 

utterance, matching it to his own stance, and, if 

successful, asserting the agreed upon stance in item 

before going to STEP6; else, reducing his demands then 

stating them then going to STEP3; and finally, if 

there is no way of reducing the demands, going to 

STEPS. 

ST~f2: the questioner, having matched his position on 

the current issue with that of the responder, agrees 

with him on the current mutually held stance and goes 

to STEP1 so that the next issue (as determined by 

BARGAIN-ORDER) can be resolved. 

~~f§: the responder, having matched his position with 

that of the questioner agrees vith him on the mutually 

held position, and goes to STEP1 so that the next 

issue can be resolved. 

~I~f1: the questioner, having found irreconcilable 

disagreement on the issue with the responder, says so, 

the responder says so as well, and the script 

terminates in failure. 

STEPS: the responder, having found irreconcilable -----
disagreement on the issue with the questioner, says 

so, the questioner says so as well, and the script 

terminates in failure. 
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When BARGAIN is called the first time by BUY-CONVERSATION 
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the following assignments am made: the questioner is 

TICKET-SELLER1, the responder is SELF, the guestioner•s 

bargaining position is TICKET-SELLER-HAS-BARGAINING-POSN, the 

responder's bargaining position is SELF-WANTS-BARGAINING-POSN, 

and the item is TICKET-FCR-CONCERT1. The initial issue, 

extracted from the bargaining IPEXPRs, is REPN, that is the 

contestants will discuss where the seat for the concert will be. 

The bargaining is very co-operative in this case (this is 

determined by the closeness of the stances in the bargaining 

positions), and the model and ticket seller eventually agree on 

a ticket representing a location in the centre of the QET. 

Obviously, this is a rather stylized version of bargaining, 

but it does illustrate some interesting facets of !LISP and the 

analysis of language. For the first time generators are used to 

cycle through stances as the questioner or responder compromise 

during the course of the bargaining. Thus, the EXPR 

MOST-IMPORTANT will return the most important pattern in a 

IPEXPR matching a particular other pattern, but MOST-IMPORTANT 

is defined as a generator so it can later be restarted to 

generate the next most important pattern and so on. 

The second interesting thing is how the model is able to 

use its expectations to extract the actual stance of its 

conversant from his utterances. The EXPR COVER-PATTERN will 

look through the execution instance generated in the 

interpretation or production of an utterance for a pattern 

(CONTENT ex-instance ?ANYTHING) which will contain the basic 

content of what vas said devoid of any "extraneous" things such 

as the speaker, the listener, the motivation for the utterance. 
Then, COVER-PATTERN will match its expected stance against 

patterns in the third element of the CONTENT pattern, hoping to 

find one which the stance covers in the sense that all elements 

of the stance are equal to or in the ISA environment of all 

elements of the CONTENT pattern. If such a covering match is 

found, the CONTENT pattern will replace the stance in the 

model's further deliberations. 

If such a covering is not found, then the lPEXPR 
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EXPLAIN-BAD is asked to figure a way around things. As with 

CHECK-FAILURE, EXPLAIN-BAD is a largely unspecified failure 

handler which needs much more elaboration than has currently 

been given it. The whole problem of handling unexpected 

information and integrating it into a script is one that has 

been given only cursory treatment and clearly needs much more 

work. Presently, BARGAIN and other script~ naively assume that 

all will go as expected or that CHECK-FAILURE, TIE-IN, 

EXPLAIN-BAD, or the like will be able to explain anomalies so 

that processing can continue according to script. 

When BARGAIN-1 is returned to BUY-CONVERSATION-1, the next 

step of BUY-CONVERSATION-1 initiates a new round of BARGAINing, 

this time with the questioner and responder roles reversed. It 

is quite likely, therefore, that the same speaker (the model or 

the ticket seller) will speak back-to-back utterances as the 

last step of BARGAIN-1 and as the first step of the new BARGAIN 

(called, say, BARGAIN-2) • This illustrates the ease of 

sequencing utterances 

boundaries. 

appropriately, even across script 

BARGAIN-2, of course, works in a similar manner to 

BARGAIN-1 with SELF-HAS-BARGAINING-POSN and 

TICKET-SELLER-WANTS-BARGAINING-POSN (see Appendix II) being the 

two new bargaining positions, and COST obviously being the issue 

at hand. Early agreement will be reached here as well, thus 

completing the bargaining. 

2•1-~ t!f!!!!!Q~ 
When BARGAIN-2 is finished, the motor-action EXCHANGE is 

executed (see Appendix II). Of primary significance here is the 

similarity between motor-actions and speech actions, and the 

ease with which the two can mix. The message 

(EXECUTE EXCHANGE SELF TICKET-SELLER1 
DOLLARS-10 TICKET~FOR-CONCERT1 ?EXCH-RESULT) 

matches the pattern 

(EXECUTE EXCHANGE ?PERSON1 ?PERSON2 
?ITEM1 ?ITE~2 ! (EVENT-SEQUENCE --- )) 

with the appropriate bindings being made and the execution of 
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the EVENT-SEQUENCE ensuing. This sequence has four steps: 

§~fl: where PERSON1 gives to PERSON2 the first item, 

in this case the model gives to the ticket seller 10 

dollars. 

§!lfl: PERSON2, the ticket seller, says thanks. 

§IgfJ: PERSON2, the ticket selle·r, gives to PERSON1, 

the model, the second item, the ticket for the 

concert. 

§!~f~: PERSON1, the model, says thanks. 
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Thus, steps 1 and 3 are motor-actions; steps 2 and 4 are speech 

acts. Note that if the model is the instigator of a particular 

action (speech or otherwise) the message will be EXECUTE; 

otherwise it will be EXPECT. In the linguistic case an EXECOTE 

means to generate an utterance; an EXPECT means to interpret an 

utterance. In the non-linguistic case an EXECUTE means to 

perform the action (e.g. giving); an EXPECT means to expect 

somebody else to perform the action, so that if the model is 

expecting a give, say, then it should expect to see certain 

actions such as hand movements, and should prepare itself to 

take the proferred item if the model is the intended recipient. 

~-~-2 f!S~~~11 
After executing the 

BUY-CONVERSATION script 

EXCHANGE, the final step 

is entered: the execution 

in 

of 
the 

the 

FAREWELL script which merely consists of an exchange of goodbyes 

between the two participants. ILISP code for this IPEXPR also 

appears in Appendix II. This successfully ends the 

BUY-CONVERSATION script. BUY-CONVERSATION now returns to BUY 

which is also done so it returns to ATTEND-CONCERT to proceed to 

the next step in the concert plan. 
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~.~ §Eg~B !£!2 
Speech acts are a level of linguistic description that form 

an interface between the internal meanings of concepts and the 

external linguistic realizations of these concepts. concerned 

with single speech actions of a specific speaker, they are less 

general than scripts but are more general than the purely 

linguistic "language level" (described in section 5.6). 

During the discussion of scripts, speech acts were those 

pattern expressions that were sent a message to EXPECT or 

EXECUTE a single utterance. Thus, INQUIRE, RESPOND, AGREE, 

DISAGREE, etc. are speech acts; there could, of course, be many 

more such as INFORM or REQUEST, in line with the 

Austin (1962) / Searle (1969) designations. Obviously, the 

level of linguistic description promoted here as the speech act 

level has much in common with the speech act concept of Austin 

and Searle, although neither Austin nor Searle pursue a 

computational approach, nor do I talk in terms of "locutionary", 

"illocutionary", or "perlocutionary" forces. - Furthermore, I do 

not believe that speech acts are the crucial linguistic factor, 

but rather I regard them as subgoals of more general plans. 

This view is similar to that of P. Cohen (1978) where speech 

acts are actually planned much as other actions can be planned. 

2-j•l IN.22!~~ 
To demonstrate speech acts, it would be useful to take a 

particular example, say INQUIRE, and examine what it does. The 

code for INQ~IRE is in Appendix II. There are two main types of 

message that can be received by a speech act: EXPECT, when the 

speech act will be uttered by someone else and thus needs to be 

interpreted; and EXECUTE, the old standby, implying the speech 

act needs to be produced. 

Assume, first, that 

WHAT-DO-YOU-WANT-1 script 

message 

INQUIRE is a 

activation and 

(EXPECT INQUIRE TICKET-SELLER1 SELF 

subgoal 

has been 

of the 

sent the 
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(PURPOSE SELF *UNKNOWN*) ?NEW-UTT) 

Then, the receiving pattern 

(EXPEC~ INOOIRE ?SP~AKER ?LISTENER 
?CONTENT ! ()PHOG --- ) ) 
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will match, with SPEAKER bound to TICKET-SELLER1; LISTENER to 

SELF; CONTENT (i.e. what the inquiry ·should be about) to 

(PURPOSE SELF *UNKNOWN*); and the (IPROG --- ), after doing the 

actual expectation processing, to NEW-UTT. (A IPROG is used 

because speech acts seem a low enough level of analysis not to 

require the memory preservation features provided by 

EV!NT-SEQUENCE). 

The first thing the IPROG does is to check the execution 

environment to see if a surface level utterance already has been 

"heard". If not, then the "read buffers", the model's single 

"sense", must be emptied (using the EXPR HEAR-WORDS) of their 

words and read into a list called UTTERANCE. HEAR-WORDS is 

responsible for reading the words, separating them from one 

another, performing morphological analysis on them; the 

possibility of ambiguities at this level is ignored. A unique 

list of words that have to be interpreted by the speech act and 

its language subgoals is produced. 

A possible extension here would be to have HEAR-WORDS 

construct a pattern expression (rather than a list) to contain 

the words of the input. This IPEXPR would keep a complete 

record of sequencing and timing information, morphology 

decisions, as well as the words themselves. Whenever any other 

IPEXPR needed to access the words this JPEXPR could be queried. 

Such an extension awaits further experimentation. 

Having read the utterance (and asserted it in the speech 

act's execution instance for the reference of subgoals) the 

speech act checks to see if any subset or subinstance of itself 

would be more appropriate for the interpretation of that 

utterance. Thus, it calls in the EXPR CHECK-FOR-ACTIVE-SUBSET 

which will look to see if there is any pattern expression that 

is a subset or subinstance of INQUIRE and that has been 

activated associatively (or in some other non-goal directed way) 
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and wants to run. Although non-goal directed processing will be 

discussed in Chapter VI, a brief introduction to associative 

activation is presented now. 

2•~-i Ihe Associative Activation Qf I~§l 
A pattern expression does not always have to be called in 

to accomplish a subgoal of another pattern expression. It can 

instead receive an ASSOC message from a closely related IPEXPR 

that itself has been activated in one of three ways: 

a subgoal of another · pattern expression, 

by the reception of an ASSOC message (see 

(i) top-down as 

(ii) associatively 

YES2 in Appendix II for an ASSOC pattern which might receive 

such a message), or (iii) (ultimately) directly by the presence 

of external stimuli. For example having spawned the BUY IPEXPR, 

a natural association might be the BUY-CONVERSATION script even 

before it is actually called in top-down; recognizing a DOG 

might trigger associations to BARK, TAIL, and other "doggy" 

things. 

If enough of these associative triggers contact a pattern 

expression, it would likely consider itself strongly relevant to 

the current situation and would conseguently like to be 

integrated into the top-down scheme of things. To this end, it 

"turns itself on" ("lights up") in the hopes that top-down 

IPEXPRs will notice it and try to incorporate it. Such 

recognition is done by EXPRs like CHECK-FOR-ACTIVE-SOBSET called 

in at the discretion of the top-down fPEXPRs (just when to make 

such checks is a difficult problem). 

In this case INQUIRE asks if there are any active subsets 

of itself which, for whatever reason, want to be integrated into 

the model's goals. Assume that the word "YES" 1 has been read 

and has spread an associative activation trace to the speech 

acts YES1 (affirmative agreement) and YES2 (what can I do for 

you?), among others. YES1 and YES2 would both consider the 

tA notational convention: any IPEXPR whose name is surrounded by 
"" marks stands for an actual word, not an internal concept 
representing the meaning of a word. 
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presence of the word "YES" as being conclusive evidence they are 

relevant to the current situation, so they would "light up". 

INQUIRE, looking for only those IPEXPRs which are subsets or 

subinstances of itself, would see YES2 (but not YES1) and hence 

decide that there is indeed an active subset of itself which 

would be appropriate here. It therefore decides to replace 

itself by the more specific YES2. Notice that YES1, although 

associatively active, will not get incorporated into the 

top-down context and hence will eventually atrophy and disappear 

(more work for the garbage collector!) 

How does such replacement work? There is an EXPR called 

REPLACE to do this, It receives as "argument" the IPEXPR which 

is to replace the current IPEXPR. The message currently being 

processed (and all other messages left to process from the 

original message form) is then matched against patterns in the 

replacement IPEXPF in exactly the same way as they were in the 

original using the §~!~ execution instance, complete with all 

the patterns that are there already. Just two changes are made 

to this execution instance: first, the current stack is emptied; 

and second, an additional 

(EX-INSTANCE-OF ex-instance REPLACE~ENT-tPEXPR) pattern is 

added. This method of replacement allows results which have 

already been computed and asserted to be saved; moreover, the 

two execution instance pointers allow access to information from 

either of the two "ISA" JPEXPRs, the old one or the replacement 

one. 

In the current example the execution instance INQUIRE-1 

would h~ve its stack emptied and have a 

(EX-INSTANCE-OF INQUIRE-1 YES2) pointer added. The model would 

then try to match the message 

(EXPECT YES2 TICKET-SELLER1 SELF 
(PURPOSE SELF *UNKNOWN*) ?NEi-UTT) 

against patterns of YES2 as for a normal message; that is, YES2 

becomes the nev subgoal. 
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~.,2.J I~§£ 
YES2 (see Appendix II) is the speech act which handles the 

specific inquiry "yes?" ihen YES2 receives the EXPECT message, 

it looks . to see whether an utterance has been read. It has, 

since before the replacement took place INQUIRE had managed to 

do the reading of the words and this result has been saved in 

INQUIRE-1. Having already checked for associatively active 

IPEXPRs, the processing continues immediately to asserting the 

speaker of and the listener to the speech act. 

The speech act then proceeds to interpret the utterance. 

In this case that merely involves looking for the words "YES" 

and"?" in order and alone in the input utterance (this hasn't 

been done yet top-down by YES2, only bottom-up). If they are 

net found, then the input is not considered to be a YES2 so a 

failure pattern is left in the execution instance, and the match 

fails. The failure to match processing which ensues may find a 

matching EXPECT pattern elsewhere (for example possibly the 

INQUIRE EXPECT pattern would be re-instigated); but, if not, 

then the failure pattern should provide valuable information to 

explanation procedures in the "calling" JPEXPR in determining 

what went wrong and what to do about it • 

. If the words "YES" and "?" are found, then this confirms 

the YES2 speech act. If somebody says "yes?", then he is 

asking what you want, assuming that you already know. Thus, the 

"meaning" of YES2 is the expected content (passed as part of the 

EXPECT message) and this is so indicated by asserting a pattern 

which in this case is 

(CONTENT INQUIRE-1 (PURPOSE SELF *UNKNOWN*)). If there is no 

expected content, i.e. CONTENT has not been initialized during 

pattern matching, then the content defaults to 

(P'JRPOSE !LISTENER *UNKNOWN*); that is, it is assumed that the 

speaker is inquiring as to the unknown purpose of the listener. 

once interpretation has been accomplished, then the 

(IPROG --- ) is done, so the newly endowed execution instance 

INQUIRE-1 is returned as value, the entire pattern matches, and 

control resumes in the calling IPEXPR, in this case the 
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WHAT-DO-YOU-WANT-1 script instantiation. 

Nov, this interpretation has been rather trivial: in most 

cases much more complicated kinds of processing need to be done, 

so complicated in fact that the speech act usually has to call 

on language-oriented processes to "parse" the input. For 

example if INQUIRE (Appendix II) is examined, it can be seen 

(after the discovery of speaker, listener, etc.) that to find 

the content of the utterance, INQUIRE sends an INTERPRET message 

to INQUIRE-CLAUSE in order to extract meaning from surface level 

language. In the next section more will be said about this 

"language level" of the model's processing. 

I will conclude this section with a brief discussion of the 

other major message type that speech acts handle: the EXECUTE 

message. A IPEXPR representing a regular action, if EXECUTEd, 

performs the action; similarly, a IPEXPR representing a speech 

act, if EXECUTEd, produces the speech act. Thus, if either 

INQUIRE or YES2 is sent an EXECUTE message with the traditional 

speaker, listener, and content slots filled, then it is up to 

the speech act to generate the utterance appropriate to the 

content (or some default verbalization if the content is 

unassigned). In the case of YES2, this is simplicity itself: 

merely call SPEAK-WORDS to print out the words "YES" followed by 

"?" . . 
SPEAK-WORDS, the generation analogue of HEAR-WORDS, must 

insert appropriate punctuation, ensure word ending agreement, 

and the like. It currently accepts as argument a list, but as 

with HEAR-WORDS, the eventual goal is to put the words in a 

pattern 

having 

that. 

expression 

to do with 
which 

the 

can contain much meta-information 

words, and have SPEAK-WORDS work with 

For most speech acts, more complex kinds of generation 

require GENERATE messages to be sent to language level IPEXPRS. 

Of this more in the next section. 

A final note indicating the underlying symmetry of 

interpretation and generation: regardless of whether it ran in 

EXECUTE or EXPECT mode, the speech act, when done, will have 
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asserted four patterns of importance: 

(SPEAKER --- ---} 

(LISTENER --- ---) 

(CONTENT ---) 

(SURFACE ---) 

where the CONTENT is given and 

messages and vice versa for 

pattern particularly is used 

discerning the meaning of a 

patterns are also available. 

sryRFACE produced for EXECUTE 

EXPECT messages. The CONTENT 

by scripts (e.g. BARGAIN) in 

speech act, although all other 

The other speech acts have similar EXPECT and EXECUTE 

patterns associated with them. The main ISA-linkages connecting 

them are shown in Figure 5.6. 

~.§ The Language Level 

Letting a specific speech act direct the interpretation or 

production of an utterance works well if· expectations are 

precise enough. Unfortunately, it is the rare conversation 

which proceeds as expected, and even when expectations are more 

or less met, there can be deviations in phraseology which can 

leave the speech act bewildered. Thus, most interpretation and 

production is done with the help of IPEXPRs whose expertise is 

in the area of language rather than in the conceptual domain of 

the speech act which called them in. The collection of these 

IPEXPRs I call the language level. The language level is not, 

as yet, much more than a skeleton of the kinds of things that 

need to go on. 

