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This thesis is concerned with aspects of a theory of 

machine perception. It is shown that a comprehensive theory is 

emerging from research in computer vision, natural language 

understanding, cognitive psychology, and Artificial Intelligence 

proqramming language technology. A number of aspects of machine 

perception are characterized. Perception is a recognition 

process which co111poses new descriptions of sensory experience in 

terms of stored stereotypical knowledge of the world. 

Perception requires both a schema-based formalism for the 

representation of knowledge and a model of the processes 

necessary for performing search and deduction on that 

representation. As an approach towards the development of a 

theory of machine perception, a computational model of 

recognition is presented. The similarity of the model to formal 

mechanisms in parsing theory is discussed. The recoqnition 

model integrates top-down, hypothesis-driven search with 

bottom-up, data-driven search in hierarchical schemata 

representations. Heuristic procedural methods are associated 

with particular schemata as 11odels to quide their recognition. 

Multiple methods may be applied concurrently in both top-down 

and bottom-up search modes. The implementation of the 

recoqnition model as an Artificial Intelligence proqramminq 

lanquaqe called KAYA is described. MAYA is a multiprocessing 
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dialect of LISP that provides data structures for representing 

schemata networks and control structures for inteqratinq 

top-down and bottom-up processing. A characteristic exaaple 

from scene analysis, written in ~AYA, is presented to illustrate 

the operation of the model and the utility of the proqramminq 

language. A proqraaming re .ference ma nua 1 for flAYA is included. 

Finally, applications for both the recognition model and ~AYA 

are discussed and some promising directions for future research 

proposed. 
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~ff!f!~R 1: INTRODUCTION 

The creation of intelligent automata has been a compellinq 

dream of mankind for millennia. Each advancement in the 

sophistication of our technology has been seen as a new tool for 

the understanding of ourselves. Hydraulics, clockworks, the 

steam engine, and the telephone switchboard have each, in their 

time, been metaphors, taken as theories of the functioning of 

the mind (Rapoport, 1963). Only in the last few years, however, 

with the invention of the von Neumann digital computer has the 

realization of intelligent machines been a serious possibility. 

Such a possibility, encouraged by the early successes of Samuel 

(1963), Gelernter (1963), Newell and simon (1963), and others, 

created high expectations. Unfortunately, these expectations 

have been maddeningly difficult to realize. In particular, we 

do not yet have an adequate theory of perception as part of an 

overall theory of machine intelligence. However, as Mackworth 

(1977c) points out, elements of such a theory are emerging. 

This thesis is concerned with aspects of this developinq 

theory of machine perception. This work is motivated by the 

belief that perception can be characterized as a recoqnition 

by plans and expectations and driven by process guided 

observation at d experience. A theory of machine perception is 

seen as having tvo major parts a formalism for the 

representation of knowledge and a model of the processes and 

1: Introduction 
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control structures required to perform search and a.eduction on 

that representation. The distinction between representation and 

process is emphasized in order to point out an aspect of machine 

perception that has not been sufficientlv developed. Presented 

in this thesis is a procedural model of recognition for 

perception. The 

for perception 

model is intended as a computational paradigm 

research and is based on the following 

characterization of perception. 

Perception is a recognition process that composes new 

descriptions of observed experience in terms of stored 

stereotypical descriptions of the world. The new knowledqe 

created in this process is abstract and relational, the 

formation of the description of a percei~ed concept. Perception 

is seen to exploit the sequential nature of evervday experience 

by assuming causal relationships among events and observations. 

Perception is a non-deterministic process. our sensory 

experience of the world can be ambiguous and often illusory. 

Likewise, the knowledge by which we interpret sensory experience 

is incomplete and often erroneous. Yet perception operates in 

this uncertain environment. The percept~al process must 

tolerate non-determinacy by exploiting context and allowing 

multiple partial interpretations to be hypothesized and their 

confirmation attempted concurrently. 

Perception is bDth an active process quided by hypothesis 

and expectation and a passive process driven by events and 

sensory observation. Observations act as cues which stimulate 

1: Introduction 
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both the format.ion of bypotheses and the activation of heuristic 

knowledge associated with specific hypotheses. such 

hypothesis-specific knowledge is used to direct the recognition 

process by making observations, creating new expectations, and 

attempting to satisfy those ei:pectatio .ns. 

Perception is also a recursive process. Cues are not 

solely primitive observations bat may be, in fact, the result of 

perception. The perceptual process uses the description of some 

successfully perceived concept as an abstract cue in the 

perception of higher concepts. 

As an approach towards a theory of machine perception, a 

procedural model is presented based on these characterizations. 

The model provides an integrati~n of top-dovn, hypothesis-driven 

search with bottom-up, data-driven search in hierarchical, 

schema-based knowledge representations. The model defines 

explicit mechanisms for employinq recursive cue/model 

hierarchies in perception. Heuristic procedures, called 

mg!hQA§, are used to quide the recognition pro=ess. ~ethods are 

associated with specific stereotypial schemata to drive the 

recoqnition of instances of those schemata. ftethods may be 

applied in both top-dovn and bottom-up search modes and a number 

of methods 11ay be active simultaneously. The model defines 

mechanisms of communication and coordination between concurrent 

methods and also defines a deductive method-schedulinq technique 

based on the notion of computing a method's applicability to the 

perception process. 

1: Introduction 
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As an implementation of the perception moiel, a proqram111inq 

lan guaqe called Ma va has been developed. Th is proqra 11 ■inq 

language is designed as a ■ultiprocessinq dialect of LISP and 

provides data structures for constructing, manipulating, and 

accessing schemata-based knovledqe representations. As well, 

Maya defines control primitives for integrating top-dovn and 

bottom-up processinq. The lanquaqe also provides mechanisms for 

creating and scheduling processes deductively and for 

coordinating the interaction of processes. 

In presenting the model of recognition 

implementation, the thesis takes the following form: 

and its 

Chapter 2 

reviews the contributions of recent research to the evolution of 

a computational theory of perception. Examined are specific 

representational theories, programming languages, and perception 

programmes. Chapter 3 presents the procedural recognition model 

in dettil. Chapter 4 presents a s■all but characteristic 

example from coaputer vision to illustrate the benefits of the 

model and to demonstrate the utility of Maya as a programming 

lanquage. Chapter 5 provides an overview of the design of Mava, 

a description of its features, and a small tutorial on ~aya 

programming style. Chapter 6 re-examines other relevant 

artificial intelligence research from the perspective of the 

procedural model presented here. The relevance of this work to 

the study of machine perception is investigated and suqqestions 

are given as to the possible directions of future research. 

1: Introduction 
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2.1 Introduction 

If the dreaa of intelligent automata is to be realized, 

there must exist a body of underlying principles from which 

these machines will be built. The discovery of this body of 

knowledge will have a profound effect on mankind. Its 

principles will be manifest in mathematics, psvcholoqv, computer 

science, linguistics, philosophy, and all other branches of 

science concerned vith human reasoning. Its ultimate 

implications for our society will be felt in now unimaginable 

ways. 

An apparent conYergence of ideas about the orqanizat4\.on of 

memory, the understanding of language, the representation of 

knowledge, 

that there 

and the machine perception of visual images suggests 

must exist computational mecha nis ■s qoverninq 

perception. The fact that similar mechanisms are being 

investigated in the fields of cognitive psychology, artificial 

intelligence, and linguistics indicates that these underlvinq 

principles may reside not too far from the surface of our 

present knowledge. In this chapter, a review of some evidence 

from recent research supporting this view is presented. 

2: Mechanisms for Machine Perception 
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2.2 Artificial Intelligence and Psychology 

Both cognitive psychology and artificial intelligence are 

co.ncerned with understanding the mechanisms of perception. The 

computer has given psychologists both an information processing 

metaphor for visualizing cognitive mech3nisms and a laboratory 

in which to experiment vi th these mechanisms. In exchange, 

their experiments have <Jiven artificial intelligence a test of 

the validity of our computational mechanisms as a theory of 

human perception. The approach of many resear=hers (Rumelhart & 

Norman, 1973) (Collins & Quillian, 1972l (Newell & Siaon, 1972) 

has been to propose an information-processing •odel of some 

particular aspect of perception, memory, or learning; then to 

compare the behavioural adequacy of the computer simulation to 

the behaviour of human subjects given the same task. 

A significant early example of this approach is the GPS 

model of human problem solvinq (Newell,1963). The model uses a 

simple "back-chaining" scheme of breaking a problem down into 

smaller and smaller sub-problems until proqress on some 

sub-problem can be made. 

Another example is the EPA" model of verbal learning 

developed by Feigenbaum (1963). The model uses a discrimination 

tree as an associative memory for nonsense syllables. At each 

node in the tree, only sufficient information is retained to 

perform a binary discrimination test at the time the node is 

constructed. As more nonsense syllables are added to the 

2: Mechanisms for Machine Perception 
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test becomes insufficient for proper 

This leads to such retrieval errors as a 

failure to respond to a stimulus, confusion between similar 

stimuli, and oscillation between correct and incorrect 

responses. 

An important contribation to the development of machine 

representations of knowledge is Quillian•s (1968) proposal of 

semantic networks as a aodel of human memory. His work models 

memory as an arc-labelled directed graph structure in which 

nodes represent arbitrary concepts and arcs represent typed 

binary relationships between concepts. The meaninq of a concept 

in the network is considered to be the entire network as viewed 

from the concept node. 

As a representation scheme for machine perception, semantic 

nets have an appealing property. The meaning of a concept is 

not represented as a set of isolated facts, but as an 

encyclopedic network of relationships with other concepts. 

Although this representation is extremely rich in its structure, 

Woods (1975) has analyzed these relationships and points out a 

number of problems and misconceptions. Recently, Schubert 

(1975) has extended the representational power of semantic 

networks to incorporate logical quantifiers and connectives. 

Hendrix (1975) also has augmented the representation with a 

partitioning mechanis m to iricorporate q~antification and 

hypothetical situations. 

Quillian•s oriqina~ research and the more recent vork of 

2: "echanisms for Machine Perception 
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Collins and Loftus (1975) have modelled human memory search as a 

parallel spreading activation process in a semantic network. 

From two concept nodes, the search proceeds in a breadth-first 

manner to each of their neiqhbours until a path intersection 

occurs. The types of arcs traversed durinq the search are 

supposed to represent the semantic relationship between the two 

concepts. 

2.3 Programming Languages 

A number of artificial intelligence proqramming languages 

suggest aspects of a computational theory. These lanquaqes 

include both a scheme for representing knovledqe and a control 

structure scheme for operating on that representation. The most 

popular such language has been the partial implementation of 

Hewitt •s ( 1972) Planner language, called r.icro-Pla nne .r (Suss11an, 

1973). Hevitt•s language provides a procedural realization of 

an incomplete higher-order logic system. In Planner, facts are 

represented declaratiYely as n-tuple patterns in a qlobal 

associative database and as procedures, called theorems. 

associated vith patterns. The language relies on three 

mechanisms: associative database retrieval, pattern-directed 

procedure invocation, and an automatic backtrackinq control 

structure. The best 

proposal is the Popler 

(1973) at Edinburgh. 

implementation of the original Planner 

language written in Pop-2 by Davies 

2: Mechanisms for Machine Perception 
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The utility of the Planner paradiqm was demonstrated by 

Winograd (1973a). However, as bas been pointed out (Sussman & 

l'JcDer.11ot t, 1972) (Ha yes, 1973) ; there are serious problems, most 

notably the _lack of a precise representational se■antics and the 

dependence on automatic backtracking for generatinq alternative 

solution paths in a uniform and exhaustive depth-first manner. 

