khkhhkhkhkhkhrhhhhdhhhrhhhhdhhhhkhhkhkhhkdkhkhdhhhkhhkdhhkhddk

A PROCEDURAL MODEL OF RECOGNITION FCR
MACHINE PERCEPTION

by
William S. Havens
March 1978

*
*
*
*
*
*
*
*
*
*
% Technical Report 78-3
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

khkkhkrdhkdkhhhhhbhddhbhkdhhbhdhhh bbb rhhddbk bkt did

Department of Computer Science
The University of British Columbia
Vancouver, British Columbia V6T 1W5S

— e ool ot 2 ————— ol e - . - = —

.

A PROCEDURAL MODEL OF RECOGNITION FOR MACHINE PERCEPTION
by
WILLIAM S. HAVENS

M.Sc., Virginia Polytechnic Institutz, 1973
B.Sc., Virginia Polytechnic Institute, 1969

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOCR OF PHILOSOPHY
in
THE FPACULTY OF GRADUATE STUDIES

{Department of Computer Scienc2)

We accept this thesis as conforming
he reguired standar

oy ol cu&u»sv: h

_ 77
_— .";*. é‘:'i’(.-/‘ﬂj\;‘.’#% . //4 e

® & % B8 & S 5@ 88 EE R e A S A A B 8P A

THE UNIVERSITY OF BRITISH COLUMBIA

March, 1978

{c) William S. Havens, 1978

This thesis 1is concerned with aspects of a theory of
machine perception. It is shown that a comprehensive theory is
emerging from research in computer vision, natural language
understanding, cognitive psychology, and Artificial Intelligence
programrming language technology. A number of aspects of machine
perception are characterized. Perception is a recognition
process which composes new descriptions of sensory experience in
terms of stored stereotypical knowledge of the world.
Perception requires both a schema-based formalism for the
representation of knowledgqe and a model of +the processes
necessary for performing search and deduction on that
representation. As an approach towards the development of a
theory of machine perception, a computational model of
recognition is presented. The similarity of the model to formal
rechanisms in parsing theory is discussed. The recognition
model integrates top-down, hypothesis-driven search with
bottom-up, data-driven search in hierarchical schemata
. representations. Heuristic procedural methods are associated
with particular schemata as models to quide their recognition.
Multiple methods may be applied concurrently in both top-down
and bottom-up search modes . The implementation of the
recognition model as an Artificial 1Intelligence programming

lanquage called MAYA is described. MAYA is a multiprocessing

iii

dialect of LISP that provides data structures for representing
schemata networks and control structures for inteqgrating
top-down and bottom-up processing. A characteristic exaaple
from scene analysis, written in MAYA, is presented to illustrate
the operation of the model and the utility of the programming
language, A programming reference manual for MAYA is included.
Pinally, applications for both the recognition model and MAYA
are discussed and some promising directions for future research

proposed.,

1z

W
se

F—
(1]

wm
s

Introduction

2.4 Representation of KHO“IEGQE R R R I N I R I I I B A

2.

* s w

w W
kﬁU1MkﬁJ1M-AW-=UJN-ﬂ= W-Jd DWW & W lowwh =

w Ww
a &

EEEE Wi W W

¢« & e & o & we & 8 @

wu U

5.

2.
2.

2
2.

5
2.
2
2
2
2
2

4.1 Logical Representations I R I I I R I
4,2 The Procedural Reformation .cccccscscsacecscsacsscscsns
.u.3 SChEﬂata 9 9B O PN E S NS AT VBASPE VSO PO IS AR S NGO OS WSS
Bl SRR cucmom e w0 oot om0 o o . 5050 B AT
achine Vision PR AV OED O RGN PO PEOE GRS PO PSS VIO PR Re SO
Roberts?® Paraﬂlgl 88 P ED O POEO NGO S0P ARSI Be RS
Guzman's SEE -O;C-IlU...q.o-ll!itlcc@uli..j.on..l.-
Huffman and Clovwes P60 0008 0P S8 DEIYOERSELOEPIGEB B ORS
waltz‘s llgorith- ss s s s rsnss s neniansersenessens anae
HECKworth.S MAPSEE A
Preuder®s SEER 9900090000989 0800 000N REERTIEROSSSS
edural Hodel ® % % 8 8 8 % 4 98 08 8T 0 e S E P G E O S SR S e s e 8 sE 8ea

.1

.2

3

1)
L] 5
«5.6
Proc
Ltroduction ssssnsesiis nasesevi s s saneassne sinessaEeee
del OVerviBW s sevieie s seasiesss Daeeeee s caveiess. s
1 Schepata jisisateeiss sasmieessevisaenes s neess e pe
2 Schema Hierarchies 905 8099800988 T e e s 0GR ABSBSSTS
3 RECOgNiZEDS ssnsmeenevossesesesaasneenwes seneeess e
4 FNon-Determinism "5 9909 008800 NIeOE S EB SR EBRBSR OGS
5
r
r
1

Recursion e 78 O " A S 8 094 e S EO 9 e 48 S8 S0 A0S S SR HS O g ed a0 &

IEY'S Algorithl T R o N i A R A S A I N A N W
ee Phases of Recognition ceisesscsssneevnos sessasasaos

Expectation T 5 8 940 48 50 0 548 % BA. 8 S S NSO a0 e 9 AR e e
+2 HatChing 200 80 POV AN PNV POIOO SR OO OGSO OTOSOOROSSE
4.3 Completion I R T R I I R I N N I A I O RN B A A S N R
Schedulinq’-....... 48 a4 508 s S 809 8 08 SN NS SEN 8BS
Method Hierarchies sascecscccsscccccsssssscssscnssnsasns
Coordination and Communication ssess e csnse sesssssesas e
Inteqration © 4992009999390 000800008 3009 BSNADsO0BRBTsEDNTS
Example from Machine VisioN .scseccccccvscnvecssncssconss
PerSPECti'e 09099 POBOSE DD S0 PSS E A0 EABE 008 WD BescaDaEnd B a8
The Problel sssscessesscssrsssssssssnsosnsosnsanse snnssenasses
Annotated ProtocCol ccescsnescscscnacscsasosnsssacssancas

CQ“CI“SiQﬂ LA R RS EEEEEEENRENENRERENBERNRSELE BB NERESEENENEESRER]

Y2 ecavcecovcersesvsescsssscscsscsosvesnsscanssccssssnsoscnsss
IntrOduction S8 48 38 8BTS0V SEESS GRS A B BSEBENS
Language Overview P ES 5 8000 TPLE0 9000 PY RSO SO ENLCOORESTE
+ 2.7 DALA TYPLE cvcsnsestrs sohnsasesne saeeosesnseseses e
2 2 Evaluatlon e 8 9090 B9 e PeSsOe B0 S Ee S0 B Ae B S B BO S e eR AR
Representation © T 08 59800000 0N0T BESED0 RSSO EROE O
437 SChERALA aiow s svs @ e @sas s@esaees 36 eeseess seeessss o

«3a2 MEeSSagesS sevsscesccasssssscsscsssscsccescasnsvssscnoes

00 000 E P RC0S LT I BAAEVIT AN RTA IO PIIBONOOEOEE
2: Mechanisms for Machine Perception .cccescsscecscscescsascssnas
2.1 Introduction © 20 60 WV LEEUN IIBOGI TSI NBE GO OO NG00 SSS

2,2 Artificial Intelligence and PSycholOQy cceccecscccacccnscae
2.3 Progtamlinq LANgUAQES ecssassesesssssassviaesosssnanasssns

iv

QAU -

11
11
13
14
17
23
23
26
28
29
32
35
39
39
39
40
42
49
51
55
56
61
61
63
64
68
71
74
75
78
78
79
88

114

115

115

116

116

120

122

122

126

Appendix-B: MAYA Language Reference Manual cccecccccccesssce

Ap

5
5

4
5

Pattern HatChing P 20T LT IEFOBAE L0 OO POB D VS VS EBIN B
Top*down Methods ® 9 99006959990 0806000e0S000AcCEOEBNIEDROROESETSS

5.6 BOttOﬂ-up Methods A B AP S P S EBSE BN SN PSP E B BRSSP AS S
63 Becognition ROVIBILRA vonveve po venssanns sasgesses Cevsve
6.1 Perspecti'e R I R R R P R T P R PR T N R TN A
6.2 Recoqnition Revisited cissssencssassssansnsnssasnainss
6.3 lpplications and Future ResSearCh ccccesssoscsesccssase
Biblioqrﬂphy € 9 BT B PSALD SAENEEV 0B GESTO NS0 GEEIRROOERSRBSS DA
Appendi!-lz EatleY'S ParSinq hlqorith' csess emseseeasRBEE BE

B, 1

Relating to MAYA S 9rev e caeesscRse I PRI RsETOOBRARSBE
The DatabasSe secvesesscesssccrscnsacncsssssnesssacscsssss
Evaluation 20 8 0089 RTOP S0 00 COEN NS TENENEONE NSRS IPERE B
Error Conditions and the DEBUG SYStel ceescccesscscesa
Input/Output P P IS RSP B S PIBOROOD DTS ST BN P OIS ET SR
Pattern ﬂatChing D R R N I N R I I A R R R I R I R A)
GENELALOLS 2002000900600 6838800000808 8888600800000860ses08s
Processes and Recoqnizers cevesase s PeONeCOeRO0 OB R OO OO
dix C: Example Program Listing ccescecececccecccscccssne

130
132
134
141
142
142
142
151
153
160
164
164
166
171
173
177
178
183
186
188

vi

LIST OF PIGURES

A BiCYCIE SChOla cissesiise sanvivsnesnscessssdpsssuais vee U7
Bi0131e conp081tion ﬂierEIChY D R R N N R R 4y
Indexed Instance Hierarchy sccecesscsccccccssosscscasess U8
Recognition CYClES'--.-o-tmomnooov.rq-..-arotctto-rvl-v- 66
Scene COﬂPOSition HierarChY PRESNEA LS SN Ne NES YO oo DO
Input Scene a8 9% 98 8 809 08 S0 5O ABAEE0Y S ST 0600 S0 0 0SS 8 BN 83
Vertex Instance HiIerarchy . cceceasssssssssnvescasessaces BU
Vertex Schemata B P A VOP N0 VA OGS0 Q0GP0 VS EONPIASBOD OO0 BES 85
Line Schemata "% 8 049 3 WS SH e EO S A0E S8 SIS AR G BSOS Nae 85
Yertex Labelling ConventionsS ieccececccsscsssesesssnssces B7
Recognition of a Wedge ccscessececssconessnsssscsscsseas 89
Perceptual CYCIES sesaA B RAS paSaTass s ah ST sneasnasse 148
The Predictor FUNCEION ssesessensss erssnenvesasssvnseses 102
T
T

WNaSS o MR WN a2 WN A
B8 s¢ 80 48 ag o8 ' Q) te ee 48 ss e 24 es

he Scanner anction @ 8 ® 8 49 58 5 @A 4 8s e s e A9 S ST A e SO RS 162
he Completer PUNCLION siceviscavsnsesosassas sssssesses 102

B N ELEREPLEFEEREFEWWWW
e ® p & ®* 8 & & & ° 5 & 8 @

vii

Acknowledgements

"Hhen a pickpocket meets a holy man,
All he sees is his pockets."
Anonymous

I would 1like ¢to thank =@y doctoral committee for their
invaluable guidance and perspective, Rachel Gelbart, A Gordon
McCalla, HMichael Kuttner, Peter Rowat, Jan Mulder, and Roger
Browse for many helpful discussions and criticisms, Marian
Mackworth for proofreading this thesis, my housemates for their
comraderie, tolerance, and understanding, especially Richard
Rosenberg and Sheryl Adam for providing accomodation and
transportation, my dear friend L. R. Floyd for many insights and
his faithful companionship, and above all, Alan Mackworth for
supervising my research, sharing my enthusiasm, and providing

the constant support and faith of a friend.

This research was supported by a Postgraduate Scholarship
from the University of British Columbia and a Research

Assistantship from the Departaent of Computer Science.

The creation of intelligent automata has been a compelling
dream of mankind for millennia, Each advancement in the
sophistication of our technology has been seen as a new tool for
the understanding of ourselves. Hydraulics, clockworks, the
steam engine, and the telephone switchboard have each, in their
time, been metaphors, taken as theories of the functioning of
the mind (Rapoport, 1963). Only in the last few years, however,
with the invention of the von Neumann digital computer has the
realization of intelligent machines been a serious possibility.
Such a possibility, encouraged by the early successes of Samnuel
(1963), Gelernter (1963), Newell and Simon (1963), and others,
created high expectations. Unfortunately, these expectations
have been maddeningly difficult to realiza. 1In particular, we
do not yet have an adequate theory of perception as part of an
overall theory of machine intelligence. However, as Mackworth
(1977c) points out, elements of such a theory are emerging.

This thesis 1is concerned with aspects of this developing
theory of machine perception. This work is motivated by the
belief that perception can be characterized as a recognition
process guided by plans and expectations and driven by
observation and experience, A theory of machine perception is
seen as having two major parts - a formalism for the
representation of knowledge and a model of the processes and

1: Introduction

control structures required tp perform search and quuction on
that representation. The distinction between representation and
process is emphasized in order to point out an aspect of machine
perception that has not been sufficiently developed. Presented
in this thesis is a procedural model of recognition for
perception. The model is intended as a computational paradigm
for perception research and is based on the following
characterization of perception.

Perception is a recognition process that composes new
descriptions of observed experience in terms of stored
stereotypical descriptions of the world, The new knowledge
created in this process 1is abstract and relational, the
formation of the description of a perceived concept. Perception
is seen to exploit the sequential nature of evervday experience
by assuming causal relationships among events and observations.

Perception 1is a non-deterministic process, Our sensory
experience of the world can be ambiguous and often 1illusory.
Likewise, the knowledge by which we interpret sensory experience
is incomplete and often erroneous. Yet perception operates in
this uncertain environment, The perceptual process must
tolerate non-determinacy by exploiting context and allowing
multiple partial interpretations to be hypothesized and their
confirmation attempted concurrently.

Perception is both an active process quided by hypothesis
and expectation and a passive process driven by events and
sensory observation, Observations act as cues which stimulate

1: Introduction

both the formatdion of hypotheses and the activation of heuristic
knowledge associated with specific hypotheses, Such
hypothesis-specific knowledge is used to direct the recognition
process by making observations, creating new expectations, and
attempting to satisfy those expectations.

Perception is also a recursive process. Cues are not
solelylprinitive observations but may be, in fact, the result of
perception. The perceptual process uses the description of some
successfully perceived concept as an abstract cue in the
perception of higher concepts.

As an approach towards a theory of machine perception, a
procedural model is presented based on these characterizations.
The model provides an integration of top~down, hypothesis-driven
search with bottom-up, data-driven search in hierarchical,
schema-based knowledge representations, The model defines
explicit mechanisnms for employing recursive cue/model
hierarchies in perception. Heuristic proced ures, called
methods, are used to quide the recognition process. Methods are
associated with specific stereotypial schemata to drive the
recognition of instances of those schemata., Methods may be
applied in both top-down and bottom-up search modes and a nuaber
of methods may be active simultaneously. The model defines
mechanisms of communication and coordination between concurrent
methods and also defines a deductive method-scheduling technique
based on the notion of computing a method's applicahility to the
perception process,

1: Introduction

As an implementation of the perception moilel, a programming
lanquage called Maya has been developed. This programaing
language is designed as a multiprocessing dialect of LISP and
provides data structures for constructing, manipulating, and
accessing schemata-based knowvledge representations, As well,
Maya defines control primitives for integrating top-down and
bottom-up processing. The lanquage also provides mechanisms for
creating and scheduling processes deductively and for
coordinating the interaction of processes.

In presenting the model of recognition and its
implementation, the thesis takes the following form: Chapter 2
reviews the contributions of recent research to the evolution of
a computational theory of perception. Examined are specific
representational theories, programming lanquages, and perception
programmes, Chapter 3 presents the procedural recognition model
in detdil. Chapter 4 presents a small but characteristic
example from computer vision to illustrate the benefits of the
mcdel and to demonstrate the utility of Maya as a programming
lanquage. Chapter 5 provides an overview of the design of Mavya,
a description of its features, énd a small tutorial on Mava
programming style, Chapter 6 re-examines other relevant
artificial intelligence research from the perspective of the
procedural model presented here., The relevance of this work to
the study of machine perception is investigated and suggestions

are given as to the possible directions of future research.

1: Introduction

2.1 Introduction

If the dream of intelligent automata is to be realized,
there must exist a body of underlying principles from which
these machines will be built, The discovery of this body of
knowledge will have a profound effect on mankind. Its
principles will be manifest in mathematics, psychology, computer
science, linguistics, philosophy, and all other branches of
science concerned Wwith human reasoning. Its ultimate
implications for our society will be felt in now unimaginable
ways.

An apparent convergence of ideas about the organization of
memory, the understanding of 1language, the representation of
knowledge, and the machine perception of visual images suggests
that there must exist computational mechanisas governing
perception, The fact that similar mechanisms are being
investigated in the fields of cognitive psychoclogy, artificial
intelligence, and 1linguistics indicates that these underlying
principles may reside not too far from the surface of our
present knowledge, In this chapter, a review of some evidence

from recent research supporting this view is presented.

2: Mechanisms for Machine Perception

2.2 Artificial Intelligence and Psychology

Both cognitive psychology and artificial intelligence are
concerned with understanding the mechanisms of perception. The
computer has given psychologists both an information processing
metaphor for visualizing cognitive mechanisms and a laboratory
in which to experiment with these mechanisams, In exchange,
their experiments have given artificial intelligence a testlof
the validity of our computational mechanisms as a theory of
human perception. The approach of many researchers (Rumelhart &
Norman, 1973) (Collins & Quillian, 1972) (Newell €& Simon, 1972)
has been to propose an information-processing model of some
particular aspect of perception, memory, or 1learning; then to
compare the behavioural adeguacy of the computer sinmnulation to
the behaviour of human subjects given the same task.

A significant early example of this approach is the GPS
model of human problem solving (Newell,1963)., The model uses a
simple "back-chaining™ scheme of breaking a problem down into
smaller and smaller sub-problems until progress on some
sub-problem can be made. _

Another example is the EPAM model of verbal 1learning
developed by Feigenbaum (1963). The model uses a discrimination
tree as an associative memory for nonsense syllables. At each
node in the ¢tree, only sufficient information is retained to
perform a binary discrimination test at the time the node is
constructed. As more nonsense syllables are added to the

2: Mechanisms for Machine Perception

network, the test becomes insufficient for proper
discrimination. This 1leads to such retrisval errors as a
failure to respond to a stimulus, confusion between similar
stimuli, and oscillation between correct and incorrect
responses,

An important contribution to the development of machine
representations of knowledge is Quillian®'s (1968) proposal of
semantic netwvorks as a model of human mamory. His work models
EeROry as an arc-iabelled directed gqraph structure in which
nodes represent arbitrary concepts and arcs represent typed
binary relationships between concepts. The meaning of a concept
in the network is considered to be the entire network as viewed
from the concept node,

As a representation scheme for machine perception, semantic
nets have an appealing property. The meaning of a concept is
not represented as a set of isolated facts, but as an
encyclopedic network of relationships with other concepts.
Although this representation is extremely rich in its structure,
Woods (1975) has analyzed these relationships and points out a
number of problems and misconceptions. Racently, Schubert
(1975) has extended the representational power of semantic
networks to incorporate 1logical gquantifiers and connectives.
Hendrix (1975) also has augmented the representation with a
partitioning mechanism to incorporate gquantification and
hypothetical situations.

Quillian's original research and the more recent work of

2: Mechanisms for Machine Perception

Collins and Loftus (1975) have modelled human memory search as a
parallel spreading activation process in a semantic network.
From two concept nodes, the search proceeds in a breadth-first
manner to each of their neighbours until a path intersection
occurs., The types of arcs traversed during the search are
supposed to represent the semantic relationship between the two

concepts.

2.3 Programming Languages

A number of artificial intelligence progqramming languages
suggest aspects of a computational theory. These lanquages
include both a scheme for representing knowledge and a control
structure scheme for operating on that representation. The most
popular such language has been the partial implementation of
Hewitt's (1972) Planner language, called Micro-Planner (Sussman,
1973) . Hewitt's language provides a procedural realization of
an incomplete higher-order logic system. In Planner, facts are
represented declaratively as n-tuple patterns in a global
associative database and as proéedures, called theoreas,
associated with patterns, The langquage relies on three
mechanisms: associative database retrieval, pattern-directed
procedure invocation, and an automatic backtracking control
structure, The best implementation of th2 original Planner
proposal is the Popler language written in Pop=-2 by Davies
(1973) at Edinburgh.

2: Mechanisms for Machine Perception

The utility of the Planner paradigm was demonstrated by
Winograd (1973a). However, as has been pointed out (Sussman &
HcDermott, 1972) (Hayes, 1973), there are serious problems, most
notably the lack of a precise representational semantics and the
dependence on automatic backtracking for generating alternative
solution paths in a uniform and exhaustive depth-first manner.
Backtracking reverses the side-affects of any rejected
alternatives, The fact that each alternative at a decision
point is treated independently is the source of the difficulty.
No communication between competing alternative solutions is
possible., Consequently, nothing is learned from failures. The
problem is further aggravated by the intended modularity of the
pattern-invoked Planner theorems. The lanquage attempts to use
all theorems matching a given paitern to achieve some goal or
subgoal until one succeeds. However, each theorem is considered
to be a modular method alone capable of achiaving the goal.,
BEach theorem is independent of all others and, as a result, each
theorer is effectively ignorant of the efforts and methods of
every other.

McDermott and Sussman (1973), in an attempt to solve these
problems, designed and implemented a successor programming
langquage, Conniver. The language supports multiprocessing by
using the control structure model suggested by Bobrow and
Wegbreit (1973). Conniver provides neither automatic
backtracking nor automatic restoration of variables. Changes
made to the database normally remain changed unless specifically

2: Mechanisms for Machine Perception

10

restored by the programmer, This modification permits
communication among "sister™ ©processes exploring alternative
solutions to a problem, Each process may consult the database
to discover the results of her siblings. In order to permit
processes to use hypothetical situations, Conniver provides a
layered context mechanism. Any process may rsquest a separate,
experimental copy of the database. Any changes made to this new
copy are not visible external to the context.

As previously mentioned, Conniver does not depend on
automatic backtracking to generate altermatives, Instead, it
defines a co-routine mechanism called geperators which are
procedures that can maintain an internal state between
invocations., Generators may return multiple wvalues in a
communication port called a possibilities list. Instead of
being embedded within an aactomatic backtracking control
structure, alternatives are explicitly represented as data items
in the possibilities list. Conniver also provides primitives
for manipulating the possiblities list and recalling generators.
'% Conniver's authors intended to improve AI programming
lanquage technology by repairing some of the problems
encountered in the use of Micro-Planner, Conniver has also
provided some representational mechanisms decidedly _more
poverful and flexible than those realized in Micro-Planner.
Conniver permits the representation of hypothetical worlds and
allows arbitrary properties to be associated with patterns. In

the next chapter, the utility of this last mechanism will be

2: Mechanisms for Machine Perception

11

investigated.

Conniver does not propose a model of computation in its
design, In fact, it defeats the primitive model of
Micro-Planner. However, the lanquage does support the creation
and manipulation of multiple processes thus providing a
capability, if not the facility, for using bottom-up search
mechanisms, A second contribution of Conniver is its use of the
possibilities 1list to represent processes as lata structures to
be manipulated by other processes.

A very recent programming language, KRL-0, has been
proposed by Bobrow and Winograd (1977). They explicitly propose
a mwmodel of recognition for machine perception based on a
schematic representation and a notion of schema matching. KRL

will be discussed in more detail in the next section.

2.4 Representation of Knowledge

Suitable mechanisms for the computer representation of
knowledge are a major aspect of a theory of machine perception*f
The search for representations exhibiting desirable properties
for perception has been an important research 2ffort.

A
2.4.1 Logical Representations

First-order predicate calculus has been aivocated by many
as a computational paradigm for Artificial 1Intelligence

2: Mechanisms for Machine Perception

12

(McCarthy & Hayes, 1969) (Green, 1969). Predicate calculus
offers the advantages of both a completely modular
representation and a precise and formal semantics. All
knowledge 1is represented factually and is specifically divorced
from the proof procedures used to perform search on that
representation, A number of proof procedures have been
advocated, most notably the resolution principle of Robinson
{1965). For the most part, these proof procedures are syntactic
mechanisms utilizing a uniform interpreter. There is no general
concept of process and control inhefent in the logic systenm
itself.

A number of strategies have been proposed for controlling
the search process in predicate calculus systems, including
dynamic pruning of the search space and attaching
domain-specific heuristic procedures to axioms of the systen.
Reiter (1973) has advocated the use of a model to restrict the
search space and to give advice to the proof procedure.

A number of researchers have advocated predicate calculus
as a programming language (Kowalski, 1974) (VanEmden, 1977). In
most implementations, a unifornm prdof procedure is used as the
control structure model for the programming language. In an
attenmpt to introduce 1logical semantics into the control
mechanism, Hayes (1973) is defining a language of control
structure operators deducible by the 1logic system during
execution,

These efforts point to the need to have the deductive

2: Mechanisms for Machine Perception

13

process guided by semantic knowledge instead of relying on a
uniform syntactic procedure., What is required is an integration

of the representation with a model of control and process.
2.4.2 The Procedural Reformation

The problems observed in the purely logical formalism have
given impetus to the development of a procedural formalism for
representing knowledge. As in any serious reformation, two
competing schools, the proceduralists and the declarativists,
quickly delineated their respective points of view thereby
radicalizing those positions, A detailed discussion of these
positions is outlined by Winograd (1975).

The proceduralists contend that knowledge is best
represented in procedures. Their argument is that a large part
of man's knowledge of the world is knowledge of process -
knowing "how" instead of a factual knowing "what"™, The Actor
formalism of Hewitt (1973) defines the extrem2 of this point of
view. Hewitt states that his research is directed at putting
semantics on a firm procedurél basis, The knowledge of some
entity is the behavior exhibited by the proceiure representing
that entity. Access to information in an actor is permitted
only by sending the actor a message which it interprets by its
own means, The formalism can alternatively be viewed as the
decentralization of the system interpreter among the data
objects of the systen, Actors are a generalization of the

2: Mechanisms for Machine Perception

14

formal notion of classes and objects introduced in the Simula
programming lanquage (Dahl, 1966).

It seems clear that method and process in general are best
expressed procedurally because temporal relationships are
handled automatically by the sequential nature of the
representation. Procedures provide a natural way to specify
interactions as operations and they are convenient for
representing higher order knowledge, Winograd (1975) points out
a duality between the modularity of declarative representations
and the interaction inherent in procedural representations.
From the declared goal of developing a computational theory of
perception, that same duality can be seen as the distinction
between a theory of representation - the declarative aspect, and
a theory of recognition - the procedural aspect. What is needed
is an integration of the modularity of a declarative
representation with the interactions that are specifiable in a
procedural representation. That integration cannot be a simple
concatenation of techniques. Instead, there must be a synthesis
that respects the inherent duality between representation and

recognition, between form and process.

2. 4.3 Schemata

Within the last few years, research into suitable
representations of knowledge in such diverse fields as human
memory research (Bobrow & Norman, 1975) (Pylyshyn, 1976),

2: Mechanisms for Machine Perception

15

linguistics (Fillmore, 1968), and artificial intelligence
(Minsky, 1975) (Bobrow & Winograd, 1977) has led towards the
convergent notion of schemata. The term is attributable to the
work of Bartlett (1932), although the concept has now been
rediscovered under various names with many incarnations.