The language level corresponds roughly to the syntactic 

level of processing. Diffecences will become obvious as the 

description proceeds, but the major ones are that the syntactic 

constraints are very loose and that semantic processing is 

interleaved throughout the syntax. A further distinction from 

traditional parsing strategies is that. sometimes there is no 

need to use the language level at all (e.g. the speech act YES2 

itself looks directly at the utterance). 
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LINGUISTIC-ACTION 

SPEECH-ACT 

s/ 
?ROGATIVE 

INQUIRE 

i 
AGREE 

sf 
YES2 YESl 

Figure~-~ -
Speech Acts in the Model 

DECLARATIVE 

1/;~ 
DISAGREE INFORM RESPOND 
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The general flow of control at the language level during 

intarpretation (in traditional top-down style) is to separate an 

utte,rance into clauses, and th-en divide. clauses into noun 

gr.oups, ve.rb groups, preposition gro11ps, a.nd sub-clauses (which 

are, in turn, further broken down). Memory concepts 

represe.nting the "meaning." of the noun groups, verb groups, and 

preposition groups are then built. These memory concepts are 

then linked together to yield an interpretation of the clause of 

which they are a part. Finally, the clause interpretations are 

linked together to form an interpretation for the whole 

utterance which is returned to the speech act for its perusal. 

The top-down breakdown of utterances into groups is similar to 

Winograd's (1972) parsing strategy; the amalgamation of groups 

via message passing has elements of a case approach (e.g. Taylor 

and Rosenberg (1975)) • 

so, the language level is concerned with partitioning an 

input utterance into sub-groups. There is a pattern expression 

for each type of group: UTTERANCE, COORD-CLATTSE, SUB-CLAUSE, 

REL-CLAUSE, NOUNG, VERBG, and PREPG. Of course, there can be 

more specific groups which refine the processing of their 

superiors, for example a BECAUSE-SUB-CLAUSE, or even more 

specifically a BECAUSE-I-HATE-CHEESE-SUB-CLAUSE. Figure 5.7 

illustrates an ISA hierarchy of such word group fPEXPRs. 

word group IPEXPRs receive messages like any other IPEXPRs. 

Two of particular interest are INTERPRET and GENERATE, the 

former to understand a conversant•s words and the latter to 

prcduce words for the model. In the following discussion I will 

concentrate almost exclusively on interpretation even though 

generation is just as crucial to a conversation. 

~-~-1 Inter£reting UTTERANCES and CLAUSES 

UTTERANCES and CLAUSES are interpreted by being broken into 

NOUNGs, VERBGs, PREPGs, and sub-clauses. Certain clauses may 

have extra punctuation or conjunctions not incorporated into any 

group - these are merely noted and have use later when a clause 

is asked how it modifies some other concept (see below). 
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VERBG PREPG CLAUSE- CLAUSE- UTTERANCE 

/PE;ENT INDEP\ENT 

REL­
CLAUSE 

SUB- COORD-
5C,USE CLAUSE 

BECAUSE-

5:rLAUSE 

BECAUSE-I-HATE­
CHEESE-SUB-CLAUSE 

Figure 5.7 - Word Group Hierarchy 
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A group is asked to break itself into constituent 

sub-groups by sending it a message of the form 

(INTERPRET langu~qe-level-IPEX~R 
,11st ot words) .RESULT) 

For example. suppose a speech act (e.g. INFORM) has read and 

wants to interpret this utterance: 

"Beethoven co~posed the Fifth 
extraordinary sx111. He was a great 

Then the speech act would send a message 

(INTERPRET UTTERANCE 
("BEETHOVEN" "COMPOSE" "PAST" "THE" "FIFTH" 
"SYMPHONY" "WITH" "EXTRAORDINARY" "SKILL" 
"•" "HE" "BE" "PAST" "A" "GREAT" "MAN""•") 

?RESULT-OF-INTERP) 

with 

to UTTERANCE. The double-quoted atoms above name word IPEXPRs 

containing patterns linking the word to its internal concept(s) 

and to its part of speech. To illustrate. "COMPOSE" might look 

sc mething lilce 

<JPDEF "COMPOSE" 
(INSTANCE-OF "COMPOSE" VERB) 
(CONCEPT ncoMPOSE" COMPOSE) > 

Upon receipt of an INTERPRET message, UTTERANCE would 

divide the list of words into two co-ordinate clauses and pass 

INTERPRET messages to each COORD-CLAUSE, i.e. 

(INTERPRET COORD-CLAITSE ("BEETHOVEN" --- "•") ?INTERP1) 
(INTERPRET COORD-CLAOSE ("HE" --- "•") ?INTERP2) 

Each of the COORD-CLAUSEs could be split into NOUNGs, VERBGs, 

PREPGs, or sub-clauses and interpret messages would then be sent 

to these constituents; e.g. 

(INTERPRET PREPG ("WITH" "EXTRAORDINARY" "SKILL") ?INT14) 
(INTERPRET VERBG ("COMPOSE" fipAST") ?INT12) 

Retu:r:ned as a result of any such interpretation is a !l.§.~ 

IPEXPB representing the concept described by the NOUNG• VERBG. 

PREPG. or sub-clause. When all constituents of a clause have 

been interpreted. they must be linked together, so various pairs 

of them are sent MODIFY-HOW messages. Thus, the new IPEXPR 

representing the interpreted main verb of a clause may be asked 

hov it is modified by the newly interpreted NOUNG just preceding 

it; e.g. 

(MODIFY-HOW VERBG-COMPOSE NOUNG-BEETROVEN ?~OD-HOW1) 

In this case, since Beethoven has all the characteristics 
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reguired of an agent for VERBG-COMPOSE (precedes the verb, is 

animate, is a composer), VERBG-COMPOSE would be happy to add to 

itself the pattern 

(AGENT VERBG-COMPOSE NOONG-BEETHOVEN) 

Similarly, a NOUNG occurring after the VERBG might be 

incorporated by asking VERBG-COMPOSE 

(MODIFY-HOW VERBG-COMPOSE NOONG-SYMPHONY 7MOD-HOW2) 

which, since symphonies have all the qualities needed to be a 

patient for the verb group would result in VERBG-COMPOSE adding 

(PATIENT VERBG-COMPOSE NOUNG-SYMPHONY) 

Note the case aspects of MODIFY-HOW processing: the newly 

created verb concept (using an inherited MODIFY-HOW procedure) 

is making all the decisions about what to check for, what 

patterns to add, and what other processing to carry out. 

Other NOONGs, PREPGs, and REL-CLAUSES are similarly linked 

into the NOUNGs or VERBGs which they modify. In addition two 

clauses may have to be linked together. For a COORD-CLAUSE and 

a SUB-CLAUSE, the message would be to the concept representing 

the dominating COORO-CLAOSE, i.e. 

(MODIFY-HOW COORD-CLAUSE-concept 
SUB-CLAUSE-concept ?HOD-HOW3) 

while for two COORD-CLAUSEs, the message would be to the concept 

representing the first COORD-CLAUSE. In cas~s involving PREPGs, 

REL-CLAUSEs, SUB-CLAUSES, or dominated COORD-CLAUSEs, the 

linking word (preposition, relative conjunction, subordinate 

conjunction, co-ordinate conjunction, or punctuation mark) is 

available. The tPEXPR corresponding to this linking word can 

thus be accessed during MODIFY-HOW- processing to add precision 

to the link-up. For example, the clause "I like stereo because 

it beats mono." breaks into two clauses that are interpreted as 

COORD-CLAUSE-LIKE and SUB-CLAUSE-BEAT. As a result of 

interpretation, SOB-CLAUSE-BEAT would contain a pattern 

(SOB-CONJUNCTION SUB-CL A USE-BE AT "9ECA USE") 

so that when COORD-CLAUS E-LIKE tries to see how SUB- CLAUSE-BEAT 

modifies it, this pattern can be accessed, and the pattern 

(REASON COOBD-CLAUSE-LIKE SUB-CLAUSE-BEAT) 
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can be added to COORD-CLATISE-LIKE (REASON being the meaning of 

"BECAUSE" in this context). 

After all constituents of a CLAUSE or UTTERANCE are 

connected, the interpretation of the CLAUSE or UTTERANCE is 

complete, so the concept associated with the main verb is 

returned to whoever wanted the CLAUSE or UTTERANCE interpreted 

{another clause or utterance, or a speech act). This is because 

the main verb, so central in all MODIFY-HOW processing, and thus 

linked so closely to the rest of the concepts, in a sense 

represents the central meaning of any clause or utterance. 

Throughout this processing, the CLAUSE and UTTERANCE 

IPEXPRs must choose how to divide words into appropriate 

sub-groups and must decide on an order in which to relate the 

sub-groups to one another. To make such decisions, traditional 

parsing expertise must be augmented by the ability to look into 

the execution environment for various kinds of information. 

Thus, the identity of the speech act which initiated the 

proceedings might be important (an INQUIRE speech act, for: 

example, might suggest an interrogative grammatical 

construction) • similarly, it might be useful to consul·t the 

conversant models in order to discover individual peculiarities 

of phraseology. If, despite this information, a mistake is 

made, the CLAOSE or UTTERANCE must be able to try alternatives. 

~.§.i InterEreting NOUNGs, VERBGs, and PREPGs 

NOUNGs and VERBGs represent concepts in memory. Thus, a 

VERBG usually stands for some relation; a NOUNG for some real 

world (e.g. Ruff) or abstract (e.g. the present King of France) 

object. The basic interpretation strategy for any such group is 

therefore to produce a new pattern expression which represents 

the concept stated in the group. 

]£fil!Q§: 
The interpretation of NOUNGs can best be described with an 

example. Assume that NOUNG is sent a message to interpret 
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{"THE" "FIFTH" "SYMPHONY"). The first thing is to find concepts 

that are candidates for the meaning of each word (using the 

words• {CONCEPT ---) patterns). In the case of multiple 

candidates for a word, the NOUNG makes some choice, based on the 

importance of the concept to the word if such is available. (Of 

course, the NODNG must be prepared to make another choice if the 

first one fails tc work out). 

After doing this "dictionary look-up", the NOUNG picks off 

the concept associated with the noun (say SYMPHONY) and adds the 

pattern 

(ROLE-INSTANCE-OF NOUNG-SYMPHONY SY~PHONY) 

to the current execution instance {called NOUNG-SYMPHONY here); 

that is, the execution instance is playing the "role" of 

SYMPHONY in this context. Although it is debateable whether 

ROLE-INSTANCE-OF is the appropriate pointer name to use here, I 

feel it is more convenient to use an already existing link type 

with an inheritance feature built in {since much info~mation 

relevant to the new concept will have to be inherited from 

SYMPHONY as well as from NOUNG). Of interest is that when 

future generations look at NOUNG-SYMPHONY, they will know by the 

EX-INSTANCE-OF pointer that it is a NOUNG, by the 

ROLE-INSTANCE-OF pointer that it represents the concept SYMPHONY 

in this particular "role", and finally by the EX-ENVIRON pointer 

the context in which the words were issued. 

Next, the NOUNG must take care of all modifiers 

(adjectives, classifiers, determiners, etc.) in the group. 

Thus, the concept FIFTH (associated with the adjective "FIFTH") 

is sent a message 
(MODIFY-HOW FIFTH NOUNG-SYMPHONY ?MOD-HOW7) 

i.e. how does FIFTH modify a new role instance of SYMPHONY? 

FIFTH knows that it is the fifth number of whatever it modifies, 

so it adds 

(NUMBER-OF NOUNG-SYMPHONY 5) 

to NOUNG-SYMPHONY. If the modif ica ti on means 

NCUNG-SYMPHONY is now recognized to be a role instance 

more speci fie I PEXPR (e.g. FIFTH-SYMPHONY) , then 

that 

of some 

the old 
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ROLE-INSTANCE-OF pointer is removed and a new one added that 

points to the more specific IPEXPR. This, too, is done by the 

adjective concept during receipt of a MODIFY-HOW message. 

NOUNG-SYMPHONY now resumes execution and checks if there 

are any other modifiers in the group. Indeed there is one more: 

the determiner "THE". The concept associated with "THE", THE, 

is sent 

(MODIFY-HOW THE NOUNG-SYMPHONY ?MOD-HOWS) 

THE performs an analysis similar to that for adjectives except 

that the main task of a determiner is to determine whether the 

noun group is a role instance of a new instance or merely a role 

instance of an old instance. The usual case with THE is that it 

designates an old instance (although not always). In fact here 

THE does signify that NOONG-SYMPRONY is a role instance of an 

existing instance, so THE proceeds to try to find the instance: 

the candidates are instances of SYMPHONY or its subsets. If THE 

is able to find the particular symphony that fits, for example 

BEETROVEN-SYMPH-FIVE, then a 

(ROLE-INSTANCE-OF NOUNG-SYMPHONY BEETHOVEN-SYMPH-FIVE) 

is added to NOUNG-SYMPHONY and the ROLE-INSTANCE-OF pointer to 

SY~PHONY is removed. If THE is unable to find the particular 

symphony that fits, then 

(ROLE-INSTANCE-OF NOONG-SYMPHONY tSYMPHONY) 

is added to NOUNG-SY~PHONY (i.e. NOUNG-SYMPHONY is a role 

instance of some subinstance of SYMPHONY yet to be determined) 

and the old ROLE-INSTANCE-OF pointer is removed. Later, when 

other pieces of information become available, this pointer can 

be further specified. A final note: if a NOUNG refers to a new 
instance (as is sometimes the case with the article "A"), then 

the new instance is created (using the EXPR CREATE-NEW) and the 

ROLE-INSTANCE-OF pointer is directed to this new instance. 

!]RBQ~: 
Verb groups are handled in a manner similar to noun groups: 

tbe execution instance created when VERBG is sent an interpret 

message is a role instance of some particular action concept 
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associated with the main verb of the verb group. Adverbs and 

auxiliaries in the group further specify the time of the action, 

the manner of the action, the importance of the action, etc. To 

handle this, the concepts associated with verb modifiers ~re 

sent MODIFY-HOW messages which result in extra patterns adorning 

the verb group execution instance. 

gg~f§.2: 
A preposition group is interpreted by separating its object 

noun group and interpreting it. An additional pattern 

(PREPOSITION NOUNG-e x-instance "prep ostion 11 ) 

indicating the preposition that heads the PREPG is asserted in 

the NOUNG's execution instance (and later used, perhaps, during 

MODIFY-HOW processing). The NOTTNG execution instance is then 

returned as the "meaning" of the PREPG. 

2•§•1 Generation 

I will give here only a brief suggestion of what I have in 

mind for generation at the language level. A speech act 

receives an order 

(EXECUTE SPEECH-ACT SPEAKER LISTENER CONTENT ?OUT-WORDS) 

where CONTENT is either a JPEXPR name or a list of IPEXPR names 

representing the concept to be spoken. The speech act can 

scmetimes directly output the CONTENT (as for THANKS, say, or 

YES2), but most often it must call on the language level 

UTTERANCE, CLAUSE, NOUNG, VERBG, etc. I PEXPRs to help it 

produce nice output. Thus, INQUIRE needs to use a subset of 

UTTEBANCE, INQUIRE-UTTERANCE perhaps, to generate its output. 

INQUIRE-UTTERANCE would thus be sent a message 

(GENERATE INQUIRE-UTTERANCE CONTENT ?OUT) 

In response it would be expected to take the CONTENT description 

containing one or more JPEXPRs and figure out what patterns in 

the I PEXPRs to verbalize and what to leave non-verbalized (this 

would require, among other things, the examination of the belief 

models for the model itself and the conversant, available in the 

execution environment). For each pattern that is to be 
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verbalized, sub-clauses, adjectives, adverbs, preposition 

groups, must be constructed, and these must modify verbs and 

nouns in proper groups. Thus, at various stages PREPG, 

COCRD-CLAUSE, SUB-CLAUSE, NOUNG, VERBG, etc. can be sent 

GENERATE messages. 

When the time comes to get surface words for internal 

concepts, patterns such as 

(SURFACE BUY "BUY") 

associated with the concept tPEXPRs can be used. As each clause 

or group is completed, the words in that conglomeration are 

returned in a list to be amalgamated into other words returned 

from other clauses or groups. Eventually, words are returned to 

the speech act, which, using SPEAK-WORDS, outputs them. 

Obviously, this is a very brief outline of the potential of 

the model in the difficult task of generation. Much further 

analysis needs to be done before any claims can be made in this 

area. For a good description of the problems that lurk in 

generating natural language output, read Wong (1975). 

2•1 Conversations II and III 

At the beginning of the chapter two other conversations, 

the drink buying episode and the conversation with a "friend" at 

intermission, were proposed for analysis. I do not intend to do 

very much explanation here because the basic principles have 

already been presented and the complexities of the third 

conversation have not yet been sufficiently well analyzed for 

detailed discussion. However, it is essential to demonstrate 

the generality of the approach outlined in the previous 

discussion. 

The drink buying episode takes place as STEP7 of the 

ATTEND-CONCERT plan (see Appendix II) after the model has 

listened to the first half of the concert and gone out for a 

break at intermission. It turns out to be almost identical to 

tbe ticket buying episode: BUY is called with SELF as the agent, 

and with the desired drink being computed by asking 
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PRE-DINNER-DRINK (see Appendix II) 

(WANT SELF (DRINK SELF ?DESIRED-DRINK)). 

the question 

Since the model is 

attanding a concert, 

desires to be a new 

JCHNNY-WALKER-SCOTCH 

PRE-DINNER-DRINK computes the model's 

instance, JOHNNY-WALKER-SCOTCH1, of the 

IPEXPR (see Appendix II). 

JOHNNY-WALKER-SCOTCH is, in turn, a subset of SCOTCH (see 

Appendix II). Thus, the ITEM to 9ryy is JOHNNY-WALKER-SCOTCH1. 

BUY then is EXECUTEd and it finds the location of the 

drinks (QETBAR, discovered by asking JOHNNY-WALKER-SCOTCH1 which 

inherits it from PRE-DINNER-DRINK which computes it by asking 

for the location of the BAR at the location of the current 

event). The model goes to QETBAR where it expects to find the 

seller of JOHNNY-WALKER-SCOTCH1 to be a new instance, 

BARTENDER1, of BARTENDER {see Appendix II). This knowledge has 

been inherited by JOHNNY-WALKER-SCOTCH1 from the generic 

ALCOHOLIC-DRINK IPEXPR (see Appendix II). The people in 

Figure 5.8 are thus known to the model. 

The BUY-CONVERSATION script is then EXECUTEd exactly as in 

the ticket buying episode to achiave the desired drink. As for 

ticket buying, bargaining positions must be obtained. The 

bargaining positions for BARTENDER1 can be determined by asking 

BARTENDER1, which inherits it from BARTENDER by accessing the 

EXCHANGE pattern there. The bargaining positions for the model 

are determined by asking SELF what it wants to exchange, and 

this information is inherited along ROLE-INSTANCE-OF links from 

SELF-AS-A-BUYER-OF-ALCOHOLIC-DRINKS in this situation. Thus, 

the model owns SELF-HAS-ORINK-BARGAINING-POSN and wants in 

exchange SELF-WANTS-DRINK-BARGAINING-POSN while the bartender 
has BARTENDER-RAS-BARGAINING-POSN and wants in exchange 

BARTENDER-WANTS-BARGAINING-POSN (all these "bargaining position'' 

IPEXPRs are in Appendix II). It is interesting to note the ISA 

ccnnections of the various bargaining positions known to the 

model, displayed in Figure 5.9. 