Backtracking reverses the side-effects of any rejected 

alternatives. The fact that each alternative at a decision 

point is treated independently is the source of the difficulty. 

No communication between competinq alternative solutions is 

possible. Consequently, nothing is learned from failures. The 

problem is farther aggravated by the intended modularity of the 

pattern-invoked Planner theorems. The language attempts to use 

all theorems matching a qiven pattern to achieye some qoal or 

subgoal until one succeeds. However, each theorem is considered 

to be a modular method alone capable of achieving the qoal. 

Each theorem is independent of all others and, as a result, each 

theorem is effectively ignorant of the efforts and methods of 

every other. 

ftcDermott and suss■an (1973), in an attempt to solve these 

problems, designed and implemented a successor programminq 

language, Conniver. The language supports multiprocessing by 

using the control structure model suggested bv Bobrow and 

Wegbreit (1973). Conniver provides neither automatic 

backtracking nor automatic restoration of variables. Chanqes 

made to the database normally remain changed unless specifically 

2: Mechanisms for Machine Perception 
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restored by the progra.1111er. This 110 dif ica tion permits 

communication a111onq "sister" processes explorinq alternative 

solutions to a problem. Each process may consnlt the database 

to discover the results of her siblings. In order to permit 

processes to use hypothetical situations, conniver provides a 

lavered context mechanism. Any process may request a separate, 

experimental copy of the database. Any changes made to this nev 

copy are not visible external to the context. 

As previously •entioned, Conniver does not depend on 

automatic backtracking to gen er ate alternatives. Instead, it 

defines a co-routine mechanism calledgenerators vhich are 

procedures 

invocations. 

that can maintain an internal state between 

Generators may return multiple values in a 

communication port called a possibilitie§ li§~. Instead of 

being embedded within an aatomatic backtracking control 

structure, alternatives are explicitly represented as data items 

in the possibilities list. ConniYer also provides primitives 

for manipulating the possiblities list and recalling generators. 

-~ Conniver's authors intended to improve AI proqramminq 

technoloqy by repairing some of the problems 

encountered in the nse of Micro-Planner. Conniver has also 

provided some representational mechanisms decidedly more 
r-

powerful and flexible than those realized in 1'icro-Planner. 

Conniver permits the representation of hypothetical worlds and 

allows arbitrary properties to be associated with patterns. In 

the next chapter, the utility of this last mechanism will be 

2: ~echanisms for Machine Perception 
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investigated. 

Conniver does not propose a model of computation in its 

desiqn. In fact, it defeats the primitive model of 

Plicro-Planner. However, the language does support the creation 

and manipulation of multiple processes thus providing a 

capability, if not the facility, for using bottom-up search 

mechanisms. A second contribution of Conniver is its use of the 

possibilities list to represent processes as 1 a ta structures to 

be manipulated by other processes. 

A very recent programming language, KRL-0, has been 

proposed by Bobrow and Winograd (1977). They explicitly propose 

a model of recognition for macbin e perception based on a 

schematic representation and a notion of schema matching. KRL 

will be discussed in more detail in the next section. 

2.4 Representation of Knowledge 

Suitable mechanisms for the co~puter representation of 

knowledge are a major aspect of a theory of machine perception-( 

The search for representations exhibiting desirable properties 

for perception bas been an important research effort. 

:, 

2. 4.1 Logical Representations 

as 

First-order predicate calculus has been aivocatea by manv 

a computational paradigm for Artificial Intelligence 

2: Mechanisms for Machine Perception 
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(McCarthy S Hayes, 1969) (Green, 1969). Predicate calculus 

offers the advantages of both a com ple tel V modular 

representation and a precise and formal semantics. All 

knowledge is represented factually and is spe~ifically divorced 

from the proof procedures used to perform search on that 

representation. A number of proof procedures have been 

advocated, most notably the r~Ql.!!!iQ!l .e!:i.9£.i.El~ of Robinson 

(1965). For the most part, these proof procedures are syntactic 

mechanisms utilizing a uniform interpreter. There is no general 

concept of process and control inherent in the logic system 

itself. 

A number of strategies have been proposed for controllinq 

the search process in predicate calculus systems, includinq 

dynamic pruning of the search space and attaching 

domain-specific heuristic procedures to aiio ■s of the system. 

Reiter (1973) has advocated the use of a model to restrict the 

search space and to give advice to the proof procedure. 

A number of researchers have advocated predicate calculus 

as a programming language (Kowalski, 1974) {Van Emden, 1977). In 

most implementations, a uniform proof procedure is used as the 

control structure model for the programming langoaqe. I .n an 

attempt to introduce logical semantics into the control 

mechanism, Hayes (1973) is defining a lanquaqe of control 

structure operators deducible by the logic system durinq 

execution. 

These efforts point to the need to have the deductive 

2: ~echanisms for ~achine Perception 
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process quided by semantic knowledge instead of rel yinq on a 

uniform syntactic procedure. , What is required is an integration 

of the representation with a model of control and process. 

2.4.2 The Procedural Reformation 

The problems observed in the purely logica 1 f oraalism have 

given impetus to the development of a procedural formalism fo .r 

representing knowledge. As in any serious reformation. two 

competinq schools, the proceduralists and the declarativists, 

quickly delineated their respective points of view thereby 

radicalizing those positions. A detailed discussion of these 

positions is outlined by Winograd (1975). 

The proceduralists contend that knowledge is best 

represented in procedures. Their argument is that a larqe part 

of man's knowledge of the world is knowledge of process -

knowinq "hov" instead of a factual knowing "what". The Actor 

formalism of Hewitt (1973) defines the extreme of this point of 

view. Hewitt states that his research is directed at putting 

semantics on a firm procedural basis. The knowledge of some 

entity is the behavior exhibited by the proceiure representing 

that entity. Access to in formation in an actor is permitted 

onlv bv sending the actor a message which it interprets by its 

ovn means. The formalism can alternatively be viewed as the 

decentralization of the system interpreter among the data 

objects of the system. Actors are a generalization of the 

2: ~echanisms for ~achine Perception 



14 

formal notion of classes and objects introduced in the Simula 

programming language (Dahlr 1966). 

It seems clear that method and process in general are best 

expressed procedurally because temporal relationships are 

handled automatically by the sequential nature of the 

representation. Procedures provide a natural way to specify 

interactions as operations and they are convenient for 

representing higher order knowledge. Winograd ( 1975) points out 

a duality between the modularity of declarative representations 

and the interacti orl in her en t in procedural represent~ tions. 

From the declared goal of developing a computational theory of 

perception, that same duality can be seen as the distinction 

between a theory of representation - the declarative aspect, and 

a theory of recognition - the procedural aspect. What is needed 

is an integration of the Modularity of a declarative 

representation with the interactions that are specifiable in a 

procedural representation. That inteqration cannot be a siaple 

concatenation of techniques. Instead, there must be a synthesis 

that respects the inherent duality between representation and 

recognition, between form and process. 

2.4.3 Schemata 

Within the last few yearsr research into suitable 

representations of knowledge in such diverse fields as human 

memory research (Bobrow & Norman, 1975) ( Pyl ysh yn, 1976) • 
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linguistics (Fillmore. 1968), and artificial intelligence 

(Minsky, 1975) (Bobrow & Winograd, 1977) has led towards the 

convergent notion of§£~~!~• The term is attributable to the 

work of Bartlett (1932), although the concept has nov been 

rediscovered under various names with many incarnations. 

A general characterization of schem¼ta includes the 

following aspects. Schemata are data structures for 

representing stereotypical concepts including ob1ects, events, 

actions, situations, and sequences of events, actions, and 

sit uatio.ns. Schemata fora network structures like the semantic 

the same rich networks of Quillian (1968) exhibiting 

encvclopedic organization. .Each schema 

concept. concepts may be siaple or 

represents a generic 

complex, concrete or 

abstract. Complex concepts are represented as a composition of 

si■ ple:r schemata. Because knowledge is orqanized into 

conceptual modules, the interpretation of process can deal with 

large related amounts of infor■ ation as single concepts, as 

units at a single level of detail, or, alternatively, the 

hierarchical data structure can be examined at a deeper level of 

detail when required. 

Each scheaa is composed of a set of named relations with 

other schemata and 

includes the notion 

primitive values. 

of stereotype and 

The representation also 

instance. Stereotype 

schemata may be copied to yield multiple schema. instances. Each 

schema stereotype initially may contain default values for some 

of its named relations. when the schema is copied to represent 
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an insta .nce of its stereotype, the default assignments serve two 

functions. First, they provide generic knowledge about the 

instance that aust be qenerally true of most occurrences of the 

represented concept. Second, the default assignments are 

interpreted as expectations of what type of information aay be 

used to replace the default values in the instance. The process 

of instantiating a schema instance becomes a search for 

particular data or embedded sub-schema instances satisfying the 

schema's expectations. 

Schemata may contain both active and passive knowledge. In 

a stereotype, passive knowledge includes the expectations and 

default values. In a fully specified instance, passive 

knowledge consists of the values of the named relational 

variables co■prising the description of the instance. 

Minsky (1975) bas proposed a schema-based representation 

which he calls fl:~ag ~X.§!~!§• Bis work is primarily concerned 

with the development of schemata for computer vision knovledqe 

representations, although he extends its applicability to other 

domains. Recently, Winograd (1975) has further specified the 

frames paradig■ for use in natural lanquaqe research. Schank 

and Abelson (1975) have developed a schewa-based system for 

narrative story understanding called §gti21§ which uses a small 

number of primitive actions to represent cause and effect 

relationships in simple narratives. Using a case parsing method 

(Fill■ore,1968) to construct the schematic representation of a 

story, Schank•s (1975) system can infer a paraphrase of the 

2: Mechanisms for ftachine Perception 



17 

story including information not explicitly present in the 

original narrative. 

Similarly, Charniak (1975) has proposed a schema-based 

story understanding system. In neither o.f these systems is the 

process of translation from the narrative to the schematic 

representation of primary concern. 

representational and assume the 

recognition mechanisms. , 

Their efforts are decidedly 

existence of suitable 

ftcCalla (1977) has recently modelled natural language 

dialogue using schemata. His system integrates both svntactic 

parsing using a case grammar and semantic analysis as message 

passing and interpretation among cooperating schemata. 

Bobrow and Norman (1975) and Rumelhart and ortonv (1976) 

have presented a cbaracte.ri-zation of schemata for modellinq 

human memory • . • As well, Norman, Rumelhart, et s!• (1975) have 

proposed ~~ill 2!:rY£Uil! ~i~2tk§ as schemata for modellinq 

memory processes in linguistic comprehension. 

2. 4. 4 Search 

A popular perspective in artificial intelligence has been 

to view machine intelligence as a complex search task guided by 

heuristic techniques (Slagle, 1971). Froa this perspective, 

recognition aethods for machine perception can be characterized 

as having two major aspects - the development of powerful search 

mechanisms for particular representations and the discoYery of 
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powerful heuristics for particular knowledge domains to order 

and reduce the size of the search space • . A number of search 

mechanisms have been adYanced for schema-based representations. 

Fahl11an ( 1975) has advocated the use of parallel hardware. 