3 general characterization of schemata includes the
following aspects. Schemata are data structures for
representing stereotypical concepts including objects, events,
actions, situations, and seguences of events, actions, and
situations. Schemata form network structures like the semantic
networks of Quillian {1968) exhibiting the same rich
encyclopedic organization. Each schema represents a gemneric
concept. Concepts may be simple or complex, concrete or
abstract., Complex concepts are represented as a composition of
simpler schemata. Because knowledge is organized into
conceptual modules, the interpretation of process can deal with
large related amounts of information as single concepts, as
units at a single 1level of detail, or, alternatively, the
hierarchical data structure can be examined at a deeper level of
detail when required. . |

Each schema is composed of a set of named relations with
cther schemata and primitive values. The representation also
includes the notion of stereotype and instance. Stereotype
schemata may be copied to yield multiple schema instances. Each
schema stereotype initially may contain default values for some
of its named relations., When the schema is copied to represent

2= Mechanisms for Machine Perception

16

an instance of its stereotype, the default assignments serve two
functions, First, they provide generic knowledge about the
instance that must be generally true of most occurrences of the
represented concept, Second, the default assignments are
interpreted as expectations of what type of information may be
used to replace the default values in the instance. The process
of instantiating a schema instance becomes a search for
particular data or embedded sub-schema instances satisfying the
schema's expectations.

Schemata may contain both active and passive knowledge. 1In
a stereotype, passive knowledge includes the expectations and
default values, In a fully specified instance, passive
knowledge consists of the values of the named relational
variables comprising the description of the instance.

Minsky (1975) has proposed a schema-based representation
which he calls frape systems. His work is primarily concerned
with the development of schemata for computer vision knowledge
representations, although he extends its applicability to other
domains, Recently, Winograd (1975) has further specified the
frames paradigm for use in naturai laﬁquaqe research. Schank
and Abelson (1975) have developed a schema-based system for
narrative story understanding called scripts which uses a small
number of primitive actions to represent cause and effect
relationships in simple narratives. Using a case parsing method
(Fillmore,1968) to construct the schematic representation of a
story, Schank's (1975) system can infer a paraphrase of the

2: Mechanisms for Machine Perception

17

story including information not explicitly present in the
original narrative.

Similarly, Charniak (1975) has proposed a schema-based
story understanding system. In neither of these systems is the
process of tramnslation from ¢the narrative to the schematic
representation of primary concern, Their efforts are decidedly
representational and assunme the existence of suitable
recognition mechanisnms. .

McCalla (1977) has recently modelled natural lanquage
dialogue using schemata., His systeama inteqgrates both syntactic
parsing using a case grammar and semantic analysis as message
passing and interpretation among cooperating schemata.

Bobrow and Norman (1975) and Rumelhart and Ortony (1976)
have presented a characterization of schemata for modelling

human memory. As well, Norman, Rumelhart, t al. (1975) have

proposed active structural networks as schemata for modelling

memory processes in linquistic comprehension.
2.4.4 Search

A popular perspective in artificial intelligence has been
to view machine intelligence as a complex search task guided by
heuristic techniques (Slagle, 1971). From this perspective,
recognition nethodslfor machine perception can be characterized
as having two major aspects - the development of powerful search
mechanisms for particular representations and the discovery of

2: Mechanisms for Machine Perception

18

powerful heuristics for particular knowledge domains to order
and reduce the size of the search space. A number of search
mechanisms have been advanced for schema-based representations.

Pahlman (1975) has advocated the use of parallel hardware.
Rieger (1974) has proposed the use of unrestricted forward
deduction. In the author's opinion, both of these proposals are
attempts to solve the perception problem with a "bigger hammer®,
Although advances in the state of the hardware art may ease our
programming plight, they should not be the basis of a theory of
perception.

Kuipers (1975) has advocated a top-down, hypothesis driven
recognition model for schema systems. In this model, schema
stereotypes contain heuristic knowledge to gquide the search
process. As well, the stereotype’s default expectations
constitute hypotheses about what to look for to fill the slots
of the instance, Schemata recognize instances by making
external observations and by recursively calling on the efforts
of other sub-schemata as subgoals. gnfortunately, this
recognition scheme forces the use of purely goal driven search
mechanisms thereby suffering from a numbér of serious drawbacks.

Described below are three such deficiencies:

1. A schema must be explicitly hypothesized as a subgoal in

order to recognize instances of its stereotype.

A schema may contain heuristic knowledge to guide the

2: Mechanisms for Machine Perception

19

recognition process. 1In order for this knowledge +to become
available, the schema must be hypothesized explicitly as a
subgoal by some higher schema. This forces a reliance on

top-down, goal directed search strategies,

2. An ordering must be assigned to alternative hypotheses.

The top-down recognition model forces the choice of one subgoal
at a time, Furthermore, the mechanism for activating each
alternative subgoal is completely failure driven. Consider a
schema containing a number of alternative subgoals, Which
should be hypothesized first? One particular subgoal must be
chosen as the most likely hypothesis and called. This choice
must be wmade on "blind® expectation before the heuristic
expertise of the subgoal schema is available to help make the
decision. BRach subgoal schema may contain heuristic knowledge
to drive the recognition of its stereotype, yet that gquidance is
available only after a committment has been made to the schema

as a subgoal.

3. Identical subgoals must be carried out independently.

A schema may be successful at achieving a number of its
subgoals. If, however, another necessary subgoal should
subsequently fail, the schema must itself return a failure to
its caller. - Later, the system may re-compute those identical

2: Mechanisms for Machine Perception

20

subgoals, This behavior has been called thrashing (Bobrow ¢
Raphael,1974) .

Minsky (1975), anticipating this third objection, has
proposed a mechanism, first used by Winston (1975), that
attempts to avoid duplication of effort for identical subgoals.
When a schema discovers froama observation that it 1is not
applicable to a given situation, it consults a similarity
network which recommends a replacement candidate. The schema
then attempts to map its correctly completed subgoals into the
expectations of the new candidate schema and then passes control
to it, This mechanism assumes both that a mapping exists
between each failing schema and each next candidate and that the
similarity network is sufficiently complete that relatively few
inexplicable failures occur. Such surprises force the system to
rely entirely on automatic backtracking to continue the search.

The above comments are applicable not only to schemata, but
hierarchical hypothesis driven systems in general. Mackworth
(1977b) has labelled the same phenomenon in vision research "the
chicken and egg problem™, Top-down, hypothesis driven search
heuristically orders the search spacé by attempting more likely
interpretations before trying 1less 1likely ones. However,
heuristic ordering 1is not in itself sufficient to solve the
recognition problem.

At the other extreme, bottom-up search is driven solely by
evidence discovered from observation, Such evidence can be

compared against domain specific knowledge to constrain the

2: Mechanisms for Machine Perception

21

interpretation. Since no hypotheses need be foraed,
backtracking is not regquired. Unfortunately, hottom-up search
mechanisms provide no guidance either since there |is no
expectation of future experience. PFor perception, techniques
are needed which allow hypothesis directed search to give
overall guidance to the recognition »process, vet pernmit
bottom-up, data~driven techniques to circumvent the
inefficiencies of the purely top-down schenme,

One such approach is the use of multiprocessing to
integrate top-down and bottom=-up search, Kaplan (1973) has
developed a natural lanquage parsing system, GSP, based on a
multiprocessing scheme. The system creates independent
processes to 1look for each grammatical constituent in a
sentence. GSP employs a priority gueue scheduling mechanism and
uses a grammatical chart as a communication mechanism between
processes., The system is very flexible in that it can enmulate,
at one extreme, top-down recognition such as Woods' (1970)
Augmented Transition Network parser and, at the other extrenme,
bottom-up recognition.

Recently, Bobrow and ®Winograd (1977), as mentioned earlier,
have reported on the development of a schema-based programming
lanquage supporting multiprocessing called KRL. The lanquage is
designed as an integration of procedural and declarative fornms
of knowledge with a recognition model based on schema matching.
In KRL, schemata are composed of modular entities called
descriptions vhich may have associated procedures and

—— e . e S e e S e

2: Mechanisms for Machine Perception

22

attributes, A description is made up of multiple descriptors,
each describing the schema's concept from a different viewpoint.
As in Minsky's frames model, the concept of stereotype and
instance are fundamental to the representation. Descriptions
are basically intensional representations and may be composed
into higher schemata called units. Units are intended as a
mechanism for achieving procedural attachment by associating a
set of descriptions with a set of procedures. As well, units
possess a category type which indicates to the matcher how
operations are to be performed on the descriptions contained in
the unit. This semantic marker scheme provides a further level
of specialization for the matching process.

Bobrow and Winograd propose a model of recognition based on
an extended concept of description matching. The KRL matcher is
designed to compare two forms syntactically, or at the other
extreme, to drive the overall operation of the recognition
process. The matcher uses both the syntax of the descriptors
and domain specific knowledge encoded as semantic markers and
procedural knowledge attached to units and descriptions. The
model as described is essentially hfpothesis driven. To avoid
the problems noted with the top-down recognition model, the
authors propose a multiprocessing scheme that provides a process
priority gqueue with user-supplied strategies for scheduling and

rTesource allocation.

2: Mechanisms for Machine Perception

23
2.5 Machine Vision

Recent research in machine vision has made a particularly
significant contribution to the development of a theory of
machine perception. The inherent complexity of vision has
forced the confrontation of the problem from two major
directions. PFirst, machine vision research has expanded our
understanding of the role of domain-specific knowledge in visual
perception, The use of this heuristic knowledge is recognized
as being essential to the perceptual process., Second, machine
vision has, by necessity, been concerned with developing
computational methods sufficiently powerful for this research
domain. This second aspect of machine vision is particuelarly
germane to this thesis and will be examined in this section. A
more comprehensive review of machine vision can be found in

Mackworth(1977b).
2.5.1 Roberts' Paradignm

The early research efforts of Roberts(1965) established a
paradigm for machine vision which has provided a significant
contribution towards a theory of machine perception. Roberts
used a two-pass procedure to recognize séenes of simple
polyhedral objects, The first pass reduced gray-level picture
data to perfect line drawings from which the second procedure
could perfornm .object recognition. The ability of the first

2: Rechanisms for Machine Perception

24

procedure to produce perfect line drawings from realistic data
without performing higher-level interpretation has been doubted
{Mackworth, 1977b).

From a perfect 1line drawing, Roberts'! second procedure
attempts to compute a scene interpretation using geometrical
models of three prototypical polyhedra, specifically cubes,
wedges, and prisms. Roberts used the predictive power of these
geometric models to significantly constrain the search for a
scene interpretation. He noted +that the complexity of the
search space could be reduced because the view of a particular
prototypical object in some given picture is topologically
invariant over a relatively wide range of viewpoints. Instead
of searching in the picture domain for lines that belong to some
polyhedron, a model can predict where in the picture to look for
those particular lines. 1In other words, Roberts exploited the
predictive ability of models to guide the recognition process.

A second contribution of his work is the use of picture
cues to hypothesize particular models. The program®'s models are
invoked by the discovery of specific cnes that suggest the
appropriateness of a particular Iuodel. Once a model is
selected, that model directs the remainder of the recognition
process by calculating, based on its partial instantiation,
wvhere in the picture to look for the remaining lines of the
model prototype. If a model is found to be inappropriate, then
the cue discovery process is continued to select another model.
When a model is successful in recognizing a simple polyhedron,

2: Mechanisms for Machine Perception

25

that object is "edited out"™ of the picture and the search for
new cues resumed., This technique provides a crude mechanism for
recognizing complex polyhedra as the composition of the three
simpler polyhedra modelled by the program. The recognition
model embodied in Roberts' program has been characterized as a
cyclic process of discovering cues, activating a most likely
hypothesis, attempting to verify that hypothesis, and following
the consequences of a successful hypothesis (Mackworth, 1977h).
On success, the recognized simple polyhedron is deleted from the
picture and the process iterates.

A third contribution of Roberts' work is that the cue
discovery process is realized as an ordered hearistic procedure.
This procedure depends on the notion of an approved polygon
which is defined as a view of a polygon face of any cube, wedge,
or prism., The procedure first attempts to find a picture vertex
surrounded by three approved polygons. If unsuccessful, it
atteﬁpts to find a line joining two approved polygons. If this
fails, the procedure attempts to find a polygon containing a
three-line vertex. Otherwise, as a last resort, it looks for a
three-line vertex as a cue.

The very early work of Roberts can now be seen to have made
significant steps towards a theory of machine perception.
First, he used geometric models of simple polyhedral objects to
guide the recognition process. Second, he used picture cues as
a mechanism for selecting a relevant model. This bottom-up
search mechanism further constrained the search space by

2: Mechanisms for Machine Perception

26

utilizing evidence discovered in the picture to select a viable
hypothesis. And third, the process 6f cue discovery was itself
a recognition task driven by a heuristic procedure.

In light of the present state of the art, Roberts' research
can be criticized for a number of shortcomings. Most notably,
the program uses only a single level of cue discovery. There is
no notion of a hierarchy of cues and amodels, Cues are
completely context-free discoveries that cannot themselves be
the result of recognition., As well, the process of recognizing
complex scenes is handled via a primitive composition mechanisnm
which operates, not in the interpreted scemne, but directly in
the picture domain. And 1lastly, the recognition process is
driven by a single global method, the iterative cycle of cue
discovery, model invocation, and model satisfaction. There is
no possibility of using specific heuristic methods for the
recognition of particular models. A single global method must
suffice for the recognition of all polygon types. lltaouqh
Roberts' research can now be easily faulted, it still remains an

amazing first step towards a theory for machine perception.

2.5.2 Guzman's SEE

Guzman's (1968) work diverged from the paradigm established
by Roberts., Guzman's program, called SEE, attempts to partition
regions of line drawings into polyhedral objects using only
local corner junction information. SEE employs a two pass

2: Mechanisms for Machine Perception

27

method, In the first pass, relational "connectedness"™ links are
placed between adjacent rTegions as a function of the picture
junction types that the two regions share. In order to cope
vith the inherent ambiguity of picture junctions, Guzman used a
nuember of complicated inhibition rules to temper the 1link
placing process.

The second pass attempts to compute the transitive closure
of regions sharing two or more linksm{uhile again using
inhibition rules to moderate the process, The simple method of
this second pass depends critically on the "tuned" performance
of both its inhibition rules and the rules of the first pass.,
The first pass must create enough links so that a complete scene
labelling can be obtained; the second pass method must then
close enough regions so that a unigue unambiguous interpretation
results, Both methods, however, must be conservative enough to
prevent the djoining of separable objects to each other or the
background. Guzman claimed that SEE performed recognition
without the use of models, a divergence from the earlier
paradigm of Roberts, Yet, as Mackworth (1977b) points out, the
model-specific knowledge represented in Roberts! cue recognition
procedure is hidden by Guzman implicitly in the complicated ad

hoc inhibition rules.

2: Mechanisms for Machine Perception

28
2.5.3 Huffman and Clowves

Huffman (1971) and Clowes (1971) 1later independently
generalized the work of Guzman to use junction shapes appearing
in the ©picture as cues for their interpretation as corners in
the scene, By differentiating between the picture domain and
the scene domain, both Huffman and Clowes reasoned that each
picture Junction can have only a few valid corner
interpretations in scenes containing real three-dimensional
polyhedral objects. Such physical constraints were seen to be
unary predicates on the way a particular junction type can be
labelled. As well, each such junction is further constrained by
a binary relation along the picture edges it shares with other
jJunctions. An edge must have the same scene labelling at both
of the junctions defining its ends.

Clowes and Huffman significantly extended our knowledge of
recognition mechanisms suitable for machine vision. Unlike
Guzman, they refrained from trying to perform recognition in the
picture domain using only local knowledge about junction type.
Instead, they used picture junctious‘as cues to invoke parallel
unary and binary constraints in the scene domain. They then
satisfied the resulting system of simultaneous constraints by
employing, in one case, a depth-first search and in the other, a
breadth-first search.

Unfortunately, 1like their predecessor, both men neglected
the virtues of using explicit object models to guide the

2: Mechanisms for Machine Perception

29

recognition process. Instead, their models are effectively
compiled into the sets of possible corner interpretations. As
well, Huffman and Clowes used only primitive cues, the picture
junction types given in the input data. Cue discovery is a
trivial computation independent of the semantics of the
particular scene being interpreted. 1In other words, cues cannot
be recursively the result of the recognition process.
Consequently, this recognition mechanism makes use neither of a
hierarchy of object models, nor of a hierarchy of cues

associated with those models.

2.5.4 waltz's Algorithm

The scene analysis program of Waltz (1972) elaborated
further the techniques developed by Guzman, Huffman, and Clowes.
Waltz extended +their approach in two important directions.
First, he incorporated more knowledge specific to the visunal
world of toy blocks by expanding the set of junction 1labels
used., The new set of labels included knowledge about crack
edges between adjacent blocks and a crude representation of
shadows. Such an expanded label set created a huge number of
possible corner 1labellings for each junction +type, thereby
increasing considerably the complexity of the search space.
Waltz, however, noticed that after applying to each Hunction
type the unary constraint of what corner interpretations could
appear in the "real world", the remaining set of valid 1labels

2: Mechanisms for Machine Perception

30

vas much reduced. Adding more dimensions to the labelling of
polyhedron junctions increased the richness of the domains
semantics without exponentially increasing the complexity of the
search space.

Second, in order to cope with the expanded set of labels,
Wwaltz developed a Junction filtering algorithm to further
constrain the search space before attempting a depth-~first or
breadth-first search for a global scene interpretation. This
filtering algorithm is based on the notion of a consistency
condition, "C", which holds true if, for every label assigned to
a particular Junction, there is weither a matching label
assignment at each 1labelled, neighbouring junction, or that
junction has not yet been labelled,

The filtering algorithm operates by touring the set of
picture FJunctions once in some arbitrary order, At each
junction, the algorithm first attaches a 1l1list of all corner
interpretations which satisfy the unary predicates for that
junction type. Waltz noted that such lists were static and
could be compiled once for each junction type. Next, the corner
interpretations of each newly labelled junction are "pruned"”
against the label sets of each neighbouring junction sharing an
edge with this junction such that condition "C" holds, That is,
any corner interpretation of the new junction having an edge
label that does not match an edge label of each already labelled
neighbouring junction, 1is deleted. Then, in a spreading
breadth-first search, each neiqghbouring junction prunes its

2: Mechanisms for Machine Perception

31

label set against this junction and each of its neighbours do
likewise until, once again, condition "C" holds throughout the
network. The significance of this algorithm is that it requires
only a single pass through the set of picture djunctions. When
it terminates, all inconsistent corner interpretations have been
eliminated. Often, the algorithm yields a single labelling for
each junction, thereby negating the need for a subsequent scene
interpretation search,

Waltz both extended the wuse in machine vision of domain
specific knowledge and introduced the use of constraint
propagation techniques to the field. He demonstrated that by
incorporating 2nough semantic information about a %blocks world"
scene, an over-constrained network representation can be
constructed which through the use of constraint propagation
techniques can gquickly yield a unigue interpretation.

Prom the present perspective of developing a computational
model of recognition for perception, Waltz can be criticized for
the same deficiencies as his predecessors. His program makes no
explicit use of models of the polyhedra it recognizes. Instead,
it relies on the implicit knowledge of polyhedra embedded in the
junction labels. Likewise, the cue discovery process is
completely a context-free process. Cues are, in fact, primitive
entities, the picture junctions given in the input data. Their
discovery can be neither a function of the partial knowledge so
far known about a particular scene, nor can they be complex
abstract entities computed recursively as the result of

2: Mechanisms for Machine Perception

32
recognition.
2.5.5 Mackvorth's HAPSEE

The constraint satisfaction techniques developed by Waltz
and others have been recently generalized by Mackworth (1975,
1977a) to a class of network consistency algorithms. These are
shown to be more efficient search methods than automatic
backtracking for search tasks which can be formulated as n-ary
constraint satisfaction problems. Network consistency forms the
basis of a recognition model for machine perception which
applies general constraint satisfaction algorithms to networks
of simultaneous constraints.

Mackworth (1977a) has recently used mnetwork consistency
techniques for the interpretation of freehand sketch maps. The
program, called Mapsee, interprets a hand-drawn map of an island
according to the conventional semantics of cartography. The
program begins by performing a very conservative partial region
segmentation of the input sketch to yield a set of primary cues
based on simple picture features, Cues are features derived
from the sketch such as acute angles, point clusters, free-ends
of lines, and juﬁction types. These cues are then used to
invoke primary models that provide partial interpretations of
the map in the locale of the cue. Note that the interpretation
provided by a model may be initially highly ambiguous. However,

each model establishes constraining relationships with its

2: Mechanisms for Machine Perception

33

geographic neighbours according to the cartographic semantics.
The resulting network can be visualized as a hyper-graph whose
nodes are pictorial objects (regions and chains of lines) and
vhose n-ary arcs are constraining relations derived from the
models,

Mapsee then applies a network consistency algqorithm to the
network that progressively eliminates inconsistent
interpretations for the various cartographic features
represented by the models, If the conventional semantics of the
models chosen is rich enough, and if a given sketch map is
explicit in 1its representation, the resulting system is over
constrained and the algorithm may converge to a single possible
interpretation. '

Hapsee demonstrates first that cue/model driven recognition
can be combined with network consistency search technigues and
that these methods may be applied to perception task domains
outside the *"blocks worldn", Second, Mapsee defines a cyclic
recognition model for machine perception. Mackworth (1977b) has
noted that picture segmentation requires scene interpretation
and conversely that interpretation requires segmentation. He
calls this phenomenon "the chicken and eqg problem™ for machine
perception., Mapsee's initial conservative picture segmentation,
although inadequate for a global interpretation, yields enough
primary cues to invoke appropriate models. The subsequent
constraint satisfaction among these models provides an initial
interpretation which can then be used to gquide a more

2: Mechanisms for Machine Perception

34

context-sensitive re-segmentation. This process may be iterated
until a complete interpretation is obtained. Third, network
consistency algorithms provide a uniform syntactic control
structure for searching declarative network representations.
Consistency algorithms tend to converge towards a unique
interpretation by focusing on those nodes in the network which
remain the most ambiguous.

Each cycle in Mapsee's recognition process computes a new
approximate scene interpretation that is used to drive a
context-sensitive re-segmentation, thereby yielding semantically
richer cues for the next cycle, This iterative mechanism is
seen as a mneans of "bootstrapping® into an interpretation
thereby avoiding the ®chicken and eqg problem", However, since
Mapsee utilizes non-hierarchical descriptive models, cues nrust
still be primitive features detected by the re-segmentation.
They cannot be more complex entities recognized during the scene
intepretation as part of a hierarchy of cues and models.

Network consistency techniques encourage the use of purely
declarative knowledge representations and exhibit the familiar
benefits and limitations of that Irepresentation (Winograd,
1975) . Since models are Tealized as sets of constraining
relationships among other models, network consistency is a very
modular computational paradigm. New constraints and nev models
can easily be incrementally added and deleted from the network,
As vwell, since all of the domain specific knowledge is embodied
in the declarative models, the system is portable. It can be

2: Hechanisms for Machine Perception

35

easily applied to other recognition tasks which exhibit a
semantics expressable as a system of mutual simultaneous
constraints, On the other hand, the divorce of the declarative
models from the procedures used to search the network structure
forces the use of a single global syntactic search method, the
netwvork consistency algorithnm. No domain-specific knowledge
such as heuristic search methods associated with particular
models is possible., Mackworth (1977c) has noted the limitations
of a uniform search method for non-hierarchical descriptive
models and has advocated "exploring control strategies for

schema~-based theories of perception®,

2.5.6 Freuder's SEER

Freuder (1976) has recently developed a recognition model
for schema-based representations that is primarily concerned
with the specification of control structures for machine
perception, His program, SEER, recognizes a scene of a conamon
machinist's hammer represented as gray-lavel video data.
Freuder argues that m@most recognition schemes employ control
algorithms which do not rely on computed partial results or the
semantics of the scene being perceived. To the contrary, SEER
employs the discovery of partial hammer components combined with
general knowledge about hammers to guide the recognition
process.

In SEER, knowledge is represented in twvo forms of

2: Mechanisms for Machine Perception

36

hierarchical semantic network structures, General knowledge
about hammers is represented in schema structures called GK
networks, whereas knowledge specific to a particular hammer
instance is represented in a schema instance called a PK
netwvork. The nodes of a GK network represent items of visual
knowledge about hammers, such as handles and heads. The links
between these nodes represent how these items may establish each
other's recognition. On the other hand, a PK network represents
a partially instantiated instance of a GK concept and inherits
its structure and procedures.

Both the GK and PK networks form tree data structures. At
the leaves of each PK tree are procedures which search for
instances of the specific GK concept. The leaves of a
particular PK tree structure represent the state of the
procedural methods concerned with the recognition of that schema
instance.

In Freuder's model, recognition proceeds using both
top-down and bottom-up search within a PK structure. W®When a new
feature is discovered, it is used as bottom-up evidence for the
hypothesis of higher coniectures of ihich the feature may be
part. A nev PK structure is created to represent this new
possible relationship. As well, the creation of new conjectures
permits the top-down exploration of their subgoals thereby
resulting in the creation of subordinate conjectures.

Since a number of conjectures can be active simultaneously,
the control structure question centers about which conjecture to

2: Mechanisms for Machine Perception

37

explore next. The mechanism wused in SEER is the familiar
priority-queue multiprocessing scheme. Conjectures are assiqgned
a priority when placed on the gueue and their priority may be
changed during the recognition process. A global monitor then
selects the highest priority conjecture and attempts to confirm
it by activating one of its procedural methods.

The recognition model defined by SEER follows a cyclic
process, A conjecture chosen by the scheduler is explored. If
the conjecture 1is achieved, it may then be explojted resulting
in the hypothesis of suggested higher conjectures as new PK
structures. These new schemata are added to the priority gqueue
and the process is repeated.

Preuder's work has focused attention on an important aspect
of machine perception, the control of the processor during the
search process. Ae has combined the use of a schema-based
representation with a hierarchy of cue invoked models. As well,
he defines a priority queue multiprocessing scheme to integrate
top-down and bottom-up search using multiple active hypotheses.
SEER realizes top-down search by simulating the exploration of
conjectures as subgoals and realizes botton—up search by
exploiting the consequences of successfully recoqnized
conjectures.

As was pointed out for KRL, the use of multiprocessing to
simulate parallel search suffers from a number of deficiencies.
It 4is a syntactic, non-deterministic method of simulating
parallel execution, and 1is inept at realizing intelligently

2: Mechanisms for Machine Perception

38

guided ©parallel search. The requirement that some procedure
compute a priority for a new process manifests the "chicken and
egg problem®” in two significant ways, PFirst, it assumes that a
procedure can assign a global priority to a process being placed
on the priority queue based only on information local to that
procedure, And, more importantly, this method requires that a
priority be assigned to a process befors information is
discovered in the scene to help decide vhich processes to run.
The procedure that picks a priority for a process is, in effect,
computing a non-deterministic scheduling of processes. This
computation must be made before the information required to make
this decision has been discovered. This ma2chanism operates
essentially backwards, A mechanism is needed for simulating
parallel search that schedules processes semantically by
utilizing the discovery of particular cues during the

recognition process to schedule those processes which can

exploit the existence of those very cues.