The two BARGAIN sub-scripts of BUY-CONVERSATION (see 

section 5.4.3) are once again the most interesting aspects of 

the script. The first matches SELF-WANTS-DRINK-BARGAINING-POSN 
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with BARTENDER-HAS-BARGAINING-POSN and the second matches 

BABTENDER-WANTS-BARGAINING-POSN with 
SELF-HAS-DRINK-BARGAINING-POSN. The first bargaining differs 

from the ticket buying in that two things must be settled, 

namely the brand, then the mixer (see the BARGAIN-ORDER 

pattern). The second bargaining settles the cost of the drinks 

much as did the ticket buying situation. 

The speech act and language level JPEXPRs are more or less 

the same as in the ticket buying situation so need not be 

discussed. 

Upon completion of the drink-buying conversation, the 

ATTEND-CONCERT pattern expression resumes execution at STEPS 

where the model, in parallel, fills in time and drinks its drink 

until it hears the buzzer marking the end of intermission. This 

particular set of subgoals has only been added to show the 

I DO-PARALLEL I EXPR (see Appendix I) in operation and the 

possibility of the model doing several things at once. The 

FILL-IN-TI.ME I PEXPR would be a very liberal plan whi-ch more or 

less allowed bottom-up suggestions to direct it as to how to 

pass the time. Thus, if the model "sees" an interesting mural 

on the wall, FILL-IN-TIME might decide to build and call a 

subplan to go look at the mural, or if the model is a smoker, 

FILL-IN-TIME might invoke a subgoal to light up a pip~. 

When the model encounters a friend, FILL-IN-TIME would have 

to first of all recognize the friend and bring in its model of 

tbe friend, and secondly discover some script which would enable 

the model to talk with the person. Details as to how this would 

be accomplished have not been worked out, although it is clear 

that bottom-up and associative capabilities would be strongly 

employed in doing both tasks. 

Assuming the conversant model and the script have been 

built, what would such a script look like? It would start with 

scme sort of greeting script akin to WHAT-DO-YOO-iANT which 

would launch the conversation, to be followed by the most 

genaral two-person script DIALOGUE (see Appendix II). The 

DIA~OGUE script expects SPEAKER1 to produce some speech act, 
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then SPEAKER2 to perform some speech act, then SPEAKER1, and so 

on, until a failure occurs. Note that a special failure 

checking routine called CHECK-FAILURE-DIALOGUE is used that 

would explain a lack of input by suggesting that DIALOGUE is 

done rather than as an error as CHECK-FAILURE might do. 

COMPUTE-EXPECTATIONS is used to discover what to say at any 

stage based on what the speaker has said (available from the 

script), what he believes (available from his belief model), 

what the other speaker has said, what the other speaker 

believes, and on the model's knowledge about the various topics 

of discussion (contained in objects accessible in searches from 

IPEXPRs whose names can be found in the execution environment). 

This is, of course, extraordinarily difficult, and I can at best 

SFeculate on how it would work. 

Probably one of the major ways of deciding what to say is 

to compare patterns in one speaker's belief model with those in 

the other's model, and also to compare their beliefs with their 

utterances in the conversation to date. Depending on their 

attitude towards one another, either contradictions or 

similarities could be emphasized in choosing amongst the 

comparisons. If the two parties are in an adversary position 

(e.g. in a debate), then important contradictions would be 

crucial; if the two are in a co-operating mood (e.g. in 

purchasing something), then important similarities would be 

emphasized; if one person is in authority over the other 

(e.g. in a job interview), the subservient one would be 

co-operative, the authority would be perhaps contrary; and so 

on. Some of the ideas in my first progress report 
(Mccalla (1973)) would be relevant here. 

Some sort of general conversation takes place, is 

concluded, the model and the conversant exchange farewells, and 

the model returns from FILL-IN-TIME to the execution of the 

ATTEND-CONCERT plan. The plan continues with the model 

listening.to the second half of the concert, then going back 

home. Control at last returns to the execution of WORLD-VIEW 

where some other plan must be constructed and undertaken. 
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Thus, "one day in the life" of the model has been 

presented. Discussed has been the scope of the representation 

scheme, the type of language processing I envisage, and the 

problems which arise in using ILISP to undertake the processing. 

In the next chapter I examine some of the generalizations which 

can be extracted from these examples, and indicate some of the 

ways a system such as this can be extended to handle other kinds 

of phenomena. 
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The examples of the last chapter indicate in detail how the 

va~ious parts of the model fit together. In this chapter I 

discuss some of the more general representation features in the 

model, to suggest what the model means for the analysis of 

language, and to illustrate some potential extensions to this 

kind of system. 

§,.J B~resentaticn Pro.eerties of th.e .!1Qgg1 
Chapter V has exposed a plethora of patterns, pointers, and 

macros which together define the relevant information in the 

model. A surprisingly small number of dimensions suffice to 

delineate the bulk of this information. I would like to 

investigate the following major categories: the ISA hierarchy, 

the PART-OF hierarchy, the execution environment, "one-shot" 

relations, and procedural knowledge. 

£•J•1 The ISA Hierarc!U 

The ISA hierarchy consists of pattern expressions connected 

by INSTANCE-OF, POLE-INSTANCE-OF, EX-INSTANCE-OF, or SUPERSET 

pointers. It is the standard generalization hierarchy 

{e.g. Quillian (1969), Levesque (1977), Fahlman (1975), 

Roussopoulos (1976)) which allows lower concepts to inherit 

information from concepts higher in the hierarchy. 

It is generally a property of the ISA hierarchy that the 

higher up a IPEXPR is, the less specific is its information 

since (potentially) many sub-I PEXPRs can inherit from it. For 

example, looking at the ISA environment emanating from 

JOHNNY-WALKER-SCOTCH, it can be seen that stored with 

JOHNNY-WALKER-SCOTCH is very specific information as to the 

cost, the brand, and other features of this kind of Scotch; with 

its superset, SCOTCH, is more general knowledge about mixers 

that go with scotch, and the model's preferences among Scotches; 
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with SCOTCH'S superset, PRE-DINNER-DRINK, is more general 

information yet about the contexts in which the model wants to 

drink pre-dinner drinks; with its superset, ALCOHOLIC-DRINK, is 

the rather broad knowledge that bartenders serve alcoholic 

d~inks; and so on up the hierarchy. Of course, it is always 

possible (although the examples have not shown it) to override 

any general information by placing more specific information 

lower down in the hierarchy; e.g. 

(MIXER tTEACHERS-SCOTCH tW~TER) in TEACHERS-SCOTCH would be an 

exception to the general "scotch-mixer" being ice. 

Inheritance occurs during pattern matching when a source 

pattern has failed to match any target patterns. If this 

happens it is possible to look into the ISA environment 

surrounding the target object for a matching pattern. The two 

interesting things here are that inheritance is only attempted 

(i) a particular piece of information is needed by some 

other IPEXPR and it can•t be found directly; 

and (ii) when the information is of a type appropriate for 

inheritance to be tried (determined by failure to match 

processing associated with the information itself). 

The examples in Chapter V illustrate at least two types of 

ISA inheritance which I label 11~£1 ISA inheritance and 

g§E~ng~n£I ISA inheritance. Direct inheritance occurs when the 

unmatched source pattern can be directly matched to patterns in 

the ISA environment ~ithQY! iQ.Sl!Iing 1h~ 2QYI£~ £gtt~IIl• Thus, 

in the drink-buying episode when it becomes important to 

discover the SELLER of the newly created SCOTCH1, the source 

pattern (SELLER SCOTCH ?WHO) is constructed, and an attempt is 
made to match it in SCOTCH1. This fails, so SELLER directs that 

the INSTANCE-OF pointer to JOHNNY-WALKER-SCOTCH be followed, 

where a direct match is undertaken for a pattern matching the 

source. This also fails, so the SOPERSET pointer to SCOTCH is 

followed (and another failure to match occurs), the SUPERSET 

pointer to PRE-DINNER-DRINK is followed (and still another 

failure to match occurs), and finally its SUPERSET leads to 

ALCOHOLIC-DRINK. There, the pattern 
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(SELLER fALCOHOLIC-DRINK fBARTENDER) is discovered which matches 

(SELLER SCOTCH1 ?WHO) directly since SELLER= SELLER, SCOTCH1 is 

a SOB-INSTANCE of ALCOHOLIC-DRINK, and ?WHO matches fBARTENDER 

by creating a new instance of BARTENDER, say BARTENDER1, that is 

bound to WHO in the source object. The pattern 

(SELLER fALCOHOLIC-DRINK !BARTENDER) has been in some sense 

"directly" inherited by SCOTCH1. 

It is typical of most directly inheritable patterns that 

they are stored with a class, but their pattern elements pertain 

to instances (as indicated by "t" macros in front of their 

elements). Thus, the class ALCOHOLIC-DRINK contains the pattern 

(SELLER fALCOHOLIC-DRINK tBARTENDER) indicating that the SELLER 

of any sub-instance of ALCOHOLIC-DRINK is a sub-instance of a 

BARTENDER. An interesting observation is that use of=( --- ) 

macros would allow the placement of arbitrary conditions on a 

pattern element just as ''t" imposes the condition "sub-instance 

of" on its element, enabling the user of !LISP to more finely 

tune inheritance to his particular needs. 

The other kind of inheritance, dependency inheritance, 

involves modifying the source pattern as ISA links are 

traversed. This most freguently occurs when the item being 

inherited is a property of the class itself rather than being a 

ptoperty of the instances of the class with which it is stored. 

The second element of the pattern is, thus, usually the class 

name and when a sub-class (or instance) is trying to inherit the 

pattern it must take this into account. 

The most commonly inherited such patterns are the 

"procedural patterns" de$ignated by EXECUTE, EXPECT, INTERPRET, 

etc. which are associatea with their containing IPEXPR 

regardless of whether or not it is an instance. For example if 

the message pattern 

(EXECUTE ATTEND-CONCERT SELF CONCERT1 ?ATTEND-RESULT) 

were sent to ATTEND-CONCERT, and there was no matching pattern, 

EXECUTE would be called in to suggest what to do. EXECGTE 

patterns are dependently inheritable with the second element 

being dependent en (in fact egual to the name of) the IPEXPR 
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which contains the pattern. so, in this case the ATTEND IPEXPR 

(SUPERSET to ATTEND-CONCERT) would be searched for a pattern 

matching the modified source 

(EXECUTE ATTEND SELF CONCERT1 ?ATTEND-RESULT) 

and if this failed, the superset of ATTEND, say PLAN-OF-ACTION, 

would be searched for a pattern matching 

(EXECUTE PLAN-OF-ACTION SELF CONCERT1 ?ATTEND-RESULT}. 

The next most common situation requiring dependency 

matching is when an execution instance or role instance is 

inheriting from an instance or another execution instance or 

rcle instance, In this case any references to the execution 

instance or role instance must be considered to be dependent, at 

least until the instance is encountered. Thus, if BUFF-1 is an 

execution instance of RUFF, a pattern (HOWL RUFF-1) would be 

modified to (HOWL ROFF) when searching RUFF. Note that, 

although the match is dependent when going from RUFF-1 to RUFF, 

it would be direct if the search were carried out in the ISA 

environment above RryFF, since this is above the instance level. 

Dependency matches illustrate the value of forcing the 

semantics of failure to match processing to be explicitly stated 

in the pattern head, since the pattern head can do anything 

appropriate to the kind of information represented in patterns 

of that kind. In fact, it would even be possible to do away 

with pattern elements such as "t" and let the pattern head 

realize that the relation it represents connects instances 

rather than classes. For example the IPEXPR SELLER might know 

that (SELLER ALCOHOLIC-DRINK BARTENDER) actually is meant to 

relate instances of ALCOHOLIC-DRINKS to instances of BARTENDERS. 
I felt, however, that it would be better to explicitly suggest 

via macro modification the conditions on various elements in a 

pattern. Another user of tLISP is, as always, able to make his 

own decisions in this regard. 
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~-1•1 The PART-OF Hierarchy 

The PART-OF hierarchy connects pattern expressions by the 

pointer PART-OF, a link of recognized importance (see, for 

example, Levesque (1977}, Havens (1978)). A 1 PEXPR, Y, is 

connected by PART-OF to another tPEXPR, z, if the referent for z 
is an aggregate consisting at least in part of the referent for 

Y (e.g. a pattern (PART-OF LEG-OF-RUFF RCJFF) in RUFF) • 

As with ISA searches, PART-OF searches can be carried out 

in response to a failure to match; for example in the case of 

certain "attribute" patterns such as {COLOUR --- ) or 

{TEXTUBE --- ), etc. where the attribute of the part is likely 

to be the same as the attribute of the aggregate. ~o=eover, 

such searches should be carried out with dependency PART-OF 

inheritance in force, if applicable. Thus, to find a pattern 

matching the source {TEXTURE LEG-OF-RUFF ?WHAT) might require 

patterns in LEG-OF-RUFF to be considered, then, if this failed, 

patterns in RUFF. The source would have to be changed to 

(TEXTURE RUFF ?WHAT). 

PART-OF is also instrumental in intersection searches where 

it is necessary to see if several IPEXPRs are all PART-OP some 

more general tPEXPR. For example in the discussion of how th~ 

model updates its LOCATION pointer (section 5.3.2), PART-OF 

intersection was used to determine the level of geographic 

detail affected by a change in the model's position. Many other 

uses can be envisaged. Interestingly, there is a similar 

necessity for ISA intersection. For instance it is necessary in 

the semantic portions of the language level to check whether 

certain word conc€pts intersect up ISA links with the concept 

ANIMAL (i.e. to see if something is animate). For many examples 

of this phenomenom see Quillian (1969) and Fahlman (1975). 

i•l•l The Execution Environment 

The execution environment is accessed from any particular 

execution instance by following EX-ENVIRON pointers to execution 

instances of higher level goals. Patterns can be matched in the 

execution environment (using direct matching techniques) if they 
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represent the type of information which changes as subgoals are 

undertaken. Thus, the LOCATION of the model, the current object 

on which the model's ATTENTION is focussed, and the like, vould 

require looking up EX-ENVIRON pointers if necessary. 

In addition the execution environment forms the basic 

context mechanism of the model in that it focusses the model's 

attention on the things relevant to the current goals. Thus, at 

the language level, the model can discover the current speaker 

by looking into the execution environment for the controlling 

speech act where a pointer to the relevant model of the speaker 

is recorded. Knowledge gained from this model may enable the 

current utterance to be more easily interpreted or generated 

than it would be without the contextually relevant speaker 

model. This is a fairly typical use of the execution 

environment: execution instances in it contain patterns pointing 

to relevant JPEXPRs which in turn contain patterns pointing to 

slightly less relevant IPEXPRs further away from the execution 

environment, and so on. 

Thus, contextually relevant information is that information 

you can get at from the current execution environment. Deciding 

when to put something into the execution environment then 

becomes a major problem. There is no hard and fast rule about 

putting things into the context, but by far the most common way 

is for a script, or plan, or whatever to know directly by name 

the "foregrounded" IPEXPR to choose. The next most common way 

is by simple search up ISA or EX-ENVIRON links for data of 

certain kinds (e.g. to find (SELLER TICKET1 ?WHO) look up ISA 

pointers). Sometimes other searches can be used, as in the case 
of top-down expectations using associative activation (combined 

with ISA intersection) to exclude the YES1 affirmative answer 

meaning of "YES". Many more possibilities exist. 

Execution environments also form the basis for a sort of 

episodic memory, consisting of particularly relevant execution 

environments incarnated when the model was achieving previous 

goals. These old episodes not only still maintain their 

EX-ENVIRON and EX-INSTANCE-OF pointers, but they also still 
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contain all other relevant patterns that were asserted during 

their active existence. 

Accessing information in an old execution environment 

allows the entire context to be seen as it was then, vith the 

exception, of course, that it is being viewed from the changed 

perspective of the current context. This gives a facility 

similar to the ALINK / CLINK distinction of Bobrow and 

Wegbreit (1973) frames in that it allows processes in one 

context to access information from another, Moreover, it 

extends this facility, since it is perfectly possible to have 

execution instances of execution instances of execution 

instances, and so on, and hence have many levels of context. 

If an execution instance has been created as a subgcal of 

an EVENT-SEQUENCE, there will be a THEN link connecting it to 

the next subgoal at its level. Thus, old episodes are often 

stored as graphs looking something like Figure 6.1 (where each 

box is an execution instance created during EVENT-SEQUENCE 

processing). 

Various episodic memory searching procedures can be 

visualized (EX-ENVIRON searches from some execution instance; 

scans from execution instance to execution instance along THEN 

links; searches along THEN links with EX-ENVIRON searches at 

each stage; etc.) Which search is suitable would depend on the 

reasons for undertaking the search. Since episodic memory 

hasn't been actualized in 

further detail as to its 

experimentation. 

§•1•! Qng3hot E~1~ii2n§ 

the ~xamples I 

properties will 

have considered, 

have to await 

There are a number of ''relations" in the model called 

"one-shot relations" which are crucial but which don't connect 

to one another in long chains as do ISA, PART-OF, or EX-ENVIRON. 

Examples include co~cepts such as COMPOSER, SELLER, BUYER, 

CONCEPT, SURFACE, AGENDA, etc., which constitute the major 

portion of the model's knowledge base, These "relations" in 

their very ubiquity indicate that the model is not based on 
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X 

Figure 6.1 - An Episode in Memory 
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universal primitives but rather that any convenient domain 

dependent "primitives" can be chosen, can be endowed with a 

relevant name, given appropriate semantics (in how they handle 

failure to match, in how many elements patterns headed by them 

take, in IF-ADDED or IF-REMOVED processing, etc,), and used 

a f propria tely. 

2•1•2 Procedural fllQ~lgigg 
The final important aspect of the model's memory 

organization are the overtly procedural patterns in the memory. 

Thus, EXECfJTE, EXPECT, INTERPRET, ASSOC, •• , all designate 

patterns which undertake most of the model's active processing. 

The future hope is to reduce the number of COND, CDR, CAR, 

CONS, ••• primitives and submerge them into higher level 

"knowledge-based" primitives. This would not only prune the 

size of these patterns and make them more readable, but would 

also go a long way towards making the model self-examinable. 

The following main types of procedural pattern have been used 

thus far: 

TOE-Down Patterns: 

(i) EXECUTE: The main top-dolin aspact of the model, such 

patterns are used to undertake the "action" of the containing 

JPEXPR if the intended actor is the model itself. Thus, an 

EXECUTE sent to ATTEND-CONCERT puts into action the concert 

plan; an EXECUTE sent to a speech act will have the model speak 

the act; and so on. 

(ii) EXPECT: The "dual" to EXECUTE, this kind of pattern 
is used when somebody else is expected to do the action. If 

scmebody other than the model were to EXCHANGE an item with the 

model, then the model would EXPECT it; if the conversant were to 

undertake a speech act, then the model would EXPECT it. The 

close relationship that sometimes exists between EXECUTE and 

EXPECT is evidenced by the fact that an EXPECTed GIVE of a 

ticket from the ticket seller to the model is almost equivalent 

to the model EXECUTEing a TAKE of a ticket from the ticket 
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seller. 

Language Patterns: 

(i) GENERATE: This type of pattern is just the EXECUTE 

for the language level, distinguished from EXECUTE because this 

is a more traditional name in language processing, and also 

because GENERATE patterns do not take the speaker or listener as 

"arguments". 