Rieger (1974) has proposed the use of unrestricted forward 

deduction. In the author's opinion, both of these proposals are 

attempts to solve the perception problem with a "bigger hammer". 

Although advances in the state of the hardware art mav ease our 

programming plight, they should not be the basis of a theory of 

perception. 

Kuipers (1975) has advocated a top-down, hypothesis driven 

recognition model for schema systems. In this model, schema 

stereotypes contain heuristic knowledge to guide the search 

process. As well, the stereotype's default expectations 

constitute hypotheses about what to look for to fill the slots 

of the instance. Schemata recognize instances by ■akinq 

external observations and by recursively calling on the efforts 

of other sub-schemata as subgoals. unfortunately, this 

recognition scheme forces the use of purely goal driven search 

mechanisms thereby suffering fro ■ a number of serious drawbacks. 

Described below are three such deficiencies: 

1. A scheaa must be explicitly hypothesized as a subgoal in 

order to recognize instances of its stereotype. 

A schema 11ay contain heuristic knowledge to guide the 
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recognition process. In order for this knowledge to become 

available, the schema must be hypothesized explicitly as a 

subgoal by some higher schema. This forces a reliance on 

top-down. goal directed search strategies. 

2. An ordering must be assigned to alternative hypotheses. 

The top-down recognition model forces the choice of one subgoal 

at a time. Furthermore, the mechanism for activating each 

alternative subgoal is completely failure driven. Consider a 

schema containing a number of alternative subqoals. Which 

should be hypothesized first? One particular subgoal must be 

chosen as the most likely hypothesis and called. This choice 

must be aade on ".blind" expectation before the heuristic 

expertise of the subgoal schema is available to help make the 

decision. Each subgoal schema may contain heuristic knovledqe 

to drive the recognition of its stereotype, yet that guidance is 

available only after a committment has been made to the schema 

as a subgoal. 

3. Identical subgoals must be carried out independently. 

A schema may be successful at achieving a number of its 

subqoals. If. however, another necessarv subgoal should 

subsequently fail. the schema must itself return a failure to 

its caller. • Later, the system may re-compute those identical 
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subgoals. This behavior has been called !:!n;:~.§h.!J!g (Bobrow & 

Raphael, 197fJ). 

Minsky (1975), anticipating this third objection, has 

proposed a mechanism, first used by Winston (1975), that 

attempts to avoid duplication of effort for identical subgoals. 

When a schema discovers fro11 observation that it is not 

applicable to a given situation, it consults a .§i~llAii!I 

n~i!!.2!:k which recommends a replacement candidate. The schema 

then attempts to 11ap its correctly completed subgoals into the 

expectations of the new candidate schema and then passes control 

to it. This mechanism assumes both that a mapping exists 

between each failing schema and each next candidate and that the 

similarity network is sufficiently complete that relatively few 

inexplicable failures occur. such surprises force the system to 

rely entirely on automatic backtracking to continue the search. 

The above co1111ents are applicable not only to schemata, but 

hierarchical hypothesis driven systems in general. Mackvorth 

(1977b) has labelled the same phenomenon in vision research "the 

chicken and egg proble11". Top-down, hypothesis driven search 

heuristically orde.rs the search space by attemptinq more likelv 

interpretations before trying less likely ones. However, 

heuristic ordering is not in itself sufficient to solve the 

recognition problem. 

At the other extreme, botto■-up search is driven solely by 

evidence discovered fro■ observation. such evidence can be 

compared against domain specific knowledge to constrain the 
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interpretation. 

backtracking is 

Since no 

not required. 

hypotheses need be for11ed, 

Unfortunately, bottoni-up search 

mechanis•s provide no 

expectation of future 

are needed vhich allow 

overall guidance to 

bottom-up, data-driven 

guidance either since there is no 

experience. For perception, techniques 

hypothesis directed search to qive 

the recognition process, yet permit 

techniques to circumvent the 

inefficiencies of the purely top-dovn scheme. 

One such approach is the use of multi processing to 

integrate top-down and bottom-up search. Kaplan (1973) has 

developed a natural language parsing system, GSP, based on a 

multiprocessing sche■ e. The systea creates independent 

processes to look for each grammatical constituent in a 

sentence. GSP employs a priority queue schedulin(J mechanism and 

uses a 9_!:amm!tical chart_as a communication mechanism between 

processes. The syste■ is very flexible in that it can emulate, 

at one extreme, top-dovn recognition such as Woods' (1970) 

Augmented Transition Network parser and, at the other extreme, 

bottoa-up recognition. 

Recently* Bobrow and Winograd (1977), as mentioned earlier. 

have reported on the development of a schema-based programming 

lanquage supporting ■ultiprocessing called KRL. The lanquaqe is 

designed as an integration of procedural and declarative forms 

of knowledge with a recognition model based on schema ■ atchinq. 

In KRL, schemata are composed of modular entities called 

descriptions which may have associated procedures and 
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attributes. A description is 11ade up of multiple _g~§£IifilQI§, 

each describing the schema• s concept f roa a different vievpoin t. 

As in Minsky's frames 11odel, the concept of stereotype and 

instance are fundaaental to the representation. Descriptions 

are basically intensional representations and may be composed 

into higher schemata called !!nlt§. units are intended as a 

mechanism for achieving ~edyI.a! ~!~~~h!~nt by associating a 

set of descriptions with a set of procedures. 

possess a category type which indicates to the 

ls well, units 

matcher how 

operations are to be performed on the descriptions contained in 

the unit. This semantic ■arker scheme provides a further level 

of specialization for the matching process. 

Bobrow and Winograd propose a model of recognition based on 

an extended concept of description ■ atchinq. The KRL •atcher is 

desiqned to compare two forms syntactically, or at the other 

extreme, to drive the overall operation of the recoqnition 

process. The matcher uses both the syntax of the descriptors 

and domain specific knovledqe encoded as semantic markers and 

procedural knowledge attached to units and descriptions. The 

model as described is essentiallf hypothesis driven. To avoid 

the problems noted with the top-down recognition model, the 

authors propose a multiprocessing scheme that provides a process 

priority queue vith user-supplied strateqies for schedulinq and 

resource allocation. 
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2.5 Machine Vision 

Recent research in machine vision has made a particularly 

significant contribution to the development of a theory of 

machine perception. The inherent complexity of vision has 

forced the confrontation of the problem from two maior 

directions. First, machine vision research has expanded our 

understanding of the role of domain-specific knowledge in visual 

perception. The use of this heuristic knowledge is recoqnized 

as being essential to the perceptual process. second, machine 

vision has, by necessity, been concerned vith developinq 

computational methods suf.ficiently powerful for this research 

domain. This second aspect of machine vision is particularly 

germane to this thesis and will be examined in this section. A 

more comprehensive review of machine vision can be found in 

Mackvorth(1977b). 

2.5.1 Roberts• Paradigm 

The early research efforts of Roberts(1965) established a 

paradigm for machine vision which has provided a siqnificant 

contribution towards a theory of machine perception. Roberts 

used a tvo-pass procedure to recognize scenes of simple 

polyhedral objects. The first pass reduced gray-level picture 

data to perfect line dravinqs fro which the second procedure 

could perform object recognition. The ability of the first 
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procedure to produce perfect line draw inqs from realistic data 

without performing higher-level interpretation has been doubted 

(Mackvorth, 1977b). 

From a perfect line drawing, Roberts• second procedure 

attempts to compute a scene interpretation using geoaetrical 

models of three prototypical polyhedra, specifically cubes, 

wedges, and prisms • . Roberts used the predictive power of these 

qeometric models to significantly constrain the search for a 

scene interpretation. He noted that the complexity of the 

search space could be reduced because the view of a particular 

prototypical object in some given picture is topologically 

invariant over a relatively wide range of viewpoints. Instead 

of searching in the picture domain for lines that belong to some 

polyhedron, a model can predict where in the picture to look for 

those particular lines. In other words, Roberts exploited the 

predictive ability of models to guide the recognition process. 

A second contribution of his work is the use of picture 

cues to hypothesize particular models. The proqra 11• s models are 

invoked by the cliscoYery of specific cues that suggest the 

appropriateness of a particular model. once a model is 

selected, that aodel directs the remainder of the recoqnition 

process by calculating, based on its partial instantiation, 

where in the picture to look for the remaininq lines of the 

model prototype. If a model is found to be inappropriate, then 

the cue discovery process is continued to select another model. 

When a model is successful in recognizing a simple polyhedron, 
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that object is "edited out" of the picture and the search for 

new cues resumed. This technique provides a crude mechanism for 

recognizing complex polyhedra as the composition of the three 

simpler polyhedra modelled by · the program. The recognition 

model embodied in Roberts' program has been characterized as a 

cyclic process of discoverinq cues, activatinq a most likely 

hypothesis, attempting to verify that hypothesis, and follovinq 

the consequences of a successful hypothesis (l'lackvorth, 1977b). 

On success, the recognized si•ple polyhedron is deleted from the 

picture and the process iterates. 

A third contribution of Roberts• work is that the cue 

discovery process is realized as an ordered heuristic procedure. 

This procedure depends on the notion of an ~BB!:Q~ed 2ol1gQ~ 

which is defined as a viev of a polygon face of any cube, wedge, 

or prism. The procedure first attempts to find a picture vertex 

surrounded by three approved polygons. If unsuccessful, it 

attempts to find a line joining two approved polygons. If this 

fails, the procedure attempts to find a polygon containinq a 

three-line vertex. Otherwise, as a last resort, it looks for a 

three-line vertex as a cue. 

The very early work of Roberts can now be seen to have made 

siqni .ficant steps towards a theory of machine perception. 

First, he used geometric models of simple polyhedral objects to 

guide the recognition process. Second, he used picture cues as 

a mechanism for selecting a relevant model. This bot tom~ up 

search mechanisa further constrained the search space by 
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utili%inq evidence discovered in the picture to select a viable 

hypothesis. And third, the process of cue discovery was itself 

a recognition task driven by a heuristic procedure. 

In light of the present state of the art, Roberts• research 

can be criticized for a nu11ber of shortco11ings. nost notably,, 

the program uses only a single level of cue discovery. There is 

no notion of a hierarchy of cues and models. cues are 

completely context-free discoveries that cannot themselves be 

the result of recognition. ls well, the process of recognizing 

complex scenes is handled via a primitive composition mechanism 

which operates, not in the interpreted scene,, but directly in 

the picture domain. And lastly, the recognition process is 

driven by a single global ■ ethod, the iterative cycle of cue 

discovery, model invocation, and model satisfaction. There is 

no possibility of using specific heur~stic methods for the 

recognition of particular models. A single global method must 

suffice for the recognition of all polygon types. Although 

Foberts• research can now be easily faulted, it still remains an 

amazing first step towards a theory for machine perception. 

2.5.2 Guzman's SEE 

Guzman's (1968) work diverqed from the paradigm established 

by Roberts. Guz■an•s program, called SEE, attempts to partition 

regions of line drawings into polyhedral obiects usinq only 

local corner junction information. SEE employs a two pass 
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method. In the first pass, relational "connectedness" links are 

placed between adjacent regions as a function of the picture 

junction types that the tvo regions share. In order to cope 

with the inherent ambiguity of picture junctions, Guzman used a 

number of complicated inhibition rules to temper the link 

placing process. 

The second pass attempts to compute the transitive closure 

"-·· 
of regions sharing two or more links while again usinq 

inhibition rules to moderate the process. The simple method of 

this second pass depends critically o.n the "tuned" performance 

of both its inhibition rules and the rules of the first pass. 