22 Mechanisms for Machine Perception

39

3.1 Introduction

This chapter presents the development of a procedural model
of recognition for schema-based representations. The model is
motivated by both the characterization of perception outlined in
the first chapter and the current methodology of machine
perception examined in the second chapter., First, an informal
overview of the model will be given in order to highlight a
number of its aspects. Then in the remainder of the chapter,
techniques for realizing the model as a computational mechanism

will be discussed in detail.

3.2 Model Overview

A theory of machine perception was characterized in the

first chapter as having both a formalism for representing

knovledge and a set of search mechanisas for performing

recognition on that representation,

3: A Procedural Model

40
3.2.1 Schemata

In this model, knowledge is represented as schemata. A
schema is a modular representation of everything known about
some concept, object, event, or situation, That knowledge is
manifest in three forms. First, each schema contains factual
knowledge about the concept that the schema represents. Such
facts form a description of the concept and may be represented
declaratively, procedurally, or as some combination of data and
attached procedures. Second, each schema may contain procedural
heuristic knowledge to guide the search process for the schema'’s
concept. And third, schemata form relations with other schemata
thereby creating hierarchical network structures, This allows
complex concepts to be represented by composition as networks of
schemata and provides an encyclopedic retrieval mechanism
analogous to that of semantic networks (Quillian,1968).

For example, PFiqgure 3.1 illustrates a schenma for a
hypothetical vision system. The notation employed is similar to
that used by Bobrow and Winograd (1977). This schema represents
a stereotypical bicycle and consists.of a set of named relations
or slots (Minsky, 1975), each containing either a priamitive
value (often a name), a pointer to another schema, or an
expectation indicating what type of information may be used to
fill the slot. When the bicycle stereotype is used to represent
an instance of a particular bicycle, the stereotype schema is
copied to create a schema 1instance and its slots, initially

3: A Procedural Model

41

P——_—_d—-—-——ﬁ-—_-_-——_———_-_-—.————-——_q

NANE: BICYCLE

FRONT-WHEEL: (A WHEEL DIANETER = (RANGE 19 27)
WITH (A TIRE RIDTH = NARROW)
TYPE = SPOKED
CONNECT (AND FRAME CRANKSET)
(TD-METHOD PIND-BIKE-WHEEL)
{BU-METHOD FOUND-BIKE-WHEEL))
REAR-WHEEL: (A WHEEL DIANETER = (RANGE 19 27)

WITH (A TIRE WIDTH = NARROW)

TYPE = SPOKED

CONNECT (AND PRAME CRANKSET)
(TD-METHOD FIND-BIKE-WHEEL)
(BU-METHOD POUND-BIKE-WHEEL))

FRANE: (A FRAME TYPE = DOUBLE-DIAMOND
{TD-METHOD FIND-BIRE-FRAME)
(BU-METHOD FOUND-BIKE-FRAME))

CRANKSET: (A MECHANISM TYPE = CHAIN~DRIVE
WITH (A PEDAL-CRANK)
MAY-HAVE (A MECHANISH
TYPE =DERAILLEUR)
(TD-METHOD FIND-CRANKSET))

STEERING-SET: (A MECHANISM TYPE = STEERI NG-FORK
WITH (A HANDLE-BAR)
(TD-HMETHOD PIND-STEERING-SET))

ISA: VEHICLE

._-n_-l-—-_——_----—_—-——-—-——-——._--J

INSTANCES: NIL

Pigure 3.1: Bicycle Schema

3: A Procedural Model

B2

containing expectations, are replaced systematically by
information specific to the bicycle as it is discovered.

This stereotype bicycle schema illustrates a number of
features of the recognition model. The first slot of the schema
specifies +that the name of the schema is BICYCLE, By naming
each stereotype schema, it can be referred to either by a
pointer or by simply using its name.

The next five slots in the schema represent composition
knowledge about bicycles. A bicycle is conposed of a front
wheel, a rear wheel, a double-diamond frame, a power
transmission mechanism called a crankset, and a steering fork
mechanism called a steering-set, For perception, the
composition relations in a stereotype schema define those
structural and functional aspects of the concept that can be
used to Tecognize instances of that concept. A bicycle is
recognized by the discovery of its component parts composed in a

vay that represents the gestalt of a bicycle.

3.2.2 Schema Hierarchies

Schemata form hierarchical networks in two significant
ways. Coaplex stereotypical concepts are represented by
schemata which are a composition of other concepts represented
by sub-schemata. The resulting hierarchical structure is called
a copposition hierarchy. This static hierarchy represents the
composition of all possible instances of the class.

3: A Procedural Model

43

Fiqure 3.2 shows a composition hierarchy for the
stereotypical bicycle schema. Bicycles are composed of wheels,
a frame, and various mechanical mechanisams. Each of these
generic components form a stereotypical class of objects
represented by a stereotype schema. In turn, each of the these
stereotypes 1s composed of its own generic components
represented by stereotype sub-schemata. Por instance, the WHEEL
schema represents the class of all wheels. Each wheel instance
will be composed of a tire, rim, and central hub assembly. A
particular wheel will be represented by a specific tire instance
of a particular type and by specific instances of the stereotype
rim and hub schemas as well.

Figure 3.2 also 1illustrates the inclusion in the model of
an inverse composition relation between schamata, Por each
stereotype schema having a composition relation with one or more
sub-schemata, each of these sub-schemata have an inverse
relation with that schema.. This relation is usually called the
m"part-of™ relation and is essential to performing bottom~up
search within the schemata network.

Schesmata form hierarchies in a second way. Each schema
represents a stereotypical concept that may have many partially
specified instances. These instances may themselves function as
stereotype schemata each having a nueber of more fully specified
instances. In this manner, schemata form instance hierarchies.
At the top of an instance hierarchy is a schema representing an
uninstantiated generic concept, Each of its sub~-schemata

3: A Procedural Model

4y

ccmposition

FRAME

Figure 3.2: Bicycle Ccmposition Hierarchy

3: A Procedural Model

45

instances represent partially specified occurrences of that
concept, BEach of the descendants of these instances, in turn,
represents more fully specified instances until, at the botton
of the resulting tree structure, completely specified instances
become leaves of the tree, Instance hierarchies are also
referred to as "ISA" hierarchies (Fahlman, 1975).

At each interior node 1in an instance hierarchy, the
partially instantiated schema represents a non-deterministic
description of a smaller class of concepts than its parent
stereotype a level above. Schemata near the top of the instance
hierarchy represent 1large classes of possible instances,
whereas, schemata nearer the bottom represent smaller, more
fully specified classes of concepts.

In the bicycle schema, the last two slots of the schema
establish an instance hierarchy. Since bicycles are instances
of the more general concept of vehicle, the ISA relation
indicates that this schema is an instance of another stereotype,
the VEHICLE schema. In this example, the bicycle schema has, as
yet, no instances of its own, as indicated by the NIL value for
the INSTANCES relation.

These two hierarchies serve different purposes.
Composition hierarchies are static data structures that
facilitate representing coaplex conceptual objects. The
creation of a particular bicycle instance wuses the bicycle
composition hierarchy as a template from which to construct the
schema instance. Each occurrence of an expectation for a frame,

3: A Procedural Model

46

mechanism, or wheel in the bicycle stereotype will be Treplaced
by an instance (perhaps only partially specified) of that
stereotype.

In contrast, instance hierarchies are dynamic data
structures that provide a primary associative retrieval
mechanism upon which to base search over the schemata network.
These hierarchies are viewed as taxonomies of concepts. Each
node in an instance hierarchy is a sterszotype schema that
maintains an index of all its instances. For small data-bases,
the schema's 4index can be a simple list of all its instances,
For larger networks, each schema maintains an index of its
sub-instances based on observable and recognizable cues. The
instance hierarchy then becomes an inverted index structure for
per forming associative retrieval in the na2twork. Analogous
syntactic mechanisms include EPAM (Feigenbaum, 1963) and the
associative retrieval of patterns in most artificial
intelligence programming languages (Bobrow & Raphael, 1974).
Patterns are indexed in a tree structured database by coamon
pattern elements. A similar semantic mechanism is found in the
Linnaean botanical taxonomy where, for instance, plant life is
organized into a hierarchical database indexed by easily
perceived cues, The cues used are physical observable
properties of each class of plant life. The choice of cues is
not made from a priori considerations, but for convenience,
Cues are recognizable features of each class that are easily
observed and can function as reliable discriminators.

3: A Procedural Model

47

In this recognition model, instance hierarchies are indexed
by cues that are easily recognized features of a stereotype
class. Por example, consider an instance hierarchy for the
vheel schema. The stereotype wheel schema represents the class
of all wvheels including all partially and fully specified
instances. For a small number of wheel instances, the database
can be organized as a simple 1list of instances bound to a
variable in the wheel stereotype. The advantage of this
scheme's simplicity is balanced by the necessity of searching
the list sequentially to find a particular wheel instance. Such
a blind search makes no use of any observable features of the
desired instance used as cues.

Por larger databases, the inverted index structure is
advantageous. Pigure 3.3 1illustrates an associative database
for the wheel instance hierarchy using this scheme. Indices of
the hierarchy are chosen to be readily observable features of
vheels that can effectively discriminate among various classes
of wheels., 1In this example, three different observable features
of wheels are used. Neither the structure of the hierarchy nor
the choice of indexed feaiures is made from a priori
considerations. The choice of both structure and index is
arbitrarily based on the ability to discriminate among various
vheels using such available information as the type of the
observed wheel's rim, the width of its tire, and its diameter.
Pach of these features, as in the Linnaean taxonomy, 1is a cue
recognizable during the perception process.

3: A Procedural Model

48

spoked mag solid
rim rim rim
large
narrow tire med large
tire tire tire <18m >13n
diam diam
tire tire
med
TRUCK
WHEEL
instances instances instances L instances

WHEEL

Figure 3.3: Indexed Instance Hierarchy

3: A Procedural EKodel

§9

3.2.3 Recognizers

Perception is not a passive reflection of sensation but an
active process motivated by plans, expectations, and desires
(Bartlett, 1932). Perception is a recognition task that
composes a description of a perceived concept from a sequence of
external observations of the world., This concept is represented
as a schema instance which is composed of relationships among
other more primitive concepts.

In this model, each stereotype schema is considered to be
an active recognizer for its stereotypical concept, an
individual recognizer in a system of such recognizers. Every
schema contains the active knowledge necessary to gquide the
recognition process for its concept from sensory observations.
Such active heuristic knowledge is called a method. Methods are
procedures specifically tailored for the recognition of their
associated schemata, Methods allow the exploitation of domain
specific search techniques. Instead of <relying on general
search methods to conduct the search for every schema in the
system, specific methods can be associated with particular
schemata to exploit special techniques that are particularly
effective for that schenma.

The expectations associated with stereotype schemata play
an important role in the recognition process. They are dynamig
properties of each schema that change as the uninstantiated
instance proceeds towvards being fully specified. At each point

3: A Procedural Model

50

in the process, the schemals expectations represent what
additional information is required to complete its recognition.
From a different perspective, they represent the schema's
knowledge of the world: what it expects to occur next or be
found next from observation. Expectations embody the notion of
a plan or script (Schank & Abelson, 1975),

Expectations may be represented by simple default values to
be replaced by observed values when they are discovered, or they
may be represented by complex patterns with attached procedural
met hods. These attached methods use both top-down and bottom-up
search mechanisms, Top-down methods are designed to search for
information to satisfy the requirements of its expectation.
Bottom-up methods are designed to continue the recognition of
their schemata based on satisfaction of their associated
expectations., The notions of these two different types of
procedural methods are similar to the characterization of
Servants and Demons proposed by Bobrow and Winograd (1977).

In the bicycle schema of Figure 3.1, expectations are
represented as declarative specifications of the type of schema
instances which may replaée the exﬁectation in the slot. Each
of these expectations has either or both a top-down method and
bottom-up method associated with it. For example, both the
front and rear wheel slots of the bicycle schema contain
expectations that specify a spoked wheel with a narrow tire
having a diameter between 19 and 27 inches. Attached to these
expectations are specific methods tailored for the recognition

3: A Procedural Model

51

of bicycle wheels. Two different methods are specified. One
method, FIND-BIKE-WHFEL, is a hypothesis-driven procedure which
can be called upon to attempt top-down search to £ill the wheel
slot. The second method, called FOUND-BIKE-WHEEL, is a
procedure for performing bottom-up search., It will be invoked
wvhen a wheel matching the specified expectations for a bicycle
wvheel has been recognized. Its function is to first replace the
expectation in the wheel slot with the new recognized wheel
instance, then to continue the recognition process for the
bicycle utilizing the knowledge gained by the discovery of the

new wheel,
3.2.4 Non-Determinism

Unfortunately, perception is not a deterministic process.
Perception requires the search of a knowledge base to assign an
interpretation to sensory input. For large knowledge bases,
this search cannot be a simple top~down goal-directed process.
Our knowledge of the world is far too complex to rely solely on
goal-directed search nechanisas; Neither can the search be a
completely bottom-up process driven by observation, Sensory
data is too ambiguous to permit a reliance on purely data-driven
mechanisms. Machine perception must utilize an integration of
both goal-directed and data-driven search. Bobrow and Norman
(1975) have called these two modes, conceptually-driven and
data-driven, Goal-directed or conceptually-driven search

3: A Procedural Model

52

provides active guidance based on domain-specific knowledge of
the hypothesis being atteasmpted, whereas data-driven search
utilizes the observation of cues to intelligently select 1likely
hypotheses.,

In this recognition model, schemata may employ both
hypothesis-driven and data-driven methods to perform the
recognition process, Hypothesis-driven recognition involves a
top-down search of a composition hierarchy. Schemata attempt to
recognize instances of their stereotypes by making observations
from sensory input and by rebursively calling on the efforts of
their sub-schemata as subgoals,

In order to recognize a bicycle using top-down search, the
bicycle schema attempts to look for sub-schemata instances that
satisfy its expectations. To do so it will invoke its own
top-down methods asssociated with each of its expectations in
some likely order. Each of these methods will then attempt to
recognize suitable sub-schemata by calling on the methods of
those schemata as subgoals.

To realize bottom-up, data-driven search in schema ta
networks requires that multiple hypofheses be allowed to exist
simultaneously. Since the recognition of the schemata
representing these hypotheses are conducted by procedural
methods, these methods must be allowed to apply their heuristic
techniques concurrently. In bottom-up search, therefore,
methods are realized as concurrent processes. In this model, a
multi-processing mechanism for simulating concurrent methods is

3: A Procedural Model

53

based on the notion of deductive method scheduling. A
particular method, realized as a process, applies its heuristic
techniques to the recognition of its schema's stereotype until
one or more of the schema's expectations prove difficult to
achieve., The method may then saspend its execution by creating
new expectations for the schema that describe its unrealized
objectives, It remains attached to these new expectations until
such time as more evidence is discovered matching those
expectations and supporting the renewed probability of the
schema's success.

%#hen such matching evidence is discovered, the suspended
method is resumed, Methods iterate through a cycle of being
resumed by the discovery of matching evidence, then computing a
new set of expectations about their evolving schema instances,
and then suspending themselves and possibly other methods to
those expectations. Since multiple methods may be attached to
multiple expectations, these expectations represent diverse
possible directions for a schema's script. The choice of search
path is not made by blind hypothesis but is data-driven, chosen
by the discovery of evidence Iatchinq a particular expectation.
The method associated with that expectation is then activated to
continue its schema's recognition. A branch in the schema's
non-detereinistic script has been taken.

In the following situation, for example, a wheel instance
has been recognized in the input scene, 1Its features match the
expectations of either the front or rear wheel slots of the

3: A Procedural Model

54

bicycle schema, Both of the bottom-up methods associated with
these expectations may be activated. We assume that the front
vheel's expectation is matched first and its method invoked.
This bottom-up method will exploit the fact that a front wheel
has been discovered to guide the search for other parts of the
bicycle. Since the front wheel has a CONNECT relation with the
steering-set, the method looks in the neighborhood of its known
wheel in the input scene for the remainder of the bicycle. Sach
an application of common-sense knowledge is realized as a
bottom-up procedural method associated with a particular schema.

For this example, we assume that this bottom-up method does
not easily discover significant information in the vicinity of
the known wheel instance, Instead of re taining control
vastefully, it computes a new set of expectations for the
bicycle based on that information which it has discerned.
Typical of the expectations which might be included is the
discovery of a steering-set that must be connected to the
specific wheel instance, Its orientation must be above the
wheel in the scene, as is normally the case for bicycles. These
expectations will act as constraininé information on the search
for new bicycle coaponents.

The method suspends itself and possibly other methods, as
vell, to these new expectations, If evidence matching one of
these expectations is discovered, 1its suspended method is

resumed to continue its techniques using the new information.

3: A Procedural Model

55

3.2.5 Recursion

Perception is also a recursive process. The recognition of
some concept may be used recursively as an internal cue in the
perception of more abstract concepts. 1In this model, cues can
be primitive features of the external world or they can be
abstract internal features represented as schema instances.
wvhen a method satisfies all its schema's expectations for a
fully specified concept, that instance becomes an internal high
level cue. By allowing cues to be arbitrarily complex concepts,
a mechanism is realized for avoiding ¢the f'chicken and eqq
problem™ for schemata (Havens, 1976). Starting at the sensory
data level, primitive cues present in the input can be used to
drive the hypothesis and recognition of low-level concepts.
These features then behave as higher level cues stimulating the
hypothesis of mwmore abstract interpretations. This bottom-up
recognition mechanism depends on the existence of the inverse
composition relations (Part-of) in the schemata network. When a
concept has been recognized, the completed instance uses its
knowledge of what higher schemata in any composition hierarchies
it might plausibly be part of. Attempts are then made to match
the expectations of those schemata.

In this model, primitive cues are discovered from features
extracted from the input image using context-free cue discovery
methods. In the vision domain, such techniques include region
segmentation and line-finding algorithms, The primitive cues

3: A Procedural Model

56

are matched against the expectations of 1low-level schemata
thereby activating their attached bottom-up methods. Each of
these methods then attempts to confirm 4its own schena's
hypothesis. When one or more of these methods succeed, the
recognized schema instance becomes a higher-level cue using its
inverse composition knowledge to attempt to match the
expectations of higher schemata of which it may be part. This
recursive process is seen to be a bottom-up recognition model
for schemata driven by both primitive context-free cues and
abstract context-sensitive cues recognized recursively.

To illustrate, when a wheel is found in the scene, its
discovery becomes an abstract cue in the higher hypothesis of
the bicycle schema. The fact that its recoqgnized features, such
as type and size, match the bicycle's expectations indicates
that the bicycle is a likely hypothesis and that its methods
should be invoked. This is characterized as a matching process
between cue and expectation, Then, if the bicycle schema is
eventually successful in recognizing a bicycle instance, that
instance will become a higher cue in the recognition process,
perhaps, in this exanple, hvpotheéizinq a class of scenes

containing bicycles.
3.3 Earley's Algorithm
In an attempt to develop computational mechanisms for

realizing this model, the author investigated the formal

3: A Procedural Model

57

recognition models used in parsing theory. The context-free
parsing domain can be viewed as a highly restricted subset of
the perceptual domain. Context-free parsing is a recognition
task that assigns an interpretation to an input sentence based
on a hierarchical knowledge base, that 1is, a context-free
phrase-structure grammar. The interpretation is inherently a
recursive process for which both top-down and bottom-up
recognition algorithmas have been developed exhibiting well
understood properties. In particular, the bottom-up parsing
algorithm of Earley (1972) has some interesting properties from
the perspective of machine perception. FEarley's algorithm is an
efficient bottom-up recognizer that can operate directly from
any non-left-recursive context-free grammar. The algorithme is
quite elegant,, It can operate in time order n3 and space order -
n2 where n is the length of the input sentence. Morever, it
does not require backtracking to handle non-determinism.
Appendix-A provides a formal presentation of the algorithm,

In studying his algorithm, not as a parser, but as a
bookkeeping scheme for the sinulat%on of aultiple bottom-up
processes simultaneously operating on the same input sentence,
it wvas noticed that the algorithm dynamically inverts certain
portions of a hierarchy (the grammar) based on a selection
function (the input sentence). The algorithm operates from a
context-free grammar and a set of valid parsers. Each parser
attempts to recognize a complete sentential form derived from
the right-hand-side of a particular rule in the grammar.

3: A Procedural HModel

58

Initially, the set contains only a single parser which ' attempts
to recognize a sentential form derived from the start symbol of
the gqrammar., Such a derivation will be, of course, a complete
sentence in the language. If a non-terminal symbol may appear
next in the derivation of any parser, new parsers are created
for every rule in the grammar having that non-terminal as its
left-hand-side, This function is called prediction in the
algorithm,

The algorithm proceeds by scanning in a left-to-right order
each symbol in the input sentence., If the observed symbol can
be a valid next terminal symbol in the sentential forms of any
of the active parsers in the current parse list, then those
parsers are propagated into the next parse 1list, All other
parsers are deleted. The algorithm scans the input once. It
hypothesizes new parsers by prediction from the grammar when
their rule can appear next in the derivation. 01ld parsers which
cannot derive some portion of the input sentence to the current
position are then destroyed.

Earley's algoritha exhibits some interesting properties
from the standpoint of a model -of recognition for computer
perception, The algoritham provides a mechanism for implementing
bot tom-up search yet operates directly from a top-down
hierarchy. Portions of the hierarchy are dynamically inverted,
selectively, depending on what terminal symbols are observed in
the input and wvhat non-terminal symbols are recoqnized
recursively from the input. These are appealing attributes

3: A Procedural Model

59

since schema systeamas are organized as top-down hierarchies and
it is desired to drive the bottom-up recognition process by the
discovery of both primitive and recognized cues.

As a bookkeeping scheme, Earley's algorithm is applicable
not only to parsing but also to multiprocessing in general., The
algorithm systematically simulates multiple co-existent parsing
processes operating from the same hierarchy and on the same
input. As well, it provides a scheduling mechanism based, not
on emulating parallel search, but on concurrent deduction.
Parsers remain suspended until such time as the terminal or
non-terminal symbol for which they are 1looking is discovered.
Then, each such matched parser 1is resumed to continue its
recognition,

The algorithm also handles non-determinism naturally and
efficiently. #fhen a terminal symbol is scanned or a
non-terminal symbol is recognized, the algorithm propagates into
the next parse list every suspended parser that was expecting
that constituent. All others are deleted. No backtracking is
required., Constituents need be found only once in the input and
invalid interpretations are deleted as soon as possible.

Although the above properties are desirable, there are a
number of problems with adapting Earley®s algorithm as a search
mechanism for the general and more complex domain of perception.
Hinker (1973) has considered and rejected its use as a problen
space representation. Woods (1974) has favorably compared its
abilities vith those of his augmented transition network

3: A Procedural Model

60

parsers.

There appear to be three mafjor difficulties inherent in
this approach. Pirst, the process of predicting which terminal
and non-terminal symbols may appear next in the derivation is
too top-down, exhibiting aspects of ™"the chicken and eqqg
problem®, For a large knowledge hierarchy, the prediction
process may have to tour very large branches of the hierarchy.
In the parsing domain, this inefficiency can be tolerated by
suitably restricting the graamars employed. For machine
perception, no such restrictions of the knowledge base are
feasible. In spite of this difficulty, Kaplan (1973) bhas
proposed a similar prediction scheme for creating parallel
interpretations in his parsing system, GSP,.

Second, the algorithm depends upon the strict sequential
nature of parsing to efficiently 1limit the proliferation of
parsers., After the next input symbol has propagated all parsers
still valid to the next parser set, all the remaining parsers
can be deleted. They represent invalid interpretations of some
portion of the input sentence., In perception, hovever, some
aspects are encoded sequentially, éuch as the surface form of
natural language. However, other aspects have very 1little
sequential content, for example, image analysis. Where sequence
is an explicit part of perception, it can be effectively used to
constrain invalid interpretations, but an efficient perception
mechanism must handle non-sequential aspects as well.

The 1last difficulty perceived with Earley'’s algorithm is

3: A Procedural Model

61

that the mode of search employed is completely bottom-up. There
is no top-down mode defined. As has been seen, for perception,

both top-down and bottom-up mechanisms are essential.

3.4 Three Phases of Recognition

The context-free parsing algorithm of Earley was shown to
exhibit a number of properties desirable for a recognition model
for machine perception. A few difficulties were also noted.
This section develops a new recognition model for perception
using some of the techniques developed by Earley while, at the
same time, avoiding the difficulties inherent in his algorithm.

This model supports both top-down and bottom-up search in
schema~based representations. The bottom-up mechanisms will be
explained first since they are derived, in part, from the

previous discussion. The recognition model consists of three

phases, called expectation, matching, and completion.

3.4.1 Expectation

The expectation phase of this model is analogous to the
prediction function of Earley's algorithas. In the top-down
recognition model for schemata given by Kuipers (197%5),
expectations are described as static properties of the
stereotype which are systematically replaced by specific
information as it is discovered., In this model, expectations

3: B Procedural Model

62

are computed dynamically during the recogpnition process as a
function of the current partial instantiation of the schema. At
any point, a schema's expectations represent a non-deterministic
description of all possible final instantiations of the schenma.
Bound to each expectation is a method designed to continue the
recognition of the schema based on the satisfaction of that
specific expectation.

An instance hierarchy is regarded, in this model, as a
non-deterministic representation of a general class of objects.
Recognition is characterized as the differentiation of the
stereotype into a specific instance. This process of refining
the expectations of a stereotype towards a fully specified
instance has been called specialization (Bobrow & Winograd,
1977) . In the top-down recognition model, however, a schema
stereotype is portrayed as representing a particular class of
objects such as tables or chairs,. The recognition process
results in the description of a particular table or chair. 1L,
during this process, the schema is found to be inappropriate, a
replacement schema must be selected by some substitution
procedure.. In this model, this subétitution is not necessary.
The schema instantiation is characterized as being a process of

differentiation instead of selection.

3: A Procedural Model

63

3.4.2 Ratching

The second phase of the model is the matching phase. The
expectation and matching phases form an iterative recognition
cycle, In bottom-up recognition, the expectations bound within
schemata are satisfied by suitable observations from some input
medium or by the recursive recognition of other schemata. After
a schema has created a set of expectations and bound methods to
those expectations, the expectations may be matched by observed
or recoqnized evidence, thereby activating the associated
met hods., Pach method first incorporates the new evidence into
the evolving instance of its schema's stereotype. It may then
calculate, based on this new evidence, a next set of
expectations, suspending itself and perhaps other methods to
these new expectations. This expectation/matching cycle may
co-exist over time with the recognition cycles of many other
schemata. This cycle realizes a multiprocessing mechanism for
simulating parallel search.

The matching phase depends on the availability of an
associative retrieval mechanisnm in the schemata network. New
evidence, discovered by observation and deduction, must be able
to find those schemata containing expectations which it can
match., Tvo such mechanisms are proposed, both of which involve
pattern matching over schema systems and are similar to the
extended concept of description matching advocated by Bobrow and
¥inograd (1977). In general howvever, the problem is quite

3: A Procedural Hodel

64

complex. Indeed, a comprehensive theory of deductive
associative retrieval over semantic networks is required. This
problem can be seen to be, recursively, the recognition problenm.