(ii) INTERPRET: This is the EXPECT for the language level, 

distinguished from EXPECT for reasons similar to those given for 

the EXECUTE/ GENERATE distinction. 

(iii) MODIFY-HOW "case" procedures: These are the case 

style messages (elucidated in section 5.6) to be used to check 

the semantic relationships among linguistic concepts. 

Rsi!fin~ Associated with Pattern He~g§: 

(i) IF-ADD.ED: This procedural pattern is associated with 

IPEXPRs that can be used to designate the head of a pattern 

{e.g. FIND in (FIND GOD)). Whenever a pattern is asserted, its 

head is asked if there are any IF-ADDED "by-products" which need 

to be done. 

(ii) IF-REMOVED: This procedural pattern is similarly 

invoked to take care of side-effects resulting from the removal 

of a pattern. 

{iii) FAILURE-TO-~ATCH: This procedural pattern is 

associated with JPEXPRs that can be used as pattern heads and is 

called into play when a pattern with the appropriate head has 

failed to match in some IPEXPR (in a sense this makes it an 
IF-NEEDED method). It is this kind of pattern which determines 

whether inheritance, inference, or something else entirely must 

be undertaken in an attempt to overcome the failure. 

Q!hgI fIQCedyral f~i!grng: 
(i) ASSOC: This pattern type contains the procedural 

information that is necessary when a tPEXPR is contacted in a 

non-goal-directed way. One example of this was indicated in 
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Chapter V where the YES2 speech act replaces INQUIRE because of 

Associative information. More non-top-down message types would 

be needed to handle sensory input, bottom-up PART-OF 

amalgamation, etc. (see section 6.2.4 for further speculation on 

this and the use of ASSOC messages to give a demon capability to 

the JDodel). 

(ii) context dependent patterns: Any pattern can contain a 

procedural element (such as "=" er "t" or "! "), especially when 

it is necessary to encode context dependent information. The 

examples of the last chapter illustrated numerous such patterns 

(e.g. ROLE-INSTANCE-OF, drink preferences, bargaining 

positions). 

£•1 fQ§§iblg Extensions 

In this section I would like to suggest several additional 

features which would enable the model of the last chapter to to 

handle a wider and more interesting array of problems. Some of 

these extensions involve figuring out how to use features 

already provided by fLISP; other extensions require an expansion 

of JLISP's abilities. The suggestions here are meant to be 

evocative of the kind of things that would be needed, rather 

than to be rigorous proposals with solid solutions. 

£•1•1 Using Meta Patterns 

!LISP provides the user with the ability to arbitrarily 

nest patterns through the use of meta patterns, i.e. patterns 

which contain labelled patterns within them. In the model of 

Chapter V minimal use was made of meta patterns and no thorough 

classification of the kinds of things they could be used for was 

attempted. There are a number of possible uses for meta 

patterns. 

(i) 1!1£§: 'Winograd (1975) uses the term "IMP" when 

discussing certain patterns that are in some sense more 

important than others. Various kinds of IMPs can be encoded 

using meta patterns. Already seen in Chapter V have been IMPs 
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such as 

~a ; H~~8iit~8i ~~I:f ~~1 ln 
where S1 and S2 are patterns such as 

One possible extension of IMPs is to even higher order nestings: 

SS : (IMPORTANCE SELF /S3 4) 

Another 

Thus, as 

designate 

possible extension is to allow different kinds of IMPs. 

will be seen in section 6.2.4, it would be possible to 

certain patterns as being core patterns of a 

I PEXPR; e.g. 

(CORE lPEXPR-name (/S1 --- /Sn)) 

Such patterns would be crucial to the definition of a tPEXPR, 

and would fill 1 role similar to Becker's (1969) criterial 

concepts or to the 

Woods (1975). 

def i ni tio nal concepts discussed by 

But, such a binary distinction is, perhaps, too simplistic 

and more subtle distinctions of relative importance among 

patterns may be needed. For example, psychological markers akin 

to those proposed by Tesler~! al (1968) could be incorporated 

as meta patterns such as 

(CHARGE SELF /S 1 9) 
(SIGNIFICANCE SELF /S1 7) 

(ii) ~~g~~n£ing: There are many places where the sequence 

of some set of things is a key factor. Thus, the pattern 

matcher could be told to follow some sequence in choosing a 

target pattern; the conversation to date (in the script) could 

be kept as a sequence of elements, etc. This could be indicated 

using sequence meta patterns: 
(SEQUENCE MATCH lPEXPR-name (/S1 /S2)} 
(SEQUENCE CONVERSATION IPEXPn-name (/S2 /S1)) 

showing that the pattern matcher should try to match pattern S1 

then pattern S2, but that S2 preceded S1 in the conversation. 

(iii) iifilg: The myriad problems involved in handling time 

have been, by and large, ignored. The only refarence to time 

has been the lTIME-LIMIT= and !TIME-NOW= patterns used by !LISP 

in the processing of interrupts. Clearly, it is necessary to 
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keep track of other times: the time when the model undertook 

various tasks, the time of internal events in the processing 

(interrupts, garbage collection, etc.), the time of events 

mentioned in discourse (historical time, the time of occurrence 

of various happenings in a story or movie). 

An approach to handling this variety would be to devise 

"clock" fPEXPRs to represent different kinds of time. For 

example, there could be timers, internal clocks, historical 

clocks, story clocks, and so on. Such clocks would be 

responsible for keeping track of events relevant to them in time 

units appropriate to the events (seconds, days, eras). They 

could be queried for the time of occurrence of these events, 

could be sent messages to update themselves, and so forth. 

once such clocks were defined, meta patterns could be 

employed to record times associated with events. Thus, 

(TIME lSSERTION WORLD-VIEW-CLOCK27 /S1 29~ 

might indicate the 

according to an 

WORLD-VIEW-CLOCK27. 

time of assertion of pattern S1 to be 296 

internal clock instantiation called 

(TIME OCCCTRFENCE TI~E-LINE3 /S1 PAST) 

might show that the event represented by the pattern S1 occurred 

in a PAST era according to TIME-LIN~3, an instantiation of an 

historical clock; but 

(TIME OCCURRENCE TIMB-LINE2 /S1 FUTURE) 

indicates that the same event occurred in a FUTURE era from the 

perspective of TIME-LINE2. Time is an interesting area needing 

much further exfloration (see Bruce (1972), Kahn (1975} or 

R. Cohen (1976) for discussions of the problems of time). 

2•l•J g~f£sgg Collection and Learnir.g 

Because many of the "temporary" IPEXPRs (execution 

instances, new instances, etc.) set up during processing turn 

out to be useful later in episodic and other considerations, 

I've talked of the necessity for doing garbage collection 

intelligently. Such processing is undertaken by a goal 

hierarchy headed by META-VIEW running in parallel to the 
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main-line WORLD-VIEW goals. 

META-VIEW currently just calls the LISP garbage collector, 

clearly a much too limited capability. The first extension 

would be to clean up most execution instances created by 

WORLD-VIEW processing. It seems reasonable that all execution 

instances below a certain level of detail should be 

automatically destroyed (except, perhaps, in exceptional 

circumstances when the most trivial details might remain vividly 

in the system's memory)~ A general rule of thumb might be that 

if it hasn't been spawned as a subgoal of an EVENT-SEQUENCE, 

then it isn't worth keeping around, since the episode hasn't 

been deemed important enough by the user to warrant being 

connected up with THEN links. In the model of Chapter V the 

cutoff would occur beneath the sc=ipt level. This heuristic 

presents problems (what happens if an EVENT-SEQUENCE is used in 

a subgoal of a non-EVENT-SEQUENCE?), and moreover ignorP.s the 

fact that even many EVENT-SEQUENCE episodes should be destroyed, 

but otherwise seems reasonably appropriate. 

Once execution instances are destroyed, other tPEXPRs will 

become expendable since they will be pointed to only from the 

destroyed execution instances (e.g. perhaps new conversant 

models would be eliminated when the episode in which they were 

created was aestroyed). Furthermore, each time a pattern is 

removed during the destruction of an execution instance, its 

IF-REMOVED side-effect will be called to keep things consistent. 

Many execution instances created as a by-product of 

accessing static pieces of data from secondary IPEXPRs are not 

records of subgoals in the same sense as are execution instances 

of primary IPEXPRs called in as subgoals. such "secondary" 

execution instances should also be destroyed either using the 

EVENT-SEQUENCE criterion or, perhaps on the basis of having no 

"!"or"$" macros in the receiving pattern. Of interest here is 

the fact that this kind of garbage collection is unnecessary if 

JPATTERN or !POINTER fEXPRs are used when accessing patterns 

believed to ~e static. These tEXPRs violate modularity by 

locking directly into pattern expressions to match patterns; and 
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being fEXPRs, they create no new execution instances (using 

instead the current execution instance) and hence avoid the 

garbage collection problem by not creating any garbage in the 

first place. Obviously these are just preliminary suggestions: 

the whole garbage collection problem remains a major one. 

A problem related to garbage collection is how to achieve 

the subtle kinds of memory modifications which loosely fit under 

the label n1earning". The most basic kind of learning is the 

addition of new information to a system. Already it has been 

seen how WORLD-VIEW subgoals could create new JPEXPRs (such as 

TICKET-SELLER1 and BART ENDE-81) and these could then be end.owea 

with patterns as knowledge about them was gained. META.-VIEW, 

not having direct access to the "real world", would ha ,ve li111ited 

responsibilities for this kind of learning. 

However, META-VIEW subgoals would be directly concerned 

with the kind of learning that involves generalization (a la 

Winston ( 1970)) up the ISA hierarchy. For exa111.ple if every 

instance of PERSON had a pattern 

(NUMBER-OF-LEGS instance 2) 

then the concept 

(NUMBER-OF-LEGS fPERSON 2) 

should probably be added to PERSON, and the patterns with each 

instance could be removed. The "t" macro would be used often as 

various specific elements in instances were "abstracted out". 

Of course, there remain many difficulties here. 

META-VIEW would also have to undertake more devious kinds 

of learning, involving such things as the construction of plans 

from old episoaes; the discovery of reasonable kinds of 

exFlanations for failure that can be incorporated into plans; 

the creation of "new" information based upon inferences made 

from already existing information; the recognition of thB 

underlying similarity of two concepts and perhaps their 

amalgamation into one concept; and so forth. How to do thesB 

kinds of learning is clearly a major research question that has 

not been tackled at all. I mention the subject merely to 

indicate that META-VIEW will have to be at least as complex and 
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sophisticated as WORLD-VIEW. 

2•£•1 Non-Goal Directed Processing 

Most of the model's processing has been goal directed. In 

this section I would like to discuss three non-goal directed 

asFects (bottom-up processing, associative activation, and 

demons) and consider what effect they would have on the system. 

When words are read by the model, the actual words are not 

ccntrolled by any goal of the model but have an external source. 

Using PART-OF links, they could (theoretically) be amalgamated 

into groups, into clauses, and perhaps even higher up, often 

without r~ference to any top-down goal. Certain groups of words 

could even be critical parts of scripts and when they occur 

would strongly suggest that these scripts be activated. This 

scrt of bottom-up processing is diametrically opposed to the 

strong top-down emphasis of the model. 

The question arises: where would bottom-up information meet 

top-down information? The top-down/ bottom-up point could be 

fixed almost anywhere. If the model were to expect an 

utterance, but had no further details# then the UTTERANCE IPEXPR 

would be sent an INTERPRET message, and no further strong 

top-down direction need ensue. If the model were to expect a 

particular kind of utterance (e.g. a "Because I ate the 

cheese." clause), on the other hand, it could send the IPEXPR 

BEC~USE-I-ATE-THE-CHEESE an INTERPRET message to process the 

utterance from its own specific viewpoint. Similarly, the 

bottom-up processing could amalgamate words into groups, into 

clauses, and even suggest the relevance of certain scripts or 
non-linguistic goals. These bottom-up traces, however, would 

have to be integrated into some sort of top-down interpretation 

of the world; and choosing which top-down IPEXPR to contact to 

do this integration is a problem I have not attempted, except to 

say the currently active execution instance. Nonetheless, 

tcp-down or bottom-up processing can gravitate toward one 

another as they like, a flexibility that is crucial for an 

intelligent system. 
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There are other places wher~ non-goal directed processing 

must be taken into consideration. Whenever a IPEXPR is 

activated top-down, many closely connected JPEXPRs (perhaps 

IPEXPRs whose names are contained in patterns of the top-down 

IPEXPR) may be relevant. To discover which are relevant, 

(ASSOC --- ) messages would have to be sent out to spread an 

associative activation to nearby tPEXPRs (this is similar to 

Rieger•s (1974) idea of inference waves spreading out from 

concepts) • In responding to an ASSOC, a target I PEXPR would 

decide whether or not it considered itself relevant (in which 

case it would communicate its desire to be processed (and in 

what way - EXECUTE, EXPECT, or whataver) to the top-dow~ 

activation source) and also it would need to decide to whom (if 

anybody) to spread the activation. 

There is probably a need, as well, for JPEXPRs that act 

essentially as demons (a la Charniak (1972)) in that they are 

created at one time for execution later when conaitions are 

appropiate. Upon creation, such a demon would have an 

(ASSOC --- pattern added to it, containing the activation 

conditions for the demo~ along with the message it is to handle 

wha~ it is activated (all of this likely contained in some sort 

of procedural element in the pattern). In addition, at 

creation, pointerE 

(DEMON IPEXPB-i new-demon) 

to the new demon would be added to all IPEXPR-i considered to be 

relevant to its eventual activation. When any of these IPEXPR-i 

happened to be called in top-down, they would associatively 

contact the demon "new-demon" (be ca us°- of the DEMON pointer) 

which can then decide whether or not conditions are right for it 

to be activated tcp-down. 

§•l•! Com£aring lPEXPRs 
In much of the model's processing, to talk to or about a 

pattern expression has required scmebody else to know its name. 

on many occasions it becomes important to be able to compa~s 

entire pattern exfressions to one another by content rather than 
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~erely by name. This happens, for 9xample, during recognition 

or associative activation, in delineating ever more precise 

referents for concepts at the langu~ge ~evel, and in finding 

contradictions and similarities between concepts as part of a 

non-directed conversation or debate. 

This is a very difficult process when virtually no 

restrictions have been placed on the patterns that can go into a 

IPEXPR, when knowledge about a IPEXPR itself is mixed in with 

knowledge about the IPEXPR's refer8nt, when patterns are varied 

in 1·ength and content, and when the presence of macro elements 

in patterns virtualiy eliminates any 

self-examinability or comparison with other 

possibility of 

patterns at th~ 

lexical level. These difficulties can be partially overcome by 

the clever use of things like meta patterns, hut the real 

solution will no+. come until much more declarative realizations 

of information can be devisen to replace the all too frequent 

occurrence of long, procedural patterns. 

In a manner similar to MEaLIN (Moore and Newell (1973)), 

the fundamental comparison technique might involve viewing one 

pattern expression as another. Thus, it would be possible to 

view a dog as an animal, or a cat as a rock, or a car as a 

freight train, etc. Direction of view is important since, for 

example, the opposite view of a freight train as car, a rock as 

a cat, an animal as a dog, is quite different. 

The fundamental com£arison rule outlined below is based on 

the intersection technique described in Quillian•s TLC (1969). 

The rule goes as follows: 

Pattern expression A can be Y1ft!gQ ~§ pattern 

expression B if 

(i) B = A or is in the ISA environment of A; 

or (ii) t~ere is some ~nearby" pattern expression C 

in the ISA environment of both A and D, and moreover 

each pattern in A has a comparable pattern in B. 

"Nearby" is determined by counting the number of ISA 

links traversed from each tPEXPR before intersection 

is achieved. The number of such links varies with the 
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These rules can be tuned, if desired, to reflect a 

particular set of assumptions, as the following examples 

illustrate. Trivially, if the IPEXPRs are ROFF and ANIMAL, then 

by "view-as•• rule (i) , RUFF can be viewed as an ANIM-AL. Next, 

assume the I PEXPR SMOKEY (a CAT) is to be viewed as ROCKl (a 

STONE). Thus, SMOKEY could be 

(IPDEF SMOKEY 

!
INSTANCE-OF SMOKEY CAT) 

S1 : NOISE SMOKEY MEOW) 
S2 : SHAPE SMOKEY FOUR-LEGGED) 

CORE SMOKEY (/S 1 /S2))) 

and ROCK1 could be represented as 

0 PDEF ROCK 1 

!
INSTANCE-OF ROCK1 STONE) 

S 1- : NOISE ROCK1 NOS OOND) 
S2: SHAPE ROCK1 ROUND) 

CORF ROCK1 (/S1 /S2))) 

So, the command (VIEW-AS S~OKEY ROCK1) is issued and the 

intersection technique carried out resulting in an intersectioc 

at THING. Assuming this is near enough (i.e. not more than a 

user specified numbBr of ISA links have been followed), the 

search for comparable patterns begins. Comparing the respective 

S1 and S2 patterns, the following first-level viewpoint can be 

built: 

( I PDEF SMOKEY-VIEWED-AS-A-ROCK1 

S2: 

{SUPERSET SMOKEY-VIEWED-AS-d-R0CK1 
S1 : (NOISE ! !VIEW SMOKEY ROCK1l 

! VIEW MEOW NOSO~ND) 
(SHAPE i ~~~: ~gg~:iE~g~~

1 
OUND)) 

(CORE SMOKEY-VIEW ED-AS-A- ROCK 1 (/S 1 

VIEWPOINT) 

/S 2))) 

which can be reduced still further to 

( I PDEF 

S1 

S2 : 

SMOKEY-VIEWED-AS-A-ROCK1 
(SUPERSET SMOKEY-VIEWED-AS-A-ROCK1 VIEWPOINT) 
(NOISE SMOKEY-VIEWED-AS-A-ROCK1 

! (VIEW MEOW NOSOUND)) 
(SHAPE SMOKEY-VIEWED-AS-A-ROC~1 

! (VIEW FOUR-LEGGED ROUND)) 
(CORE SMOKBY-VIEWED-AS-A-ROCK1 (/S1 /S2))) 

since SMOKEY-VIEWED-AS-A-ROCK1 is the result of ax.:;cuting 

! (VIEW SMOKEY ROC'K1). Thus, SMOKEY can be viewed as ROCK1 if a 

MEOW can be viewed as NOSOUND and FOUR-LEGGED can be viewed as 
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ROOND. Clearly, each of thesa c0mputations coula be carried out 

to get second-level viewpoints and so on. 

obviously much has been laft unsaid. First, "nearby" has 

been defined in this exampl~ to be quite far apart since the 

intersection at THING is very high in the ISA hierarchy. The 

dacision as to how many links to traverse would depend on 

exactly how crucial the comparison is in the cu~rent context. 

Second, how did VIEW know that S1 and S2 were grist for the 

ccmparison mill while the INSTANCE-OF and CORE patterns were 

not? The answer lies in the CORE patte~ns mentioned in section 

6.2.1. Recall that the meta patt8rn (CORE defines the 

patterns which are central to a IPEXPR. Thus, one way to refine 

the fundamental comparison rule is to use only CORE patterns in 

~he comparisoh. A further refinement of this might also take 

into account certain other meta information such as IMPs, 

etc., in deciding which patterns to compare and which to leave 

alone. 