The first pass must create enough links so that a complete seen~ 

labelling can be obtained; the second pass aethod must then 

close enough regions so that a unique unambiguous interpretation 

results. Both methods, however, must be conservative enouqh to 

prevent the joining of separable objects to each other or the 

background. Guzman claimed that SEE performed recognition 

without the use of models, a divergence from the earlier 

paradigm of Roberts. Yet, as Mackvort .h ( 1 977b) points out, the 

model-specific knowledge represented in Roberts• cue recognition 

procedure is hidden by Gu~ ■an implicitly in the complicated ~4 

h2£ inhibition rules. 
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2.5.3 Huffman and Cloves 

Huffaan ( 1971) and Cloves (1971) later independently 

generalized the work of Guz■ an to use junction shapes appearing 

in the picture as cues for their interpretation as corners in 

the scene. By differentiating between the . picture doaain and 

the scene domain, both Huffman and Cloves reasoned that each 

picture 1unction can have only a few valid corner 

interpretations in scenes containing real three-dimensional 

polyhedral objects. such physical constraints were seen to be 

unary predicates on the vay a particular junction type can be 

labelled. As vell, each such junction is further constrained by 

a binary relation along the picture edges it shares with other 

1unctions. An edge must have the same scene labelling at both 

of the junctions defining its ends. 

Cloves and Huff 11an significantly extended our knowledge of 

recognition mechanisms suitable for machine vision. Unlike 

Gu2man, they refrained fro■ trying to perform recognition in the 

picture domain using only local .knowledge about junction type. 

Instead. they used picture junctions as cues to invoke parallel 

unary and binary constraints in the scene domain. They then 

satisfied the resulting systea of simultaneous constraints by 

employing. in one case, a depth-first search and in the other, a 

breadth-first search. 

Unfortunately. like their predecessor, both men neglected 

the virtues of using explicit object models to guide the 
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recognition process. Instead, their models are effectively 

compiled into the sets of possible corner interpretations. As 

well, Huffman and Cloves used only primitive cues, the picture 

junction types given in the input data. cue discovery is a 

trivial computation independent of the semantics of the 

particular scene being interpreted. In other words, cues cannot 

be recursively the result of the recognition process. 

Consequently, this recognition mechanism makes use neither of a 

hierarchy of object models, nor of a hierarchy of cues 

associated vith those aodels. 

2.5.4 Waltz's Algorithm 

The scene analysis program of Waltz (1972) elaborated 

further the techniques developed by Guzman, Huffman, and Cloves. 

Waltz extended their approach in two important directions. 

First, he incorporated aore knowledge specific to the visual 

world of toy blocks by expandinq the set of junction labels 

nsed. The new set of labels included knowledqe about crack 

edges between adjacent blocks and a crude representation of 

shadows. Such an expanded label set created a huqe number of 

possible corner labellings for each junction type, thereby 

increasing considerably the complexity of the search space. 

Waltz,. however, .noticed that after applyinq to each junction 

type the unary constraint of what corner inte.rpretations could 

appear in the "real vorld 0 , the remaining set of valid labels 
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was much reduced. , Adding more diaensions to the labelling of 

polyhedron junctions increased the richness of the domains 

semantics without exponentially increasing the complexity of the 

search space. 

second, in order to cope with the expanded set of labels, 

waltz developed a junction filtering algoritha to further 

constrain the search space before atte■pting a depth-first or 

breadth-first search for a global scene inter pre ta tion. This 

filterinq algorith• is based on the notion of a consistency 

condition, "C", which holds true if, for every label assigned to 

a particular junction, there is either a matching label 

assign11.ent at each labelled, neighbouring junction, or that 

junction has not yet been labelled. 

The filtering algorithm operates by tourinq the set of 

picture jonctions once in some arbitrary order. At each 

junction, the algorithm first attaches a list of all corner 

interpretations which satisfy the unary predicates for that 

junction type. Waltz noted that such lists were static and 

could be compiled once for each junction type. Next, the corner 

interpretations of each nevly labelled junction are "pruned" 

aqainst the label sets of each neighbouring junction sharing an 

edqe with this junction such that condition ncn holds. That is, 

any corner interpretation of the new junction havinq an edqe 

label that does not 11atch an edqe label of each already la belled 

neighbouring junction, is deleted. Then, in a spreading 

breadth-first search, each neighbouring iunction prunes its 
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label set against this junction and each of its neighbours do 

likewise until, once again, condition 11 C" holds throuqhout the 

network • . , The siqnif icance of this algorit h• is that it requires 

only a single pass through the set of picture junctions. When 

it terminates, all inconsistent corner interpretations have been 

eliminated. Often, the algorithm yields a sinqle labellinq for 

each junction, thereby negating the need for a subsequent scene 

interpretation search. 

Walt'Z both extended the use in machine vision of domain 

specific knowledge and introduced the use of constraint 

propagation techniques to the field. He demonstrated that bv 

incorporating enough semantic information about a "blocks vorld" 

scene, an over-constrained network representation can be 

constructed vhich through the use of constraint propagation 

techniques can quickly yield a unique interpretation. 

Prom the present perspective of developinq a computational 

model of recognitio.n for perception, Waltz can be criticized for 

the same deficiencies as his predecessors. His proqraa makes no 

explicit use of models of the polyhedra it recognizes. Instead, 

it relies on the i■plicit knowledge of polyhedra embedded in the 

junction labels. Likewise, the cue discovery process is 

completely a context-free process. cues are, in fact, primitive 

entities, the picture junctions given in the input data. Their 

disco•ery can be neither a function of the partial knowledge so 

far known about a particular scene, nor can they be complex 

abstract entities coaputed recursively as the result of 
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recoqni tion. 

2.5.5 Kackworth•s ftAPSEB 

The constraint satisfaction techniques developed by Waltz 

and others have been recently generalized by "ackworth (1975, 

1977a) to a class of n~!!QI! ~QJ§i§!~D£I algQ[i!h~~. ThesE are 

shown to be more efficient search aethods than autoaatic 

backtracking for search tasks vhich ~an be formulated as n-arv 

constraint satisfaction probleas. Network consistency forms the 

basis of a recognition aodel for machine perception which 

applies general constraint satisfaction algorithms to networks 

of simultaneous constraints. 

Kackvorth (1977a) has recently used network consistency 

techniques for the interpretation of freehand sketch 11aps. The 

proqram, called Mapsee, interprets a hand-drawn map of an island 

according to the conventional semantics of cartography. The 

program begins by performing a very conservative partial reqion 

segmentation of the input sketch to yield a set of primary cues 

based on simple picture features. Cues are features derived 

from the sketch such as acute angles, point clusters, free-ends 

of lines, and junction types. These cues are then used to 

invoke primary models that proYide partial interpretations of 

the map in the locale of the cue. Note that the interpretation 

provided by a model ■ ay be initially highly ambiguous. However, 

each model establishes constraining relationships with its 
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geographic neighbours according to the cartographic semantics. 

The resulting network can be visuali2ed as a h yper-qrapb vhose 

nodes are pictorial objects (regions and chains of lines) and 

whose n-ary arcs are constraining relations derived fro ■ the 

models. 

ftapsee then applies a network consistency algorithm to the 

network that progressively eliminates inconsistent 

interpretations for the various cartographic features 

represented by the ■ odels. If the conventional semantics of the 

models chosen is rich enough, and if a qi ven sketch map is 

explicit in its representation, the resulting syste■ is over 

constrained and the algorithm may converge to a single possible 

interpre ta ti on. 

ftapsee de■onstrates first that cue/model driven recognition 

can be coabined with network consistency search techniques and 

that these aethods may be applied to perception task doaains 

outside the "blocks world". Second, Mapsee defines a cyclic 

recognition model .for machine perception. Mack worth ( 1977b) has 

noted that picture segmentation requires scene interpretation 

and conversely that interpretation requires segmentation. Be 

calls this phenomenon "the chicken and eqq problem" for machine 

perception • . ftapsee•s initial conservative picture segmentation, 

alt hough inadequate for a global interpretation, yields enouqh 

primary cues to invoke appropriate models. The subsequent 

constraint satisfaction a mong these aodels provides an initial 

interpretation vhich can then be used to guide a more 
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context-sensitive re-segmentation. This process may be iterated 

until a complete interpretation is obtained. Third, network 

consistency alqorithas provide a uniform syntactic control 

structure for searching declarative network representations. 

Consistency algorithms tend to converge towards a unique 

interpretation by focusing on those nodes in the network ~hich 

remain the most ambiguous. 

Each cycle in Mapsee•s recognition process computes a new 

approximate scene interpretation that is nsed to drive a 

context-sensitive re-segmentation, thereby yielding semanticallY' 

richer cues for the next cycle. This iterative mechanism is 

seen as a means of "bootstrapping" into an interpretation 

thereby avoiding the "chicken and egg problem". However, since 

Mapsee utilizes non-hierarchical descriptive models, cues must 

still be primitive features detected by the re-segmentation. 

They cannot be ■ore complex entities recoqnized. during the scene 

intepretation as part of a hierarchY' of cues and models. 

Network consistency techniques encourage the use of purely 

declarative knowledge representations and exhibit the familiar 

benefits and limitations of that representation (Winograd, 

1975). Since models are realized as sets of constraining 

relationships a ■ ong other models, network consistency is a very 

modular comfutational paradigm. Bew constraints and new models 

can easily be incrementally added and deleted froa the network. 

As well, since all of the do11ain specific knowledge is embodied 

in the declarative ■ odels, the system is portable. It can be 
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easily applied to other recognition tasks which exhibit a 

semantics expressable as a system of mutual simultaneous 

constraints. On the other han4, the divorce of the declarative 

models from the procedures used to search the network structure 

forces the use of a single global syntactic search method, the 

network consistency algorithm. No domain-specific knowledge 

such as heuristic search methods associated with particular 

models is possible. ~ackvorth (1977c) has noted the limitations 

of a uniform search method for non-hierarchical descriptive 

models and has advocated "exploring control strategies for 

schema-based theories of perception". 

2.5.6 Preuder•s SEER 

Preuder (1976) has recently developea a recoqnition model 

for schema-based representations that is primarily concerned 

with the specification of control structures for machine 

perception. His program, SEER, recognizes a scene of a common 

machinist's hammer represented as gray-lavel video data. 

Freuder argues that most recognition schemes employ control 

algorithms which do not rely on computed partial results or the 

semantics o.f the scene being perceived. To the contrar,, SEER 

employs the discoYery of partial hammer components combined with 

general knowledge about ham11ers to guide the recognition 

process. 

In SEER, knowledge is represented in two forms of 
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hierarchical semantic network structures. General knovledqe 

about hammers is represented in schema stru=tures called g_i 

networks, whereas knowledge specific to a particular ha■ aer 

instance is represented in a schema instance called a fl 

network. The nodes of a GK network represent items of visual 

knowledge about haaaers, such as handles and heads. The links 

between these nodes represent hov these items aay establish each 

other's recognition. On the other hand, a PK network represents 

a partially instantiated instance of a GK concept and inherits 

its structure and procedures. 

Both the GK and PK net vorks fora tree data structures. At 

the leaves of each PK tree are procedures which search for 

instances of the specific GK concept. The leaves of a 

particular PK tree structure represent the state of the 

procedural methods concerned with the recognition of that schema 

instance. 