The first mechanism uses simple pattern matching and
associative retrieval as is familiar in the newer Planner-like
artificial intelligence programming languages (Bobrow & Raphael,
1974) . In this system, the expectations of a schema are
represented as n-tuple patterns in a pattern associative
database contained within the schema. McCalla (1977) has
advocated such an implementation for schemata in a natural
language dialogue system.

The second mechanisn involves using the instance
hierarchies as associative databases. Such a taxonomic
organization within the system of schemata provides the
necessary retrieval mechanisas to support the matching phase of
the recognition model. The matching process therefore involves
a cue-driven search over the schemata network in conjunction

with syntactic matching of expectations represented as patterns.

3.4,3 Completion

A schema completes the recognition of an instance when all
its expectations are satisfied. It must return that success to
higher schemata of which the instance can be a component part.
This is the completion phase of the recognition model and is
analogous to the completion function of Earley's algorithnm

3: A Procedural Model

65

(Appendix-1) . If the conmpleting schema's method vas called
using top-down search as a subgoal, then the schema has an
explicit caller and must eventually return a success or failure
to that caller. On the other hand, a schema's mnethod may bhe
activated using bottom-up search by having an associated
expectation matched by some other process, This method has no
explicit caller and is referred to as a supergoal. The
distinction between subgoals and supergoals is based on the way
in vhich they are activated. Subgoals are activated as
subroutines attached to the calling routine, whereas superqoals
are activated as processes vhose existence may continue after
control has returned to the caller. Both types of methods are
directed at completing the recognition of their schemata and
both may use a combination of top-down and bottom-up techniques
to do so.

When a supergoal has satisfied its schema's internal
requireaents for the recognition of an instance of the schema's
stereotype, the recognized concept becomes an abstract cue. It
enters the matching phase by attempting to match the
expectations of those higher schemata of which the particular
instance might be a plausible part. Such knowledge is availabhle
to the completed schema instance through the inverse composition
relations of its stereotype.

Pigure 3.4 illustrates both the cyclic and the recursive
nature of this process, For example, the recognition of
Schema-1 at the first level in the hierarchy may proceed over

3: A Procedural Model

66

cues for higher concepts

level 3 ///’

COHPLETION COMPLETION

EXPECTATION = EXPECTATIO“
C SCHEMA-2) C SCHEMA-3
level 2 MATCHING MATCHING ~<

\

cther cues COMPLETION ahstract cues
context~sensitive

EXPECTATIO ')
SCHENA-1 expectatlon/matchlnq
cycle
level 1 MATCHING

primitive cues €<~/ from observaticn
- context-free

Figure 3.4: Recognition Cycles

3: A Procedural Model

67

time with the recognition of other schemata. Schema-1 may go
through several cycles of creating expectations, suspending its
methods to those expectations, and being resumed by matching
primitive cues computed from the input data. When all the
expectations of Schema-1 have been satisfied, it then enters its
completion phase. Since it vas not called as a subgoal of any
higher schema, its description is, in effect, an abstract
high-level cue, From the information contained in this
description, it attempts to match the expectations of schemata
at the second level in the hierarchy, in this case, Schema-2 and
Schema~3, TIf the match is successful, the methods of one or
both of these schemata are resumed as supergoals of Schema-1 to
continue their recognition. Their recognition may alsoc proceed
through a number of expectation/matching cycles concurrent with
other recognizers. But, unlike Schema-1, their expectations are
matched by non-primitive cues recognized recursively as the
result of perception.

Completion 1is seen as a "handle®" in the recognition model
for realizing a number of desirable features of a theory of
machine perception. It provides a mechanism for simulating
parallel search via a deductive method scheduling scheme, for
realizing a recursive cue/model hierarchy, for realizing method
hierarchies, and for coordinating the efforts of concurrent
met hods. The remaining sections of this chapter will explain
how these features are achieved in the model.

In the analysis of Earley's algoritha, it was pointed out

3: A Procedural Model

68

that the prediction phase may be computationally very expensive,
In this recognition model, the problem is avoided by noting that
the expectation phase for some particular schema need not be
performed wuntil such time as another completing superqoal or
some input observation attempts to match that schema. When a
supergoal attempts +to match a scheama of which it can likely be
part, it must first search for a particular instance of that
schema to match, If no such instance can be found, then the
supergoal calls upon the schema stereotype to create a new
instance, Thereby, the expectation phase is performed only when

needed,
3.5 Scheduling

Proposals for simulating parallel search usually enmploy a
multiprocessing scheme that relies omn some global algorithm to
allocate the processor, A popular technique is a wveighted
time-slicing mechanism based on a priority gqueue (Bobrow &
Winograd, 1977). This type of mechanism is effective at
simulating the concurrent evaluation 6f procedures but it is not
effective at simulating the parallel application of
non-deterministic search hethods. The technique is directed at
scheduling processes, not at the methods that are implemented as
processes, The scheme is too low level, It typically forces
the programmer to assign a global numeric priority to a process
when it is placed on the priority queue,

3: A Procedural Model

69

A scheduling mechanism, operating at a higher 1level, is
needed, Methods should become active when their applicability
to the recognition‘process is discovered or deduced, not when a
process spontaneously reaches the front of a priority gueue.

To illustrate this further, consider an automatic deduction
system that is implemented in a multiprocess environment. The
system is atteamapting a complex proof., One particular deductive
process has shovn considerable promise but has been unable to
achieve some result, say P(x). The process decides to suspend
itself until such time as another process has succeeded in
deducing P(x). In this priority driven system, which priority
should be assigned to this suspended process? How does one
assign a priority number to a process in order that it wait for
a specific situation to occur? Obviously, a multiprocessing
scheme based on deductive scheduling instead of simple
parallelism is required. Processes should be scheduled when
their applicability to the system's task has been computed. The
bottom-up search problem is not to simulate parallellism, but to
coordinate the simultaneous efforts of multiple methods. When a
method achieves some intermediate result, the scheduling
mechanism should ask, "What methods are suspended wvaiting for
this result?",

The completion phase of the recognition model provides such
a scheduling mechanpism, In fact, the recognition model can be
characterized as the computation of what methods should be
scheduled next. Hethods remain suspended to patterns

3: A Procedural Nodel

70

representing expectations until resumed explicitly by some lower
completing supergoal. A method is resumed when it is deduced
that the method could be applicable to the recognition process,
A completing supergoal may resume, in turn, the methods bound to
expectations of all higher schemata that its schema instance can
succeed in matching. Bach such resumed method is activated also
as a supergoal and proceeds to continue the recognition of its
ovn schema. The recognition of a schema instance need be
computed only once. By sequentially resuming wmore than one
higher supergoal, a single schema instance can be part of the
recognition of multiple higher schemata, No backtracking of
subgoals or use of similarity netwvork schemes is required,

Each completing supergoal behaves as a heuristic scheduling
mechanism, resuming the methods of those higher schemata which
it is successful at matching., That scheduling mechanism may be
tailored specifically for each situation.. A syntactic global
scheduler is not required. Por instance, a supergoal can resume
higher methods in order of expected likelihood of applicability
or it can resume first only the methods of those schemata which
already have existing instances, If ﬁone of those succeed, then
it can create new schema instances to match, thereby saving the
expense of the expectation process until it is needed.

The completion mechanism can be characterized as a
bottom-up geperator im contrast to the top-down gemerators of
Conniver. When a completing method matches a higher supergoal,
it is generating a possible successor process. It tours a

3: A Procedural HModel

71

schema hierarchy in inverted, bottom-up order, The completing
method's computations are suspended while the higher schema's
supergoal attempts to complete its recognition. If control
returns to the completing method, it will then generate the next
possible higher supergoal. This mechanism is a generator for

bottom-up search instead of top-down search.

3.6 Method Hierarchies

It 1is clear that machine perception must utilize heuristic
domain-specific search knowledge in order to cope with the
complexity of the perceptual process., By incorporating this
knowledge as procedural methods associated with stereotypical
schemata in a composition hierarchy, a method hierarchy (Newell,
1972) isomorphic to the composition hierarchy is formed.
Methods exhibit a tradeoff between applicability and power.
Methods applicable to a 1largqe class of search problems are
inherently inefficient for any specific problem. Conversely,
ret hods heuristically engineered for the accomplishment of a
narrow specific task can achieve povwer and efficiency. A
comprehensive recognition scheme for perception must include
provisions for such a method hierarchy to intelligently quide
the search process.

In the purely top-down recognition model, a method
hierarchy capability is straightforward. The methods associated
with each schema may be created specifically to search for

3: R Procedural HModel

72

instances of that schema., The hierarchy is realized by the fact
that, 1in top-down search, schemata call on the efforts of other
schemata as subgoals. Each level of subgoaling applies a more
powerful and specific method ¢to the achievement of that
particular subgoal.

In bottom-up search, however, achieving a method hierarchy
is not so straightforward. Multiple methods may be active
simultaneously. Which method should,, at any given instant,
direct the search process? HNost bottom-up search schemes have
used a single top-level method to drive the operation of the
system (Waltz, 1972 (Mackworth, 1977a) . Multiprocessing
schemes typically alternate the application of methods as
processes wvhich are run and then suspended again on the priority
queue., There is, however, poor coordination between alternating
met hods.

The following mechanism is wutilized to realize a method
hierarchy in bottom-up search, As has been described, a
supergoal method can compute, based on the partial instantiation
of its schema, a next set of expectations. It may then suspend
other methods to patterns within the.schena representing those
expectations. After the method has performed the expectation
phase, it can either terminate its execution, relinquishing
control to some higher method, or it can remain active,
retaining access to the processor. This mechanism provides
effectively an extra "degree of freedom™ in the search process.
If the method relinguishes control, then it is relying om the

3: A Procedural Model

73

efforts of other methods to discover evidence that will wmatch'
its schema's expectations. On the other hand, if the method
retains control of the processor, it may use its own specialized
knowledge to direct the discovery and deduction of evidence to
satisfy its own expectations.

This mechanism allows each schema the choice of applying
its own specialized heuristic knowledqe to direct the search
process or yielding to¢he heuristics of higher, more general
methods, 1In top-down search, each method, as a subgoal, is
forced to direct the search process regardless of the schema’s
applicability or expertise. A major reason for the pathological
behavior of pure top-down search (Sussman & McDermott, 1972) is
that inapplicable methods do not knov when to quit.

In bottom-up search, however, the choice of when to apply a
method's techniques is not critical. The decision 1is based
locally on a schema's anticipation of success. If a schema
applies a bottom-up method, but the schema itself is
inappropriate, control will soon propagate to the methods of
more appropriate schemata. Evidence will be discovered which
matches the expectations of ihose more appropriate schemata.
Their methods will then assume control thereby correcting the
mistake, The essential difference from top-down search is that
this decision does not have to be made locally by each method.
Instead, it is made globally by the discovery of evidence
supporting the choice of a different method. In the worst case,
all that is lost is some efficiency for a short while. There is

3: A Procedural Model

74

no chronic pathological behavior. Mackworth (1977a) has noted a
similar convergence effect in the use of his bottom-up

constraint propagation algorithm, NC,

3.7 Coordination and Communication

Since multiple methods can be active concurrently, methods
may simultaneously attempt to recoqnize different schemata or
more than one method may attempt to recognize the same schema
instance. b & - is necessary to provide coordination and
communication among sister methods,

In this model, coammunication among sister methods is
accomplished through their common schema instance. The instance
is a data structure accessed by all methods associated with that
schema, Each method contributes to the instantiation of the
schema and is aware of the contributions of its sisters. When
some particular method decides that the recognition of this
schema instance has been conpleted, it must communicate that
success to every active sister method. Such a mechanism is
defined within the completion phase, When a method begins the
completion phase, it is assumed that the efforts of all other
methods associated with the recognition of this particular
schema instance are no longer needed. All such sister methods
are suspended within the completed schema instance.

As well, there must be coordination among the methods of a
method hierarchy. A number of methods in the hierarchy may be

3: A Procedural Model

75

simultaneously attempting the recognition of their associated
schemata, Since the method hierarchy is isomorphic to the
composition hierarchy, vhen a method at some level in the method
hierarchy is successful at recognizing a schema instance at that
level, the methods at lower levels are no longer needed. These
lower methods vere attempting to recognize components of the now
completed schema instance and to discover cues to propagate its
recognition. That recognition is now complete and these methods
are also suspended.

Completion then 1is seen as a coordination mechanism among
cooperating concurrent methods. When a schema is successfully
recognized, all methods currently attempting the recognition of
that schema or sub-schemata of that schema are suaspended.
Completion was characterized above as a bottom-up generator.
This mechanism is realized by the conventions described here,
The bottom-up generator is composed of all the methods suspended
by the completion process. On failure, the generator is resumed
to generate a new plausible higher supergoal, resuming all the
suspended methods to continue the search for that next

supergoal.

3.8 Integration

The presentation of this recognition model has so far
concentrated on realizing bottom-up search mechanisas, One of
the premises for the model's development was that it should

3: A Procedural Model

76

provide an integration of top-down and bottom-up search. This
section describes such an integration,

In this model, methods may execute either as subgoals or
supergoals, A subgoal method may attempt to complete its task
by using either top-down or bottom-up techniques. Top-down
search is implemented in the familiar manner by methods
recursively calling the methods of other schemata as subgoals.
As well, a subgoal nmethod may use bottom-up techniques by
computing a set of expectations for its schema, then attempting
to satisfy those expectations by making observations and
deductions, This process may, itself, recursively use an
inteqration of top-down and bottom-up techniques. The only
restriction is that the subgoal nethpd eventually return a
success or failure to its explicit caller.

Likewise, supergoal methods may use either top-down or
bottom-up search to achieve their tasks. Supergoals may call
other methods as subgoals. Alternatively, a supergoal method
may create a set of expectations for its schema, then either
relinquish control to some other method, or using its heuristic
knowledge, direct the discovery and.deduction of information to
satisfy its own expectations. In summary, both top-down and
bottom-up methods can be intermixed freely,

WFhen a completing schema 1is attempting to match the
expectations of higher schemata, it must first find iﬁstances of
those schemata to match, This device involves the semantic
network matching described earlier, Part of the heuristic

3: A Procedural Model

o

knowledge contained in a schema's methods consists of procedures
for searching the schema network to look for higher schemata to
match. In fact, there is no sharp distinction between when a
schema ceases the recognition of an instance and when it begins
the completion process. Overlapping may occur to the point that
the completion process involves using both top-down and
bottom-up search technigues and the expectation/matching cycle
may involve aspects of completion. For instance, in order to
efficiently calculate a next set of expectations, a method may
need to match higher supergoals in order to constrain the number
of expectations produced., This distinction is made more for
conceptual than computational reasons, In a large schema
system, it will be advantageous to blur the distinction in order
to facilitate communication up and down the the schema

hierarchy.

3: A Procedural Model

78

4,1 Perspective

This chapter presents a detailed example of the operation
of the recognition model on a computer vision task. This
example has been implemented as a running Maya program which is
given in Appendix-C. 1In the next chapter, the implementation of
the example will be covered as part of the description of Mava.

The example chosen is a small but characteristic machine
vision problem from the "blocks world®, The problem is to
recognize from perfect line drawings a class of polyhedra
including cubes, wedges, and pyramids, The recognizer operates
from a schema representation of polyhedra and accepté input
scenes consisting of vertices and lines connecting vertices.

The problem is not a vision task of current research
interest., It is presented to illustrate the operation of the
recognition model developed in this thesis, There are three
major reasons for this choice. Pirst, the problenm is
characteristic of wmachine perception tasks. The world of
polyhedral objects is believed to be the simplest task domain
that captures the essential aspects of scene analysis
(Mackworth,1976)., Second, the example is restricted enough in
its scope that heuristic concerns specific to a particular

4: An Example from Machine Vision

79

vision task do not overshadow more general issues of
representation and recognition. And third, this example is
similar to an example given by Kuipers (1975) to illustrate the
operation of the top-down model of recognition for schenma
systenms. This choice of exanmple, therefore, permits a
comparison of the two recognition models.,

The method of presentation will be to first describe the
overall structure of the problem'’s solution, and then, by
utilizing a protocol produced by the program, explain the
operation of the program and the underlying recognition model.
Although the program does not explore all the issues addressed

by the model, it does provide a handle for their discussion.

4,2 The Problen

The knowledge of polyhedral objects is represented in this
example as a schemata netwvork. The program uses the simple
composition hierarchy of Pigure 4,1 to represent stereotypical
scenes of polyhedral blocks. Each node in this hierarchy is a
stereotype schena representing a named concept. Each
downvard-directed arc represents the composition relation
between its schema and its sub-schemata. Scenes are composed of
polyhedral objects, Polyhedra are composed of polygon faces
which, in turn, are composed of primitive edges and vertices.
Fach upward-pointing arc represents the inverse composition
relation, "part-of",

4: An Example from Machine Vision

80

SCENE

=
part-of —-*23~—>c ?*:2_-compositicn
=

POLYHEDR

POLYGON

Figure 4.1: Scene Compcsition Hierarchy

4: An Example from Machine Vision

81

In this example, polyhedral objects are differentiated into
cuboids, wedges, and pyramids. Cuboids are polyhedra composed
of parallelogram faces only. Wedges are objects composed of
parallelogram faces and a single triangle face, and, pyranmids
are objects containing two or more triangle faces. Polygons are
dif ferentiated into triangles, parallelograns, qeneral
quadrilaterals, and arbitrary polygons of five or more sides
called multilaterals. Notice that the differentiation of the
generic polyhedron and polygon schemata into subclasses is not
represented explicitly in the composition hierarchy. Polyhedra,
for example, are not divided into cuboids, wedges and pyramids
each of which, in turn, would be divided into triangles and
parallelograms, To do so would expand considerably the size of
the schema system and force an explanation of this larger
structure in order to perform recognition. Instead, the
knowledge of the division of stereotype classes into subclasses
and finally into specific instances is represented procedurally
in the methods attached to the stereotype schemata. The task of
the polyhedron schema®s methods is to recoqnize instances of
cuboids, pyramids, and wedqes; Likewise for the polygon's
met hods, their task is recognize from observation instances of
triangles, parallelograms, quadrilaterals, and multilaterals.
Initially, the taxonomic structure is represented within the
procedural methods, but as specific instances of polygons and
polyhedra are hypothesized and subsequently recognized, they are
added to the instance hierarchy for those schemata. Thus the

4: An Example from Machine Vision

82

structures are created dynamically. The construction of the
hierarchical representation of a scene is based on evidence
discovered in the input, not on all possible compositions
compiled before the recognition bhegins.

The program is run on the scene of Fiqure 4,2, The scene
data 1is input +to the program as a set of lines and vertices,
each of which is represented as a primitive fully instantiated
schema, As the data for each vertex is read, a schema instance
is created and added to the vertex instance hierarchy. This
function is 1illustrated in Figqgure 4,3. Vertices are divided
into four classes in this hierarchy. They are ARROW, PFORK, T,
and L, Because there are only a few primitive vertex instances
in the input data, the vertex hierarchy uses a simple
organization, VYERTEX maintains a simple list of its instances,
FORK, L, T, and ARROW. Likewise, each of these stereotypes
contains a list of its instances, the primitive input vertices.
Besides organizing the database of vertices by vertex type, the
hierarchy also provides an attribute inheritance mechanism. For
instance, Vertex-1 inherits the schema attributes of its
stereotype, ARROW, which, in turn; inherits the more general
properties of VERTEX. £ 1Inherited attributes can include
procedures, variable bindings, pattern databases, and methods,
thereby implementing method hierarchies.

Piqure 4.83a dillustrates a typical primitive vertex schema,
Vertex-i. Each such vertex contains a number of named slots.
The "ISA"™ slot (Fahlman, 1975) represents the inverse instance

4: An Example from Machine Vision

83

(CVERTEX-3 LINE-3-4 2
- 2 VERTEX-4
LINE-3-6
T d

LINE-2-3 "2 LINE-4-5

" CERTER-6

_— VERTEX-2 |

b 2 VeRTEN-S

LINE-1-6

éln-LINEﬂl-S
L VERTEX-1

LINE-1-2

Figure 4.2: Input Scene

4: An Example from Machine Vision

8y

- Instances

-

@ ’ ° -
Figure 4,3: Vertex Instance Hierarchy

4: An Example frcm Machine Vision

(VERTEX-TYPE)

(LINE-NAME) <— 11
L2

(CORNER)
L3

ANGLE-L1-12
ANGLE-L2-L3

(INTEGER) VERTEX-i

Figure 4.4a: Vertex Schemata

(LINE)

INSTANCE

(VERTEX) (VERTEX)

LENGTH

(INTEGER) LINE-1i

Fiqure 4.4b: Line Schemata

85

k: an Example from Machine Vision

86

relation between every instance and its stereatyﬁg. YPhis
relation is automatically created by Maya when the instance is
defined. It will point either to the FORK, L, T, or ARROW
schema.

A second slot in the vertex instance, called NAME, points
to an atom representing the schema’s name, Vertex-i. Three
additional slots in the instance (two for L-vertices) are used
to represent sectors of the picture plane that each vertex
imposes on its immediate locale, as shown in Fiqure 4.5. When
the vertex has been recognized as part of one or more polygon
faces, these sectors will be corners of those faces.

The remaining slots of the vertex instance represent data
for the particular vertex. The slots labelled L1, L2, and L3
point to the corresponding line instances given in the input
picture. Likewise, the slots labelled ANGLE-L1-L2 and
ANGLE-L2-L3 are used to indicate approximate angles of each of
the sectors, as is illustrated in Figure 4.5.

In a similar manner, a schema instance is created for each
line in the input data. Pigure 4.4b depicts the structure of
primitive line schemata. Each line schema is an instance of the
generic LINE schema and has slots for its name, its length in
the picture, and the names of the two vertices, labelled V1 and
V2, connected by it in the picture. As a matter of convenience,
all of the input data is read and represented as schema
instances before the recognition process begins. The output of
the program consists of a hierarchical description of the

4z An Exaample from Machine Vision

SECTOR-L2-L3 \

ANGLE-L2-L3
L3

L2

//,nSECTOR-Ll-LZ

ANGLE-L1-L2
L1

= SECTOR-L3-L1 —

For ARROW, FORK, and T-Vertices

/

SECTOR-L2-L1

LN

L2

For L-Vertex

Figure 4.5:

ECTOR-L1-L2
}(,——S CT

ANGLE-L1-L2

L1

Vertex Labelling Conventions

87

4: An Example from Machine Visicn

88

recognized scene composed of fully specified schema instances,

or conversely, a report of failure,

4,3 Annotated Protocol

In the following pages, a protocol is used to facilitate
the explanat;on of the model. The sentences which are preceded
by an asterisk and printed in upper case are the statements of
the protocol produced by the program. All others are the
author's commentary on the behavior of the program and the
model. It may be useful to use Figure 4.6 to follow the
recognition process, The face schema instances created during
the recognition are shown superimposed on the lines and vertices
of the picture.

The recognition process begins by sending the top-level
schema a message to interpret the input data as a scene. In
order to recognize a scene, the SCENE schema must find a
polyhedral object in the data. The schema has the choice of
applying top-down or bottom-up techniques. If it chooses to
conduct a top-down search, the difficulties mentioned with the
top-down recognition model will appear. Specifically, the SCENE
schema will be forced to hypothesize alternatively cube, wedge,
and pyramid schemata as subgoals, If a hypothesis is incorrect,
the schema will have to choose a nex subgoal based only on that
failure, Alternatively, the SCENE schema may begin its
recognition using bottom-up search. Later, when sufficient

4: An Example from Machine Vision

89

VERTEX-3 = L; | VERTEX-4
L1 L2
L3
L3
L2
VERTEX-6
L2 L1
i
VERTEX-5

VERTEX-2
L1
L2
L2

N L1

VERTEX-1

Pigure 4.6: Recognition of a Wedge

4: An Example frcm Machine Vision

90

supporting evidence for a single hypothesis has been found, the
hypothesized schema can confirm its recognition using top-down

techniques.
* METHOD: TOP-LEVEL SCHEMA EXHAUSTIVELY OBSERVES EACH VERTEX

Since no evidence has yet been discovered supporting any
particular hypothesis, the top-level Scene schema chooses to use
bottom-up search techniques by making observations in the input
data. The heuristic method used by this échena is the same as
that given by Huffman (1@71). The schema exhaustively activates
each primitive vertex schema in the scene, beginning with the
peripheral vertices as they are less ambiquous interpretation
cues than interior vertices.

The observation process consists of activating each vertex
schema to perform its completion phase, Since the recognition
of each vertex is given as the input data, the vertex need only
compute of which hiqhgr schemata in the network it may be
plausibly part. In this example, vertices may be component

parts of both triangle and parallelogram faces,
* SCENE SCHEMA OBSERVES VERTEX-1

Vertex-1 is an ARROW vertex which, in turn, is an instance
of the generic Vertex schenma. ARBOW, FORK, and T-vertices
contain three sectors since they divide the picture plane

4: An Example from Machine Vision

91

locally into three regions. Vertices containing three sectors
are taken to be default and the generic vertex schema provides a
procedure for performing completion for these vertices. Each
such vertex inherits this method from the Vertex schema by the
inverse instance relation maintained automatically by Maya. The
only vertex having two sectors is the L-vertex vwhich has a
completion procedure defined locally and need not inherit it

from the vertex hierarchy.

* FOR SECTOR-L1-L2 OF VERTEX-1,

* CREATE A NEW SCHEMA: FACE-1 CONTAINING A CORNER FOR VERTEX-1

A vertex can be part of more than one polygon face because
each sector of a vertex is possibly a corner of a different
face, The completion process for vertices therefore consists of
finding and attempting to match polygon face schemata for each
of these sectors. For this first vertex, there are, as yet, no
instances of faces to match. Thus, the vertex matches the
generic polygon schema, FACE, which, in turn, creates a new
instance, Face-1. The observatién of Vertex~-1 is seen by FACE
as a cue to hypothesize the existence of another face instance.
The matching of Pace-1 by Vertex-1 activates a method associated
with the new schema instance as a supergoal which promptly
incorporates this vertex as a corner of its newly evolving
description of a polygon face.

At this point, a face has been hypothesized containing

4: An Example from Machine Vision

92

Vertex-1. Face-1 can now continue the search via one of two
mechanisms, The method could use familar top-down search by
calling the nethods‘of other sub-schemata as subgoals, For this
polygon, that would involve hypothesizing a particular polygon
face type (either parallelogram, triangle, quadrilateral, or
multilateral), then predicting what types of vertices each of
the possible polygons could be composed of, and finally looking
for those vertices., This mode is rejected by Face-1,

The second mode of search uses a bottom-up mechanism. The
active method of Face~1 could compute dynamically a new set of
expectations for the schema as a function of the information
provided by Vertex-1. That is, Vertex-1 constrains the possible
final interpretation of Face-1. Later, 1if evidence is
discovered matching these expectations, the method will be
resumed as a supergoal to continue Face-1's recognition. The
schema can repeat this cycle of computing a new set of
expectations and waiting for some expectation to be satisfied.
Alternatively, at some point in the cycle, it can apply top-down

techniques to the verification of its hypothesis.

* CREATE TWO PROCESSES BOUND TO EXPECTATIORS FOR LINE-1-6 AND

LINE-1-5

The method of Pace-1 creates two expectations and binds a
new method to each. Expectations are indices of the schema
associative retrieval mechanism, These indices must be knowable

4: An Example from Machine Vision

93

by both the schema creating the expectations and every other
schema that can match then, Expectations are constraints on the
final interpretation. For this problea, the lines connecting
vertices are such a convention. Since both Pace~-1 and any
vertices that can be part of Pace-1 have access to these lines,
they can be used as constraining information on the
interpretation of vertices as polygon faces (Mackworth, 1975,
1977b) .