A third refinement illustrated by the example is the fact 

tha~ the comparison was stopped at the first level of viewpoints 

rather than being carried out ad infinitum. The decision as to 

how far to go with this would be dependent (i) on the degree of 

difference between the resultant views (e.g. if MEOW and NOSOOND 

were to intersect at too great a distance, then further 

ccmparison might seem futile); (ii) on the importance of finding 

a very refined match in the current situation; and (iii) on the 

reluctance of the model to posit (a term from MERLIN) the 

necessary views rather tha~ to produce a further level of 

viewpoints (e.g. without further search FOUR-LEGGED could be 

posited as ROUND). All these parameters could be specified as 

arguments at the time of VIEW invocation. 

Many difficulties have not bgen illustrated by the example. 

First, there is the absence of procedural pattern elements. 

These might be handled by testing for LISP EQUALity; but this 

seems a bit rigourous and a more flexible means of comparison 

would be desirable. The eventual hoped-for reduction in the 

number of such procedural patterns would certainly go a long way 
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towards alleviating this problem. 

A second problem is how to choose the B pattern to compare 

to the A pattern, something that is fairly easy if a B pattern 

starting with the same head and of the same length as the A 

pattern can be found, but something that is very difficult 

otherwise. If no comparablg p3ttern is found for A, then 

presumably some scrt of pattern (NOVIEW PATTERN A) would need to 

be asserted in the VIEWPOINT IPEXPR. Too many such unmatched 

patterns, especially if they ~ere IMPs, would be grounds for 

rejecting the VIEWPOINT. Similarly, too many extra B patterns 

could be cause for VIEWPOINT rsjection. 

Obviously the work on JPEXPR comparison is in a preliminary 

stage. Many issues have been ignorsd and even the ones that 

have been discussed have been only briefly examined. If the 

model is to be extended to recognition and other more general 

areas, IPEXPR comparison will hav8 to b~ confronted more 

ser:iously. 

~-1•2 Miscellaneous Considerations 

Clearly the system here ignor~s many interesting areas that 

could use further elaboration. one such area is short term 

memory. Is the short term memory limitation to 7 plus or 

minus 2 items a limitation on the number of patterns in a 

tPEXPR? Or, perhaps, the number of execution instances on the 

execute queue? or is there a sgparat~ short term memory where 

certain concepts must be placed before being considered? I 

don't have any idea sxcept that short term memory seems a fairly 

important concept and would probably be helpful in cutting down 

on the vast number of things being considered at any given time 

by the model. 

Other problems are planning (that is actually building such 

I PEXPRs as ATTEND-CONCERT in ::-esponse to goals) ; deciding 

amongst many goals; deciding on what goals to undertake in th€ 

first place. Once again I can at best speculate on these 

things. 

work on so-called "analogical" representations, such as 
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carried out by Funt (1976) and others, suggests that perhaps a 

place should be found for such a lev8l of d~scription. Adding a 

new kind of object (e.g. some sort of direct representation of 

the Queen Elizabeth theatre o:- a motor-a.ction) could be 

accomplished quite easily with minimal disruption to the 

interpreter; but deciding on what message passing semantics to 

enforce for the new object would he difficult. In sum this 

would probably be more trouble than it was worth, given the 

flexibility and power of the current object definitions, 

particularly the pattern expression. 

This concluaes the description of the generalizations and 

ext'3nsions. In Chapter VII I conclude with a discnssion of th@ 

contributions and future directions of this research. 
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In the preceding chapters a scheme for representing 

knowledge was delineated and given computational description as 

a set of LISP-based control structures called ILISP. Then, an 

approach to modelling conversatio~ was described and a 

particular example illustrating the approach was detailed in 

terms of !LISP. In this chapter I would like to summarize the 

contributions and shortcomings of the representation scheme and 

the language model; I would th~n like to conclud~ with some 

thoughts on how to improve and extend the ideas presented here. 

1·1 Contributions to Reeresentation 

The object centred representation allows a modularity which 

should enable large systems to be built. The pattern expressioL 

in particul~r is interesting in that it comes in so many guises: 

it can be seen as an indivisible primitive or as a node in a 

semantic network or as an examinable set of patterns or as a 

basically procedural object. Often the same pattern expression 

can be viewed in any or all of the four guises, depending on 

circumstances. 

A pattern expression is also interesting in how it responds 

to a message. The incoming message is a pattern that is matched 

against patterns in the IPEXPR body. The message pattern has 

exactly the same restrictions as the IPEXPR patterns so the 

pattern matching is completely symmetric. Through the use of 

macros, the pattern matcher can be given instructions that can 

involve binding variables, computing something, or performing an 

action only if certain conditions are met. These capabilities 

allow a decision regarding the exact meaning of a pattern to be 

postponed until the information in the pattern is needed. This 

is useful when encoding context dependent knowledge. 
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Because of macros, the user of the representation scheme 

also has the choice of whether to encode information in a 

basically procedural way (using lots of macros) or in a 

basically declarative way (using very few macros). Iri the early 

stages of any research it may be easier to throw much of a 

system's knowledge into procedural patterns at the expense of 

~xaminability, but this should disappear as familiarity with the 

aomain increases and the natural dimensions of the domain 

manifest themselves. As these dimensions are discovered, the 

p~ocedural 

patt.erns. 

patterns can be replaced 

Moreover, the transition can 

by 

be 

more declarative 

smooth since · all 

patterns (macro-filled or macro-less) are accessed in a similar 

fashion, using the same pattern matcher. Further contributing 

to the procedural/ declarative intermixture is the fact that 

the answers to all messages are themselves patterns (containing 

virtually no macros} that ~re left in the execution instance of 

the JPEXPR which received the messag➔ as declarative fallout of 

procedural capabilities. 

one final feature of the pattern expression is its 

capability of being "run" in several different modes merely by 

endowing it with several different patterns, one for each mode. 

Thus, in the language example of Chapter V, speech acts could be 

run in EXECUTE, EXPECT, or ASSOC modes; language level f PEXPRs 

could be INTERPRETed or GENERATEd; etc. This capability allows 

all information relevant to an object to be easily incorporated 

within the object. 

The "multiple mode'' feature is even more useful when 
combined with the representation scheme's failure to match 
processing. If a particular message pattern cannot be handled, 

the pattern head is contacted for its advice. The user can 

specify that the pattern head is to perform arbitrary 

inferences, but this would in general be explosive, so he is 

encouraged (by the provision of special search routines) to 

restrict failure to match processing to execution environment 

searches (for context depenaent information) or to ISA searches 

(for information ttat can be inherited down a generalization 
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hierarchy). This kind of failure to match capability provides a 

way of performing procedural attachment (see Winograd (1975)); 

ensures that information is inherited if and only if it is 

needed; and nefines the pattern head (usually acting as a 

relation) as the foremost authority on what to do in failure to 

match situations. 

The repres~ntation scheme is substantially enhanced because 

its execution instanced are themselves JPEXPRs that don't 

disappear afte~ execution unless explicitly garbage collected. 

This allows them to be accessed using the same message passing 

paradigm as any other lPEXPR, a nice bit of uniformity that 

turns out to be very useful in episodic considerations (see 

below). Because of this feature, the power that an 

ALINK / CLINK distinction provides (Bobrow and Wegbreit (1973)) 

to execute in one environment and return control to another can 

be simulated by having an execution instance of an execution 

instance, each with its own execution environment. In fact, the 

ability can be extended by having arbitrary chains of execution 

instances, all of which have different execution environments. 

Finally, keeping old execution instances around allows them to 

be used in ps~udo-parallelism, where an old execution instance 

can be stopped and later resumgd in the exact same context it 

was inhabiting before it was halted. 

The execution environment of active execution instances is 

basically a LISP or ALGOL style dynamic context, but the fact 

that the execution instances in the environment are JPEXPRs that 

can contain patterns implies it can be used in a knowledge-based 

way. In particular, patterns that contain context dependent 

information (e.g. the identity of the conversants, the purpose 

of one of these conversants, the current focus of attention) can 

be sto~ed and accBssed. once control returns from an execution 

instance containing such patterns, they disappear from view. 
The active execution environment thus provides a focussing 

mechanism. It is also useful if the current goals of a system 

need to be accessed - the goals are strung upwards in the 

execution environment, attached (via EX-INSTANCE-OF point3rs) to 
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the execution instances there. 

But, perhaps the most interesting feature of execution 

~nvironments arises in combination with the examinability and 

non-disappearance of the execution instances contained there. 

This combination of features allows the construction of an 

episodic 

trees of 

memory 

old 

(Schank (1974), Tulving (1972)) consisting of 

execution environments. If any particular 

execution instance in this environment is picked out, the entire 

context in which it was originally active can be seen. Although 

the mechanics of how much of old execution environments to save 

and how to search them have not be8n worked out, this seems to 

be a promising approach to episodic memory and one that is 

perfectly compatible with semantic memory (in contrast to 

Schank•s (1974) arguments} since all execution instances have 

EX-INS'TANCE-OF pointers to the "semantic" ISA environment as 

well as EX-ENVIRON pointers to the "episodic" execution 

environment. 

A final aspect of the representation scheme is the fact 

that it allows arbitrary levels of detail along several 

dimensions (ISA, PART-OF, the subgoals created by message 

passin~. In addition there is an implicit "containment" 

hierarchy stretching beneath a !PEXPR consisting of the IPEXPRs 

referred to in its patterns, the IPEXPRs referred to in those 

JPEXPRs' patterns, and so on. This ability means that a IPEXPR 

can always be broken dow~ if necessary into subcomponents of 

scme kind, in direct opposition to the primary tenet of 

primitive based systems ( Schank ( 1 972) , Wilks ( 197 3)) • The 

ability to go into detail when necessary seems an essential 

component of intelligence, a point that is further argued by 

Rawat (1974). 

l ■ l contributions to Language Analysis 

The language model described in Chapter V has served a dual 

role: first, it has acted as a test bed for 1LISP; second it has 

suggested an approach to modelling conversation. I would like 
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to describe the main contributions that the model makes to the 

analysis of conversation and also to suggest how fLISP has 

helped and influenced the construction of the model. 

The model is founded on the principle that the problem of 

conversation must be treated as essentially a problem in 

pragmatics. This viewpoint is not unique - it is argued 

persuasively by Winograd (1976), by some philosophers of 

language (Grice ( 1968), Searle (1969)) , and by linguists such as 

Fillmore (1975) - but it differs markedly from traditional 

linguistic approaches. The view is reflected in a couple of 

ways in the model: the indistinguishahility of linguistic from 

non-linguistic goals (they are all fPEXPRs, and except at the 

language level all receive EXECUTE and EXPECT messages); and the 

emphasis in the model on scripts, speech acts, and conversant 

models rather than on more standard language aspects such as 

parsing, parts of speech, etc. 

The mod&l's emphasis on goals is 

researchers (P. Cohen (1978), Levin 

not accidental. Other 

and Moore (1977), 

philosophers of language) have suggested the importance of 

conversants' goals in the interpretation and production of 

utterances, although the rather rigid hierarchical structure of 

non-linguistic goals calling scripts calling speech acts calling 

language level goals is not emulated elsewhere. Asiae from 

this, the most interesting general features distinguishing the 

model are )LISP-based: the ability to encode all goals as 

IPEXPRs and run them in EXECUTE mode (to produce utterances) or 

EXPECT mode (to understand utterances); the fact that from any 

goal all superior goals can be accessed in the execution 

environment and that the execution environment acts as a focus 

for all linguistic endeavour~ the usefulness of being able to 

abstract processes into the ISA hierarchy and later inherit them 

when necessary; the fact that execution instances at all levels 

can act as repositories of information and in that vay encode 

tha "meaning" of the conversation. 

However, at each level there are interesting features. 

Non-linguistic goals drive other goals and form the context for 
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all that follows. They can be accessed from all lower levels 

and are thus influential on what is said, occasionally 

non-linguistic goals can be called by linguistic goals 

(e.g. EXCHANGE calls GIVE in the Chapter V examples) as well as 

vice versa. This flexibility is crucial in many linguistic 

situations {especially when language is being used to aid.in the 

accomplishment of some task) • 

The script level is interesting in the model because it 

directs the entire conversation. Scripts are responsible for 

spawning sub-scripts or speech acts, making sure they have run 

correctly (although the model has a trivial "explanation" 

ccmponent at the present time), and in general keeping track of 

the sequencing of a conversation. scripts also keep a record of 

the entire conversation by making assertions in the execution 

instances (this, too, is pretty trivial at the moment). Of 

particular note is the flexibility of scripts in regard to the 

identities of the speaker: the model itself can be identified 

with none, one, or both of the conversants. There is also no 

theoretical limit in the model to having only two conversants 

{although non-person conversations were given). 

The speech act level is not nearly so central in the model 

here as it is in, say, P. Cohen's (1978) work. Speech acts, 

nonetheless, form an interesting interface between scripts and 

the language level. Perhaps speech acts are most interesting 

here in that they take an active role in carrying out the act of 

speaking just as would a motor action when carrying out some 

sort of physical act. Because of the "multiple mode" aspect of 

!LISP, speech acts can be asked to either EXPECT (understand) or 

to EXECUTE (produce) a speech act. In ZXPECT mode a speech act 

must read an utterance and interpret it in any way it sees fit 

(perhaps by calling in the language level); in EXECUTE mode a 

speech act must generate a surface utterance in any way it sees 

fit (perhaps with the help of the language level) and then print 

it. 

The language level is the least developed of the model, but 

does have a couple of interesting features. It's syntactic 
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component, insofar as it can be distinguished, is more or less a 

top-down parser that groups words for its case-like semantic 

component. The combination of the two approaches isn't too 

common (but see Taylor and Rosenberg (1975) for one example) and 

seems to be a workable hybrid. The general ability of !LISP 

objects and message passing to accomodate successfully to this 

level is gratifying. Of particular effectiveness is the 

conceptualizing of a noun group or verb group as an execution 

instance vith an EX-ENVIRON pointer to the context in which the 

words were uttered, an EX-INSTANCE-OF pointer to the linguistic 

object (NOUNG or VERBG) of which they are an instantiation, and 

a ROLE-INSTANCE-OF pointer to the concept which they represent. 

This allows information about the context of the word group, the 

wcrd group itself, and the concept represented by the word group 

all to be accessed. 

The conversant models in the model are not sophisticated at 

the present time, the main idea having been to find out how to 

connect conversant models into all the other processing rather 

than to build an intricate web of conversant knowledge. Scripts 

and speech acts have directly available to them conversant 

models for all conversants, whereas language level goals do not. 

Of course, for any subgoal of a script or speech act, the 

conversant models are indirectly available from the script or 

speech act. conversant models have at least two interesting 

asFects: first, the use of ROLE-INSTANCE-OF patterns (often with 

context dependent macros embedd~d in them) allow conversants to 

be viewed in particular roles (e.g. seller, buyer) as well as in 

their standard "person'' role; second, the existence of a 

conversant model for the model itself. Both these aspects are 

important for the completeness and symmetry of the processing. 
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].] Future Directions 

There is, of course, much still to be done. The first step 

is to implement !LISP and then see how well it works by running 

through the currently pseudo-implemented ticket buying and drink 

buying conversations. This would doubtlass raise several 

issues, most importantly the efficiency of execution. Failure 

to match processing and IF-ADDED and IF-REMOVED methods may be 

ccmputationally expensive unless controlled with draconic 

prudence. Also arising here would be the problem of explaining 

the failure of subgoals in a much more serious way, a step which 

would become even more important in less directed conversations. 

After running through the ticket buying and drink buying 

conversations, the next step would indeed be to try out less 

task-oriented dialogues such as the conversation with a friend. 

Handling such conversations would bring up many of the 

ncn-goal-directed issues raised in the last chapter. It seems 

clear that a much larger role for bottom-up processing and, if 

scme version of it can be made combinatorially sound, 

associative activation is crucial if the model is to be extended 

to handle more fluid conversations. The need for IPEXPR 

ccmparison would also arise. 

crucial in conversation modelling would be a working 

episodic capability so that references 

wouldn't leave the model perplexed. 

to previous utterances 

First, an exploration of 

when and how to search episodic memory would have to be carried 

out. But, more important would be the need to figure out which 

old episodes to "remember" and which ones to "forget" (by 

freeing them for garbage collection). As Schank and 

Abelson (1975) have pointed out, and as the proposals presented 

here illustrate well, a theory of forgetting promises to be a 

central concern of much future work in artificial intelligence. 

Bec~use the current model of conversation and its !LISP 

base have been designed with generality and extensibility in 

mind, their further development along these lines seems to be 

possible. The research undertaken so far should provide a solid 

foundation for the endeavours to come. 
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APPENDIX I 

2Q!~ System Objects 
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In this Appendix several system objects are presented in 

terms of their input/ output behaviour and also, for certain 

important objects, in terms of their logic flow. The Appendix 

forms a handy reference, especially when reading the detailed 

examples of Chapter v. 
The following notational conventions have been used 

throughout th~ Appendix: Ai is an atom (i.e. a single name); Si 

is ans-expression; Li is a list; Pi is a pattern; Ni is a 

number; NIL is the null list () which stands for "false" or 

failure to match depending on the context; IU is a special 

NIL-like atom which stands for "un-initialized" and is used to 

assign a value to certain pattern matching macros before they 

are bound in the match; Tis the "true" atom; EXPR indicates an 

object of type EXPR and has three possible sub-classifications: 

LAMBDA, NLAMBDA, or FLAMBDA; IEXPR indicates an object of type 

I EXPR and has three possible sub-classifications: l LAMBDA, 

INLAMBDA, or IFLAMBDA. In addition to these standard 

assumptions, there are many special forms whose names are given 

meaningful mnemonics. 

!1•1 !!~.§i£ Inteureter Objects 

IEVAL is the !LISP interpreter. Its basic logic 

follows: 

Call in (!UPDATE-TIMER) before proceeding. 

Then, if message-form is an atom, its value on the 

current execution instance's stack is returned; if none is 
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found, an error is generated. 

If the CAR of message-form is an atom, then 

-if it is QUOTE, message-form is returned; 

177 

-if it is the name of a IPEXPR, then 

(ISCHEDOLE message-form) and resume execution of scheduler; 

-if it is the name of a fEXPR, then construct the 

appropriate f LAMB DA expression, returning result of 

fEVALing this )LAMBDA expression with CDR of message-form 

as arguments; 

-similarly, if it is the name of an EXPR, construct 

the appropriate LAMBDA exprassion returning the result of 

IEVALing this LAMBDA expression with the CDR of 

message-form as arguments; 

-if it is the name 

message-form to tEVLIS of 

return the resulting value; 

of a SUBR, APPLY CAR of 

the CDR of message-form and 

-if it is anything else, there is an error. 