In Freuder•s model, recognition proceeds using both 

top-dovn and botto■-up search within a PK structure. When a new 

feature is discovered, it is used as bottom-up evidence for the 

hypothesis of higher £S!njec1Y[.!§ of which the feature may be 

part. A nev PK structure is created to represent this nev 

possible relationship. As vell, the creation of nev conjectures 

permits the top-dovn !lll?l2!:lli2!1 of their subqoals thereby 

resulting in the creation of subordinate conjectures. 

Since a nuaber of conjectures can be active simultaneously, 

the control structure question centers about which conjecture to 
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explore next. The aechanisa used in SEER is the familiar 

priority-queue au.ltiprocessing scheme. Coniectures are assigned 

a priority vhen placed on the queue and their priority ■ ay be 

changed during the recognition process. A global monitor then 

selects the highest priority conjecture and attempts to confirm 

it by activating one of its procedural aethods. 

The recognition model defined by SEER follows a cyclic 

process. A conjecture chosen by the scheduler is explored. If 

the conjectu·re is achieved, it may then be ~!1212.i!~.!! resultinq 

in the hypothesis of suggested higher coniectures as new PK 

structures. These nev schemata are added to the priority queue 

and the process is repeated. 

Preuder•s work has focused attention on an iaportant aspect 

of machine perception, the control of the processor durinq the 

search process. Re has combined the use of a scheaa-based 

representation with a hierarchy of cue invoked models. As well, 

he defines a priority queue multiprocessing scheae to integrate 

top-down and botto•-up search using multiple actiYe hvpotheses. 

SEER realizes top-down search by simulating the exploration of 

conjectures as subgoals and realizes bottom-up search by 

exploiting the consequences of successfully recoqnized 

con j,ect ures. 

As vas pointed out for KRL, the use of aultiprocessinq to 

si■ulate parallel search suffers fro ■ a number of 

It is a syntactic, non-deterministic method 

parallel execution, and is inept at realizing 

deficiencies. 

of simulating 

intelligently 
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guided parallel search. The requirement that some procedure 

compute a priority for a new process manifests the "chicken and 

egg problem" in two significant vays. First, it assuaes that a 

procedure can assign a global priority to a process beinq placed 

on the priority gueue based only on in.formation local to that 

procedure. And, aore importantly, this aethod requires that a 

priority be assigned to a process h~fQ!:~ information is 

discovered in the scene to help decide which processes to run. 

The procedure that picks a priority for a process is, in effect, 

computing a non-deterministic scheduling of processes. This 

computation must be made before the information required to make 

this decision has been discovered. This aachanism operates 

essentially backwards. A mechanism is needed for simulating 

parallel search that schedules processes semantically by 

utilizing the discovery of particular cues durinq the 

recognition process to schedule those pro=esses which can 

exploit the existence of those very cues. 
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3. 1 Introduction 

This chapter presents the development of a procedural model 

of recognition for schema-based representations. The model is 

11otivated by both the characterization of perception outlined in 

the first chapter and the current methodology of machine 

perception examined in the second chapter. First, an informal 

overview of the model vill be given in oraer to hiqhliqht a 

number of its aspects. Then in the remainder of the chapter, 

techniques for realizing the model as a computational mechanism 

will be discussed in detail. 

3.2 "odel Overview 

A theory of 

first chapter as 

knovledqe and a 

machine pecception was characterized in the 

having both a formalism for representing 

set of search ■ echanisms for performinq 

recognition on that representation. 
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3.2.1 Schemata 

In this model, knowledge is represented as schemata. A 

schema is a modular representation of ever.,thinq known about 

some concept, object, event, or situation. That knowledge is 

manifest in three for■s. First, each schema contains factual 

knowledge about the concept that the schema represents. Such 

facts form a description of the concept and may be represented 

declaratively, procedurally, or as some combination of data and 

attached procedures. .. Second, each schema may contain procedural 

heuristic knowledge to quide the search process for the schema's 

concept. And third, schemata form relations vi th other schema ta 

thereby creating hierarchical network structures. This allows 

coaq>lex concepts to be represented by coaposition as networks of 

schemata and provides an encyclopedic retrieval mechanism 

analogous to that of semantic networks (Quillian,1968). 

For eraaple, Figure 3.1 illustrates a schema for a 

hypothetical vision system. The notation employed is similar to 

that used by Bobrow and Winograd (i977). This sche11a represents 

a stereotypical bicycle and consists of a set of named relations 

or §!Q1§ (!insky. 1975), each containing either a primitive 

value (often a nam~, a pointer to another schema, or an 

expectation indicating what type of information may be used to 

.fil 1 the slot. Vhen the bicycle stereotype is used to represent 

an .instance of a particular bicycle, the stereotype schema is 

copied to create a schema instance and its slots, initially 
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-------------------------------- -, 
I 
I MARE: BICYCLE ' J 

' ' I .FRONT-WHEEL: ( A WHEEL DilftETER = (RANGE 19 27) 
WITH ( A TIRE WIDTH = BARROW) 
TYPE = SPOKED 

I 
I 
I 

REAR-WHEEL: (l WHEEL 

CONNECT (AND f'H.lftE CR AHK SET) 
(TD-f!ETHOD FIND-BI KE-WHEEL) 
(BU-ftETHOD FOUND-BIKE-WHEEL)) 

DIAftETEB = (RANGE 1.9 27) 

WITH (l TIRE WIDTH= NARROW) 
TYPE = SPOKED 
CONNECT (AND PRAftE CRANKSET) 

(TO-llfETHOD :PUID-BIKE-W HEEL) 
(BO-NETHOD FOUND-BIKE-WHEEL)) 1 

I 
FRA!E: (l PRlftE TYPE= DOUBLE-DilKOND I 

(TD-KETHOD PIND-8.IKE-P'RAPIE) I 
(BU-!ETKOD POUND-BIKE-FRAME)) I 

' CBANKSET: (A PIECHAHIS! TYPE= CHAIN-DRIVE I 
lfIT H ( A PEDAL-CRANK) I 
MAY-HAVE (l MECHANISM I 

Tf PE =DERAILLEUR) I 
(TD-METHOD PIND-CRANKSET)) I 

I 
STEERING-SET: (A KECHANIS" TYPE= STEERING-FORK I 

WITH (A HANDLE-BAR) I 
(TD-!ETHOD PI ND-STEERING-SET)) I 

I 
ISA: VEHICLE t 

I 
INSTANCES: NIL I 

L--------

Figure 3.1: Bicycle Schema 
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containing expectations, are replaced systematically by 

information specific to the bicycle as it is discovered. 

This stereotype bicycle scheaa illu st.rates a nu■ ber of 

features of the recognition aodel. The first slot of the sche ■a 

specifies that the name o.f the schema is BICYCLE. Bf naminq 

each stereotype sche ■a, it can be referred to either by a 

pointer or by simply using its name. 

The next fiye slots in the schema represent composition 

knowledge about bicycles. A bicycle is composed of a front 

wheel, a rear wheel, a double-diamond frame, a power 

transmission mechanism called a crankset, and a steering fork 

mechanism called a steering-set. For perception, the 

composition relations in a stereotype schema define those 

structural and functional aspects of the concept that can be 

used to recognize instances of that concept. l bicycle is 

recognized by the discovery of its compo.nent parts composed in a 

wav that represents the gestalt o.f a bicycle. 

3.2.2 Schema Hierarchies 

Schemata fora hierarchical networks in two significant 

ways. Complex stereotypical concepts are represented by 

schemata which are a composition of other concepts represented 

by sub-schemata • . The resulting hierarchical structure is called 

a £OmEQSi!i2n hieU££h~• This static hierarchy represents the 

composition of all possible instances of the class. 
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Figure 3.2 shows a co ■position hierarchy for the 

stereotypical bicycle schema. Bicycles are composed of wheels, 

a frame, and various mechanical mechanisms. Each of these 

qeneric coaponents form a stereotypical class of objects 

represented by a stereotype schema. In turn, each of the these 

stereotypes is composed of its own generic components 

represented by stereotype sub-scheaata. , Por instance, the WHEEL 

schema represents the class o.f all wheels. Each wheel instance 

vill be composed of a tire, rim, and central hub assembly. A 

particular wheel vill be represented by a specific tire instance 

of a particular type and by specific instances of the stereotype 

rim and hub schemas as well. 

Figure 3.2 also illustrates the inclusion in the model of 

an !~~~I~~ co■Eosition relatiQ!l between sche ■ata. For each 

stereotype schema having a composition relation vith one or more 

sub-schemata, each of these sub-schemata have an inverse 

relation with that schema. ; This relation is usually called the 

"part-of" relation and is essential to performing bottom-up 

search within the sche■ata network. 

Scheaata form hierarchi,es in a second vay. Each schema 

represents a stereotypical concept that may h~ve many partially 

specified instances. , These instances may themselves function as 
, 

stereotype scbeaata each having a number of more fully specified 

instances. , In this manner, sche ata fora i!Hai!n~~ hiit~£hi~§. 

At the top of an instance hierarchy is a schema representinq an 

uninstantiated qeneric concept. Each of its sub- schema ta 
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CCfflfOSition . 

Figure 3.2: Bicycle Ccmposition Hierarchy 
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instances represent partially specified occurrences of that 

concept. Each of the descendants of these instances, in turn, 

represents ■ore fully specified instances until, at the bottom 

of the resulting tree structure, completely specified instances 

beco.me leaves of the tree. Instance hierarchies are also 

referred to as "ISA" hierarchies (Pahlman, 1975). 

At each interior node in an instance hierarchy, the 

partially instantiated schema represents a non-deterministic 

description of a smaller class of concepts than its parent 

stereotype a level above • . Schemata near the top of the instance 

hierarchy represent large classes of possible instances, 

whereas, sche•ata nearer the bottom represent smaller, more 

fully specified classes of concepts. 

In the bicycle schema, the last two slots of the schema 

establish an instance hierarchy • . Since bicycles are instances 

o.f the more general concept of vehicle, the ISA relation 

indicates that this schema is an instance of another stereotype, 

the VEHICLE schema. In this example, the bicycle sche•a has, as 

yet, no instances of its own, as indicated by the BIL value for 

the INSTANCES relation. 

These two hierarchies serve di .fferent purposes. 

Composition hierarchies are static data structures that 

facilitate representing coaplex conceptual objects. The 

creation of a particular bicycle instance uses the bicvcle 

composition hierarchy as a template fro■ which to construct the 

schema instance. E~ch occurrence of an expectation for a frame, 
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mechanism. or wheel in the bicycle stereotype will be replaced 

by an instance (perhaps only partially specified) of that 

stereotype. 

In contrast. instance 

structures that proYide a 

hierarchies are dynamic data 

primary associative retrieval 

mechanism upon which to base search over the schemata network. 

These hierarchies are viewed as taxonomies of concepts. Each 

node in an instance hierarchy is a stereotype schema that 

maintains an index of all its instances. Por small data-hases, 

the schema's index can be a simple list of all its instances. 

For larger networks, each schema maintains an index of its 

sub-instances based on observable and recognizable cues. The 

instance hierarchy then becomes an inverted index structure for 

performing associative retrieval in the network. Analogous 

syn tactic mechanisms include EPUt (Feiqen baua, 196.3 l and the 

associative retrieval of patterns in most artificial 

int.elliqence programming languages (Bobrow 6 Raphael, 1971'). 