After creating a set of expectations for PFace-1, the
schema’s method is still active. Since the method is designed
for the recognition of polygons, it can apply its techniques to
the further recognition of its own schema, or it can relinquish
control to the method of Vertex-1 which activated it. Shonld
the method apply its techniques or defer to the more general
knowledge of the scene schema at the top of the method
hierarchy? The choice is completely heuristic, and is based on
the methods appraisal of dits probability of success, The
decision is made from 1local information, such as how much
evidence has been collected supporting the schema's hypothesis.
Since very little evidence has béen discovered supporting the

recognition of Face-1, its method suspends itself.

* FOR SECTOR-L2-L3 OF VERTEX-1,

* ATTENPT TO MATCH THE EXPECTATIONS OF FACE-1

Control returns to Vertex-1 which is still actively pursuing its

4: An Example from Machine Vision

94

completion phase. This time, however, it finds a polygon face
instance to match since the polygon instance hierarchy contains
Face-1. The match fails. Sector-L2-L3 cannot be part of Face-1
because Sector-L1-L2 of the same vertex is already part of this

face,

* CREATE A NEW SCHEMA: FACE-2 CONTAINING A CORNER FOR VERTEX-1

A new face recognizer, Face-2, 1is nowv hypothesized and its
method activated as a supergoal of Vertex-1. As in the case of
Face-1, the method <creates the first corner of Face-2 by

incorporating Sector-L2-L3 of Vertex-1 into its description.

* CREATE TWO PROCESSES BOURD TO EXPECTATIONS FOR LINE-1-2 ARD

LINE-1-6

Again the face schema creates twvo expectations, binds methods to

them, and returns control to Vertex-1 which activated it.

* FOR SECTOR-L3-L1 OF VERTEX-1,

* ATTEMPT TO MATCH THE EXYPECTATIONS OF FACE-2

* ATTEMPT TO NATCH THE EXPECTATIONS OF FACE-1

* CREATE R NEW SCHEMA: FACE-3 CONTAINING A CORNER FOR VERTEX-1

* CREATE TWO PROCESSES BOUND TO EXPECTATIONS FOR LINE-1-5 AND

LINE-1=-2

4: An Example from Nachine Vision

95

Vertex-1 continues 1looking for higher schemata to match,
this time for its third sector, Sector-L3-L1, Attempts at
matching the two existing face recognizers fail, and a new
schema, Pace-3, is created as before. Vertex-1 has now finished
its completion phase by searching the polygon instance hierarchy
for all schema instances of which its sectors might plausibly be
part. In this example, this search involves only attempting to
match the expectations of each face instance. 1In general, the
search for higher matching schemata within the schema hierarchy
can be arbitrarily complex, perhaps recﬁrsivelv involving

recognition,
% SCENE SCHEMA OBSERVES VERTEX-2

Control has returned to the scene schema which continues to
observe vertices in the heuristic ordering mentioned earlier.
Vertex-2 is activated next to perform its completion phase, The
vertex will attempt to find face recognizers to match, that is,

face hypotheses of which it can be part.

* POR SECTOR-L1-L2 OF VERTEX-2,

*

ATTERPT TO MATCH THE EXPECTATIONS OF FACE-3

*

ATTEMPT TO MATCH THE EXPECTATIONS OF FACE-2

* FACE-2 HAS BEEN MATCHED BY VERTEX-2

Vertex-2 has found Pace-2 and matched one of its

4: An Example from Machine Vision

96

expectations, namely, that it shares Line-1-2 with the matching
vertex. The method associated with that expectation is
activated; it nuses the following scheme for recoqnizinq faces.
Two methods are defined to follow the ©periphery of the face
being recognized. One method follows the periphery of the face
in a clockwise direction, the other in a counter-clockwise
direction. The search proceeds from some vertex via a
connecting line to the next vertex and so on until the region

comprising the face has been closed.

* VERIFY FACE-2 USING TOP-DOWN SEARCH

When enough evidence has been discovered using bottom-up
search to conclude that the recognition of a polygon face is
likely, the schema applies a top-down method to the verification
of the hypothesis., The discovery of two neighbouring vertices
is considered by the face recognizer to be enough evidence to
switch from bottom-up to top-down search mode. In general, the
choice of search modes is a heuristic decision made by a

schema's methods.

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-3 FROM LINE-2-3

* INCORPORATE THIS VERTEX INTO A NEW CORNER OF FACE-2

The top-down method uses a clockwise tour of neighbouring
vertices until a closed fiqure is formed. As each vertex is

4: An Example from Machine Vision

97

discovered, it is composed into a corner in the evolving
description of the polygon face, If another face recognizer is
discovered during this tour attempting the recognition of the
same face, then its partially completed description is merged
into this face recognizer's description and the tour 1is
continued. Note that this ¢transfer of information froam one
schema instance to another is straightforward and does not
violate the criterion of schema modularity for the recognition
model. Because both schemata are instances of the sanme
stereotype, they already have access to information about the

internal structure of each other.

* GET NEXT CLOCKW¥ISE NEIGHBOUR VERTEX: VERTEX-6 FROM LINE-3-6

INCORPORATE THIS VERTEX INTO A NEW CORNER OF FACE-2

»

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-1 PROM LINE-1-6

% THIS VERTEX IS ALREADY CONTAINED IN FACE-2

The top-down method continues to incorporate vertices into
the description of Pace-2 until it attempts to add Vertex-1.
Since this vertex is already part of this face, the top-down

met hod has found a closed region, the polygon face.

* COMPARE FACE-2 TO POLYGON MODEL

* CONPLETED FACE-2 IS A PARALLELOGRAHM

It is the task of Face-2 to decide the type of its polygon

4: An Example from Machine Vision

98

from information obtained during its recognition. In this
example, part of that information is the size of the angle of
each vertex sector in the face's description. PFace-2 compares
this information to an internal model of triangles,
parallelograms, gquadrilaterals, and multilaterals, and decides
that it is a parallelogranm. In general, the models that a
schema has of its stereotype concept guide the search process

and are manifest as the methods associated with the schema.

* MATCH THIS FACE TO THE EXPECTATIONS OF POLYHEDRON RECOGNIZERS

Face-2 nov begins its completion phase as a high-level
internal cue in the recognition process, . Part of the knowledge
contained in the face schema is of what higher concepts in the
schema composition hierarchy polygons can be a part., In this
example, polygons can be part of only polyhedral objects.
Face-2 will attempt to stimulate the recognition of particular
polyhedron schemata by sending messages to each of the
recognizers,

The completed face schema is characterized as a bottom-up
generator of possible higher schemata in the composition
hierarchy. The algorithm used by this generator is to atteampt
to match a single polyhedron schema instance of which it must be
a part. Pailing to find such a schema, it will attempt to match
every polyhedron schema that it may be part of. In this latter
case, a nev polyhedron recognizer must also be created with this

4: An Example from Machine Vision

99

polygon as its first component face because it could,
conceivably, be part of no existing polvhedron instance. Since
there are no existing polyhedra instances to match, Face-2

matches the generic polyhedra schema.

* IS FACE-2 CONPATIBLE WITH THIS CLASS OF POLYHEDRA?

* YES

The polyhedron instance analyzes Face-2 to decide whether
it will accept the completed face as part of its description.
As shown by this example, the polygon schema can recognize more
types of polygons than the polyhedron schema can accept as valid
faces of polyhedra. This illustrates a modularity of the
recognition model. A schema need only know about recognizing
instances of its own stereotype. It does not need to know the
requirements of other schemata., If a schema can be part of some
higher schema, then it will be able to match the expectations of
that schema during its completion phase,, The creation of
expectations within a schema and the matching of those
expectations by another schema ié cﬁaracterized as a procedural

constraint satisfaction process between two schemata.
* CREATE A NE¥ SCHEMA: POLYHEDRON-1 CORTAINING FACE-2
Parallelograms are valid faces of polyhedra in this example. A

new schema instance 1is created and parallelogram Face-2 is

4: An Example from Machine Vision

100

incorporated into its new description. This recognizer could
use either top-down or bottom-up techniques to further the
recognition of a polyhedron. To use top-down search would
involve hypothesizing thé existence of particular polygon faces
and then activating those sub-schemata as subgoals. Bottom-up
search, on the other hand, would not require a commitment to a
particular hypothesis. Instead, the polyhedron, based on its
partial instantiation from Face-2, can create new expectations
of what polygon faces would have to be discovered to propagate
its recognition. Unlike top-down search vwhere a coamittment
must be made to a single hypothesis at a time, using bottom-up
mechanisms, the polyhedron schema can create expectations for
multiple possible polygon faces, and wait for the discovery of
such a face or faces. In this example, since there is 1little
evidence supporting a particular hypothesis, Polyhedron-1 will

use the bottom-up mechanisnm,
* COMPUTE EXPECTATIONS ABOUT OTHER FACES OF POLYHEDRON-1

Polyhedra are composed of polygonal faces connected by
common edges and vertices. To recognize instances of polyhedra,
the polyhedron schema compares the instances of polygonal faces
that it has matched with its own internal model of polyhedra.
For this example, the model is based on the notion of edge
connectedness as used by Guzman (1968). Any two polygonal faces
sharing a common edge which is the shank of an ARROW vertex are

4: An Example from Machine Vision

101

part of the same object. These are called "connect" edges.
Other edges shared by two faces are called "maybe-connect"
edges, The use of this scheme is intended to demonstrate the
concept of model guided recognition, A vwhole variety of
information abont the interpretation of three-dimensional scenes

{Mackvworth, 1977b) has been ignored for the sake of simplicity.

* FOR LINE-1-6 OF PACE-2,
* CREATE A PROCESS BOOMD TO THE COBNECT EXPECTATION: LINE-1-6

* FOR LINE-3-6 OF FACE-2,

#*

CREATE A PROCESS BOUND TO THE CONNECT EXPECTATION: LINE-3-6

Polyhedron-1 creates expectations for each "connect" edge
of Face-2, binding a method to each expectation. The "connect"
edges of Pace-2 are Line-1-6 and Line-3-6 which are the shanks

of ARROW vertices 1 and 3 respectively.

* FOR LINE-2-3 OF PACE-2,

* CREATE A PROCESS BOUND TO THE MAYBE-CONNECT EXPECTATION:
LINE-2-3

* FOR LINE-1-2 OF FACE-2,

* CREATE A PROCESS BOUND TO THE MAYBE-CONNECT EXPECTATION:

LIRE-1-2

Different methods are bound to "maybe-connect"™ expectations for
each other edge of Face-2.

4: An Example from Machine Vision

102

After the active method of Polyhedron-1 has completed the
expectation phase, it may choose to terminate its execution or
it may atteapt to stimulate the recognition of polygon faces as
cues to drive its own recognition and subsequently the
recognition of a scene.j Again, the choice 1is a heuristic
decision. Polyhedron~-1 must estimate its likelihood of success.
However, the choice is not critical. If Polyhedromn-1 decides to
direct the observation of vertices from the input scene but it
is an invalid hypothesis for this scene, control will soon
migrate away from this schenma. The vertices observed by
Polyhedron-1 will stimulate the recognition of faces which will
attempt to match the expectations of polyhedron schemata. If
Polyhedron-1 is the wrong hypothesis, these faces will instead
match other, possibly new, polyhedron recognizers thereby
activating their methods instead.

On the other hand, if Polyhedron-1 is indeed a valid
hypothesis but the method yields control to the weaker method of
the Scene schema above it in the method hierarchy, this method
will discover a polygon face in the scene that will succeed in
matching an expectation of Polyhedron-1 thereby reactivating one
of its methods. Thus search is seen to converge towards a valid
interpretation. To the contrary, in the top-down model, a bad
hypothesis can dominate the search process for a
catastrophically long tinme.

For these reasons, Polyhedron-1 decides to apply a
bottom-up technique for stimulating its own recognition.

4: An Example from Machine Vision

103

* HMETHOD: SEARCH FOR OTHER PACES OF POLYHEDRON-1 BY OBSERVING
VERTICES OF FACE-2 THAT MAY BE PART OF NORE THAN ONE

FACE

This heuristic observes that each sector of the vertices of this
polyhedron can be part of more than one face. This method is
both more powerful than the simple enumeration of vertices used
by the scene schema and more specialized because such a second
face is likely to be part of this same polyhedron. However, its
expertise is good only for recognizing polyhedra, not scenes.
This method hierarchy is seen to incorporate a trade-off between

powver and applicability.

* POLYHEDRON-1 OBSERVES VERTEX-6

The next vertex observed is a FORK vertex, Vertex-6.
Sector~L1-L3 of this vertex is already part of Face-2, but the
remaining two sectors may be parts of two other, but, as vyet,

unknown faces.

* FOR SECTOR-L1-L2 OF VERTEX-6,

*

ATTENPT TO MATCH THE EXPECTATIONS OF FACE-3
* ATTEMPT TO MATCH THE EXPECTATIONS OF FACE-1

* FACE-1 HAS BEEN NMATCHED BY VERTEX-6

Vertex-6 conducts its completion phase by attempting to

4: An Example from Machine Vision

104

match the expectations previously created by Faces-3 and 1.
Vertex-6 cannot be part of any interpretation of Face~3 and that
match fails., It is, however, successful at matching an
expectation of Pace-1, specifically, that it shares Line-1-6
with some vertex, The bottom-up method that had been bound to
this expectation is activated as a supergoal of Vertex-6. This
is the second vertex discovered for Face-1 and, as before, the
Polygon schema attempts to verify the existence of this face
instance using top-down search, In this example, the top-down
search at the vertex level is achieved by a simple touring of
the input schema instances because vertices were given as data.
In general, however, goal directed search can be of arbitrary
complexity, perhaps involving recursively the use of bottom-up
mechanisms, A subgoal at any level can create expectations,
bind methods to those expectations, and then attempt to make
observations matching those expectations. The only restriction
on the search mechanisms used by a subgoal is that it eventually

must return a success or failure to its caller,

* VERIFY FACE-1 USING TOP-DOWN SEARCH

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-4 FRONMN LINE-4-6
* INCORPORATE THIS VERTEX INTO A NEW CORNER OF FACE-1

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-5 FROM LINE-4-5
* INCORPORATE THIS VERTEX INTO A NEW CORNER OF FACE-1

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-1 FROM LINE-1-5
* THIS VERTEX IS ALREADY CONTAINED IN FACE-1

4: An Example from Machine Vision

105

* COMPARE FACE-1 TO POLYGON MODEL

* COMPLETED FACE-1 IS A PARALLELOGRAHN

Pace-1 has found a closed figure composed of
vertices-1, 6, %, and 5. A description of this polygon face is
created with a corner for each vertex. The face 1is compared
against the polygon schema's internal model of polygons. The
figure is a quadrolateral having equal opposite angles, and is

labelled as a valid parallelogram.

* MATCH THIS FACE TO THE EXPECTATIONS OF POLYHEDRON RECOGNIZERS

Pace-1 begins its completion phase. It must find instances
of polyhedron recognizers having expectations of being matched
by a parallelogranm, Pace-1 will resume each successfully
matched schema as a supergoal process, This supergoal
activation is seen as an intelligent process scheduling
mechanism, Instead of activating processes through some gqlobal
scheduling algorithm, each completing schema can use its own
domain specific scheduling algorithm, Processes are scheduled
by the discovery of evidence suggesting their applicability as
superqgoals,

Face-1 will first attempt to match the expectations of an
existing polyhedron recognizer that it shares a "connect® edge
with., If it is successful, the method bound to the polyhedron's
expectation will be resumed as a supergoal process. If PFace-1

4: An Example from Machine Vision

106

is able to find such a "connect"™ expectation and match it
successfully, its task is done. Otherwvise, Face-1 must attempt
in sequence to match the expectations of all polyhedron
recognizers with which it shares a "maybe-connect® edge, and it
must also create a new polyhedron schema instance in case it is
not part of any existing interpretation, For each polyhedron
recognizer matched by the face schema, the method bound to the

matched expectation is resumed as a supergoal process.

* ATTENPT TO MATCH THE CONNECT EXPECTATIONS OF POLYHEDRON-1

* TRY LINE-4~6

* TRY LINE-1-6

* A CONNECT EXPECTATION OF POLYHEDRON-1 HAS BEEN MATCHED BY

FACE-1

Face-1 finds and attempts to match Polyhedron-1. This face
schema shares a "connect® edge with Face-2 of the polyhedron, so

the match is successful and the polyhedron's method is resumed.

* TS FACE-1 CONPATIBLE WITH THIS CLASS OF POLYHEDRA?

* YES

The method of Polyhedron-1 compares the polyqon instance to
its internal model of polyhedra. 1In this system, polyhedra are
composed of both triangles and parallelograms. Face-1 is
accepted and its interpretation results in the propagation of

4= An BExample from Machine Vision

107
Polyhedron-1's recognition.

* COMPUTE TRANSITIVE EDGE CLOSURE FOR THIS FACE

* FOR LINE-1-5 OF PACE-1,

* CREATE A PROCESS BOUND TO THE MAYBE-CONNECT EXPECTATION:
LINE-1-5

* POR LINE-4-5 OF FACE-1,

* CREATE A PROCESS BOUND TO THE MAYBE-CONNECT EXPECTATION:
LINE-4-5

* POR LINE-4-6 OF PACE-1,

* CREATE A PROCESS BOUND TO THE CONNECT EXPECTATION: LINE-4-6

Polyhedron-1 incorporates the new face instance into its
description by computing which edges of Face-1 are edges already
contained im Polyhedron-1, This is called its transitive edge
closure. At the same time, a new set of expectations are
created for each remaining edge of Pace-1 not closed with edges
of the polyhedron. These edges represent the cues by which
other completing face schemata will be able to match this

schema's expectations.
* DOES DESCRIPTION OP POLYHEDRON-1 SATISFY THE CRITERIAR FOR A

COMPLETE POLYHEDRAL OBJECT?

At this point, the polyhedron checks to see if its instance

4: An Example from Machine Vision

108

is fully instantiated., It is not. There are still "connect®

expectations remaining unsatisfied.

* METHOD: OBSERVE VERTICES THAT WILL DRIVE THE RECOGRITION OF

NEIGHBOURING FACES

Having finished its expectation phase, Polyhedron-1 applies
a bottom-up method by observing vertices which should stimulate
the recognition of neighbouring faces. The recognition of such
faces will hopefully satisfy its own expectations. It does this
by observing three-line vertices of its component faces that mavy
be part of some yet unrecognized face., Notice that there are
now two methods of Polyhedron-1 simultaneously active. Both
methods are observing vertices to stimulate the recognition of
neighbouring faces. They may communicate with each other
through their common data structure, .the schema instance of
Polyhedron-1. Both can contribute to its recognition, but their
efforts must be coordinated. If one of the methods should
decide that either a fully instantiated instance has been found,
or that the polyhedron is a bad hypﬁthésis, the other method
must be suspended. It is no longer applicable to the discovery

of a scene,

* POLYHEDBRON~1 OBSERVES VERTEX-4
* FOR SECTOR-L1-L2 OF VERTEX-4,
* ATTEMPT TO HMATCH THE EXPECTATIONS OF FACE-3

4: An Example from Machine Vision

109

* CREATE A NEW SCHEMA: FPACE-4 CONTAINING A CORNER POR VERTEX-4
* CREATE TWO PROCESSES BOUND TO EXPRCTATIORS FOR LINE-4-6 AND

LINE-3-4

The polyhedron method first observes Vertex-8 becatise it is
a vertex of one of its component faces that could be part of
another undiscovered face., Vertex-#4# begins its completion phase
by trying to find existing uncompleted face recognizers to
match, Only Pace-3 remains uncompleted, but the match fails.
Sector-L1-L2 of Vertex-4 cannot be part of the background region
represented by Face-3. As a result, Vertex-4 requests the
polygon schema to create a new polygon face instance. PFace-4§ is
created, added to the polygon instance hierarchy, and one of its
methods is activated. The new recognizer incorporates vVertex-4
into its description and uses the vertex to create a nev set of
expectations for the schenma. As before, these expectations
consist of methods bound to patterns containing line cues, in
this case, Line-4-6 and Line-3-4. Face-4 has finished 1its

expectation phase and returns control to Vertex-#4,

* FOR SECTOR-L3-L1 OF VERTEX-G,
* ATTENPT TO MATCH THE EXPECTATIONS OF FACE-4
* ATTEMPT TO HMATCH THE EXPECTATIONS OF FACE-3

* CREATE A NEW SCHEMA: FPACE-5 CONTAINING A CORNER FOR VERTEX-4

*

CREATE TWO PROCESSES BOUND TO EXPECTATIONS FOR LINE-3-4 AND
LINE-8-5

4: An Example from Machine Vision

110

Vertex-4 still has one remaining uncommitted sector,
Sector-L3-L1. Neither of the lines of this sector can match
Face-4, Nor can they match the expectations of Face-3, though
they are part of the same region. There is not yet constraining
information (possibly provided by Vertex-5) to link them to sane
interpretation. . Thus, a new face, Face-5, 1is created in the
manner described for Pace-i,

The behaviour of Vertex-4 is characterized as a bottom-up
generator of possible higher supergoals. Each time control is
returned to Vertex-4, it generates another plausible polygon
face of which to be a part. As well, it generates these faces
in heuristic order, first attempting to activate those already
existing polygon recognizers which it can match successfully.
Only if that fails, will it generate a new polygon face

instance,
* POLYHEDRON-1 OBSERVES VERTEX-6

VYertex-4 has finished generating supergoals and returns
control to Polyhedron-1 which proceeds with its method of

observing likely vertices, this time activating Vertex-6.

* FOR SECTOR-L2-1L3 OF VERTEX-6,

* ATTEMPT TO MATCH THE EXPECTATIONS OF FACE-5
* ATTEMPT TO MATCH THE EXPECTATIONS OF FACE-4
* FACE-4 HAS BEEN MATCHED BY VERTEX-6

4: An Example from Machine Vision

imm

Sector-L2-L3 1is the only sector of Vertex-6 not already
part of some polygon face, Vertex-6 first attempts to match
Face-5 as a possible higher supergoal, but the match fails. An
attempt at matching Pace-4 succeeds, thereby activating a method

of this face. .

* VERIFY FACE-4§ USING TOP-DOWN SEARCH

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-3 FROM LINE-3-6
* TNCORPORATE THIS VERTEX INTO A NEW CORNER OF FACE-4

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-4 FROM LINE-3-4
* THIS VERTEX IS ALREADY CONTAINED IN FACE-4

* COMPARE FACE-4 TO POLYGON MODEL

* COMPLETED FACE-4 IS A TRIANGLE

Face-l4 searches for its remaining vertices by hypothesizing
another vertex, finding that vertex by following Line-3-6. It
then confirms +that its component 1lines and vertices form a

closed figure and that its type is a triangle.

* MATCH THIS PACE TO THE EXPECTATIONS OF POLYHEDRON RECOGNIZERS

* MATCH THE CONNECT EXPECTATIONS OF POLYHEDRON-1

* TRY LINE-3-6

* A CONNECT EXPECTATICN OF POLYHEDRON-1 HAS BEEN MATCHED BY
FACE-4

* IS PACE-4 COMPATIBLE WITH THIS CLASS OF POLYHEDRA?

* YES

4= An Example from Machine Vision

112

Face-4 finds Polyhedron-1, the single member of the
polyhedron instance hierarchy, and matches a "connect®
expectation of this recognizer. Both Pace-4 and Pace-2 share
the common "connect® edge, Line-3-6.

Expectations are equated with comnstraints, Line-3-6
constrains the interpretation of Face-4 and Face-2 to be part of
the same object. The recognition process can be viewed as a
procedural constraint propagation, wvhere the flow of control
through the schemata network is directed by the procedural

methods attached to the nodes in the network.

* COMPUTE TRANSITIVE EDGE CLOSURE FOR THIS FACE

*

FOR LINE-3-4 OF FACE-4,

#*

CREATE A PROCESS BOUND TO THE MAYBE-CONNECT EXPECTATION:
LIRE-3-8
* FOR LINE-4-6 OF PACE-4,

* LINE-4~6 HMATCHES A CONNECT EXPECTATION OF POLYHEDRON-1

Polyhedron-1 incorporates the new face into its description
by computing the transitive edge closure of Face-4 with its

other faces.
* DOES DESCRIPTION OF POLYHEDROK-1 SATISPY THE CRITERIA FOR A
COMPLETE POLYHEDRAL OBJECT?

* YES: POLYHEDRON-1 IS A WEDGE

4: An Example from Machine Vision

113

The addition of Pace-4 has been enough newvw information to
constrain the interpretation of Polyhedron-1 to a fully
differentiated instance. There are no “connect" expectations
remaining in the schema and each face in the schena's
description 1is 1labelled "connect™ with every other face with
which it shares an edge., The completed instance 1is compared
against the schema's internal model of polyhedra and is labelled
a wedge since it is composed of two parallelograms and a single

triangle.

* MATCH COMPLETED POLYHEDRON-1 TO THE EXPECTATIONS OF THE SCENE
SCHEMA

The method of Polyhedron-1 now begins its schema's
completion phase. However, it is not the only method of this
schema currently active. There are two other concurrent methods
observing vertices, In fact, these other rmethods were
instrumental in observing the vertices that stimulated
Polyhedron-1*'s successful recognition. These methods have now
performed their task and they must be suspended.

The mechanism for achieving this coordination among
concurrent methods is realized within completion. When a
completing schema matches another schema as a supergoal, the
method performing the completion and all other active methods
associated with the same completed schema instance are
suspended. The implementation of this control structure
mechanism as a Maya language primitive is discussed in the next

4: An Example from Machine Vision

114

chapter.

In this example, Polyhedron-1 performs its completion phase
rather deterministically. It knows that polyhedra are only part
of scenes. The scene schena ﬁas an expectation waiting to be
matched by a completing polyhedron. The match is successful,

and the method of the scene schema is activated,

* SCENE RECOGNIZER HAS FOUND A SCENE COMPOSED OF POLYHEDRON-1
For brevity, it is assumed that a scene is composed of a
single polyhedral object. The scene schema has completed its
recognition, finding a scene composed of Polyhedron-1. The
program terminates sucessfully, returning to top-level the

hierarchical description of the scene.
4.4 Conclusion

This example provides a high 1level description of the
operation of this recognition model in a scene analysis progran.
Many of the ideas embodied in the model could only be partially
illustrated by this single example. The precise specification
of these ideas is made manifest in this thesis as an artificial
intelligence programming language called Maya. The next chapter

describes the design of this programming lanquage.

4: An Example from Machine Vision

115

CHAPTER 5: HAIA

5.1 Introduction

Maya 1is a amultiprocessing LISP dialect that defines a
number of extensions to the data types and control primitives of
the LISP language. Maya generalizes the OBLIST and property
lists of LISP to a nev primitive data type called the gbiect
wvhich can be used to represent schemata and to construct frame
systems and semantic networks. HMaya defines specific control
structures for integrating top-down and bottom-up search in
schema-based representations. The language provides, as well,
primitives for pattern matching and for creating and scheduling
multiple processes. An extensive interactive debugging systea
rodelled after that of INTERLISP (Teitelman, 1974) is also
provided.

Although Maya, as a programming lanquage, is concerned with
developing programming technology, the motivation behind the
language has been the experimental implementation of the
recognition model presented in this thesis. The natural
realization of such a model is a programming language because it
provides a general experimental vehicle with vhich to evaluate
the 1ideas of the model. HNaya focuses on general questions of
representation and process involved in machine perception.