If the CAR of message-form is a list and the CAAR is 

-fLAMBDA, then bind the !LAMBDA parameters to fEVLIS 

of the arguments (using the current I PEXPR stack); I EVAL 

the body of the fLAMBDA; return the result; 

-fNLAMBDA, then bind the fNLAMBDA parameters to the 

arguments (not I EVALed) (using the current f PEXPR stack); 

fEVAL the body of the f NLAMBDA; return the result; 

-tFLAMBDA, then bind the IFLAMBDA parameter to a list 

of the arguments (not I EVALed); I EVAL the body of the 

IFLAMBDA; return the result; 

-LAMBDA, then APPLY the LAMBDA expression to fEVLIS 
of the arguments and return the result; 

-NLAMBDA or FLAMBDA, then APPLY the NLAMBDA or 

FLAMBDA expression to the arguments (neither fEVALed nor 

EVA Led) 

If 

error. 

and return the result. 

message-form is anything else, then there is an 

, 
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( I SCHEDULE- message-form) 
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EXPRI 
(LAMBDA) I 

If message-form is not a list or its CAR is not the 

name of a IPEXPR, then there is an error. Otherwise, let 

CAR of message-form be known as the "receiving-object". 

ISCHEDTTLE first of all creates a new execution instance, 

"new-object", of receiving-object in which will be asserted 

(EX-INSTANCE-OF new-object receiving-object) 

(EX-ENVIRON new-object current-ex-instance) 

(STACK new-object ()) 

Then, message-form is checked t~ see if there are any 

special messages: 

(J PRIO= priority): if found, strip it from 

message-form and !ASSERT (IPRIO= new-object priority) in 

new-object; if not found, !ASSERT (IPRIO= new-object S); 

(lTIME= time-limit): if found, strip it from 

message-form and !ASSERT (!TIME-LIM= neW70bject time-limit) 

and (!TIME-NOW= new-object time-limit) in new-object; 

(ICOND= pattern): if found, strip it from message-form 

and !ASSERT in new-object (ICOND= new-object pattern); 

( I END= end-limit) : if found, strip it from 

message-form and I ASSERT in new-object 

(!END= new-object end-limit). 

After completing the search for special messages, the 

(reduced) message-form is embedded in a call to JPEXPR-MH, 

the standard IPEXPR message handler. Thus, 

(JPEXPR-MH message-form) is pushed onto the stack of 
new-object under the indicator tEV indicating that it is 

the top )EVAL block on the stack of new-object. A list 

(new-object priority) is then merged into the execute queue 

according to its priority. 

Finally, !SCHEDULE returns new-object. 
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l 
EXPRI 

(LAMBDA) 

Every 100 times fEVAL is called, JUPDATE-TIMEB reduces 

all fTIME-NOW= patterns in the current execution 

environment by 1. If any ITIME-NOW= patterns are at O, 

then call 

(I INTEF'RUPT-PROCESSING 'I TIME= 0 ex-instance-int) 

where "ex-instance-int" is the execution instance in which 

the time violation occurred. 

(!INTERRUPT-PROCESSING type-int val-int ex-instance-int) I 
EXPR! 

{LAMBDA~ 

This object is called in when an interrupt of type-int 

(either !TIME= or fCOND=) has been detected in 

ex-instance-int. val-int is either O in the case of a 

!TIME= interrupt or, in the case of a JCOND= interrupt, the 

pattern which matched the ICOND= interrupt pattern. 

!INTERRUPT-PROCESSING first looks into the execution 

environment of the current execution instance for the 

nearest semaphore (if there is none, assume 

is "OFF"). If it is "ON", return NIL; 

IEND-LIM= pattern in ex-instance-int by 

the semaphore 

else, reduce 

1 • If the 

JEND-LIM= pattern is O, then no interrupts are left, so set 

up a return condition in the EX-ENVIRON execution instance 

of ex-instance-int to be 

(IRETURN-COND ex-environ-inst 
tEND= (ex-instance-int ex-instance-current) val-int) 

If it is not O, then set up a return condition in 

ex-environ-inst to be 

(IRETryRN-COND ex-environ-inst 
type-int (ex-instance-int ex-instance-current) val-int) 

If type-int is )TIME= then reset !TIME-NOW= pattern to be 

the same as !TIME-LIM=. 
, 

Merge ex-environ-inst into execute gueue with its stored 
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priority and resume execution of the scheduler. 

r I ( I SCHEDULER) 
EXPRI 

(LAMBDA)~ 

This object removes first object/ priority pair from 

the execute queue, sets the current execution instance to 

be this object, takes the top fEVAL block from the stack of 

the object, and IEVALs the form there. 

(IPEXPR-MH message-form) 
EXPR 

(LAMBDA) 

IPEXPR-MH is the usual message handler for fPEXPRs. 

The receiving object is the first element of message-form; 

the rest of the elements of message-form are patterns to be 

matched in the body of receiving-object. For each such 

mess-pattern, fPEXPR-~H calls 

(JttATCH mess-pattern ex-environ-inst 

receiving-pattern current-inst) 

for all receiving-patterns in the current execution 

instance until a match is found. If no such match is 

discovered, failure to match processing ensues; i.e. a 

message 

(FAILURE-TO-MATCH mess-heaij mass-pattern 
current-inst ?matching-pattern) 

is sent to mess-head, the first element of mess-pattern). 

If this still fails to find a matching pattern 

(i.e. matching-pattern is NIL), then NIL is concatenated to 

an answer list. If a matching pattern is found, the result 

of I MATCH is concatenated to answer list and IASSERTed in 

the execution instance. 

When all message patterns have been handled, a return 

condition is s~t in ex-environ-inst 

(IRETURN-COND ex-environ-inst 
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NORMAL (current-inst) answer-list) 

and its stack is modified so that answer-list will also be 

the value returned from the message sent to 

receiving-object. ex-environ-inst is then merged into the 

execute queue with its stored priority and the scheduler is 

resumed. 

Al•l Redefined LISP SUBRs 

Many LISP functions can be used directly as objects in 

ILISP. This is not the case for LISP FSUBRs or NSUBRs 

which must be redefined so that their arguments can bA 

IEVALed rahter than EVALed. In addition certain sqBRs 

which depend on EVAL for their meaning (e.g. EVAL, APPLY 1 

APPLY1, ••• ) or which ordinarily use the LISP stack 

(e.g. SET, SETQ., ••• ) or which use the property list 

features of LISP (e.g. PUT, GET, ••• ) must also be 

redefined. The rest of the SIJ8Rs (e.g. CAR, CDR, CONS, EQ, 

ATOM, ••• ) can be used as is, since the lLISP interpreter 

automatically tEVALs their arguments. 

The following are rewritten versions 

corresponding LISP functions (all are EXPRs) ~ 

of the 

( I EV AL S 1 ) : see s e ct ion A 1 • 1 ; 

(IEVLIS S1 ••• Sn): like EVLIS, but I EV ALs its 

arguments; 

(I APPLY FN S1 ••• Sn): the same as APPLY except I EVAL 

used; 

( I APPLY 1 FN S 1 • • • Sn) : the same as APPLY 1 except 

fEVAL used; 

(I s ET A 1 s 1 • • • An Sn) : 

instance's stack; 

( I SETQ A 1 S 1 • • • An Sn) : 

instance's stack; 

uses 

uses 

current execution 

current execution 

(IUNEVAL A1 <s1>): uses current execution instance's 

stack; 

(IMAP FN 11): uses IEVAL rather than EVAL; similarly 

Appendix I 



182 

the other MAPping functions; 

{ICOND (S11 ••• S1n) ••• (Sk1 ••• Skm)): uses IEVAL 

rather than EVAL; 

(IAND S1 ••• Sn): uses JEVAL rather than EVAL; 

(JOR S1 ••• Sn): uses IEVAL rather than EVAL; 

(IPROG 11 S1 ••• Sn): works like PROG only binds on 

the current execution instance and IEVALs the Si; 

(JGO A1): works like GO except goes to label inside of 

IPROG or !EVENT-SEQUENCE and argument is fEVALed; 

(IRETURN A1 <A2>): works like RETURN but uses current 

execution instance stack. If A2 is the keyword ]HANDLER, 

then control will resume in the matcher of the message 

handler of the current execution instance with the value of 

the current pattern element being A1. Thus, for example, 

if there were a pattern 

(X Y !(IPROG () (JRETURN 'DOG !HANDLER)) Z) 

in the JPEXPR FOO, and if the message (X Y ?VAL Z) were 

sent to FOO, then at the point the !RETURN was executed, ' 

control would resume in the message handler of FOO's 

execution instance with the value of the third element 

being DOG and the match continuing to the fourth element. 

To force failure of the match, I RETURN NIL to the !HANDLER. 

(IDEFUN A1 <A2> L1 S1 ••• Sn) 

This object works like LISP'S 

addition to EXPRs, I EXPRs can 

indicator IEXPR 1 INEXPR, or I FEX PR 

DE FUN except 

be defined by 

EXPlll 
(FLAMBDA) 

that in 

using the 

for A2 {default I EXPR) • 

Note that A1 is globally defined as a 1 EXPR 1 lNEXPR, or 

whatever, since the LISP atom is modified. It seems 
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unnecessary to me to have a procedure defining capability 

that defines procedures only within a given JPEXPR, since 

it is usually the case that a procedure name is something 

that remains fixed throughout the system (especially true 

here since EXPRs and IEXPRs are defined to be objects known 

system wide}. The situation where locality is important 

can be adequately handled by either renaming the procedure 

or by using"!" or"$" macros in patterns of a IPEXPR. 

[(IPDEF A1 Pl •• _• _P_n_} ___ _ EXPR 
{FLAMBDA) 

This object creates A1 as a pattern expression. Each 

pattern Pi is either of the form "name-i : ( ••• ) " or 

simply"( ••• }"• These patterns can contain sub-patterns 

of either tyfe as well, so that 

(DOG CH ASE DESC : (CAR COLOUR RED}) 

would work perfectly well {without, I should add, the DESC 

sub-pattern being added as a top-level pattern, but being 

labelled nonetheless). Using IASSERTLIS, each pattern Pi 

is asserted in A1 (with appropriate IF-ADDED checks - see 

below), resulting in a string of patterns being attached to 

the LISP property list of A1 under the attribute JPEXPR. 

l{ICREATE-NEW A1} EXP;i 

(LAMBDA) I 
This object will create a new instance of A1 with 

appropriate (INSTANCE-OP new-inst A1) pattern being 

asserted in the new instance along with a 

(CREATION-ENVIRON new-inst ex-instance-current} pattern. 

The name of the new instance is returned. 

; 
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IEXPR 
( !LAMBDA) 

This will send a set of messages to A1 and return the 

appropriate answer list. It i3 used when the receiving 

object or messages need to be IEVALed. 

f ( I RETURN-COND) 
EXPR 

(LAM BOA) f 

This object will return as value the return condition 

of the current execution instance. The possibilities: 

-(JF.ETURN-COND ex-inst-current 

NOR.MAL (ex-inst-receiving) value) 

-(IRETURN-COND ex-inst-current 

AU-REVOIR (ex-inst-receiving restart-name) value) 

-(tRETURN-COND ex-inst-current 

ITIME= (ex-inst-interrupt ex-inst-executing) value) 

-(IRETURN-COND ex-inst-current 

fCOND= ~x-inst-interrupt ex-inst-executing) value) 

- (I RETORN-COND ex-inst-current 

!END= (ex-inst-interrupt ex-inst-executing) value) 

The following can be used to access particular parts 

of the return condition: 

(I RETURN-TYPE): will return third element of return 
condition; 

(!RETURN-CODES): will return fourth element of return 

condition; 
(IRETORN-VALryE): will return fifth element of return 

condition; 
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!1-~ Objects Involved in Matching 

(!MATCH source-pat sou~c8-obj target-pat target-obj) 

185 

1 
IEXPRI 

(IFLAMBDA) 

Of the "arguments" to this object, source-pat and 

target-pat are not fEVALed; source-obj and target-obj are. 

source-pat is matched against target-pat, with macros of 

source-pat elements being expanded in the context of 

source-obj while those of target-pat elements are expanded 

in the context of target-obj. Returned is either NIL (if 

there is no match) or the matching pattern (if there is a 

match). The basic logic flow of !MATCH follows: 

If source-pat is not the same length as target-pat, 

the match fails so return NIL. Otherwise, set 

answer-pattern to NIL and compare each pair of 

source/ target elements until all are handled (in which 

case return answer-pattern) or until comparison fails for 

some pair (in which case return NIL). The comparison for 

two elements: 

1. if a macro precedes both elements, do 

macro-conflict proc~ssing (see macro-conflict table in 

Appendix II) and proceed; else if a macro precedes one 

element, expand it and replace the element by the result 

returned from the macro expansion (macros use the 

appropriate source-obj or target-obj for binding and 

IEVALuation if necessary);. 

2. if either element is NIL, the element comparison 

fails; 

3. if both elements are atoms, then element 

comparison succeeds if they are the same atom in which case 

append the atom to answer-pattern and get the next 

source/ target pair; else element comparison fails; 

4. if both elements are lists, then 

(!MATCH source-el source-obj target-el target-obj) 
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and if NIL is returned then element comparison fails; 

otherwise append the value returned to answer-pattern and 

get the next source/ target pair; 

5. in any other situation element comparison fails. 

I (I PATTERN pat <1 PEXPR>) 
I EXPR J 

( I FLAMBDA) l l 
pat is not I EVA Led; I PEXPR, if given. is. I PATTERN 

will match pat against patterns in IPEXPR (default the 

current execution instance) with the first matching pattern 

returned as value (using the standard fPEXPR-MH order of 

matching). Context for all macros is the current execution 

instance; failure to match processing takes place. 

(!PATTERN-ALL pat <IPEXPR>) 
I EXPRl 

(I FLA~BDA) 

pat is not !EVALed; IPEXPR, if given, is. This object 

will match pat against all patterns in IPEXPR (default the 

current execution instance) with a list of matching 

patterns returned as value. Any assignments in pat are 

made to the last value; the current execution instance 

forms the context for macro-expansion; failure to match 

processing does not take place. 

(!POINTER A1 <IPEXPR>) l 
I EXPR 

{ I FLAMBDA} I 
A1 is not IEVALed; IPEXPR is, if given; JPOINTER will find 

the first pattern in JPEXPR (default the current execution 

instance) matching (A1 IPEXPR tX) and will return the X if 

successful (NIL otherwise). The current execution instance 

is used for macro expansion; failure to match processing 

takes place. 
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[:OINTER-ALL A 1 <I PEXPR>) I 
IEXPRI 

(I FLAM BOA) l 
A1 is not IEVALed; IPEXPR is, if given; !POINTER-ALL will 

find all patterns in lPEXPR (default th~ current execution 

instance) matching (A1 IPEXPR #X) and will return a list of 

all the X's so found (or NIL if none are found). Macros 

are expanded in the context of the current execution 

instance; failure to match processing does not take place, 

EXPRI 
(LAMBDA) 
___ .J 

This simple object will return T if A1 has the value 

tU (i.e. it has been unassigned as part of a 

macro-conflict); NIL otherwise. 

I (!ASSERT pat <f PEXPR <int-flag>>) 

l IEXPRI ( I FLA~BDA) 

JPEXPR (default the current execution instance) and 

int-flag (default NIL) are IEVALed; pat is not, but any 

"." "I", " '" "$", or ".," macros are expanded (note that - , . , 

" : " and 1t /" designate pattern -labels in IPEXPR, not in the 

current execution instance, unless they are the same). pat 

itself can be an ordinary pattern " ( ••• ) " or it can be a 

labelled pattern "name-i : ( ... ) "• 

)ASSERT will assert pat in JPEXPR; i.e. will add it on 

to the beginning of the list of patterns already attached 

to JPEXPR under the marker tPEXPR on its property list. 

The order is important since IPEXPR-MH just scans down this 

list when looking for a match for a message. Adding more 
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recent patterns to the beginning of the list effectively 

gives a "most recent to least recent" search order. fCOND= 

interrupt checking will be carried out if int-flag is T. 

After adding the pattern, )ASSERT executes any 

IF-ADDED procedure that may be associated with the head of 

pat. Such patterns look like 

(IF-ADD ED head '?pattern ! (I PROG () --- ) ) 

and allow such things as inverses and other "automatic" 

sidg-effects to be accomplished for a particular type of 

pattern. When it is finished, I ASSERT returns pat (with 
appropriate 

elements). 

macro expansions substituted for macro 

f (IASSERTLIS list-of-pats) 
I EXPR I 

(IFLAMBDA) l L 

This object will assert each pattern in the list of 

pats using !ASSERT. Each such pattern looks like 

{pat <1 PEXPR <int-flag>>) 

and IASSERTLIS returns the list of results returned from 

each !ASSERT. 

I (IREMASSERT pat <IPEXPR>l 
IEXPRI ( I FLAMBDA) 

The rules for JEVALing and macro-expanding are the 

same as those for !ASSERT except that pat ~an also be of 

the form "/pattern-label". If this is the case the pattern 

of that name in IPEXPR will be removed; for any other kind 

of pattern, 1REMASSERT will look through IPEXPR for a 

pattern matching pat and remove th~ first one it finds (no 

failure to match processing takes place). !fter removing 

the pattern, tREMASSERT looks to the pattern head for a 

pattern of the form 

(IF-REMOVED head ? pattern (J.PROG () • • • ) ) 
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Which will take care of any side-effects of the pattern 

removal. 

1REMASSERT returns the pattern which was removed. 

I CIEL N1 pat) 
EXPR 

(LAl'IBDA) 

Returned as value from this EXPR will be the N1-th 

element of pat. 

I (!SEARCH test-fn expand-fn <start-lPEXPR <restart>>} 

This is ILISP's breadth-first searching 

I 
I EXPR I 

( ILAl'!BDA) I 

routine. 

test-fn and expand-fn are either lEXPRs or !LAMBDA 

expressions cf one argument. start-lPEXPRs (default a list 

containing the current execution instance) is given as 

argument to test-fn which either returns NIL or non-null. 

If non-null, the search terminates with that as the answer. 

If NIL, the search continues with expand-fn being executed 

with the list start-fPEXPRs as argument. expand-fn returns 

either NIL or a list of JPEXPR names into which the search 

is to expand. In the former case the search terminates 

with a NIL answer; in the latter case the list of newly 

expanded names is passed to test-fn to see if it approves. 

If not, then another round of expansion must take place: if 

so, the value returned from test-fn is returned as answer. 

Note that all tEVALing takes place in the execution 

instance which initiated the search (although, naturally, 

the functions themselves can send messages to other objects 

if so desired). 

The last argument, "restart", if given indicates that 
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the search can be restarted. It is the name under which is 

stored all aata needed to restart a search. Thus, if the 

answer returned from a supposedly successful search later 

turns out to be inadequate, new answers can be generated. 

This is just the capability for generators (see CONNIVER, 

~cDermott and Sussman (1974)). If no restart is specified, 

or if expand-fn ever returns NIL, then no data is stored 

for restart. 

(!NEXT-SEARCH search-name) j 
I EXPR 

( I LAMBDA) I 

This is used to restart any search formerly suspended 

under the name "search- name". The search proceeds normally 

from where it left off. 

!1•§ Objects Involved in saving Stacks 

I (!AU-REVOIR AO A1 <A2>) 
XPR 

(LAl1 l ______ _ ------------

A1 and A2 are arguments like those of 1RETURN, that is 

they indicate a value and a return point on the current 

execution instance stack. If A2 is omitted, the nearest 

enclosing I PROG or I EVENT-SEQfJENCE is assumed to be the 

return point. The additional argument AO designates the 

place to save the portion of the stack stretching back from 

the !AU-REVOIR form to the A2 form. A pattern 

(I STACK-SAVE current-ex-inst AO ( "the stack")) 

is used for such storage. 