Patterns are indexed in a tree structured database by common 

patter.n elements. A similar se■antic mechanism is found in the 

Linnaean botanical taxonomy vhere. for instance, plant life is 

organized into a hierarchical database indexed bV easil v 

perceived cues. The cues used are physical observable 

properties of each class of plant life. The choice of cues is 

not made fro• ~ ~i~ll considerations, but for convenience. 

cues are recognizable features of each class that are easily 

observed and can function as reliable discriminators. 
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In this recognition aodel, instance hierarchies are indexed 

by cues that are easily recognized features of a stereotype 

class. Por example, consider an instance hierarchy for the 

wheel scheaa. The stereotype wheel sche11a represents the class 

of all wheels including all partially and fully specified 

instances. Pora small nuaber of wheel instances, the databa~e 

can be organized as a siaple list of instances bound to a 

variable in the wheel stereotype. The advantage of this 

scheae•s simplicity is balanced by the necessity of searchinq 

the list sequentially to find a particular vhee 1 instance. such 

a blind search makes no use of any observable features of the 

desired instance used as cues. 

For larger databases, the inverted ind.ex structure is 

advantageous • . Pigure 3.3 illustrates an associative database 

for the vheel instance hierarchy using this scheme. Indices of 

the hierarchy are chosen to be readily observable features of 

wheels that can effectively discriminate among various classes 

of wheels • . · In this example, three different obserYable features 

of wheels are used. 

the choice of 

Neither the structore of the hierarchy nor 

indexed features is ■ade from 5l J!!:iQ~i 

considerations. The choice of both structure and index is 

arbitrarily based on the ability to discri11inate a■ong va.rious 

wheels using such available information as the type of the 

observed vbeel•s rim, the width of its tire, and its dia ■ eter. 

Each of these features, as in the Linnaean taxonomy, is a cue 

recognizable during the perception process. 
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3.2.3 Recognizers 

Perception is not a passive reflection of sensat.ion but an 

active process aotivated by plans, expectations, and desires 

(Bartlett, 1932). Perception is a recognition task that 

composes a description of a perceived concept from a sequence of 

external observations of the world. This concept is represented 

as a schema instance vh.ich is composed of relationships aaonq 

other more priai ti ve concepts. 

In this model, each stereotype schema is considered to be 

an active !:~£,ognJ..!er for its stereotypical concept, an 

individual recognizer in a system of such recognizers. Every 

schema contains the active knovledqe necessary to quide the 

recognition process for its concept from sensory observations. 

Such active heuristic knowledge is called a M~h_gg. Methods are 

procedures specifically tailored for the recognition of their 

associated schemata. ftethods allow the exploitation of domain 

specific search techniques. Instead of relying on general 

search methods to conduct the search for every sche ■a in the 

system, specific methods can be associated with particular 

schemata to exploit special tech.niques that are particularly 

effective for that schema. 

The expectations associated with stereotype schemata play 

an i111?ortant role in the recoqnition process. They are d yna111ic 

properties of each scheaa that change as the uninstantiated 

instance proceeds towards beinq fully specified. At each point 
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in the process, the scheaa•s expectations represent what 

additional information is required t.o collplete its recognition. 

From a different perspective, they represent the schema's 

knowledge of the vorld: what it expects to occur next or be 

found next from observation. Expectations embody the notion of 

a plan or script (Schank & Abelson, 1975). 

Expectations may be represented by simple default values to 

be replaced b_y observed values when they are discovered, or they 

may be represented by complex patterns with attached procedural 

methods. These attached methods use both top-dovn and bottom-up 

search mechanisms. Top-dovn methods are designed to search for 

information to satisfy the requirements of its expectation. 

Bottom-up ■et.hods are designed to continue the recognition of 

their schemata based on satisfaction of their associated 

expectations. The notions of these tvo different types of 

procedural methods are similar to the characterization of 

servants and De11ons proposed by Bobrow and Winog.rad (1977). 

In the bicycle schema of Piqure 3.1, expectations are 

represented as declarative specifications of the type of schema 

instances which aay replace the expectation in the slot. Each 

of these expectations has either or both a top-down method and 

bottom-up 11ethod associated with it. Po.r example, both the 

front and rear wheel slots of the bicycle schema contain 

expectations that specify a spoked vheel 11ith a narrow tire 

having a diameter between 19 and 27 inches. Attached to these 

expectations are specific methods tailored for the recognition 
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of bicycle vheels. Two different methods are specified. One 

method, FIND-BIKE-WHEEL, is a hypothesis-driYen procedure which 

can be called upon to atteapt top-down search to fill the wheel 

slot. The second aethod, called FOUN D-BIKE-WHE!L, is a 

{>rocedure for performing bottom-up search. It vill be invoked 

when a wheel ■atchinq the specified expectations for a bicycle 

wheel has been recoqnized. Its function is to first replace the 

expectation in the wheel slot with the nev recognized vbeel 

instance, then to continue the recognition process for the 

bicycle utilizing the knowledqe gained by the discovery of the 

new vheel. 

3.2.4 Non-Deterainism 

Unfortunately, perception is not a deterministic process. 

Perception requires the search of a knowledge base to assign an 

interpretation to sensory input. P'or larqe knovledqe bases. 

this search cannot be a simple top-dovn goal-directed process. 

our knowledge of the world is far too co■plex to rely solely on 

qoal-directed search mechanisms. Neither can the search be a 

completely bottom-up process driven by observation. Sensory 

data is too ambiguous to permit a reliance on purely data-driven 

mechanisms. Machine perception ■ ost utilize an integration of 

both goal-directed and data-driven search. Bobrov and Norman 

(1975) have called these two modes, conceptually-driven and 

data-driven. Goal-directed or conceptually-driven search 
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provides active guidance based on doaain-specific knovledq• of 

the hypothesis being attempted, vhereas data-driven search 

utilizes the observation of cues to intelligently select likely 

hypotheses. 

In this recognition 

hypothesis-driYen and 

model, schemata mav 

data-driven methods to 

employ 

perform 

both 

the 

recognition process. Hypothesis-driven recognition involves a 

top-down search of a composition hierarchy. Schemata attempt to 

recognize instances of their stereotypes by maki.nq observations 

from sensory input and by recursively calling on the effo.rts of 

their sub-schemata as subgoals. 

In order to recognize a bicycle usi nq top-down search, the 

bicycle schema attempts to look for sub-schemata instances that 

satisfy its expectations. To do .so it will invoke its own 

t.op-down methods asssociated vith each of its expectations in 

some likely order. Each of these methods vill t .hen atteapt to 

recognize suitable sub-schemata by calling on the methods of 

those schemata as subgoals. 

To realize bottom-up, data-driven search in schemata 

networks requires that multiple hypotheses be allowed to exist 

simultaneously. Since the recognition of the sche■ata 

representing these hypotheses are conducted by procedural 

methods, these methods must be allowed to apply their heuristic 

techniques concurrently. In bottom-up search, therefore, 

methods are realized as concurrent processes. In this model, a 

multi-processing mechanism for simulating concurrent methods is 
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A 

particular aethod, realized as a process, applies its heuristic 

techniques to the recognition of its schema's stereotype until 

one or more of the schema's expectations prove difficult to 

achieYe. The aethod ■ay then saspend its execution by creating 

new expectations for the scheaa that describe its unrealized 

objectives. It re■ains attached to these new expectations until 

such time as more evidence is discovered matching those 

expectations and supporting the renewed probability of the 

schema's success. , 

When such matching eYidence is discovered, the suspended 

method is resumed. Methods iterate throuqh a cycle of ~einq 

resumed by the discovery of matching evidence, ·then computing a 

new set of expectati~ns about their evolving schema instancesr 

and then suspending theaselves and possibly other methods to 

those expectations. , Since multiple methods 11ay be attached to 

multiple expectatio.ns, these e.xpectations represent diverse 

possible direct ions for a schema• s script. The choice of search 

path is not made by blind hypothesis but is data-drivenr chosen 

by the discovery of evidence aatching a particular expectation. 

The metho~ associated vith that expectation is then activated to 

continae its scheaa•s recognition. A branch in the schema's 

non-deterministic script has been taken. 

'In the following situation, for example r a wheel i .nstance 

bas been recognized in the input scene. Its features match the 

expectations of either the front or rear wheel slots of the 
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bicycle schema. Both of the bottom-up aethods associated vith 

these expectations may be actiYated • . We assume that the front 

wheel's expectation is matched first and its method in~oked. 

This botto■-up method vill e•ploit the fact that a front wheel 

has been discovered to guide the search for other parts of the 

bicycle. Since the .front wheel has a CONNECT relation vith the 

steering-set, the 11ethod looks in the neighborhood of its known 

wheel in the input scene for the remainder of the bicycle. Such 

an application of co1111on-sense knowledge is realized as a 

bottom-up procedural method associated with a particular schema. 

Por this exa■ple, we assume that this bottom-up aethod does 

not easilf discover significant information in the vicinity of 

the known wheel instance. Instead of re taininq control 

wastefully, it computes a nev set of expectations for the 

bicycle based on that infor11ation which it has discerned. 

Typical of the expectations which 11iqht be included. is the 

discovery of a steering-set that must be connected to the 

specific wheel instance. Its orientation must be above the 

wheel in the scene, as is normally the case for bicycles. These 

expectations will act as constraining information on the search 

for new bicycle coaponents. 

The method sospends itself and possibly other methods, as 

well, to these new expectations. If evidence aatching one of 

these expectations is discovered, its suspended method is 

resumed to continue its techniques using the new information. 
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3. 2. 5 Recursion 

Perception is also a recursive process. The recognition of 

some concept may be used recursively as an internal cue in the 

perception of ■ore abstract concepts. In th is !lOdel, cues can 

be primitive features of the external world or they can be 

abstract internal features represented as schema instances. 

when a method satisfies all its schema's expectations for a 

fully specified concept, that instance becomes an internal hiqh 

level cue. By allowing cues to be arbitrarily complex concepts, 

a mechanism is realized for avoidinq the "chicken and eqq 

problem" for schemata (Havens, 1976). startinq at the sensory 

data level, primitive cues present in the input can be used to 

drive the hypothesis and recognition of lov-level concepts. 

These features then behave as higher level cues stimulatinq the 

hypothesis of ■ore abstract interpretations. This bottom-up 

recognition mechanism depends on the existence of the inverse 

composition relations (Part-of) in the schemata network. When a 

concept has been recognized, the completed instance uses its 

knowledge of what higher scheaata in any co■ position hierarchies 

it might plausibly be part of. Attempts are then made to match 

the expectations of those schemata. 

In this model, primitive cues are discovered from features 

extracted from the input i•age using context-free cue discovery 

methods. In the vision do main, such techniques include reqion 

segmentation and line-finding algorithms. The primitive cues 
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the expectations of low-level scheaata 

their attached bottom-up methods. Each of 

attea pts to confirm its own schema's 

one or more of these methods succeed, the 

recognized schema instance becomes a higher-le•el cue usinq its 

inverse composition knovledqe to attempt to match the 

expectations of higher schemata of which it may be part. This 

recursive process is seen to be a bottom-up recognition model 

for schemata driven by both primitive context-free cues and 

abstract context-sensitive cues recognized recursively. 