5: Mavya

116
5.2 Language Overview

This section provides a general overview of Maya by
describing the data types defined in Maya and their evaluation.
A number of other general features of the language will also be
mentioned, Issues of schema rapfesentntion and recognition will
be covered in subsequent sections of this chapter. A
familiarity vith LISP must be assumed in this discussion. The
reader is referred to Appendix-B, the Maya Lanquage Reference

Manual, for details of the various Maya primitives involved.
5.2.1 Data Types

Maya extends the primitive data types of LISP to facilitate
programeing in schema-based systems. HMaya is embedded in LISP
and its data primitives are realized using LISP forms. Belovw is
a BNF grammatical representation of the LISP implementation of
Maya's data types. Angle brackets are used to delinmit
non~terminal symbols and the asterisk is used as the Kleene
star, indicating zero or more repetitions,

<PORN> =-=> <ATOM>
-=> <VAR>
==> LIS
-=> <TUPLE>
-=> <OBJECT>
<VAR> =-=> 2<ATON>
<LIST> ~=> (<FORHD>¥)
<TUPLE> =--> (@ <FORND>¥)
<OBJECT> =-=> (30BJECTa <TYPE><PAIRD>*)
<ITEM> =--> (DITEM® <RES><PAIRD>*)
<PAIR> =--> <ATOM><FORHMD>

5: Maya

117

A form in Maya may be an atom, variable, list, n-tuple, item, or
object. In LISP, an atom is used both as the name of a set of
properties and as a variable. In Maya, an atom, <ATOM>, is
differentiated from a variable, <VAR>, because it is desirable
to distinguish between the name of an object and the value of a
variable, Names are represented by atoms, whereas variables are
represented by atoms prefixed by a question mark.

Likewise, Maya differentiates between a list, <LIST>», and
an n-tuple, <TOPLE>, Lists are used, as in LISP, to encode both
actual lists and function calls. The value of a 1list is the
result of applying the function indicated by the CAR of the list
to the CDR of the list. The value of a tuple, however, is a
tuple of the wvalues of its elements. Tuples are used
extensively by the pattern matching functioms.

The wmost significant extemnsions to the data types defined
of LISP are the inclusion of objects and items, The object,
<OBJECT>, subsumes the property lists, usually called plists, of
LISP atoms, It can be used to form schemata, frame systems, and
semantic networks. A schema or frame may be thought of as a
collection of named slots or relations, A node in a semantic
network may be considered to be a set of named attribute/value
pairs. <OBJECT>s can conveniently represent both of these
structures.,

An object is composed of a LISP 1list having the prefix,

5: Mavya

118

@#0BJECT®?, a user-supplied type indicator, <TYPE>, and a set of
named attributes, <PAIR>s. It should be noted that the
different prefixes associated with objects, tuples, and
variables permit Maya to type check the use of each data type.
Within the definition of objects, an extra type indicator is
provided to allow further user supplied type checking. Bach
<PAIR> in an object associates an atomic name with a <FORM>. 1A
name is said to be defined by its binding in some object.
Objects are created by the Maya primitive, OBJECT, which takes
as argunments ﬁ type and a 1list of names and their new
definitions, The function returns an object as value.

Whereas obijects associate atomic names with their
definitions, 1items associate variable names with their local
values. In Maya, generators, such as the pattern matcher,
always rteturn items, i.e., they return a set of local variable
bindings computed within the generator. An item, <ITEM>, is
composed of a LISP list having the prefix, ?ITEM@2, followed by a
processor reserved field, <RESD, Each <PAIR> of the item
represents an association between a variable name and its value.

Baya maintains a stack composed 6f objects, items, and a
number of internal structures used by the processor for
recording procedure invocations and the states of generators and
the pattern matcher. The object nearest the top of the stack is
called the enclosing object. It represents the current schena,
semantic network node, or immediate context in which the user is
"operating®,

5: Maya

119

A number of Maya primitives operate on the enclosing
object. Por instance, PUT* adds definitions to the enclosing
object. This function takes two arguments, an atomic name and a
form to be bound to that name in the enclosing object. If that
name already exists in the object, its definition is replaced.
The function, GET*, returns the definition of a name from the
enclosing object, whereas the primitive, REM%*, removes the
definition of a specified name from within the object. A fourth
primitive, called SPLP, returns as value the entire enclosing
object. This function provides a mechanism for obtaining a
pointer to the current schema.

In order to make Maya and LISP as compatible as possible, a
few of LISP's SUBRs have been altered to accept objects instead
of PLISTs. LISP property 1list functions now recognize the
header at the front of each object. This overhead is justified
because it allows Haya to consider all of LISP's database, i.e.,
the OBLIST, as the global object of its database. Each LISP
atom which has properties associated with it will have a PLIST
of the following form bound to its CDR:

(2OBJECT® @PLIST® <PAIR>*) .,

For example, DEFUN and DEFINE alwvays add their definitions
to the enclosing object. This permits objects to contain
function definitions local to the object. This mechanism will
be used as one way to incorporate procedural knowledge into
schemata.

5: Mava

120

Maya considers LISP's variables ¢to be the set of global
Maya variables. Maya uses a deep-binding scheme to access
variables on the processor stack. These variable bindings may
appear in LAMBDA expressions, PROG expressions, or as variables
defined in items contained on the stack, The assignment
functions, SET and SETQ, which are analogous to their LISP
counterparts, will alter the value of the first variable of the
specified name that they find on the stack, Otherwise, they

will assign a newv value to the LISP atom of the same name.

5.2.2 Evaluation

The evaluation algorithm for Maya data types is presented
below in pseudo-LISP code. The behavior of the evaluator is
then elaborated in some detail., Pinally, the function types
recognized by Maya are described.

¥hen Maya is asked to evaluate a form, the following
algorithm is used (but not the following implementation of that
algorithm):

(DEFUN EVALUATE (FORHN)
(COND ((ATOM FORM) (FETCH-DEFINITION-FROM-STACK PORM))
((VARP FORM) (FETCH-VALUE-PROM-STACK FORM))
((TUPLEP PORHM) (APPLY ®*@ (CDR FORM))
((OBJECTP FORH) (ERROR))
((ITENP PORM) (ERROR))
((ATON (CAR FORN))

(APPLY (FETCH-FUNCTION (CAR FORM)) (CDR FORM)))
(T(APPLY-LAMBDA (CAR FORMN) (CDR PORM)))))

5: Mava

121

If FORM is an atom, then the definition of that name is
fetched from its first occurrence on the stack. If it is not
found on the stack, it is fetched from the global object, the
PLIST of the LISP atom. ¥When presented an atom, Maya attempts
to find its definition within the first enclosing object. If
that fails, it attempts to locate the definition within the next
enclosing object, and so on. 1If it is not to be found in any
enclosing object, then the definition of the atom present in the
global object is returned. Note that for every atom there will
alwvays be a definition for it in the global object, although
that definition may be the null object, NIL.

If PFORM is a variable, its value is fetched from the first
occurrence of the variable's name on the stack, The variable
may appear on the stack in two different ways. It may be a
local variable of some LAMBDA or PROG eipressian. or it may
appear as a variable bound in an item returned from a generator.
In either case, the first local binding found is returned as the
value of the variable. If, however, the processor cannot find
the variable's name on the stack, Maya fetches the global value
of the variable, that is, the LISP value,

If FORM is a tuple, it is evaluated by the tuple evalwuator
using inverse quote mode, that is, atoms and pattern variables
are treated as constants, The value of a tuple is a new tuple
of its values,

If POBRM is an object or am item, an ERROR occurs.

If the CAR of FORN is an atom, the atom is assumed to be

5: Maya

122

the name of a Maya or LISP function. The function 1is fetched
from the first definition of the atom on the stack, else from.
the LISP PLIST of the atom. If the function fetched is of the
types recognized by Maya, it is applied to the CDR of the form.
If more than one function by the same name exists, the first one
found is used. If no recognizable function can be found, an
error occurs, A discussion of the function types recognized by
Maya is presented below.

Otherwvise, the CAR of FORH is not atomic and is assumed to
be a Maya LAMBDA or QLAMBDA expression. The expression is then
applied to the CDR of FORM. If the CAR is not a LAMBDA or

OLAMBDR expression, an error occurs.

5.3 Representation

This section discusses the use of Maya langquage primitives
for implementing schemata networks and for realizing procedural

message passing and interpretation.

5.3.1 Schemata

Schemata and schemata networks are realized in Maya as
objects, Maya defines a mechanism for considering an object as
a schema stereotype and then creating multiple instances fronm
that stereotype. The function, NEW, when applied to an obiect,
creates an incremental copy of the object and assigns it type,

5: Mavya

123

DINSTANCEd. Any changes made to the instance are reflected in
the incremental copy and not the stereotype object. For
example, a stereotype schema to represent the concept of "dog"
could be constructed as follows:

(PUT* *DOG (OBJECT *GENERIC NAME *'DOG CLASS *MAMMALIA)).
This expression creates within the enclosing object, a
definition of the name, DOG, as an object having type, GERNERIC,
a reflexive pointer to its own name, and the indicator that dogs
are of class, MAMMALIA, To create a specific instance of dog,
the following expression could be then evaluated:

(NEW DOG BAME *FLOYD OWNER *BILL).

The name and ownership attribuntes of the dog instance are
defined within the instance and not the stereotype, Fetching
the name, CLASS, from the instance will return MANMALIA but
fetching NAME will yield FLOYD, the definition 1local to the
instance. Advantages of this scheme are that it makes instances
computationally inexpensive and changes made to a stereotype are
immediately reflected in each descendent instance, unless
specifically redefined by the instance.,

The Maya primitive, SEND,- is the basic mechanism for
accessing schemata networks, for traversing arcs in semantic
netwvorks, and for procedural message passing and interpretation.
Its form is:

(SEND <AT><A2> . . . <And).
The arguments, <A1> through <An>, are called a message segquence.
SEND evaluates each of its arquments in seguence returning the

5: Mava

124

evaluation of its last argument, <An>, as its value. If the
value of some <RAi> vyields an object or an item, then it is
pushed onto the processor stack thereby augmenting the
environment for either atom definitions or variable bindings
respectively.

The sequence, <A1> through <An>, is an encoding of a search
procedure through the network. By pushing some object, <ai>,
onto the stack, the processor in effect ™goes to" that obiject.
Now the evaluation of <Ai#1> is computed from within the new
enclosing object, perhaps itself vyielding another object or
itenm,

Knowledge may be represented in schemata in three different
vays. First, it can be represented declaratively as either
atoms defined within the schema object or as patterns in a
tuplebase contained within the object. We saw above how atoms
could be associated with definitions by creating a new object
using either OBJECT or NEW. Atom bindings can also be added to
existing objects by using SEND and PUT*#, Por example, to add a
new schema slot to the generic schema, DOG:

(SEND DOG (PUT%* *VIRTOE 'Hlﬁs—BEST-FRIEHD)).
SEND first evaluates DOG which yields an object, the dog schema.
This object is then pushed onto the processor stack, thus
becoming the enclosing object. The evaluation of PUT* then adds
the new definition of the atom, VIRTUE, to the enclosing obiject.
That is, a new slot is added to the schema, DOG.
To access slots in a schema, it is again necessary to

5: Mavya

125

“goto"™ that schema's object. PFor example, the fornm:
(SEND DOG (PRINT CLASS) VIRTUE),
will first print MAMMALIA and then return MANS-BEST-FRIEND.
Declarative knowledge may also be realized as patterns in
associative databases defined within schenata, Mechanisas for
pattern matching in schemata are discussed in the next section.
The second way knowledge can be represented in scheﬁata is
procedurally using 1local function definitions. In Maya, the
property list of an atom is represented as an object bound to
that aton. Since the EXPR function property is no different
than any other property, function definitions can be local
properties of objects. For example,
(DEFUN POO (X) X)
creates, as expected, a LAMBDA expression bound to the name,
EXPR, on the property 1list of the atom, FO0O. However,
evaluating the following fornm:
(SEND FOO EXPR)
returns the binding of the atom, EXPR, within the obiject, FOO,
wvhich is:
{LAMBDA (i) X).
As well, a new definition of POO can be locally associated with
a particular object, for instance:
(SEND DOG (DEFUN FOO (X) *WOOF)).
Evaluating (POO *'A) yields A but evaluating:
(SEND DOG (FOO '"A))
yields instead WOOF, Furthermore, the data structure created by

5: Maya

126

this example is itself a network of objects which can be
accessed as follows:

(SEND DOG FOO EXPR)
which yields

(LARBDA (X) 'WOOF).

The third mechanism for representing knowledge in schemata
is procedural attachment (Winograd, 1975). In Hava, both
generators for performing top-down search and processes - for
realizing bottom-up search can bhe associated with tuple patterns
in tuplebases local to schemata, Such procedures attached to
patterns are Maya's mechanism for associating top-down and
bottom-up methods with a schema's expectations, represented as
patterns, Top~-down and bottom-up methods will be discussed in

sections 5.5 and 5.6 respectively.

5.3.2 Messages

The evaluation of SEND can also be defined recursively in
terms of sending messages. The value of SEND applied to the
sequence, [<A1><A2> . . . <An>], is recursively the result of
sending <AT> the mnmessage, [<A2> , . . <An>], and so on,
returning finally the value of <An>. Thus, evaluating a message
sequence is sending +the yvalue of the CAR of the sequence a
message, the CDR of the sequence.

An exanmple follows which illustrates in Maya the

52 Mavya

127

construction of instance hierarchies, and the use of some of the
Maya primitives to interpret simple procedural messages. This
example is extracted from a Maya program to play "Twenty
Questions"™., In this program, an instance hierarchy is used as a
discriamination tree to interpret a series of responses from the
user, Fach node in the net contains a gquestion plus the
possible branches of the tree to take depending on the nuser’s
response. Although the example is simplistic, it demonstrates
the use of Maya network structures and simple message passing
and interpretation.
(DEFON TWENTY-QUESTIONS 2EXPR NIL
{PRINT 'WPLEASE THINK OF SOME OBJECT")

(SEND TOP-NODE
(ASK 20)))

The top-level function sends the Top-Node of the discrimination
net a message to ASK 20 questions.
(DEPUN ASK @3EXPR (N)
(AND (ZEROP ?N) (RETURN *"YOU WIN" *TWENTY-QUESTIONS))
(PRINT QUESTION)

(SEND (EVAL (READ))
(ASK (SUB1 2N))))

In this example, the message sent to each node is
procedural. It says: "Check to see if we have asked more than
20 questions; if so, then lose., Otherwise, print your question
and recursively send this same message (minus 1 from N) to your
choice of next node." R few of the semantic net nodes of this

program follow:

5: Maya

128

(PUT* 'WIN-NODE (OBJECT 'NODE))
{SEND WIN-NODE
(DEFUN ASK AEXPR (N)
(PRINT *"I WIN 11%)
?N))

(PUT* *NODEY4
(OBJECT *NODE
QUESTION *"IS IT A SNAKE?"
YES WIN-NODE
NO KODET))
(PUT* *NODE1
(OBJECT *NODE
QUESTION ""HOW HANY LEGS DOES IT HAVE?®
ZERO NODEH#
TWO NODES
FOUR NODES))
(PUT* *TOP-NODE
(OBJECT *NODE
QUESTION *"IS IT ANINMAL, VEGETABLE, OR MINERAL?"
ANI MAL NODE1

VEGETABLE NODE2
NINERAL NODE3))

In the recursive calls to ASK, how does the recursion
terminate? On failure, that is, after the twentieth guestion,
the first lime in the body of ASK will terminate the recursion,
On success however, the process is quite different. At NODEY4,
if the user answers "yes® to the question, "Is it a snake?", a
node called WIN-NODE is sent the aeséage,

(ASK (SUB1 ?WN)).,
Within WIN-NODE is a local definition of the function, ‘ASK.
WIN-NODE has its own interpreter for this particular message.
It always interprets the message as a successful end of the
game,

This example serves to illustrate a few basic features of

5: Mava

129

Maya. Through the use of PUT* and OBJECT, semantic networks can
be constructed, As well, SEND can be used to send simple
procedural messages between objects., 1In this example, an ansver
to the current question is elicited from the user. If his
ansvers are restricted to atoms, then the expression,
(EVAL (READ))

will fetch an object, the next node of the discrimination tree.
SEND pushes this Abject onto the stack, and subsequently
evaluates in this new context the rest of the message, which is
the recursive call to ASK.

SEND fetches each function from its name's first definition
on the stack. This provides the mechanism to allow the object
receiving a message to perform its own local interpretation of
that message, In this example, when WIN-NODE is sent the
message, ASK, the definition of ASK defined locally is used
because SEND had previously pushed WIN-NODE, including its local
definition of ASK, onto the stack. .

Suppose, however, that the user types an atomic answer that
the program is not expecting. The result would be unpredictable
because Maya will fetch the first definition of the atom it can
find. Por a random answer, the definition is likely to be NIL.
If we replace the form, (EVAL (READ)) in ASK with:

(GET* (READ) ' (WHAT?))
and define a new function, we now have a solution:
(DEFUN WHAT? 2EXPR NIL

(PRINT *"WHAT 2")
(RETORN (ASK ?N) "ASK))

5: Mava

130

GET* always fetches definitions from within the current
enclosing object., If GET* fails to find the name defined in the
enclosing object, the second arqgument is evaluated. In this

case, (WHAT?) wvhich just asks the same question again.
5.4 Pattern Matching

Syntactic pattern matching provides a primitive level of
comparison based only on syntactic form. Maya defines a number
of pattern matching primitives similar to those provided in most
recent artificial intelligence programming languages, (Hewitt,
1972) (McDermott, 1973) (Davies, 1973). Haya uses its pattern
matcher to compare tuples, to perform associative retrigval of
tuple patterns from databases, to implement generators and
processes, and as a syntactic base upon which to build semantic
associative retrieval over schemata systesms, This higher
network matching may involve active search and deduction (Bobrow
& Winograd, 1977). Semantic matching over schemata structures
is, as has already been pointed out, another characterization of
the recognition problea. |

The pattern matcher in Maya is called MATCH. The form of a
call to MATCH is as follows:

(HATCH <pattern><db>f <else>)).
Its first arqument, <pattern>, is matched against a datum, <db>,
which is either another tuple or an associative database of
tuples called a tuplebase. The matcher, on a successful match,

53 Maya

131

returns an item composed of the bindings of any pattern matching
variables assigned during the match. On failure, an optional
third arqument, <else>, is evaluated. This optional argqument is
called a failure exit and is used to control failure driven
search.

An exaaple of pattern matching in Maya is gqgiven by the
following:

(NATCH *<ON !:X !:Y> '<ON B1 TABLE> ' (FOO)).
The evaluation of this expression results in a successful match
returning as value an item containing the variables X bound to
B1 and Y bound to TABLE., If the match had failed, the forn,
(FOO) , would have been evaluated and returned as the value of
MATCH,

The item returned from the pattern matcher may also contain
a reactivation tag. This tag is a pointer to the current
invocation of the matcher in order that it may be recalled for
another match, Because the pattern matcher is implemented as a
generator, MATCH provides a non-deterministic search mechanism
for tuplebases.

Tuplebases are accessed by -the pattern matcher, various
database maintenance functions, and a number of control
structure functions for scheduling both top-down and bottom-up
net hods. Any tuple pattern in a tuplebase may have an
associated value which is included in the item return from the
matcher as the value of the distingquished variable, "?x*w,

Tuplebases are composed of an inverted index structure which

5: Mava

132

uses Maya objects to represent each level of the index. Since
they are formed from a primitive data type, tuplebases nmay as
well be operated on with ordinary object accessing functions.
For example, to create a nev tuplebase of assertions withimn the
enclosing object:
(PUT* *ASSERTIONS (OBJECT 0))

Notice that as many tuplebases as desired may be created in this
manner.

In order to add a pattern assertion to this tuplebase, the
following form could be evaluateds:

(PADD *<WOOF BE DOG> ASSERTIONS).

Finally, to delete assertions from this tuplebase:

(PREMOVE '<PUSHKIN HAS FLEAS> ASSERTIONS).

5.5 Top-down Methods

Top-down search in Maya is based on the notion of
generators vwhich are functions that may be recalled a number of
times for a single invocation. Alternatively, generators may be
thought of as functions that retain an internal state between
calls. There are four types of generators in Maya:

1. MATCH

2. QLAMBDA expressions and QEXPR functions.
3. B1ST and D1ST.

4. NEXT and FAIL.

5: Maya

133

The pattern matching function, MATCH, has been already
described. The second type of generator is realized by
combining the concept of QLAMBDA expressions from QLISP (Davies,
1973) and Maya items. The mechanism is a generalization of the
generators defined in CONNIVER (McDermott & Sussman, ;973).
Each QLAMBDA expression has a tuple pattern as its argument
list. QLAMBDAs are invoked by matching a pattern in the form of
a tuple against either the pattern arqument of a specific
QLAMBDA expression or against a tuplebase of QLAMBDA
expressions., OQLAMBDAsS always return items as values, As in
MATCH, the item is composed of +the bindings of the pattern
variables assigned during the pattern match plus a possible
reactivation tag for the generator. QLAMBDA expressions may be
given names by creating QEXPR type functions with DEFUN.

QLAMBDAs and QEXPRs take optionally one or two arquments:

((QLAHBDA <arg-pattern><body>) <pattern>[<else>]) or
{<gqexpr><arg~pattern>[<else>]).

The first argument, <pattern>, must be a tuple and is the
pattern to be matched against the argqument list, <arg-pattern>.
The second arqument, <else>, is evaluated if the pattern match
fails or if the (QLAMBDA expression evaluates a call to FAIL.
<Else> defaults to NIL. Since QLAMBDAs and QEXPRs are treated
by the interpreter as any other function, they may be applied,
mapped, and evaluated.

QLAMBDA expressions may be stored in tuplebases by binding
them to patterns identical ¢to their pattern arguments. A

5: Mava

134

mechanism is thus realized for associating top-down methods with

patterns., Methods are added to a method tuplebase as follows:
(PADD <arg-pattern><method-base><qxl>),

where <arg-pattern> is the pattern arqument of the method, <qx1>

is eit her a QEXPR name or a QLAMBDA expression, and

<method-base> is a tuplebase of methods. Methods are deleted

from tuplebases in a similar fashion:

(PREMOVE <arg-pattern><method-base)).

The third type of generator is used to access and then
invoke OQLAMBDA expressions in tuplebases by m®matching their
associated patterns., Two different mechanisms are provided.
D1ST searches a tuplebase of QLAMBDA expressions in depth-first
order., The form of calls to this function are:

(D1ST <pattern> <db> [<else>}).
D1ST will fetch from the tuplebase, <db>, a QLAMBDA -expression
matching <pattern> and then invoke that function. A successful
value returned from the QLAMBDA will also be returned from D1ST
with the addition of a reactivation tag, If the tag is later
used to restart the generator, D1ST will recall ¢the QLAMBDA
expression to generate another iten. D1ST will continue to
recall that same QLAMBDA until it fails to generate any new
items. Then D1ST will return to the tuplebase to search for
another QLAMBDA expression matching <pattern>.

Similarly, B1ST searches a tuplebase of QLAMBDA expressions

in breadth-first order. The form of this primitive is:

135

(B1ST <pattern> <db> [<else>])).

B1ST will invoke the first QLAMBDA expression it finds that
matches <pattern>, and return the item yielded by the QLAMBDA
with the addition of a reactivation tagq as its own value,
However, when this generator is resumed again, B1ST will attempt
to find a different matching QLAMBDA expression in the
tuplebase. Only after it has invoked once all matching QLAMBDA
methods will it recall each suspended QLAMBDA for a second time,
and then each for a third time, and so forth.

The last type of generator defined in Maya includes the
control primitives for restarting generators from the
reactivation tags returned in their items. The functions, NEXT
and FAIL, are used for loop-driven and failure-driven search
respectively. PFor a comparison of the two approaches, see
Sussman and McDermott (1972).

NEXT, which is analogous ¢to Conniver®'s TRY-NEXT, is a
function of two arguments:

(NEXT <item> [<else>]),
<Item> must be an item created by another gemerator. NEXT looks
for a reactivation tag in the item. If it finds such a tag, the
attached generator is resumed. Otherwise, if no taq is found or
the resumed generator fails, NEXT evaluates <else>, its optional
failure fora, For example, to find in a tuplebase, TOYS, the
names of all boxes, the following expression could be used:
{PROG (X)
(SETQ X (MATCH '<BOX ?:B> TOYS * (RETURN NIL)))

5: Maya

136

LOOP

(SEND ?X (PRINT 2B))

(SETQ X (NEXT 2?X ' (RETURN KNIL)))

(GO LOOP))

Pailure-driven search is realized in Maya by using the PAIL
function in conjunction with another primitive, ELSE. FAIL is a
function of no arquments that causes Maya to begin discarding
control frames from its processor stack until an item is found
on the stack containing a reactivation tag. The generator
attached to this tag is then restarted from that failpoint.

The function ELSE provides the necessary mechanism for
controlling failure-driven search., It is a very simple function
of one arquement which creates an explicit failpoint with that
unevaluated argument., ELSE returns an item containing only a
tag bound to this failpoint. When the tag is reinvoked by FAIL,
the arqument is finally evaluated, thereby providing a mechanisnm
for capturing failure. The mechanism is called a failure block
and is illustrated in the following example:

(ssun (ELSE ' (FAILURE-EXIT))

(MATCH '<BLOCK !:X> TOYS ' (FAIL))
(MATCH '<COLOUR ?XY BLUE> TOYS. ! (FAIL))

(éucczss-gxtr))
This program segment attempts to find a blue block from the
database of toys. If it is successful, control passes through
the block. Otherwise, a failure exit is taken, Pailure blocks
define a local backtrack search mechanism that follows separate
control paths depending upon whether the local search succeeds

5: HMava

137

or fails.

5.6 Bottom-up Methods

Bottom-up search is realized in Maya via wmultiprocessing.
Processes consist of seai-autonomous procedures. A number of
processes may co-exist simultaneously and may or may not be
associated with particular schemata, Processes may be created,
invoked, destroyed, and resumed by other processes. A process
may terminate or suspend itself or it may via the COMPLETE
function suspend itself and all other processes associated vwith
a particular schenma.

The procedure body of each process consists of a OQLAMBDA
expression. When a process is created, a specified pattern is
matched against the pattern of the QLAMBDA expression,
Processes may be suspended to patterns in a specified tuplebase
of processes. Suspended processes may be resumed by matching
those patterns.

Processes are created in Maya via the function, PROCESS,
vhich has the following fornm:

(PROCESS <schema> <ql> <pattern> [<else>]).
<Pattern> is matched against the pattern argument of the QLAMBDA
expression., Should the match fail, <else> is evaluated if
present or defaults to NIL. Othervise, a new process is created
with the QLANBDA expression as the body of the process. The
process is associated with an object, <schema>, or if NIL is

5: Mava

138

specified, with no object. The association of processes with
schemata is utilized by the system function, COMPLETE, which is
described later.

Once a process is created, its procedure body is executed

until it terminates or 1is suspended. A process may be

terminated by executing the last form in its procedure body or
by executing the EXIT or PAIL functions, Processes may be
suspended via the SUSPEND or COMPLETE functions. SOUSPEND is a
primitive of two arquments, a tuple, <pattern>, and a tuplebase,
<db>, as indicated in:
(SUSPEND <pattern> <db>).