As is the case with IRETijRN, if A2 is the keyword 

IHANDLER, control goes back to the matcher within the 

message handler for the current execution instance; and if 

A1 is NIL, the match will fail at that point. If failure 
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to match processing fails to rectify the situation, then an 

I AU-REVOIR return condition 

(IRETURN-COND ex-environ-ex-inst 

IAU-REVOIR (current-ex-inst AO} NIL) 

is set up in the execution environment execution instance. 

If, on the other hand, failure to match does succeed in 

finding a matching pattern, then 

(IRETURN-COND ex-environ-ex-inst 

!AU-REVOIR (current-ex-inst AO) matching-pat) 

will be set up in ex-environ-ex-inst. In either case, the 

stack has been saved so that control can be resumed if 

somebody up there wants to !RESTART the fAU-REVOIRed 

execution instance. 

llRESUME AO _<_s _,>_> __ _ EXPRI 
_ _______ . _____ (_LAMBDA) j 

This is the object used to resume the execution of the 

stack stored with AO. The stack is restored by replacing 

the !RESUME IEVAL block with the old stack and the old 

IAU-REVOIR (EVAL block by S1, if given (if not given, the 

value originally returned by I AU-REVOIR is substituted). 

Execution can then resume with the restored portion of the 

stack going first. The use of I RESUME in conjunction with 

IAU-REVOIR effectively gives a co-routining capability 

within an execution instance. 

Note that incompatibilities are all too possible 

between the current stack and the restored stack; it is up 

to the user to be carefijl when using these functions. Also 

do not confuse fRESUME 8 used within an execution instance, 

with fRESTART, used from one execution instance to restart 

another. 
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I (!RESTART old-ex-inst <AO <_s _,_>_>_, _________________ ' EXPRI 
(LAMBDA) 

This object allows the restart of an execution 

instance previously suspended by an interrupt or an 

!AU-REVOIR. If old-ex-inst was suspended by an interrupt, 

AO and S1 cannot he specified and the execution instance 

from which the command was issued should lie in the 

execution environment of old-ex-inst. If these criteria 

are met, old-ex-inst is schaduled with all its pointers 

intact and control is passed to the scheduler. 

If old-ex-inst was suspended by an IAU-REVOIR, then 

AO, the marker under which the old stack is stored, must be 

specified. S1 has the same meaning as for !RESUME. 

I RESTART will create a Ill! execution instance, with 

EX-INSTANCE-OF 

pointer to 

pointer to old-ex-inst 

the execution instance 

and 

which 

EX-ENVIRON 

issued the 

!RESTART. The stack of this instance will be initialized 

to the stack stored under AO in old-ex-inst, with the same 

restrictions as in JRESUME. This new execution instance is 

put on the execute queue (with the same priority as 

old-ex-inst) and control resumes in the scheduler. 

Eventually, the new execution instance will run and when 

finished will return to the I RESTART execution instance 

rather than the original old-ex-inst EX-ENVIRON execution 

instance. 

Note that what has been created here is an execution 

instance of an execution instance where the "higher" 

execution instance points to the old EX-ENVIRON and the 

"lower" execution instance points to 

This allows a similar distinction 

the new EX-ENVIRON. 

to the ALINK / CLINK 

distinction of the Bobrow and Wegbreit ( 1 97 3) control 

scheme in that• it allows the I RESTART and. I AU-REVOIR 

environments to be kept distinct. However, most search~s, 

as currently designed, will always search the new execution 
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environment even if (as would often be the case after a 

I RESTART) the old execution environment is more 

appropriate. Similar problems would arise when looking 

~hrough old episodes in memory. 

!1•1 S£ecial Pur£ose Objects 

f <IEVENT-SEQUENCE (locals) S1 S2 ••• Sn) 
IEXPRI 

(IFLAMBDA)j I 

This is a special purpose objsct whose format is very 

similar to that of a IPROG. The action of the object is 

very similar to IPROG in that the locals are bound to NIL 

on the current stack, and the Si are executed in sequence 

S1, S2, ••• (unless over-ridden by a IGO). The difference 

lies in the meaning of an atomic Si, say STEPk; whereas in 

a tPROG STEPk would be ignored excapt as a label for a IGO, 

in an )EVENT-SEQUENCE it is a signal that another "step" in 

the !EVENT-SEQUENCE is about to take place. The next Sj, 

IPEXPR-call, which is a call to a IPEXPR is considered to 

be that step, and after it is taken (that is after the 

messages have been sent and the answer returned) 

!EVENT-SEQUENCE does some special processing. It asserts 

the following two patterns: 

(STEP current-ex-inst STEPk fPEXPR-call-ex-inst) 

is asserted in the current execution instance; and 

(THEN STEPk-1 IPEXPR-call-ex-inst) 

is asserted in the execution instance of the previous step 

(i.e. STEPk-1). 

These two types of pattern essentially allow the 

preservation of a perman~nt record of the episode 

undertaken by the I EVENT-SEQUENCE, a .record which can be 

accessed from the current execution instance by looking at 

STEPk patterns and which can be traversed in sequential 
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order from beginning to end along THEN links. The 

following idiosyncracies should be noted: there is 

obviously no THEN pattern to the first step; if no IPEXPR 

calls are found before the next step is encountered, 

!EVENT-SEQUENCE ignores the missing step; if more than one 

IPEXPR call is entered into before the next step, 

!EVENT-SEQUENCE ignores all but the first as far as keeping 

a record of them is concerned. Termination conditions for 

and values returned from !EVENT-SEQUENCE are identical to 

I PROG9 

r (I DO-PARALLEL (L1 ••• Ln) <UNTIL test-cond>) 
I I EXPRI 

( I FLAMBDAU I 

!DO-PARALLEL is a IEXPR which directs the (simulated) 

parallel execution of L1 through Ln each of which is 

assumed to be a call to a IPEXPR. On the first pass 

IDO-PARALLE.L will IEVAL each of the Li in turn, and will 

also tEVAL test-cond (an arbitrary atom, IEXPR, IPEXPR, 

EXPR, or lambda of some description - if unspecified, it is 

assumed to always be NIL). When test-cond IEVALs to 

something other than NIL, !DO-PARALLEL is finished and 

returns the value returned from test-cond as result. 

otherwise, it keeps cycling around the Li, tRESTARTing any 

that have been interrupted. It may eventually be the case 

that none of the Li can be IRESTARTed, having exceeded 

their IEND= conditions, in which case !DO-PARALLEL will 

also cease and return NIL as value. 
JDO-PARALLEL is useful if several things need to be 

done pseudo-simultaneously. Note that the user can specify 

the interrupt conditions on the Li to achieve any kind of 

time slicing desired. 
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APPENDIX II 

Concert Scenario lPEXPRs 

195 

This Appendix presents some of the more elaborate pattern 

expressions which arise in the examples of Chapter v. The 

Appendix is dividea into two parts, the first part outlining 

IPEXPRs which are needed for Conversation I (the ticket buying 

conversation), and the second part outlining IPEXPRs which are 

needed for Conversations II and III (the drink buying 

conversation 

intarmission). 

and 

!1•1 Conversaticn I 

<fPDEF ATTEND-CONCERT 

the conversation with 

(SUPERSET ATTEND-CONCERT ATTEND) 
(EXECUTE ATTEND-CONCERT SELF ?TKIS-CONCERT 

!(!EVENT-SEQUENCE() 

a friend 

J
JASSERT JATTENTION SELF !THIS-CONCERT)) 

!ASSERT PURPOSE SELF (ATTEND SELF !THIS-CONCERT))) 
SETQ LO -CONCERT (!POINTER LOCATION TRIS-CONCERT)) 

ST . 1 
;go to theatre 

{
GOTO (EXECUTE GOTO SELF !LDC-CONCERT ?GO-PLACE1)) 
CHECK-FAILURE) 
!THIS-CONCERT (ENTRANCE-REQUIREMENT !THIS-CONCERT 

?DESIRED-TICKET)) 
(!ASSERT (EVENT !DESIRED-TICKET !THIS-CONCERT) 

DES IRED-TICK ET) 
STEP2 
;buy ticket 

J
BUY (EXECUTE BTJY SELF !DESIRED-TICKET ?BUY-RESULT)) 
CHECI<-FAILURE) 

ST P] 
;go into lobbt 

J
bg1~Q(tii~uTJ 1~gJ~T~ILi0 rtlai~c;gg~iflI~~)) 
CHECK-FAILURE) 

ST P4 
;go to seat . . 

J
ISETQ SEATS (!POINTER REPN DESIRED-TICKET)) 
GOTO (EXECUTE GOTO SELF !SEATS ?GO-PLACE3)) 
CHECK-FA IL!JRE) 

ST PS 
·listen to first half of concert 
' (SETQ THIS-AGENDA (lPOINTER AGENDA THIS-CONCERT)) 

()PATTERN (FIRST-HI F !THIS-CONCERT ?BEGIN-PROGBlM) 
THIS-AGENDA) 

J
LISTEN (EXECUTE SELF !BEGI~-PROGRAM ?FIRST-DON~) 
CHECK-FAILURE) 

ST P6 
·go back to lobby 
' JGOTO (EXECUTE GOTO SELF !LOBBY ?IN-LOBBY)) 

CHECK-FA ILTJRE) 
ST P7 
·buy a drink 
' (ISETQ BAR-WHERE (!POINTER BAR LOC-CONCERT)) 

at 
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(IPATTERN (WANT SELF fDRINK SELF ?DESIRED-DRINK)) 
PRE-DINNtR-DRINK) 

J
BUY {EXECUTE BUY SELF !DESIR~D-DRINK ?BUY-DONE)) 
CHECI<'.-FAILIJRE) 

ST P8 
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;fill in time and drink beverage until buzzer 
( I DO-PARALLEL 

((FILL-IN-TIME JEXECO!E FILL-IN-TIME SELF ?END-FILL) 
I TIME- S) ) 

(SIP (EXECDTE IP SELF !DESIRED-DRINK ?DRINK-RESULT) 
( I TIME= 1 ) ) ) 

UNTIL 
(NOT (NULL (CHECK-FOR-ACTIVE-SUBSET BUZZER-SOUND)))) 

(CH:E:CK-FA ILURE) 
STE!P9 
;go back to seat 

J
GOTO (EXECUTE GOTO SELF !SEATS ?IN-SEATS)) 
CHECK-FAILURE) 

ST P10 
;listen to second half of the concert 

(!PATTERN (SECOND-HALF !THIS-CONCERT ?END-PROGRAM) 
THIS-AG ENDA) 

J
LISTEN (EXECUTE LISTEN SELF !END-PROGRAM ?SECOND-DONE)) 
CHECK-FAILURE) 

ST P 11 -
; go back ho me 

{
GOTO (EXECUTE GOTO SELF HOME ?BACK-HOME)) 
CHECK-FAILURE) 
I RETURN ( I CURB.ENT)) ) ) > 

<tPDEF BUY 
(SUPERSET BUY ACTUAL-TRANSACTION) 
(EXECUTE BUY ?BUYER ?ITEM 

! (EVENT-SEQUENCE () 
(IAND lNEQ BUYEB 'SELF) 

!ASSERT {FAIL (NOT SELF BUYER))) 
JR ET URN ~IL)) 

JI PATT RN (LOCATION !ITEM ?PLACE-ITEM) ITEM) 
PATTERN (SELLER !ITEM ?SELLER) ITEM) 

ST P1 
;go to ticket booth 

GOTO (EXECUTE GOTO SELF !PLACE-ITEM ?GOT-THERE)) 
CHECK-FAIL ORE) 

!
ASSERT !BUYEB ! I TEM !BUYER}) 
ASSERT SELLER !ITEM !SELLER 
ASSERT PURPOSE ! s ELLER {SELl) ! SELLER ! IT EM) ) ) 
ASSERT PURPOSE !BUYER (8UY !BUYER !ITEM))) 
ASSERT ATTENTION !BUYER !ITEM)) 

ST· 2 
;take part in conversation to buy.ticket 

(BUY-CONVERSATION (EXECUTE BUY-CONVERSATION 
!BUYER !SELLER !ITEM ?CONV-RESOLT)) 

(CHECK-FA IL URE) 
(I RETURN (I CURB.ENT)))) > 

<IPDEF BUY-CONVERSATION 
(SUPERSET BUY-CONVERSATION SOCIAL-TRANSACTION-CONVERATION) 
(EXECUTE BUY-CONVERSATION ?BOYER ?SELLER ?ITEM 

! (EVENT-SEQUENCE () 
STEP1 
;start up conversation 

(WHAT-DO-YOU-WANT 
(EXECUTE WHAT-DO-YOU-WANT !SELLER !BUYER 
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?WHli.T-WA NT-CO NV)) 

f 
CHECK-FAILURE) 
TIE-IN WHAT-WANT-CONV) 
!PATTERN (WANT !BUYER (EXCHANGE ?BUYER-RAS 

?BUYER-WANTS)) BUYER) 
()PATTERN (WANT !SELLER (EXCHANGE ?SELLER-HAS 

?SELLER-WANTS)) SELLER) 
STEP2 
;bargain over what buyer wants 

(BARGAIN 
(EXECUTE BARGAIN !SELLER !BUYER !SELLER-HAS 

!BUYER-WANTS !ITEM ?BARGAIN-1-CONV)) 

J
CHECK-FA.ILURE) 
TIE-IN BARGAIN-1-CONV) 

ST .P3 
;bargain over what seller wants 

(BARGAIN 
(EXECUTE BARGAIN !BUYER !SELLER !BUYER-HAS 

!SELLER-WANTS !ITEM ?BARGAIN-2-CONV)) 

J
CHECK-FA IL URE) 
TIE-IN BARGAI~-2-CONV) 

ST P4 
;exchange cost of item for ite 

(EXCHANGE 
(EXECUTE EXCHANGE !BUYER !SELLER 

! ( I POINTER COST IT EM) ! ITEM ?CONV-EXCHANGE )) 

J
CHECK-FA I1.IJR~) 
TIE-IN CONV-EXCHANGE) 

ST PS 
;close out the conversation 

(FAREWELL 
(EXECUTE FAREWELL !BUYER !SELLER ?GOOMBYE)) 

~CIIECK-FA IL URE) 

tllii!ING~?~Rll~NT)))) > 

<IPDEP WHAT-DO-YOU-WANT 
(SUPERSET WHAT-DO-YOU-WANT GREETING) 
(EXECUTE WHAT-DO-YOCT-WANT ?SPEAKER1 ?SPEAKER2 

!(EVENT-SEQUENCE () 
(ISETQ DIRECTIO~S (ESTABLISH-IDENTITIES 

SPEAKER1 SPEAKER2)) 

l!SETQ DIRECTION-FIRST (CA~ DIRECTIONS)) 
SETQ DIRECTION-SECOND (CADR DIRECTIOKS)) 

ST 1 . 
;speaker1 inquires as to purpose of speaker2 

(IAPPLY 'INQUIRE DIRECTION-FIRS7 'INQUIRE 
SPEAKER1 SPEAKER2 

·-,{PURPOSE ! SPEAKER2 *UNKNOWN*) '?NEW-UTT1) 

lCHECK-FAILURE} . 
TIE-IN NEW-UT~1) 

ST P2 
·speaker2 responds with his purpose 
' {!APPLY 'RESPOND DIRECTION-SECOND 'RESPOND 

SPEAKER2 SPEAKER1 
% (PURPOSE ! SPEAKER2 ?WHAT-PURPOSE) '?NEW-UTT 2) 

~CftECK-FAILURE} 

ti~~TfilNN1rcHii~tT)))) > 
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<tPDEF BARGAIN 
(SUPERSET BARGAIN SOCIAL-TRANSACTION-CONVERSATION) 
(EXECUTE BARGAIN ?QUESTIONER ?RESPONDER 

?POSN-Q ?POSN-R ?ITEM 
! (EV ENT-SEQUENCE () 

(ISETQ DIRECTIO~S {ESTABLISH-IDENTI. TIES 
QUEST!ONER RESPONDER)) 

jl
SETQ DIRECTION-QryESTIONER (CAR bIRECTIONS)) 
SETQ DIRECTION-RESPONDER {CADR DIRECTIONS)) 
SETQ OBDER-Q (I POINTER BARGAIN-ORDER POSN-Q)) 
SETQ ORDER-R (!POINTER BARGAIN-ORDER POSN-R)) 

ST 1 
;first set up initial bargaining positions 

( I SETQ CUP.RENT-ISSUE (CAR ORDER-Q)) 
(jCOND ((NULL CURRENT-ISSUE) 

(ISETQ CURRENT-ISSUE {CAR OP.DER-R)) 
(I AND (NOLL CURRENT-ISSOl:':) 

(!AO-REVOIR 'AGAIN (IC~RRENT))) 
( I SETQ O ROE R-R (CDR ORD1:R- 8) ) ) 

(T (ISETQ ORDER-Q (CDR ORDER-Q)))) 
(ISETQ STANCE-Q (MOST-IMPORTANT 

{!CURREN1-ISSUE !ITEM ?WHAT1) 
POSN-Q QUESTIONER 'NEXT-STANCE-Q)) 

(ISETQ STANCE-R (MOST-IMPORTANT 
(!CU RREN'r-ISSUE ! ITEM ?i7HAT2) 
POSN-R RESPONDER 'NEXT-STANCE-R)) 

(ICOND ((IAND (NULL STANCEl-Q) (NULL STANtE-R)) 
(!AU-REVOIR 1 AG~IN (!CURRENT))) 

((NUl.L STANCE-Q) 
( I SETQ STII. NCE-Q 

(LIST CURRENT-ISSUE ITE~ '=(X T)))) 
((NULL STANCE-R) 

(JSETQ STANC'.E-R 
(LIST CURRENT-ISSUE ITEM '=(X T) )) ) 

(T T)) ( I SETQ STANCE-TErt-Q STANCE-Q) 
( SETQ STANCE-TEM-R STANCE-R} 

;questioner asks for responder's stance 
(!APPLY 'INQUIRE DIRECTION-QUESTIONER 'INQUIRE 

1UESTIONER RESPONDER 
-. !CURRENT-ISSUE !ITEM *UNKNOWN*) 1 ?UTT-Q) 

J
CHEC -FA IL URE) 
TIE-IN UTT-Q) 

ST P2 
;responder replies with his current stance 

(IAPPLY 'RESPOND DIRECTION-RESPONDER 'RESPOND 
RESPONDER QUESTIONER STANCE-R 1 ?UTT-R) 

J
CRECK-PA ILTIRE) 
TIE-IN UTT-R) 

ST P3 
;questioner concocts a reply 

(ISETQ STANCE-R {COVER-PATTERN STANCE-R 
(I POINTER CONTENT UTT-R))) 

(IAND (NULL STANCE-R) 
(EXPLAIN-BAD 

!EXECUTE EXPLAIN-BAD !UTT-R ?EXPLAIN-ANS))) 
(ISETQ COMP-PAT (!MATCH STANCE-R (ICURRENT) 