To illustrate, when a wheel is found in the scene, its 

discovery becomes an abstract cue in the higher hypothesis of 

the bicycle schema. The fact that its ~ecoqnized features, such 

as type and size, match the bicycle• s expectations indicates 

that the bicycle is a likely hypothesis and that its methods 

should be invoked. This is characterized as a matching process 

between cue and expectation. Then, if the bicycle schema is 

eventually successful in recognizing a bicycle instance, that 

instance will beco■e a higher cue in the recognition process, 

perhaps, in this example, hypothesizing a class of scenes 

containing bicycles. 

3.3 Earley•s Algorithm 

In an attempt to develop computational aechanisms for 

realizing this model, the author investiga~ed the formal 

3: A Procedural Model 



57 

recognition models used in parsing theory. The context-free 

parsing domain ca.n be viewed as a hiqbly restricted subset of 

the perceptual domain. , Context-free parsing is a recognition 

tast that assigns an interpretation to an input sentence based 

on a hierarchical knowledge base, that is, a context-free 

phrase-structure gramraa.r. . The interpretation is inherently a 

recursive process for which both top-down and bottom-up 

recoqnition algori th■ s have been developed exhibiting well 

understood properties. In particular, the bottom-up parsin~ 

algorithm of Earley (1972) has some interesting properties from 

the perspective of ■achine perception. Rarley•s algorithm is an 

efficient bottom-up recognizer that can operate directly from 

any non-left-recursive context-free grammar. The algorithm is 

quite elegant • . It can operate in ti■e order n3 and space order 

n2 where n is the lenqth of the input sentence. Morever, it 

does not require backtracking to handle non-deter■ inism. 

Appendix-A provides a for mal presentation of the algoritha. 

In studying his algorithm, not as a parser, but as a 

bookkeeping scheae for the si ■ulation of •ultiple bottom-up 

processes simultaneously operating on the same input sentence, 

it vas noticed that the algorithm dynamically inTerts certain 

portions of a hierarchy (the grammar) based on a selection 

function (the input sentence). The algorithm operates from a 

context-free grammar and a set of valid parsers. Each parser 

attempts to recognize a coaplete sentential form derived from 

the right-hand-side of a particular rule in the qramaar. 
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Initially, the set contains only a single parser which '' attempts 

to recognize a sentential form derived .fro11 the start symbol of 

the qrammar. Such a derivation will he, of co~rse, a complete 

sentence in the language. If a non-terminal symbol may appear 

next in the derivation of any parser, new parsers are created 

for every rule in the gram■ar having that non-terminal as its 

left-hand-side. This function is called g[~gi£!i2D in the 

alqorit h111. 

The algorithm proceeds by scanning in a left-to-right order 

each symbol in the input sentence. If the observed symbol can 

be a valid next terminal symbol in the sentential forms of any 

of the active parsers in the current parse list, then those 

parsers are propagated into the next parse list. All other 

parsers are deleted • . The algorithm scans the input once. It 

hypothesizes new parsers by prediction froa the grammar vhen 

their rule can appear next in the derivation. Old parsers vhich 

cannot derive so■e portion of the input sentence to the current 

position are then destroyed. 

Earley•s algoritha exhibits some interesting properties 

fro ■ the standpoint of a model of recoqnition for computer 

perception. 

bottom-up 

hierarchy. 

The algoritha provides a mechanism for impleaentinq 

searc.h yet operates directly from a top-do vn 

Portions of the hierarchy are dynamically inverted, 

selectively, depending on vha t te.rminal symbols are observed in 

the input and vhat .non-terminal symbols are recoqnized 

recursively from the input. '1'hese are appealing attributes 
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since schema syste■s are organized as top-down hierarchies and 

it is desired to drive the bottom-up recoqnition process by the 

discovery of both primitive and recognized cues. 

As a bookkeeping scheme, Earley•s algorithm is applicable 

not only to parsing but also to multiprocessing in general. 1'he 

algorith■ systematically simulates aaltiple co-existent parsinq 

processes operating froa the saae hierarchy and on the same 

input. As well, it provides a scheduling mechanism based, not 

on e■ulatinq parallel search, but on co.ncurrent deduction. 

Parsers remain suspended until such time as the terminal or 

non-terainal symbol for which they are looking is discovered. 

Then, each such matched parser is resumed to co.ntin ue its 

recognition. 

The algorithm 

efficiently. When 

also handles non-determinism naturally and 

a terminal symbol is scanned or a 

non-terminal syabol is recognized, the algorithm propaqates into 

the next parse list every suspended parser that vas expectinq 

that constituent. All others are deleted. No backtrackinq is 

required. Co.nstituents need be found onlT once in the input and 

invalid interpretations are deleted as soon as possible. 

Although t .he above properties are desirable, there are a 

number of problems with adapting Earley•s alqorithm as a search 

mechanisa for the general and more complex domain of perception. 

"inker (1973) has considered and re1ected its use as a problem 

space representation. Woods (1974) has favorably coapared its 

abilities vith those of his augmented transition network 
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parsers. 

There appear to be three major difficulties inherent in 

this approach. , Pirst, the process of predicting vhich terminal 

and non-terminal symbols aay appear next in the derivation is 

too top-down, exhibiting aspects of "the chicken and egq 

problem". For a large knowledge hierarchy, the predictio.n 

process may have to tour very large branches of the hierarchy. 

In the parsing domain, this inefficiency can be tolerated by 

suitably restricting the graamars eaployed. For machine 

perception, no such restrictions of the knowledge base are 

feasible. In spite of this difficulty, Kaplan {1973) has 

proposed a similar prediction scheme for creatinq parallel 

interpretations in his parsing system, GSP. 

Second, the a lgorith11 depends upon the strict sequential 

nature of parsing to efficiently limit the proliferation of 

parsers. After the next input symbol has propagated all parsers 

still valid to the next parser set, all the re■aining parsers 

can be deleted. They represent invalid interpretations of some 

portion of the input sentence. In perception, however, some 

aspects are encoded sequentially, such as t~e surface form of 

natural language. However, other aspects have very little 

sequential content, for example, image analysis. Where sequence 

is an explicit part of perception, it can be effectively used to 

constrain invalid interpretations, but an efficient perception 

mechanism 11ust handle non-sequential aspects as well. 

The last difficulty perceived with Earley•s algorithm is 
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that the mode of search employed is completely bottom-up. There 

is no top-down mode defined. As has been seen, for perception, 

both top-down and bottom-up mechanisms are essential. 

3.4 Three Phases of Recognition 

The context-free parsing alqoritha of Earley vas shown to 

exhibit a number of properties desirable for a recognition model 

for machine perception • . · A few difficulties we.re also noted. 

This section develops a nev recognition model for perception 

using some of the techniques developed by Earley while, at the 

same time, avoiding the difficulties inherent in his algorithm. 

This ■odel supports both top-do~n and bottom-up search in 

schema-based representations. The bottom-up mechanisms vill be 

explained first since they are derived,. in part,. fro11 the 

previous d.iscussion. The recognition model consists of three 

phases, called ~!~~£!~!!21!, ~~!£bing, and £Q~El~!i2n• 

3.4.1 Expectation 

The expectation phase of this aodel is analogous to the 

prediction function of Earley•s algorithm. In the top-dovn 

recognition model for sche■ ata giYen by Kuipers (1975), 

e~pectat.ions are described as static properties of the 

stereotype which are systematically replaced by spEcific 

information as it is discovered. In this aodel, expectations 
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are computed dynamically during the recognition process as a 

function of the current partial instantiation of the sche■ a. At 

any point, a schema• s expectations represent a non-deterainistic 

description of all possible final instantiations of the sche ■a. 

Bound to each expectation is a method designed to continue the 

recognition of the sche■ a based on the satisfaction of that 

specific expectation. 

ln instance hierarchy is regarded, in this model, as a 

non-deterministic representation of a general class of objects. 

Recognition is characterized as the differentiation of the 

stereotype into a specific instance. This process of refining 

the expectations of a stereotype towards a fully specified 

instance has been called §.E.!!£i~liJ!!!2n (Bobrow & Winograd, 

1977). In the top-down recognition model, hoveve.r, a schema 

stereotype is portrayed as representing a particular class of 

objects such as tables or chairs. The recognition process 

results in the description of a particular table or chair. If, 

during this process, the scheaa is found to be inappropriate, a 

replacement schema must be selected by some substitution 

procedure • . In this model, this substitution is not necessar~ 

The schema instantiation is characterized as being a process of 

differentiation instead of selection. 
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3.4.2 Platching 

The second phase of t.he 11odel is the matching phase. The 

expectation and aatching phases form an iterative recognition 

cycle. In bottom-op recognition. the expectations bound within 

schemata are satisfied by suitable observations from some input 

mediu ■ or by the recu.rsive recognition of other schemata. After 

a scbe■a has created a set of expect at ions and bound methods to 

those expectations. the expectations may be matched by observed 

or recognized evidence. thereby activatinq the associated 

methods. Each method first incorporates the nev evidence into 

the evolving instance of its schema•s stereotype. It ■av then 

calculate. based on this new evidence, a next set of 

expectations. suspending itself and perhaps other methods to 

these new expectations. This ~l.2~£i~t,iQ!lL!~i£.l!i.ng ~le may 

co-exist over time with the recognition cycles of manr other 

schemata. This cycle realizes a multiprocessing mechanism for 

simulating parallel search. 

The matching phase depends on the availability of an 

associative retrieval mechanism in the schemata network. New 

evidence, discovered by observation and deduction, aust be able 

to find those scheaata containing expectations which it can 

match. Tvo such mechanisms are proposed, both of which involve 

pattern matching over sche■ a systems and are si•ilar to the 

extended concept of description matching advocated by Bobrow and 

Winograd ( 1977) • In general however, the problem is quite 
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complex. Indeed, a co11prebensive theory of deductive 

associative retrieTal over semant.ic networks is required. This 

problem can be seen to be, recursively, the recognition problem. 

The first mechan is ■ uses simple pattern aa tching and 

associative retrieval as is familiar in the newer Planner-like 

artificial intelligence programming languages (Bobrow 6 Raphael, 

1974). In this syste11, the expectatio.ns of a schema are 

represented as n-tuple patterns in a pattern associative 

database contained within the schema. !cCalla {1977) has 

advocated such an i11pleaentation .for schemata i.n a natural 

language dialogue system. 

The second aechanism involves using the instance 

hierarchies as associative databases. Such a taxonomic 

orqanization vi thin the system of schemata provides the 

necessary retrieval 11echanis■ s to support the matchincr phase of 

the recognition model. The matchirig process therefore involves 

a cue-driven search over the schemata network in con ;unction 

with syntactic matching of expectations represented as patterns. 

3.4.3 Completion 

A schema completes the recognition of an instance when all 

its expectations are satisfied. It most return that success to 

hiqber schemata of which the instance can be a component part. 

This is the completion phase of the recognition model and is 

analogous to the co11pletion function of Earley• s alqo.rith11 
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(Appendix-A). If the completing schema•s method yas called 

usinq top-down search as a §UbgQ~!, then the sche11a has an 

explicit caller and •ust eventually return a success or failure 

to that caller. on the other hand, a schema's method may be 

activated using bottom-op search by having an asso~iated 

expectation matched bf some other process. This method has no 

explicit caller and is referred to as a §!lruU:9.2§.!• The 

distinction between subgoals and supergoals is based on the way 

in which they are activated. Subgoals are activated · as 

subroutines attached to the calling routine, whereas superqoals 

are activated as processes whose existence mav continue after 

control has returned to the caller. Both tvpes of methods are 

directed at completing the recognition of their schemata and 

both ■ay use a combination of top-down and bottom-up techniques 

to do so. 