The current running process is suspended to the pattern and is
stored in the specified tuplebase. Control returns to the
process which invoked the now suspended process.

Maya recognizes two types of processes in tuplebases;
suspended processes and paped processes. A suspended process
consists of the segqment of the stack representing the current
state of evaluation of the process plus an associated schema. A
named process consists of either a QLAMBDA expression or a QEXPR
name plus an associated schema. . Suépended processes are added
to a tuplebase via the SUSPEND function. Named processes are
added to a tuplebase as follows

(PADD <pattern><db> (NAMED-PROCESS <ql><schema>)).
This form adds to the tuplebase, <db>, under the pattern,
<pattern>, a named process whose procedure body, <gl>, is a
QLAMBDA expression or a QEXPR name, <Pattern> and the pattern

5: Mavya

139

argument of <gql> must be identical. If <schema> is an object,
the process is associated with the schema represented by the
object. If <schema> is NIL, the process is not associated with
any schema.

The major differences between named processes and suspended
processes are\the folloving. A suspended process may be resumed
only once for each appearance 1in a tuplebase. When it 1is
invoked, the pattern to which it was bound is deleted from the
tuplebase. On the other hand, a named process may be invoked
multiple ¢times from the same pattern in a tuplebase, each
invocation resulting in the implicit creation of a new process,
and the pattern is not deleted from the tuplebase.

Suspended and named processes are resumed by the RESUME
function which takes three arguments: a pattern, <pattern>, a
tuplebase, <db>, and an optional failure form, <elsed>:

(RESOME <pattern> <db> [<else>]).
<pPattern> is wmatched against the tuplebase, <db>. If the match
fails, <else> is evaluated. Otherwise, the process bound to the
matched pattern in the tuplebase is resumed.

It will be noticed that all the top-down and bottom-up
control primitives return items as values. Therefore, functions
such as RESUNME are also generators., 1In the case of process
primitives, they are bottom-up generators. The item returned as
value from RESUME can be operated on by NEXT and FAIL to
sequentially generate and then to resume every process matching
pattern.

5: Maya

140

A schema may have more than one of its associated processes
active at any one time, The stack thus may contain a number of
processes associated with the same schena. All of these
processes have a coamon purpose, to whit, the recognition of an
instance of the schema's stereotype. ¥hen a schena is
successful in its recognition, the efforts of all its processes
need to be suspended. This 1is called completion in the
recognition model. The following function, COMPLETE, provides a
mechanism for suspending all the processes of a schema and
resuming the process of another specified schema or schemata:

(COMPLETE <pattern> <db> [<else>]).
<Pattern> is matched against the tuplebase of processes, <db>.
On success, the current process, P1, is suspended as described
below to a reactivation tag. COMPLETE then resumes the process
matching <pattern>, P2,

This complex function is the main control structure
mechanism in Maya for realizing the control aspects of the
recognition model. COMPLETE supports supergoals, heuristic
met hod scheduling, and method hierarchies. The wmechanism is
based on the assumption that for machine perception tasks all
top-down and bottom-up methods associated with a particular
schema are concerned with the ultimate recognition of that
schema instance, Therefore, when a method associated with a
particular schema has concluded ¢that the recognition of its
instance is complete, all concurrently active methods associated
with that same schema are no longer needed. They must be

5: Mavya

141

suspended, In order to achieve this result, COMPLETE searches
the processor stack to find every occurrence of processes
associated with the same schema as the current process (labelled
P1 above). Bvery such process and its sub-processes are then

suspended. Finally, P2 is resumed.

5.7 Conclusion

This chapter has presented a brief overview of a new
artificial intelligence programming lanquage. The language was
discussed from the perspective of realizing the procedural
mechanisms defined in the recognition model. Although it is
impossible to completely characterize a high-level prograamming
language that introduces new complex control and data structures
in the space available here, a number of its salient features
have been discussed, A tutorial on Maya, designed to augment
the descriptions presented here and to supplement the 1lanquage

reference appearing in Appendix-B, is now in preparation.

5: Maya

142

6.1 Perspective

In this final chapter, the author takes the opportunity to
step back and re-examine the work of this thesis. A
recapitulation of the recognition model is made from the
perspective of its contribution to a theory of machine
perception. Finally, applications for the model are discussed

indicating some promising directions for future research.

6.2 Recognition Revisited

Perception has been characterized as an active recognition
task. Such a view of perception is held by Bobrow and Winograd
(1977) =

Reasoning is dominated by a process of recognition
in wvhich new objects and events are compared to
stored sets of expected prototypes, and in which

specialized reasoning strategies are keyed to these
prototypes (p.4)..

This process is more than a simple passive retrieval from
memory of a stored description of the thing perceived.
Experience is much too varied and complex to depend on such a
mechanisa, We are constantly experiencing new situations,

6= Recognition Revisited

143

seeing nev objects, understanding new sentences. We probably
never perceive exactly the same experience in the same situation
more than once. Thus, perception is a generative process,
composing new descriptions of experience in terms of a stored
finite knowledge of the world (Chomsky, 1957). Jaynes (1976)
arques that perceiving an experience is a process of arriving at
a metaphor to describe that experience.
Generations ago we would understand
thunderstorms perhaps as the roaring and rumbling
about in battle of superhuman gods. We would have
reduced the racket that follows the streak of
lightning to familiar battle sounds, for example.
Similarly today, we reduce the storm to various
supposed experiences with friction, sparks, vacuuss,
and +the imagination of bulgeous banks of burly air
smashing together to make the noise. None of these
really exist as we picture them. Our images of
these events of physics are as far fronm the
actuality as fighting gods. Yet they act as

metaphor and they feel familiar and so we say vwe
understand the thunderstora (p.52).

Thus, descriptions of experience are metaphorical. We
perceive the sensory world in terms of our stored descriptive
knowledge of +that world, In order to develop a theory of
rachine perception, vwe must characterize mechanisas for
epulating ¢this generative process, The specification of a
theory faces two major issues: representation and recognition.
What is the form and organization of memory and what types of
procedural mechanisas can perfornm recognition on that
representation?

The psychological question of amaemory organization is far

6: Recognition Revisited

144

from resolved, There is experimental evidence supporting both
imagery and structural representations (Yuille, 1976). However,
Chase and Simon (1973) have shown that chess masters are much
better at remembering chess board positions from actual chess
games than from random board arrangements. The expert's ability
at remembering random boards approaches that of non-chess
players, thus indicating a definite dependence on structural
descriptions., It seems clear that high-level reasoning depends
predominantly on schematic mechanisas (Pylyshyn, 1976), although
perception most certainly makes use of both imagery and
schemata,

A major aspect of this thesis is the characterization of
perception as an active process that exploits heuristic
knovledge of the world. The value of active heuristic knowledge
has been demonstrated by Winoqrad's (1973a) natural language
system, SHRDLU. His system was a significant advance in the
state of the art, incorporating procedural semantics in a
lanqguage understanding system, The apparent 1lesson of his
research was that procedural semantics is more powerful than
declarative semantics for perforuancé-based systesms. A nmore
insightful lesson 1is that procedural semantics coupled with
hypothesis-driven search provides a mechanism for introducing
heuristic knowledge to guide the perception process., Procedures
are only the vehicle for the improvement in performance, not the
reason, The same capability can be obtained in purely logical
systems, as Hayes (1973) has arqued, by defining deduoctive

6: Recognition Revisited

145

control operators within the formal logic system. Again, such
mechanisms provide the vehicle for introducing active knowledge
into the perceptual process.

Unfortunately, the incorporation of heuristic guidance to
hypothesis-driven recognition has not been a sufficiently
poverful mechanism to solve the w®sachine perception problem.
Winograd (1973b) has noted the appearance of a "complexity
barrier™ to the advancement of the art. The barrier arises fronm
the dependence on top-down search mechanisms. Such methods
require the system to hypothesize the correct interpretation for
some sensory input before it can be found. The deficiency is
not hypothesis~-driven search, but the fact <that a particular
schema must be chosen as a plausible interpretation and
attempted before any of 1its heuristic recognition knowledge
becomes available to direct the search process. Its expertise
comes too late!

Hypothesis-driven recognition has also been proposed for
schemata representations (Minsky, 1975). The recognition model
described by Kuipers (1975) is probably the best known. As was
pointed out, his model attempts to avoid the inadequacies of
top-down search by appealing to a failure-driven similarity
network to recommend 1likely alternative hypptheses. This
mechanism does not confront the real problem. Sensory data is a
highly ambiguous encoding of experience. The interpretation of
sensory data requires a methodology that exploits contexts and
can tolerate large deqgqrees of non-determinisnm. The top-down

6: Recognition Revisited

146

model appeals implicitly to the "little man in the head" or
homunculus theory of perception {(Pylyshyn, 1973)., Consider the
following verbal example given by Kuipers (1975):
A frame [schema)] represents a certain 1limited
domain, and hence a range of variation for obijects
wvhich belong to that domain. As we saw in the room
scenario, the features of a frame may be frames in
their own right, embodying ranges of variation. On
entering a room, you are prepared for certain
typical pieces of furniture, A park bench or
diamond-encrusted throne would be outside the
permissible range of variation in this frame. Such

an anomaly may indicate to the correction mechanism
that another frame is called for (p.159).

In this description, the perception problem has been
finessed by assuming that it is easier to recognize a park bench
than a room. They are, in fact, probiens of the same order of
complexity., Postponing the problem will not solve it. Relying
on the expectations of the room schema to handle all or even
most possible contents of a room abdicates the responsibility of
the search process to failure mechanisms. Upon entering a room
containing an unanticipated object, the search process will
blindly select one bad hypothesis after another until an
"appropriate” schema is found. Only then will that schema's
domain-specific knowledge be available to gquide the recognition.
That knovledge was needed much earlier. One must conclude that
hypothesis-driven recognition is not the mechanism upon which to
build machine perception regardless of the +type of auxiliary
attachments added to improve its performance.

In order to surmount this complexity barrier, machine

6: Recognition Revisited

147

perception requires both hypothesis and data-driven recognition.
Hypothesis-driven search applies heuristic methods associated
with the recognition of a particular schema once a comnmitment
has been made to that schema. Data-driven search provides the
means to select 1likely hypotheses based on the discovery of
supporting evidence and cues. Top-down and bottom-up search
methods can be integrated in a synergistic manner. Bottom-up
search drives the activation of plausible higher schemata as
supergoals. After being established as likely hypotheses, these
schemata attempt to confirm their recognition both by using
top-down search via subgoaling to sub~schemata and by observing
cues in the input data to drive the bottom-up search for other
schemata,

Recently, a number of other models have been proposed for
perception. Mackworth (1977c) has offered the cyclic model
depicted in Pigure 6, 1a which he attributes to the original work
of Roberts (1965). In this model, perception is seen as an
iterative process. The discovery of cues invoke appropriate
models, Models attempt to verify their hypotheses by
observation. Successfully recognized hypotheses cause the
elaboration of the consequences of their models, resulting in
the discovery of new cues.

Pigure 6.1b illustrates a similar cyclic model of
perception given by Neisser (1976) . Schemata represent
expectations which direct the exploration of the sensory world.
Exploration results in observations which match these

6: Recognition Revisited

148

MODEL

/ ELABORATION N

CUE MODEL
DISCOVERY VERIFICATION

Ny, /

INVOCATION

Figure 6.1a

OBJECT
noiijiij//////// Samples
SCHENA >~ EXFLORATION
directs

Figure 6.1b

SCHEMATA
invokes///’—ﬁb direc;gﬁ\\\ ﬁ\\\

EXPECTATICNS . OBSERVATION

matches primitive success I
s CUE < :

DISCOVERY :

abstract ‘/
COMPLETICN

FIGORE 6, 1C

6: Reccgnition Revisited

149

expectations thereby modifying the schemata and propagating the
process, Neisser uses this model to stress the inherently
sequential nature of perception involving the modification of
schemata over time,

Although each author allows for the existence of a
cue/model hierarchy, in neither model is a mechanism for the
perception of cues as abstract entities sufficiently elaborated.
Figure 6, 1c illustrates the recursive model of perception
presented in this thesis. The mcodel can be seen +to generalize
the purely cyclic models of Pigures 6.1a and 6.1b. As in these
models, recognition follows a cyclic path of cue discovery and
schemata invocation., A particular schema may pass through this
cycle a number of times., However, when a schema's recognition
is completed, the recognition cycle ascends one level in a
hierarchy of cues and models., Schemata recoqnized at one level
becomes cues in the recognition at the next higher level in the
hierarchy.

Despite the fact that the necessity of cue/model
hierarchies in the cycle of perception has been clear for some
time (Mackworth, 1976, 1977c), a mechanism for achieving this
goal has not been specified. The major contribution of this
thesis is the precise characterization of such a mechanisn.

The notion of completion provides an explicit mechanism for
capturing the recursive nature of perception., When a schema has
recognized a fully specified instance of its stereotypical
concept, it must return that success to one or more higher

6: Recognition Revisited

150

schemata., If the schema was activated as a subgoal by a higher
schema, it must return its completed description to that schema.
Otherwise, the completed schema has been recognized using
bottom-up methods and has no explicit caller. It then exists as
an abstract cue wvhich attempts to match the expectations of
higher schemata activating them as supergoals. Rumelhart and
Ortony (1976) have addressed similar control structure issues
for schenmata.

It may be helpful to think of these processing
issues in terms of a computer programming metaphor,
for one can think of a schema as being a kind of
procedure, Procedures have subroutines and one can
think of the activation of a schema as being like
the invocation of a procedure. The variables of a
schema are thus analogous to the wvariables of a
procedure while the sub-schemata are analogous to
the subroutines which may be invoked from within it.
The activation of subschemata within a schema is
like the calling-up or invocation of the subroutines
within a procedure. This is the paradigm case of
conceptually-driven processing. However, unlike
ordinary procedure calls, in which the flow of
control is only from procedure to subroutine, the
flow of control in a schema system operates both
ways. It is as though a given procedure not only
could invoke those procedures in which it was itself
a subroutine (data-driven processing). Finally, one
must imagine these procedures as all operating
simultaneously (p.#6).

The realization of this programming metaphor as an operating
programming language is the second major contribution of this
thesis, Maya defines explicit language primitives for creating
schemata and schemata networks, for associating procedural
methods with schemata, and for invoking those methods both as
subgoals using conceptually-driven search and as supergoals

6: Recognition Revisited

151

using data-driven technigues. As well, HMaya utilizes the
completion aspect of the recognition model as a multiprocess
scheduling mechanism for simulating the concurrent application

of methods.

6.3 Applications and Future Research

The issues addressed in this thesis are currently of
interest in a number of research areas. For this reason, the
recognition model and its realization as Maya should have
general applications in such perception research as machine
vision, natural language understanding, . and episode
understanding. Moreover, problems of control in automatic
deduction systems are similar to the control structure issues in
machine perception, Issues of integrated hypothesis-driven and
data-driven recognition are analogous to similar issues of
backward and forward deduction. The ideas developed in this
model concerning active heuristic gquidance and concurrent
methods should also have application there,

Puture research will focus on a specific task domain that
exhibits the following four criteria, Pirst, the task must have
a vell-defined semantics, preferably an explicit conventional
semantic representation such as exhibited by sketch maps
(Mackworth, 1977a). Second, in order to exploit fully the
advantages of integrated top-down and bottom-up recognition, the
problenm should have a highly ambiguous input data

6: Recognition Revisited

152

representation, Third, the problem should inherently have a
hierarchical knowledge representation in order to denmonstrate
the advantages of recursive cune/model hierarchies in machine
perception. And finally, the domain must be generally accepted
as a a perceptual task for which previous recognition mechanisms
have been shown to be inadequate. Possible research tasks
exhibiting these criteria include the interpretation of LANDSAT
video images, the analysis of electronic circuit schematic
diagrams (Stallman & Sussman, 1977), and the understanding of

handwriting.

153

BIBLIOGRAPHY

AHO A. & ULLMAN, J. (1972) The Theory of Parsing, Trapslation,
apd Compiling, vol 1, Prentice Hall, Englewood Cliffs,
H.Jt' pc320-

BARTLETT, F.C. (1932) Remembering, Cambridge Univ. Press,
Cambridge, England.

BOBROW, D.G. & NORHMAN, D.A. (1975) Some Principles of Memory
Schemata, in D.G.Bobrow & A.Collins (eds.,), Representation
and Understanding, Academic Press, New York.

BOBROW, D.G. & RAPHAEL, B. (1974) New Programming Languages
for A. I. Research, Comp. Surveys, vol 6, pp.153-174.

BOBROW, D.G. & WEGBREIT, B. (1973) R Model and Stack
Implementation of Multiple Environments, CACHM, Oct. 1973,
vol 16, #10, p.591.

BOBROW, D.G. & WINOGRAD, T. (1977) An Overview of KRL
Knowledge Representation Langquage, Cognitive Scien

vol 1, #1, Jan 1977.

CHARNIAK, E. (1975) Organization and Inference in a Frame-Like
System of Common Knowledge, Proc. Theoretical Issues in
Natural Languaqge Processing, Cambridge, Mass., June 1975,
p. 46,

CHASE, W. G, & SIMON, H. (1973) Perception in Chess, Cognitive

CHOMSKY, N. (1957) Syntactjic Structures, The Hague: Mouton and
co.

CLOWES, M.B. (1971) On Seeing Things, Artificial Intelligence,

COLLINS, A. & LOFTUS, E. (1975) A Spreading Activation Theory
of Semantic Processing, Psychological Review, vol 82, #5,

COLLINS, A. & QUILLIAN, M.R. (1972) How to Make a Language
User, in Organization of Memory, E.Tulving & W.Donaldson

(eds.), Academic Press, New York.

DAHL, O. & NYGAARD, K. (1976) SIMULA-An Algol-based Simulation
Language, CACM, vol 9, Sept. 1976,

154

DAVIES, D. J. (1973) Popler-1.5 Reference Manual, TPU
Report#1, School of Artificial Intelligence, Univ, Of
Edinburgh, Edinburgh, Scotland. .

EARLEY, J. (1970) An Efficient Context-Free Parsing Algorithm,
CACHM, vol 13, #2, Feb 1970, pp.94-102,

FAHLMAN, S.E. (1975) Thesis Progress Report: A System for
Representing and Using Real-World Knowledge, AIM-331, A.I.
Lab, MIT, Cambridge, Mass.

FEIGENBAUN, E.A. (1963) The Simulation of Verbal Learning
Behavior, in Computers and Thought, Feigenbaum, E.A. §
Feldman, J. (eds.), McGraw-Hill, New York, p.297.

FILLMORE, C. (1968) The Case for Case, in E,Bach & R.I.Harris
(eds.), Oniversals in Linguistic Theory, Holt, Rhinehart &
Winston, New York.

FREUDER, E.C, (1976) A Computer System for Visual Recognition
using Active Knowledge, Ph.D. Thesis, AI-TR-345, MIT AI
Laboratory, Cambridge, Mass.

GELERNTER, H. (1963) Realization of a Geometry Theorem-Proving
Machine, in E.A.Feigenbaum & J,Peldman (eds.), Computers

— s -

GREEN, C. (1969) Application of Theorem-Proving to Problem
Solving, Proc. IJCAI1, Washington, D.C., May 1969.

GUZMAN, A, (1968) Computer Recognition of Three-Dimensional
Objects in a Visunal Scene, MAC-TR-59, Project MAC, MIT,
Cambridge, Mass.

HAVENS, ¥. S. {1976) Can Prames Solve the Chicken and Eqg
Problem?, Proc. First CSCSI/SCEIO Nat. Conf., UBC,
Vancouver, Canada, August 1976.

HAYES, P, J. (1973) Coamputation and Deduction, Proc. 1973 MFCS
Conf,, Czechoslovakian Academy of Sciences.

HENDRIX, G. (1975) Expanding the Utility of Semantic Networks
through Partitioning, Proc. IJCAIY4, Tbilisi, Georgia, USSR,

HEWITT, C. (1972) Description and Theoretical Analysis (using
Schemata) of PLANNER: A Language for Proving Theorems and
Manipulating Models in a Robot, Ph.D. Thesis, A.I. Lab,
MIT, Cambridge, Mass.

155

HEwWITT, C., BISHOP, P,, & STEIGER, R. (1973) A Universal
Modular ACTOR Formalism for Artificial Intelligence,
IJCAI3, Stanford Univ., Stanford, Calif., August 1973.

HUFFMAN, D.A. (1971) Impossible Obijects as Nonsense Sentences,
in Machine Intelligence 6, B.Meltzer & D.Michie (eds.),
Edinburgh Univ. Press, Edinburgh, Scotland.

JAYNES, J. (1976) The Origin of Consciousness in the Breakdown

of the Bicameral Mind, Houghton-Mifflin, Boston.

KAPLAN, R. (1973) A General Syntactic Processor, in R.Rustin
(ed.), Natural Language Processing, Algorithmic Press, New
York.

KOWALSKI, R. A. (1974) Predicate Logic as a Programming
Language, Proc. IFIP74, North-Holland, pp.569-574,

KOIPERS, B.Jd. (1975) A Frame for Prames: Representing
Knowledge for Recognition, in Representation and-
Understanding, D.G.Bobrow & A.Collins (eds.), Acadenmic
Press, New York.

MACKWORTH, A.K. (1975) Consistency in Networks of Relations,
TR-75~-3, Comp. Science Dept., Univ,of British Columbia,
Vancouver, Canada, also Actificial Intelligence, vol 8, #1,
pp. 99"1 18.

MACKWORTH, A.K. (1976) Model Driven Interpretation in

MACKWORTH, A.K. (1977a) On Reading Sketch Maps, TR-77-2,
Dept.of Computer Science, Univ.of British Columbia,
Vancouver, Canada, also Proc. IJCAI-T77, MIT, Cambridge,
Mass., August 1977, p.598.

MACRWORTH, A.K. (1977b) How to See a Simple World, in Machine
Intelligence 8, E.W.Elcock & D.Michie (eds.), Halsted
Press, New York,

MACKWORTH, RA.K. (1977c) Vision Research Strategy: Black Magic,
Betaphors, Mechanisms, Miniworlds, and Maps, Proc, Workshop
on Comp. Vision Systems, June 1977, U. Mass, Amherst, Mass.

BcCALLA, G. (1977) An Approach to the Organization of
Knowledge for the Modelling of Conversation, Ph.D. Thesis,
Comp. Science Dept., Univ.of British Columbia, Vancouver,
Canada.

156

McCARTHY, J. & HAYES, P. {1969) Some Philosophical Problems
from the Standpoint of Artificial Intelligence, in Machine

University Press, Edinburgh, Scotland.

MCDERMOTT, D.V. & SUSSMAN, G. (1973) Son of CONNIVER: The
CONNIVER Reference Manual, MIT AI Lab, Cambridge, Mass.

McDERMOTT, D. V. (1975) Very Large Planner-Like Databases, MIT
AI Lab, Memo 339, Cambridge, Mass., Sept. 1975.

MINKER, J. & VANDENBRUG, G.J. (1973) The Earley Algorithm as a
Problem Representation, Tech., Report TR-247, Comp. Science
Center, Univ.of Maryland, College Park, Maryland.

MINSKY, M. (1975) A Framework for Representing Knowledge, in
The Psychology of Computer Vision, P.Winston (ed.),
NcGraw-hill, New York.

NEISSER, U. (1976) Cognjition and Reality, W. H. Preeman & co.,
San Prancisco.

NEWELL, A, & SIMON, H., (1963) GPS: A Program that Simulates
Human Thought, in Computers and Thought, E.A.Feigenbaum &
J.Feldman (eds.), McGraw-Hill, New York, p.279.

NEWELL, A. & SINON, H. (1972) Human Problem Solving,
Prentice-Hall, Englewood-Cliffs, New Jersey.

NILSSON, N. (1971) Problem Solwving Methods in Artificial
Intelligence, McGraw-Hill, New York,

NORMAN, D.A., RUMELHART, D.E., et.al. (1975) Exploratjons in
Cognition, W.H.Preeman & Co., San Prancisco.

PYLYSHYN, Z. W. (1973) What the Mind's Eye Tells the Mind's

19?3' ‘80' ppl 1_2'“‘

PYLYSHYN, Z. W. (1976) Imagery and Artificial Intelligence, in
W.Savage (ed.), Minnesota Studies in the Philosophy of

—_—— e

Minneapolis.

QUILLIAN, M.R. (1968) Semantic Nemory, in Semantic Information
Processing, M.Minsky (ed.), MIT Press, Cambridge, Mass.,
p.227.

RAPOPORT, A. (1963) Technological Models of the Nervous
System, in K.M,Sayre & F.J.Crosson (eds,.,), The Modelling of
Mind, Simon & Schuster, New York, p.25.

157

REBOH, R. & SACERDOTI, BE. (1973) A Preliaminary QLISP Manual,
Stanford Research Institute AI Lab, Tech Note #81, August
1973,

REITER, R. (1973) Semantically Guided Deductive System for
Automatic Theorem Proving, Proc. IJCAI3, Stanford Oniv.,
Stanford, Calif., Augq. 1973, p.41.

RIEGER, C. (1974) Conceptual Memory: A Theory and Computer
Program for Processing the Meaning Content of Natural
Language Utterances, Ph.D. Thesis, AIN-233, Stanford Univ.,
Stanford, Calf.

ROBERTS, L.G. (1965) Machine Perception of Three-Dimensional
Objects, in Optical and Electro-Optical Information
Processing, J.T.Tippet et.al. (eds.), HIT Press, Cambridge,
HaSS., pp. 159-1974

ROBINSON, J.A. (1965) A Machine-Oriented Logic Based on the
Resolution Principle, JACHM, vol 12, #1, pp.23-41,

BUMELHART, D. & NORMAN, D, (1973) Active Semantic Networks as
a Model of Human Memory, Proc. IJCAI3, Stanford Oniv.,
Stanford, Calif., RAug. 1973, p.450.

RUMELHART, D.E. & ORTONY, A. (1976) The Representation of
Knowledge in Memory, Tech. Report #55, Center for Human
Info. Processing, Dept.of Psychology, Univ.of Calif. At San
Dieqo, La Jolla, Calif.

SAMUEL, A. L. (1963) Some Studies in Machine Learning Using
the Game of Checkers, in E.A.Feigenbaum & J,Feldman (eds.),
Computers and Thought, #McGraw-Hill, New York.

SCHANK, R. (1975) Using Knowledge to Understand, Proc.
Theoretical Issues in Natural Language Processing, MIT,
Cambridge, Mass., June 1975, p.131.

SCHANK, R, & ABELSON, R, (1975) Scripts, Plans and Knowledge,
Proc, IJCAI4, Tbilisi, Georgia, USSR, Sept. 1975,

SCHUBERT, L. (1975) Extending the Expressive Power of Semantic
Networks, Proc, IJCAI4, Thilisi, Georgia, USSR, Sept. 1975,
p. 158,

SLAGLE, J. R. (1971) Artificial Intel
Hill

ligence: The Heuristic
Programming Approach, Mc-Graw- v

New York.

158

STALLMAN, R, M. & SUSSMAN, G. J. (1977) ¥Forward Reasoning and
Dependency-Directed Backtracking in a System for
Computer-Aided Circuit Analysis, Artificial Intelligence,
vol 9, #2, Oct. 1977, p.135.