STANCE-Q ( CURRENT))) 
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(ICOND ((NULL COMP-PAT) 
(ISETQ STANCE-TEM-Q (!RESUME 'NEXT-STANCE-Q)) 
(ICOND ((NULL STANCE-tEM-Q) 

(I AND {NULL STANCE-TEM-R) 

1
SET~ FIRST-INT) 
GO STEP7)) ) 

(T (~SETQ STANCE-Q S~hNCE-TEM-R))) 
(!APPLY •IN UIRE DIRECTION-QUESTIONER 

QUE TIONER RESPONDER STANCE-Q 
'?OTT-Q) 

{
CHECK-FAILURE) 
TIE-IN TJTT-Q) 
I GO 'STEP4)) 
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STEP4 

{T CJASSERT !COMP-PAT ITEM) 
( GO 'STEP 5) ) ) 

·responder concocts a reply 
• (ISETQ STANCE-Q JCOVER-PATTERN 

STANCE-Q !POINTER CONTENT UTT-Q)) 
(IAND (NijLL STAN E-Q) 

(EXPLAIN-BAD (tXECUTE EXPLAIN-BAD !OTT-Q 
?EXPLAIN-ANS))) 

(ISETQ COMP-PAT (!MATCH STANCE-Q c1cuRRENT) 
STANCE-R ( CURRENT))) 

(ICOND ((NOLL COMP-PAT) 
(ISETQ STANCE-TEM-R 

(!RESUME 'NEXT-STANCE-R)) 
(JCOND ( (NULL STANCE-TEM-n) 

(I AND jNULL STANCE-TEM-Q) 
ISETQ FIRST-IN T) 
I GO 'STEPS)) ) 
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(T ( t SE Q ST ANCE-R S1rANCE-TE!-R))) 
(!APPLY 'RESPOND DIRECTION-RESPONDER 

RESPONDER QUESTIONER STANCE-R '?UTT-R) 

l
CH ECK-FAILURE) 
TIE-IN UTT-P.) 
)GO 'STEP3)) 

{T I ASSERT ! COMP-PAT ITEM) 
IGO 'STEP6))) 

STEPS 
;agreement reached by questioner 

{!APPLY 'AGREE DIRECTION-QUESTIONER 'AGREE 
QUESTIONER RESPONDER COMP-PAT '?UTT-Q) 

jCHECK-FA IL URE) 
TIE-IN UTT-Q) 
IGO 1 STEP1) 

ST P6 
;agreement reached by responder 

(!A PPLY 'AGREE DIRECTIO N-RESPONDER 'AGREE 
RESPONDER QUESTIONER COMP-PAT '?UTT-R) 

{
CHECK-FA ILTJRE) 
TIE-IN flTT-R) 
!GO 'STEP1) 

STEP? 
;questioner irreconcilably disagrees with STANCE-R 

(JAPPLY 'DISAGREE DIRECTION-QUESTIONER 'DISAGREE 
QUESTIONER $ESPONDER STANCE-R '?UTT-Q) 

{

CHECK-FA IL URE) 
TIE-IN UTT-Q) 

COND FIRSf-IN 
I ( (!SETO FIRST-IN NIL) 

(I GO fsTEP8) ) 
(T UGO 'STEP9) )) 

STEPS 
;responder irreconcilably disagrees with STANCE-Q 

(!APPLY 'DISAGREE DIRECTION-RESPONDER 'DISAGREE 
BESPONDER QUESTIONER STANCE-Q '?OTT-R) 

!CHECK-FA ILORE) 
TIE-IN UTT - R) 
ICONO (FIRST-IN 

(ISETQ FIRST-IN NIL) 
( GO 'STEP7)) 

{T (~GO 1 STEP9))) 
STEP9 
•finis with failure 
• llASSERT ~(FAIL !STANCE-Q !STANCE-R)) 

AU-REVOI!t 'AGAIN NIL) 
GO 1 STEP1))) > 
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<tPDEF SELF-HAS-TICKET-BARGAINING-POSN 
(SUPERSET SELF-HAS-TICKET-BARGAINING-POSN 

HAS-BARGAINING-POSN) 
S1 : COST !TICKET-FOR-CONCERT fDOtLARS-5) 
S2: COST TICKET-FOR-CONCERT fDOLLARS-10) 

IMPOR ANCE SELF /S1 10) 
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IMPO RTANCE SELF /S2 9) 
BARG AIN-ORDER SELF-HAS-TICKET-BARGAINING-POSN (COST)) > 

<IPDEF TICKET-SELLER-WANTS-BARGAINING-POSN 
(SUPERSET TICKET-SELLER-WANTS-BARGAINING-POSN 

WANTS-BARGAINING-POSN) 
S 1 : {COST tTICK ET ! ( I POINTER COST TlCKET)) 

IMPORtANCE TIC~ET-SELLER /S1 10 
BARGAIN-ORDtR TICKET-SELLER-WANTt-BARGAINING-POSN 

(COST)) > 

<!PDEF EXCHANGE 
(SUPERSET EXCHANGE ACTUAL-TRANSACTION) 
(EXECOTE EXCHANGE ?PERSON1 ?PERSON2 ?lTEM1 ?ITEM2 

! (EVENT-SEQUENCE () 
(ISETQ DIRECTIONS (ESTABLISH-IDENTITIES 

PERSON1 PERSON2}) 
f!SETQ DIRECTION-FIRST (CAR DIRECTIONS)) J SETQ DIRECTION-SECOND (CADR DIRECTIONS)) 

ST_., 1 
;pe~son1 gives item1 to person2 

(IAPPLY 'GIVE DIRECTION-FIRST 'GIVE PERSON1 
PERSON2 ITE~ 1 ?GIVE-RESULT) 

(CHECK-FA IL URE) 
STEP2 
;person2 thanks him for it 

(jAPPLY 'THANKS DIRECTION-SECOND 'THANKS 
PERSON2 PERSON1 ITEM1 ?THANKS-UTT1) 

J
CHECK-FA ILtJRE) 
TIE-IN THANKS-UTT1 
IAND (NULL (IRETVALUE)) (ISETQ RUDE-FLAG T}) 

ST P3 
;person2 gives item2 to p9rson1 

(IAPPLY 'GIVE DIRECTION-SECOND 'GIVE 
PERSON2 PERSON1 ITEM2 ?GIVE-RESULT2) 

(CHECK-FA ILU.RE) 
STEP4 
;person1 thanks him for it if person2 was polite 
' (ICOND (RUDE-FLAG) 

(T (IAPPLY 'THANKS DIRECTION-FIR ST 'THANKS 
PERSON1 PERSON2 ITEM2 ? THANKS-UTT2) 

(CH ECK - FAILURE) 
(TIE-IN THANKS-UTT2))) 

(!RETURN ()CURRENT)))) > 

<IPDEF FAREWELL 
(SUPERSET FAREWELL DIALOGUE\ 
(EXECUTE FAREWELL ?PERSON1 ?PERSON2 

! (EVENT-SEQUENCE () 
(ISETQ DIRECTIONS (ESTABLISH-IDENTITIES 

PERSON1 PERSON2)) 
c1sETQ DIRECTION-FIRST (CATI DIRECTIONS)) 
( SETQ DIRECTION-SECOND (CADR DIRECTIONS)) 
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STEP1 
·person1 says goodbye to ~erson2 
' (!APPLY 'GOODBYE DIRECT..1.0N-FIRST 'GOODBYE 

PERSON1 PERSON2 #ANY ?CONV-1) 

J
CHECK-FAILURE) 
TIE-IN CONV-1) 

ST P2 
·person2 says goodbye to person1 
' ( I APPLY 'GOODBYE DIRECTION-SECOND 'GOODBYE 

PERSON2 PERSON1 #ANY ?CONV-2) 

{
CHECK-.F A IL UR El 
TIE-IN CONV-2 
I RETURN (I CUR ENT)) ) ) > 

<IPDEF INQUIRE 
(SUPERSET INQUIRE INTERROGATIVE) 
(E XPECT INQUIRE ?SPEAKER ?LISTEkER ?CONTE NT 

! (I PROG {} 
%( SURPACE tWHAT-!PEXPR ?UTTERANCE) 

( ICOND 
( (WJLL U'l'TERANCE) 

{I SETQ UTTERANCE (HEAR-WORDS)' 
ASSERT (SfJR"FACE $ ICTRRENT !UTTERANCE)) 
SETQ APPROP-SUBSET 
(CHECK-FOR-ACTIVE-SUBSET I INQUIRE)) 

(! COND J(NULL APPROP-SUBS ET)) 
'r REPLACE APP'ROP-SlJl3SET · 

(T (IASeE T ~SURFACE $!CUR RENT !UT~kL~NCE)))) 

ilA~sE nT JSPEAK~R $(CURRENT !SPEAKER}) 

'

ASS ERT LISTENER $ !CUR RENT !LISTENER)) 
AND !NB lLAST UTTERA NCE) "?") 

lASStRT (FAIL (NOT !NQUI~E !UTTERANC~)) 
R ETTJ RN ~IL) ) 

(IN Q [JI R - CL A USE 
(INTERPRET INQUIRE-CLAUSE ! UTTERANCE ?RES;UL,T)} 

(CltECK-FA ILUR E) 
(!ASSERT {CONTENT $!CURRENT 

!JIPOINTER CONTENT RESULT))) 
(IRETORN (IC RRENT)))) 

(EXECOTE INQUI8E ?SPEAKER ?LISTENER ?CONTENT 
! ( I PROG () 

(JCOND ((!UNASSIGNED CONTENT} 

ROONG GENERATE NOUNG *UNKNOWN* ?OUT .• f
lSETQ CONTENT '*U~ KNOWN*) 

(T INQUIR~-CLAUSE (GENERATE INQUIRE-CLAfrt~ 
!CONTENT ?OUT)))) 

ISETQ DOWN-IPEXPR (CAR llRETCO DES))) 
SETQ OUT (SPEAK-WORDS PPEND 1 our"?"})) 
ASSERT !SPEAKER $1 CURR NT ! SPEAKER)) 

IASSERT LISTENER $!CURRENT lSPEAKEg )) 
ASSERT STJRFACE $ I CURRENT ! OUT)} 
ASSERT CONTENT $!CURRENT 

!JIPOINTtR CONTENT DOWN-JPEXPR))) 
( I RETURN (IC RRENT)))) > 

< I PDEF YES2 
(SUPERSET YES2 INQUIRE\ 
(EXPECT YES2 ?SPEAKER ~LISTENER ?CONTENT 

! (IPROG (} 
%(SURFAtE ¢WHAT-LPEXPR ?UTTERANCE) 

(ICOND ((NULL U ... TEBANCE) 
(ISETQ UTTERANCE (HEAR-WORDS)) 
(!ASSERT (SURFACE $(CURRENT !UTTERANCE)) 
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(ISETQ APPROP-~~BSET 
(CBECK-FOR-ACTIVE-SOBSET •YES2)} 

(ICOND ((Nl!LL A PROP-SrJBSET) ) 
(T (REPLACE AP PROP-SUBSET)))) 

(T (!ASSERT (SdRFACE $1COBRENT !UTTE~A~CE)))) 

{
I ASSERT JSPEAKER $I CURRENT !SPEAKER)) 

'

ASSERT LISTENER $!CURRENT !LISTENER)) 
AND (IU ASSIGN·D CONTENT) 

( SETQ CONTENT (PUR~OSE !LISTENER *UNKNOWN*))) 
( ICOND ( (EQUAL UTTERANCE '(''YES" u?") ) 

ll ASSERT jCONTENT $1CORRENt !CONTENT)) 
RETUBN !CURRENT) )l 

{T I ASSERT FAIL (NO'!' 'iES2 !UTTERANCE})) 

(EXECUTE YEs2 1sJII~II 1ff~~kLkR ?CONTENT 

! ( I PtRJ ~isJ1T JSPEAKER $ I CURRENT ! SPEAKER)) 
ASSERT LISTENER $!CURRENT !LISTENtR)) 
AND (tU ASSIGNED CONTENT) 

( SETQ CONTENT ~(POR~OSE !LISTENER *UNKNOWN*))) 

!l
ASSER (CONTENT $!CURRENT !CONTENT\\ 
SETQ OO'l:PUT (SPEAK-WORDS 1 ( 11YES 11 n1'1))) 

ASSERT (SURFACE $!CURRENT !OUTPUT)) 
RETURN ( I CIJ"RRENT)) ) ) 

(ASSO YES2 
! ( I PROG () 

(ICONO ((EQ (!POINTER EX-INSTANCE-OF 
(!POINTER EX-ENVIRON)) "YES") 

(!ASSERT (WANT-TO-GO YBS2))) 
(T (SPREAD-ASSOC 1 PART-OF 'DEMON))))) > 

!l-~ £2n!gI§~1!21!§ II s~S I!I 
<IPDEF PRE-DINNEF-DRINK 

(SUPERSET PRE-DINNER-DRINK ALCOHOLIC-DRINK) 
(WANT SELF 

! <11:~iEJ~ION SELF ?CUR-EVENT) 
(ICOND ({SU BINSTANCE CUR-EVENT 'CONCERT) 

( I RP.TORN ' ( OR INK SELF 
tJOUNN Y- IULK ER-SCOTC H) ) ) 

(T (I RETURN '(OBINK SELF 
tPIVE-STAR-RYE)))) )) 

(LOCATION fPRI -DINNER-DFINK 
! (IPROG 0 

%(ATTENTION SELF ?CUR-EVENT) 
(IRETURN (!POINTER BAR 

(!POINTER LOCATION CUR~EVENT))))) > 

<IPDEF JOHNNY-~ALKER-SCOTCH 

ISUPERSET JOHNNY-WALKER-SCOTCH SCOTCH) 
BRAND tJOHNNY-WALKER-SCOTCH JOHNNY-WALKER) 
COST t~OHNNY-WALKER-SCOTCH tDOLLARS-3) > 

<IPDEF SCOTCH 
(SUPERSET SCOTCH PRE-DINNER-DRINK) 
(SUPERSET SCOTCH AFTER-DINNER-DRIMK) 
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(.MIXER tSCOTCH tICE) > 

<IPDEF ALCOHOLIC-DRINK 
(SUPERSET ALCOHOLIC-DRINK DRINK) 
(SELLER tALCOHOLIC-DRINK fBARTENDER) 

< I PDE.F BARTENDER 

SELL fBARTENDER tALCOHOLit-DRINK) 
WANT t'BARTEN DER 

> 

{
SUPERSET BARTENDER SELLER) 

(EXCHANGE BARTENDER-HAS-BARGAINING-POSN 
BARTENDER-WANTS-BARGAINING-POSN)) > 

<IPDEF SELF-AS-A-BUYER-OF-ALCOHOLIC-DRINK 
(SUPERSET SELF-AS-A-BUYER-OF-ALCOHOLIC-DRINK 

SELF-AS-A-BUYER) 
(BUY SELF tALCOHOLIC-DRINk) 
(WANT SELF (EXCHANGE 

SELF-HAS-DRINK-BARGAINING-POSN 
SELF-WANTS-DRINK-BARGAINING-POSN)) > 

<JPDEF SELF-HAS-DRINK-BARGAINING-POSN 
(SUPERSET SELF-HAS-DRINK-BARGAINING-POSN 

HAS-BARGA INI NG-POSN) 
S 1 : (COST f ALCOHOLIC-DRINK 

• (!POINTER COST ALCOHOLIC-DRINK)) 
(IMPORTANCE SELF /S 1 10) 
(BARGAIN-ORDER SELF-HAS-DRINK-BARGAINING-POSN 

(COST)) > 

<IPDEF SELF-WANTS-DRINK-BARGAINING-POSN 
(SUPERSET SELF-WANTS-DRINK-BARGAINING-POSN 

WANTS-BARGAINING-POSN) 
S 1 : (BR AND f ALCOHOL IC-DRINK . 

! (I POINTER BRAND ALCOHOLIC-DRINK)) 
S 2 : (MIXER t ALC OHOLIC-D RINK 

! (I POINTER MIXER ALCOHOLIC-DRINK)) 

!IMPORTANCE SELF /S1 8) 
IMPORTANCE SELF /S2 10) 
BARGAIN-ORDER ALCOHOLIC-DRINK-BARGAINING-POSN 

(BRAND MIXER)) > 

<IPDEF BARTENDER-HAS-BARGAINING-POSN 
(SUPERSET BARTENDER-HAS-BARGAINING-POSH 

HAS-BARGAINING-POSN) 
S1: (MIXER tALCOHOLIC-DRINK 

! (]POINTER MIXER ALCOHOLIC-DRINK)) 
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S2 : (BRAND tALCOHOLIC-DRINK 
! (I POINTER BRAND ALCOHOLIC-DRINK)) 

{
IMPORTANCE tBARTENDER /S1 6) 
IMPORTANCE tBARTENDER /S2 6) 
BARGAIN-ORDER BARTENDER-HAS-BARGAINING-POSN 

(BRAND MIXER)) > 

<f PDEF BARTENDER-WANTS-BARGAINING-POSN 
(SUPERSET BARTENDER-WANTS-BARGAINING-POSN 

WANTS-BARGAINING-POSN) 
S1 : (COST tALCOHOLIC-DRINK 

! (INCREASE-BY DOLLARS-2 

JIPOINTER COST ALCOHOLIC-DRINK))) 
S2 : (CO ST t ALCO OLIC-DR INK 

! (fPOINTER COST ALCOHOLIC-DRINK)) 

{
IMPORTANCE tBARTENDER /S1 9t 
IMPORTANCE tBARTENDER /S2 6 
BARGAIN-ORDER BARTENDER-WAN S-BARGAINING-POSN 

(COST)) > 

<IPDEF DIALOGUE 
(SUPERSET DIALOGUE MULTIPLE-SPEECH-ACTION) 
(EXECUTE DIALOGUE ?SPEAKER1 ?SPEAKER2 

! (EVENT-SEQUENCE {) 
(ISETQ DIRECTIONS (ESTABLISH-IDENTITIES 

SPEAKER1 SPEAKER2)t 

II SETQ DIRECTION-FIRST (CAR DIRECTIONS) 
SETQ DIRECTION-SECOND (CADR DIRECTIO S)) 
SETQ EXPECT1 

(COMPUTE-EXPECTATIONS SPEAKER1 SPEAKER2)) 
STEP1 
·sEeaker1 makes an utterance 
' ()APPLY 'SPEECH-ACT DIRECTION-FIRST 1 SPEECH-ACT 

SPEAKER1 SPEAKER2 EXPECT1 ?FIRST-UTT) 

204 

l
CHECK-FAILITRE-DIALOGUE) 

f§~T~NE{i~~i2°1e6MPUTE-EXPEC~ATIONS SPEAKER2 SPEAKER1)) 
ST 1?2 
·speaker2 makes an utterance 
' (!APPLY 'SPEECH-ACT DIRECTION-SECOND 'SPEECH-ACT 

SPEAKER2 SPEAKEB1 EXPECT2 ?SECOND-OTT) 

I
CHECK-F AILURE-DT ALOG U E) 
TIE-IN SECOND-UTT) 
IGO 'STEP1))) > 
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