SUSSMAN, G. & MCDERMOTT, D. (1972) Why Conniving is Better
than Planning, AIM-255A, A.I. Lab, MIT, Cambridge, Mass.

SUSSMAN, G.J., WINOGRAD, T., & CHARNIAK, E. (1973)
MICRO-PLANNER Reference Manual, AT Lab memo #203A, MIT,
Cambridge, HMass.

TEITELMAN, W. (1974) INTERLISP Reference Manual, Xerox Palo
Alto Research Center, Palo Alto, Calf.

Van EMDEN, M. H. (1977) Progqgramming with Resolution Logic, in
Machine Intelligence 8, E.W.Elcock & D.Michie (eds.),
Halsted Press, New York, pp.266-299,

WALTZ, D. L. (1972) Generating Semantic Descriptions from
Drawings of Scenes with Shadows, Ph.D, Thesis, AI-TR-271,
MIT, Cambridge, Mass.

WINOGRAD, T. (1973a) Understanding Natural Langquage, Academic
Press, New York.

WINOGRAD, T. (1973b) Breaking the Complexity Barrier (Again),
Proc. ACHM SIGIR-SIGPLAN Interface Meeting, Nov. 1973.

WINOGRAD, T. (1975) Prame Representations and the
Procedural-Declarative Contraversy, in Representation and
Understanding, D.G.Bobrow & A.Collins (eds.), Academic
Press, New York, pp.185-210.

WINSTON, P. H. (1975) Learning Structural Descriptions from
Examples, in The Psychology of Computer Vision, P.H.Winston

WINSTON, P. H. (1977) Artificial Intelligence, Addison-Wesley,
Reading, Mass.

W00ODS, W.A. (1970) Transition Network Grammars for Natural
Language Analysis, CACH, vol 13, #10, pp.591-606.

WO0ODS, W.A. (1974) Recursive Transition Networks and the
Earley Recognition Algorithm, unpublished working paper,
Bolt, Beranek, & Newman, Cambridge, Mass.

WOODS, W.A. (1975) Whats in a Link, in Representation and

T

Press, New York, pp.35-82.

159

YUILLE, J. C. (1977) The Role of Imagery in Models of
Cognition, Journal of Mental Imagery, 1977, #1.

160

APPENDIX A
EARLEY'S PARSING ALGORLTHM

The followving presentation of Earley'!s algorithm is
intended to supplement the informal discussion of Chapter 3, A
still more formal treatment is provided by Aho and Ullman
(1972) .

We are given a context-free grammar, G={(P,N,K,S), where P
is a set of production rules, N is the set of non-terminal
symbols, K is the set of terminal symbols, and S is the start
symbol which is a distinquished symbol in N. The algorithm
operates on an input sentence, v=a(1)a(2) . . « a(n) and
determines whether w is contained in L(G), the language
generated by G. Upper case letters are used to represent
non-terminal symbols, the lower case letters, ™iw", "4", W% _ and
"n® represent indices, and a(i) is used to represent the 1i'th
symbol in the input sentence. Other lower case letters
represent sentential forms composed of both terminal and
non-terminal symbols.

For 0<j<n, the algorithm constructs parse lists of itess.

An item, [A->m.q,1i] 0£{i<j, is an element of the parse list I (7)
if and only i€ a sentential fornm, rAu, with
r=a(1a(2) . « . afi) can be derived from S and
a(i+1) . . . a(j) can be derived from m, That is, i through 7

Appendix-A: Earley's Parsing Algorithm

161

bracket the portion of w derivable from m, and the production
rule, A-»mq, can be used in the generation of w up to position
4. All items in a parse list, I(j), represent derivations which
agree with v up to position j. The items in a given parse list,
I(j), can be viewed as independent parsers, each attempting to
recognize an instance of its own production rule from the input
sentence,

The alqgorithm is initialized by forming a parse 1list I (0)
containing the single seed item [S-».w,0]. As each new input
symbol a(j+1) of w is read, the algorithm generates a new parse
list I{(j¢1) from I{0) . . I{(j). This process continues until
the last symbol a(n) in w is read and I(n) generated, or until
no new parse 1list can be generated, indicating w is not
contained in the language of G. If, at the end of this process,
an item, [S-»m.,0], is contained in I(n), then w is in L(G).

The algorithm proceeds by the cyclic application of three
until the last symbol is read from w or until some I(4§) is found
to be empty. First, the predictor computes from the rules of G
and the derivation found to date.vhat derivations may possibly
follow, It spawns new parsers to look for these derivations.
If [A-»m.Bq,i) is an element of parse list I(j), and B->»r is a
rule in P, then [B-».r,j] is added to I(j). The index, 9, in
the item indicates at what position, j, in the parse a new
parser was created to look for the right-hand-side of the rule,
B=-»r. See Figure A. 1.

Appendix—-A: Earley's Parsing Algorithm

m a e q
i l A
'S =N {
B s s wow 0 B B e W@ v 5 BR

Figure A.2: The Scanner Functicn

ak . & = a‘i a‘i+1 . . . a‘] an

Fiqure A.,3: The Completer Punction

162

Pppendix-A: Earley's Parsing Algcritho

163

Next, the scanner function, by reading the next symbol,
a(j+1), from w generates a seed item for the next parse list,
I(j¢+1). Por each [B->m.aq,i) that is contained in I (i) and
w=a(l1l) .« « a{f)a . . a(n) then [B-»ma.qg,i] is added to I (j+1).
The scanner propagates all parsers in I{(j) to the next parse
list that were expecting a(j#1) to appear next in the input
sentence, As 1is illustrated in Piqure A.2, the scanner
increments the internal state of an item by moving the parsing
dot one terminal symbol to the right.

The completer function performs bottom-up reductions of
sentential forms that appear as right-hand-sides of production
rules in P to their non-terminal left-hand-sides, If [A->r.,i]
is an element of I(j), then the non-terminal symbol, A, has been
recognized in w. From I(i), the generating item, [B-2m.Aq,k] is
found and [B-»mA.qg,k] is added to I(j¢#1). The completer acts as

a scanner for non-terminal symbols, as is shown in Fiqure A.3.

Appendix—-A: Earley's Parsing Algorithm

164

This manual is a description of an Artificial Intelligence
programming language called MAYA. 1Included in this lanquage are
facilities for performing pattern matching, primitives for
constructing semantic networks and schemata, vprimitives for
creating and manipulating processes, and control structures for
inteqrating top-down and bottom~up Ssearch techniques. The
language is designed as a dialect of LISP having a number of
extensions and a few restrictions, The extensions will be
described in detail in the following pages and the restrictions
will be noted as well,

B.1 Relating to MAYA

This section explains the operation of the interpreter.
Since this language is experimental, it is subject to occasional
changes in behaviour, Most changes will be upwardly compatible
and this document will be promptly edited to reflect those
changes.

To run HMAYA under MTS:

$RUN CS:LISP SCARDS=CS:LOADER+*SOURCE*
(RESTORE MAYA:SYSGEN)

MAYA will be started in a top-level EAR and the creation date
for the current version of the interpreter will be printed.

The following list of functions are the basic mechanisms
for controlling the interpreter. The form of each function call
is given followed by the type of the function., EXPR, NEXPR, and
FEXPR type functions can be used from both MAYA and LISP.
Square brackets indicate optional arguments, and the asterisk is
used as the Kleene star indicating zero or more repetitions.

MAYA Language Reference

165

1. (MAYA) [EXPR]}

Executed from LISP. Initializes the processor and enters
a a top-level EAR.

2. (HALT [<form>)) {3FSUBR}
The value of <form> is returned to LISP. If no arqument

is supplied, NIL is returned. HALT leaves the current
invocation of the processor intact.

3. (RESTART <form>) {NEXPR}
Executed from LISP. Restarts the interpreter from the
previous HALT. Computation proceeds with <form>

substituted for the call to HALT. RESTART and HALT can be
used as a co-routine mechanism between MAYA and LISP,
HALT returns a value to LISP at the point the interpreter
was called, leaving the process intact. RESTART returns a
value to MAYA at the point that the process was previously
halted.

4, (DINIT) {(EXPR}

Reinitializes the processor. Meaningful only from LISP.
If evaluated from MAYA, a warning is given and NIL is

returned.
5. (EAR) (?SUBR}

Enters a READ-EVAL-PRINT loop. Since HAYA permits
multiple co-existant processes, this function permits the
user to create multiple READ-EVAL-PRINT 1loops. Reads
forms from each <file>. Each form is MAYA EVALed.

6. (INFILE <file>¥) {dSUBR}

This function 1is analogous to DISKIN in LISP. There is
however no DISKOUT analogue because MAYA function
definitions may be local to objects in the data base,

Since MAYA makes use of both read and print macro
characters, it is unwise for the user to prefix his own atoms
with these characters, The characters reserved by MAYA are:

nrn wmin
- r

= H¢N' Hs“' and ﬂa".

The "a" is not actually a macro character but all MAYA internal
names begin with this character. 1If it is inconvenient to abide

MAYA Language Reference

166

by these conventions, then the following two functions may be
used.

7. {(@?0FF-STATUS) [EXPR}
Turns off read macro processing.
8. (RON-STATUS) {EXPR}

Turns on read macro processing.

To facilitate communication between LISP and MAYA, two
prefixes are provided. Prom LISP, #¢<form> will return the MAYA
value of <form>. From MAYA, $<form> will return the LISP value
of <form>, For example, from LISP, ¢$2$5¢3¢$¢$(FO0) will return
the LISP value of (FOO). Note that (MAYA) is (RINIT) followed
by ¢ (EAR).

B.2 The Database

Many of the primitive functions defined in MAYA are
concerned with creating objects, forming semantic networks from
objects, searching arc paths through these networks, and
interpreting objects as schemata. These functions c¢reate and
manipulate objects and the schemata and nodes that can be
created from objects.

9, (OBJECT <typed><pair>¥) [?FPSUBR & PEXPR}

Each <pair> is of the form, <name><form>. OBJECT creates
a new object of the user type, <type>, having for each
<pair> a binding defined between the name, <name>», and its
definition, <formd. OBJECT evaluates its odd arguments,
and its even arguments must be <ATOM>s. Note that both a
MAYA and LISP version of this function are included in the
systen.

Example:

_ (OBJECT 'NODE CLASS '"TABLE HAS-AS-PARTS (LIST *LEGS ?TOP))
] (20BJECT® NODE CLASS TABLE HAS-AS-PARTS (LEGS TOP))

10. (NEW <object> <paird>*) {(@FSUBR & FEXPR}

If <object> is not an object, an error occurs. NEW
creates a new instance of <obiject> of type, @INSTANCEA.

MAYA Lanquage Reference

167

The new object consists of the bindings of <paird>s
concatenated with <object). The new instance is of the
form:

(0BJECT? QAINSTANCE®@ <paird>*) || <obiject>,

vhere || indicates list concatenation. Note that both a
MAYA and LISP version of this function are included.
Example:

(PUT* *DOG (OBJECT 'GENERIC NAME '"DOG CLASS "MAMMALIA))
(20BJECT®2 GENERIC NAME DOG CLASS MAMMALIA)
(NEW DOG NAME °*PLOYD OWNER *BILL)
{?0OBJECT? @INSTANCE? NAME FLOYD OWNER BILL ®20BJECT®
GENERIC NAME DOG CLASS MAMMALIA)

s om |

11. (OBJECTP <thing>) {EXPR}

If <thing> is an obiject, its type is returned. Else NIL
is returned.

12. (STEREO <object>) {? SUBR}

If <object> is an instance, its stereotype object is
returned. If <object> is object but not an instance of
some other object, <object> itself is returned., Else NIL
is returned.

13. (GET* <name> [<else>)) [?SUBR & EXPR}

Fetches the definition of <name> from within the enclosing
obiject. Both a MAYA and a LISP version are provided, 1If
there is no <name> defined in the enclosing object, <else>
is evaluated. If <else> is not given, NIL is returned.
If there is no enclosing object on the stack, the aqglobal
object is taken to be the enclosing obiject.

Examples:

(GET* Y CONS)
{(30BJECT? @PLIST? SUBR *)
(GET* *DFDPDGGGG *"ELSE)
NIL
:NOTE: GLOBAL OBJECT HAS EVERY NAME DEFINED.
(SEND (OBJECT 'TYPE A 'ADEF)
(GET* 'R))

s

a |

! ADEP

(SEND (OBJECT *TYPE A ‘*ADEF)
~ (GET* 'B ''ELSE))

! ELSE

MAYA Lanquage Reference

14,

15.

168

(PUT* <name><form>) {EXPR}

Puts within the enclosing object the binding of <name> to
its new definition, <form>. <Name> must be atomic. If a
previous definition existed, it 1is replaced. If no
enclosing object exists on the stack, the binding is added
to the global object, i.e., the CDR of <name> is set to
<form>. If the enclosing object is an instance of some
parent sterotype object, the stereotype object is
gquaranteed to remain unaltered. PUT* returns <form>.
Examples:

(PUT* *A YADEF)
ADEP

A

ADEF
(CDR 'A)
ADEF
(: (PUT* *B (OBJECT 'NODE))
(PUT* *C ‘CDEF)
{SELF))
(?0BJECT? NODE C *CDEF)

= B
! (?0BJECT® NODE C 'CDEF)

(REM* <name>) (@SUBR)

Removes the definition of <name> from the enclosing
object. If there is no enclosing object on the stack, the
CDR of the atom, <name>, is set to NIL. If the enclosing
object is an instance, its stereotype object remains
unaltered, REM returns the binding of <name>. If the
binding of <name> is not defined in this object or within
this instance, NIL is returned.

Examples:

B

(20BJECT@ NODE C *CDEF)
(SEND B (REM* *C))
NIL

]

B

(?20BJ ECT@ NODE)
(REM%® 'B)
NIL

B

s |

NIL

MAYA Language Reference

169

16. (SELPF) {@SUBR}

Returns the current enclosing object from the stack. If
there is no enclosing object, an error occurs,
Examples:

_ (: (OBJECT 'TYPE A 'ADEF)
(PUT* *'A 'NEW-ADEF)
(SELF))
(?OBJECT® TYPE A NEW-ADEF)

(SELF) = ERROR: NO ENCLOSING OBJECT ON THE STACK

17. (ITEM <pair>%¥) [@SUBRY}

Each pair is of the form, <name><value>., ITEM creates a
new item containing a new instances of each variable,
<name>, having value, <value>. ITEM evaluates its even
arquments, and its even arquments must be atoms. The new
item is returned as value.

Example:

(ITEM X *XVAL Y (LIST 'YYY))
(dITEM@ NIL X XVAL Y (YYY))

(SETQ X *XVAL)
XVAL

_ (s (ITEM X *22Z Y 2X)

(PRINT ?Y)

S 3

! XVAL

! 727

18. (SET <pair>#*) {@SUBR)

Each <pair> is of the form, <name><value>. SET binds each
variable name, <name>, to its new value, <value>, SET
evaluates all its arquments and its odd arguments must
evaluate to atonms, SET returns the value of the last
<pair>.

19. (SETQ <pair>*) {?FSUBR}
Each <pair> is of the form, <name><value>. SETQ behaves
as SET except it evaluates only its even arquments. Both
SET and SETQ search the stack 1looking for the first

MAYA Langquage Reference

170

occurrence of the variable, <name>., If no variable exists
on the stack having name, <nmame>, the LISP value of the
atom, <name>, 1is changed to <value>. Note that only the
variable, <name>, is changed and not the definition of the
atom, <name>. SET and SETQ bind values whereas PUT* binds
definitions,

20. (DEFOUN <defn>) {FEXPR}

DEFUN has been extended to permit the definition of @EXPR,
®NEXPR, @FEXPR, and OQEXPR type functions., DEFUN may be
used from either MAYA or LISP to define any of the
function types from both lanquages. DEFUN always adds its
definition, <defn>, to the enclosing object and may
therefore be used to provide function definitions local to
specfic objects. DEFPOUN honors instance boundaries.
Examples:

_ (DEPON TEST NIL (PRINT °*OUTSIDE) T)
! TEST
(SEND (OBJECT *CONTEXT)
(DEFUN TEST NIL (PRINT 'INSIDE) NIL)
(TEST))
INSIDE
NIL
(TEST)
OUTSIDE
T

- v |

21, (@ P1 P2 , . « Pn) (#FSUBR & FEXPR}

The tuple evaluator. The value of a tuple is a new tuple
of the values of its elements, P1, P2, . . . Pn. The
tuple evaluator uses inverse quote mode during evaluation,
Atoms and matcher variables are treated as constants,
i.e., they evaluate to themselves. All other forms are
EVALed, note that (2 P1 P2 . . . Pn) can be abbreviated
using angle brackets as <P1 P2 . . . Pn>. Both a MAYA and
a LISP version are included. Note also that angle
brackets cannot be used as LISP super-parentheses.
Examples:

<A B ©>
<A B O

<'A (LIST 'B 'C)>
<A (B C)>

(SETQ Y 'YVAL)
YVAL

_ <A <B 1:1> >

MAYA Lanquage Reference

171
! <A <B !:X> YVAL>

22. (TUPLEP <thing>) {EXPR}
Returns T if <thing> is a tuple, else returns NIL,

23. (VARP <thing>) {EXPR}

Returns the name of <thing> if it is a MAYA varlabln, else
NIL, Pattern variables return NIL,

24. (ITEMP <thingD) {EXPR}

Returns T if <thing> is an item, else NIL.
B.3 Evaluation

The following paraqgraphs describe the function types
included in MAYA, Valid LISP functions are acceptable and are
executed directly by LISP for HMAYA,. In addition to LISPt's
function types, the interpreter also recognizes the following

types:
#SUBR, @FSUBR, ®EXPR, @NEXPR, RPEXPR, and QEXPR.

If desired, the interpreter may be extended to include other
function types as well., Please see ne for details.

@#SUBR's and @FSUBR's are the system supplied functions of
MAYA, @SUBRs evaluate their arquments but aFSUBRs bind the list
of unevaluated arquments to their single paramater, as expected.
®EXPR, ®NEXPR, and ®FEXPR are MAYA's user defined function types
that are analogous to their LISP. counterparts. QEXPR type
functions are somevhat analogous to the Q-type functions of
QLISP (Reboh, 1973). QBEXPRs are implemented wvia QLAMBDA
expressions and take a single tuple as arqument, They return as
value an item representing the result of a pattern match between
the tuple arqument and the tuple pattern of the QLAMBDA
expression. Please see the sections on pattern matching,
Generators, and Recognizers.

The interpreter uses the following algorithm when applying
a function to its argquments:

e TIf the function 1s an @SUBR or an ®EXPR, its
arquments are evaluated and the function is applied to

MAYA Language Reference

172

their values,

e« TIf the function is an @PSUBR or an ®FEXPR, then the
function is applied to the 1list of unevaluated
arguments.

e TIf the function is an ANEXPR, it is applied to the
unevaluated arguments,

» If the function is a QEXPR, the tuple argument is
evaluated and the pattern matcher called on the value.
If the match succeeds, the function is applied to the
result.

» Else the function is a LISP form. If it is a SUBR
or EXPR, the arguments are evaluated and the function
is LISP APPLYed to the result. If the function is an
NEXPR, FEXPR, NSUBR, or FSUBR, then the form is LISP
EVALed.

Functions which make no use of the parallelism, control
structures, or data structures of MAYA can be writtem in LISP
and executed from MAYA thereby gaining a considerable increase
in efficiency. While in LISP, any forms defined within MAYA can
be evaluated via the "¢" prefix and references to MAYA variables
can be fetched via the "?%" prefix.

25. (AVAL <form>) {2SUBR}

MAYA evaluates its argqument, <form>. If <form> is a list
whose CAR is an atom, AVAL fetches the MAYA function from
the first definition of the atom on the stack. If there
is no function definition within the first occurrence of
the atom on the stack, an error occurs.

26, (EVAL <form>) {2SUBR}

MAYA evaluates its arqument, <form>., If <form> is a list
whose CAR is an atom, EVAL fetches the function defimition
from within the global obiject, That is, EVAL fetches
function definition from the PLIST of the aton. EVAL is
therefore faster than AVAL, but does not recognize
function definitions local to enclosing obijects. MAYA
functions use EVAL for evaluation unless otherwise noted.

27. (SEND <A1><A2> . . . <An>) {@FSUBR}
SEND AVALuates each element in the sequence,
<A1D><A2> . . <An>, in a left-to=-right order. If the value
returned from <Ai> is an object or anm item, then it is

MAYA Lanquage Reference

1713

pushed onto the stack. Next, <Ai+1> is evaluated in this
new environment, The final value returned from SEND is
the value of <An>. SEND may be abbreviated by a single
colon, "m:%,

Examples:

_ (SEND PRINT)
! (?OBJECT@ @PLIST@ SUBR *)
_ (: PRINT SUBR)
! *
(SETQ NET (OBJECT 'NODE))
~ (s ?NET
(PUT* 'A (OBJECT *'NODE))
(PUT* *'B (OBJECT *NODE))
(PUT* 'C CDEP))
CDEF
(SEND ?NET (PRINT A) (PRINT B) {PRINT C))
(ROBJECT? NODE B (@0BJECT@ NODE C CDEF))
(3OBJECT? NODE C CDEP)
CDEF
CDEF

e sas es |

B.4 Error Conditions and the DEBUG System

There are two classes of errors that can occur during the
execution of MAYA. They are errors trapped by MAYA and errors
trapped by LISP, Errors trapped by MAYA cause an "appropriate"
error message to be printed and MAYA's DEBUG System to be called
on the form causing the error, This form is called the
Breakform, Note that there is one exception. If the error
detected by MAYA is an undefined name or an undefined wvariable
occuring at the top-level of an EAR, then the error messaqge is
printed but an immediate return is made to the EAR. In this
case, there is no form to BREAK on.

The second class of errors cause a LISP BREAK to be entered
for one of the following reasons:

e A LISP error occurred in a user's LISP function.

» An unexpected condition occurred within the interpreter
causing it to abnormally terminate.

» An error occurred within a MAYA EXPR, NEXPR, or FEXPR
type function.

If a LISP BREAK is entered for one of the above reasons, and the
user desires to be instead in a MAYA BREAK, a transfer may be
made using the function, OOPS, described below,

MAYA Language Reference

174

The DEBUG System provided in MAYA is modelled after the
LISP/MTS DEBUG Package., Most of the facilities included in the
LISP system are provided in MAYA and a familiarity with the LISP
DEBUG Package is assumed here. MAYA's DEBUG System can be
called in a number of ways. It can be called explicitly on a
form via the functions, DEBUG and BREAK, The system may be
called implicitly on the body of a function via setting a
Breakpoint in that function. And lastly, the DEBUG System is
called by the interpreter whenever a MAYA error occurs.

The LISP BREAK functions, BREAKF, UNBREAKF, and UNSET, have
been modified to work with ®EXPR, and QEXPR type functions as
well as EXPRs. As in LISP/MTS, Breakpoints can set on an entire
function, or a form within a function. Both types may bhave an
optional predicate which determines whether the break is
acknowledged when encountered. However, care must be taken with
the LISP global atoms, "?BREAKSWY", "?DEBUG", and "?BROKEN", If
they are to be altered or examined, they must be enclosed in
double quotes to prevent them from being treated as variables by
MAYA or alternatively, read macro processing can be disabled via
d0FF-STATUS,

Care must also be taken with local function definitions.
To set a Breakpoint on FOO within some object, FR1:

(: FR1 (BREAKF F00)).
To negate the Breakpoint, you must again "GOTO" that object:
{: FR1 (UNBREAKF F00)) or

(: FR1 (UNSET)).

28. (DEBUG <form>) {@PSUBR}
Calls the DEBUG System explicitly on <form>.

29, (BREAK <message>¥*) {®SUBR}
BREAK is provided as a user errror handler. It prints
each <message> on BERROUT then calls the DEBUG System on
the current form being evaluvated, i.e., in most cases
BREAK itself,

30. (OOPS) {EXPR}

A very useful function! OOPS allows the user to recover
from a catastrophic error that has caused a LISP break to
be entered. 00PS will return control to MAYA's Break

NAYA Langquage Reference

115

package with the form that was being evaluated in MAYA at
the time of the error as the Breakform,
00PS may also be used to Break on MAYA @SUBRs and @FSUPRs by
setting a LISP Breakpoint on the internal MAYA routine. When
the LISP Break is acknowledged, typing (00PS) will transfer
control back to MAYA's Debug System with the MAYA @SUBR or
@FSUBR as the Breakform.

31. {@BK) {EXPR}
Prints a possibly long backtrace of the stack.
32. (@TRACE) {EXPR}

Begins the printing of a trace of the evaluation of each
non-atomic form. The form is printed before its body is
entered.

33. (@UNTRACE) {EXPR}
Turns off tracing.

A summary of the commands recognized by the DEBUG Systen
followus:

BK (n] Abbreviation: none
Prints a backtrace of the stack starting at the
stack-pointer for length "n" which defaults to 10.

BKO [n] Abbreviation: none
Prints a backtrace of all objects and items on the
stack starting at the stackpointer for a length of "n"
which defaults to 10.

BKE [n] Abbreviation: none
Prints a backtrace of all MAYA forms on the stack
starting from stackpointer, "n" defaults to 10,

* Abbreviation: none
Prints the Breakform. Note that din MAYA, the
Breakform is never on top of the stack at the time the
BREAK is entered.

PP Abbreviation: none
Pretty-prints the form where the stack-pointer points.

PP* Abbreviation: none
Pretty-prints the Breakfornm.

MAYA Language Reference

176

PRINT Abbreviation: P
Prints the form where the stackpointer points.

TOP Abbreviation: none
Resets the stackpointer to the top of the stack. Note
that since Breakform has not been pushed onto the
stack at +the time the BREAK occurs, the top of. the
stack and Breakform do not coincide, The top of the
stack is always the form that called Breakform.

FIND <loc>* Abbreviations: F
Finds a form on the stack and sets the stack-pointer
to that point. Each <loc> is either a number of forms
to move the stackpointer down the stack or the name of
a function on the stack.

GO [<loc>*) Abbreviation: G
Pinds a form on the stack as in the FIND command, then
restarts computation BREAKing on that form. <Loc> may
be onmmitted.

RETURN <form> Abbreviation: RET
Evaluates <form> and returns it as the value of the
Breakfornm.

RESTART [<form>] Abbreviation: RES

Restarts computation from where the stackpointer
points using <form>. If <form> \is not coded,
computation is restarted using the previous form on
the stack.

CONTINUE Abbreviation: C CO
Continues with Breakform, If Breakform has been
previously evaluated via the EVAL command, it will not
be re-evaluated.

STEP [n] Abbreviation: S
Steps through the evaluation of the next "n" forms and
generates a new BREAK. *n" defaults to 1,

NEXT Abbreviation: N NX
Evaluates Breakform and breaks on the next form. If
Breakform has been previously evaluated via the EVAL
command, it will not be re-evaluated.

EVAL Abbreviation: E
Evaluates Breakform and prints its value. Note that
Breakform is AVALUATEd.

up Abbreviation: |
Causes the DEBUG System to ascend one level., If there

MAYA Language Reference

177

is no higher BREAK 1level, control is returned to
top-level.

STOP Abbreviation: NIL ||
Causes a return to top-level.

EDIT [<loc>%*] Abbreviation: ED
Calls EDITE on the form where the stackpointer points.
If <loc>* is coded, an implicit PFIND command is
executed,

Any form typed at DEBUG other than the above commands or
there abbhreviations will be AVALed and its value printed, Note
that the DEBUG System always