When a supergoal has satisfied its schema's internal 

requireaents for the recognition of an instance of the schema's 

stereotype, the recoq.nized concept becomes an abstract cue. It 

enters the matching phase by attemptinq to match the 

expectations of those higher schemata of which the particular 

instance might be a plausible part. Such knowledge is available 

to the completed schema instance through the inverse composition 

relations of its stereotype. 

Figure 3.4 illustrates both the cyclic and the recursive 

nature of this process. For example, the recognition · of 

Schema-1 at the first level in the hierarchy may proceed over 
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ti■ e with the recognition of other schemata • . Sc~e ■a-1 may qo 

through several cycles of creating expectations, suspendinq its 

■et hods to those expectations, and being resumed bV 11a tchinq 

primitive cues co■ puted fro ■ the input data. When all the 

expectations o.f Scheaa-1 have been satisfied, it then enters its 

completion phase. Since it was not called as a subgoal of any 

higher schema, its description is, in effect, an abstract 

high-level cue. From the information contained in this 

description, it attempts to match the expectations of schemata 

at the second level in the hierarchy, in this case, Schema-2 and 

Schema-3. If the match is successful, the aethods of one or 

both of these schemata are resuaed as supergoals of Schema-1 to 

continue their recognition. Their recognition may also proceed 

through a nu■ber of expectation/11atchinq cycles concurrent with 

other recognizers. Butr unlike Schema-1r their expectations are 

matched bJ non-priaitive cues recognized recursiTely as the 

result of perception. 

Completion is seen as a "handle" in the recognition model 

for realizing a number of desirable features of a theory of 

■achine perception. It provides a mechanism for simulating 

parallel search via a deductive method scheduling scheme, for 

realizing a .recursive cue/model hierarchy, for realizing aethod 

hierarchies, and for coordinating the efforts of concurrent 

■ et hods. The re■aining sections of this chapter will explain 

hov these features are achieved in the model. 

In the analysis of Earley•s algorithm, it was pointed out 
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that the prediction phase may be computationally very expensive. 

In this recognition model, the p.roble11 is avoided by noting that 

the expectation phase for some particular schema need not be 

performed until such ti■ e as another co■ pleting superqoal or 

some input observation attempts to match that schema. When a 

superqoal attempts to aatch a scheaa of which it can likely be 

part, it must first search for a particular instance of that 

schema to match. If no such instance can be found, then the 

supergoal calls upon the schema stereotype to create a new 

instance. Thereby, the expectation phase is performed only vhen 

needed. 

3. 5 Scheduling 

Proposals for simulating parallel search usually employ a 

multiprocessing scheme that relies on soae global algorithm to 

allocate the processor. A popular technique is a veiqhted 

time-slicing mechanism based on a priority queue (Bobrow & 

Winograd, 1977). This type of mechanism is effective at 

simulating the concurrent evaluation of procedures but it is not 

effective at si•ulating the parallel application of 

non-deterministic search methods. The technique is directed at 

scheduling processes, not at the methods that are i ■ ple11ented as 

processes. The sche■e is too low level. It typically forces 

the programmer to assign a global numeric priority to a process 

when it is placed on the priority queue. 
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A scheduling mechanism, operating at a higher level• is 

needed. l!ethod s should becoae act.iv e when their applica bili tv 

to the recognition process is discovered or deduced, not when a 

process spontaneous! y reaches the front of a priority qneue. 

TO illustrate this further, consider an automatic deduction 

system that is implemented in a multiprocess environaent. The 

systea is atteapting a complex proof. One particular deductive 

process has shown considerable promise but has been unable to 

achieve some result, say P(x) • . The process decides to suspend 

itself until such tiae as another process has succeeded in 

deducing P (x). In this priority driven system, which priori tv 

should be assigned to this suspended -process? Bov does one 

assign a priority number to a process in order that it wait for 

a specific situation to occur? Obviously, a ■ ultiprocessinq 

sche■e based on deductive scheduling instead of simple 
I 

parallelism is required. Processes should be scheduled w.hen 

their applicability to the system• s task has been coaputed. The 

bottom-up search problem is not to simulate parallellis■, but to 

coordinate the simultaneous efforts of multiple methods. , When a 

■ et hod achieves so11e inter ediate result, the schedulinq 

aechanis ■ should ask, "What methods are suspended vaitinq for 

this result?". 

The completion phase of the recognition model provides such 

a schedulinq 11 echanis• • . In fact, the recognition model can be 

characterized as the co putation of what methods should be 

scheduled nezt. ftethods remain s11speniled to patterns 

3: A Procedural ~odel 



70 

representing expectations until resumed ez:plici tl v by some lower 

completing supergoal. A ■ethod is resumed when .it is deduced 

that the method could be applicable to the recoqni tion process. 

A completing soperqoal ■ aJ resume, in turn, the methods bound to 

expectations of all higher schemata that its schema instance can 

succeed in matching • . · Each such resoaed method is act.i va ted also 

as a supergoal and proceeds to continue the recognition of its 

ovn schema. The recognition of a schema instance need be 

computed only once. By sequentially resuaing more than one 

higher supergoal, a single schema instance can be part of the 

recognition of multiple higher schemata. Bo backtracking of 

subgoals or use of siailarity network schemes is required. 

Each completing supergoal behaves as a heuristic scheduling 

mechanism, resuming the aethods of those higher schemata which 

it is successful at matching. That scheduling mechanism may be 

tailored specifically for each situation. _ l syntactic global 

scheduler is not required. Por instance, a superqoal can resume 

hiqber met hods in order of expected likelihood. of applicability 

or it can resume first only the methods of those schemata which 

already have existing instances. If none of those succeed, then 

it can create new schema instances to ■atch, thereby saving the 

expense of the expectation process until it is needed. 

The completion mechanism can be characterized as a 

h2t!.2A=!l.2 Un!!lli2~ in contrast to the top-down generators of 

conniver. When a completing method matches a higher supergoal, 

it is generating a possible successor process. It tours a 
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schema hierarchy in inverted, bottoa-up order. The completinq 

method's co■putations are suspended while the hiqher schema •s 

supergoal atteapts to complete its recognition. If control 

returns to the completing method, it will then generate the next 

possible higher supergoal. This mechanism is a generator for 

bottom-up search instead of top-dovn search. 

3.6 ffethod Hierarchies 

It is clear that machine perception must utili-ze heuristic 

domain-specific search knovledqe in order to cope with the 

complexity of the perceptual process. By incorporatinq this 

knowledge as procedural methods associated with stereotvpical 

schemata in a composition hierarchy, a method hierarchy (Newell, 

1972) isomorphic to the composition hierarchy is formed. 

Met hods exhibit a tradeoff between applicability and power. 

~ethods applicable to a large class of search problems are 

inherently inefficient for any specific proble.lll. converselv, 

methods heuristically engineered for the accomplishment of a 

narrow specific task can achieve power and efficiency. A 

comprehensive recognition scheme for perception must include 

provisions for such a method hierarchy to in telliqentl v qui de 

the search process • . · 

In the purely top-down recognition model, a method 

hierarchy capability is straightforward. The methods associa·ted 

with each schema may be created specifically to search for 
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instances of that schema. The hierarchy is realized by the fact 

that, in top-down search, schemata call on the efforts of other 

schemata as subgoals. Each leYel of subgoalinq applies a ■ore 

powerful and specific •et bod to the achieve aent of that 

particular subgoal. 

In bottom-up search. however, achieving a method hierarchy 

is not so straightforward. , Multiple methods 11.ay be active 

simultaneously. Which method should~ at any qiven instant, 

direct the search process? ftost _bottom-up search schemes have 

used a single top-level aethod to drive the operation of the 

system (Waltz, 1972) (!lack.worth, 1977a) • Plul ti processing 

schemes typically alternate the application of methods as 

processes which are run and then suspended again on the priority 

queue. There is, however, poor coordination between alternatinq 

met hods. 

The following mechanism is utilized to realize a method 

hierarchy in bottom-up search. As has been described, a 

supergoal method can compute, based on the partial instantiation 

of its sche■ a, a next set of expectations. It may then suspend 

other methods to patterns within the schema representing those 

expectations. After the ■ethod bas perfor■ed the expectation 

phase, it can either ter■inate 

control to some higher ■ethod, 

its execution, relinquishinq 

or it can remain active, 

retaining access to the processor • . This mechanism provides 

effectively an extra "degree of freedom" in the search process. 

If the method relinquishes control, then it is relying on the 
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efforts of other aethods to discover evidence that will 
·.\' . 

aatch' · 

!!§ schema's expectations. On the other hand, if the method 

retains control of the processor, it may use its ovn specialized 

knowledge to direct the discovery and deduction of evidence to 

satisfy its own expectations. 

This mechanis■ allows each schema the choice of applying 

its ovn speciali~ed heuristic knowledge to direct the search 

process or yielding to ,4:he heuristics of hiqher, more general 

methods. In top-down search, each ■ethod, as a subqoal, is 

forced to direct the search process regardless o.f tb.e schema •s 

applicability or expertise. A major reason for ~he patholoqical 

behavior of pure top-dovn search (Sussman & McDer ■ott, 1972t is 

that inapplicable ■ethods do not know when to quit. 

In bottom-up search, however, the choice of when to apply a 

method's techniques is not critical. The decision is based 

locally on a scheaa•s anticipation of success. If a schema 

applies a bottom-up method, but the schema itself is 

inappropriate, control will soon propaqate to the ■ethods of 

more appropriate schemata. Evidence will be discovered vhich 

matches the expectations of those more appropriate schemata. 

Their methods will then assume control thereby correcting the 

mistake. The essential difference from top-dovn search is that 

this decision does not have to be made locally by each method. 

Instead, it is made globally by the discovery of evidence 

supporting the choice of a different method. In the worst case, 

all that is lost is soae efficiency for a short while. There is 
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no chronic pathological behavior. l!ackworth (1977a) has noted a 

similar convergence effect in the use of bis bottom-up 

constraint propagation algorithm, NC. 

3.7 Coordination and Communication 

Since multiple methods can be active concurrently, methods 

may simultaneously attempt to recognize different schemata or 

1110.re than one method may attempt to recognize the same schema 

instance. It is necessary to provide coordination and 

communication a•ong sister aethods. 

In this ■ odel, coamunication among sister methods is 

accomplished through their common sc .he ■a instance. The instance 

is a data structure accessed by all methods associated with that 

schema. Each aethod contributes to the instantiation of the 

schema and is aware of the contributions of its sisters. When 

some particular aethod decides that the recognition of this 

schema instance has been completed, it aust communicate that 

success to every active sister method. Such a mechanisa is 

defined within the completion phase. When a method beqins the 

completion phase, it is assumed that the efforts of all other 

methods associated with the recognition of this particular 

schema instance are no longer needed. All such sister methods 

are suspended within the completed schema instance. 

As well, there must be coordination a onq the methods of a 

method hierarchy. A number of methods in the hierarchy may be 
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simultaneously atte■pting the recognition of their associated 

schemata. Since the method hierarchy is isomorphic to the 

composition hierarchy. when a method at so■e level in the method 

hierarchy is successful at recognizinq a schema instance at that 

level, the methods at lover levels are no longer needed. These 

lo-er ■ethods were attempting to recognize components of the now 

completed sche■a instance and to discover cues to propagate its 

recognition. That recognition is nov complete and these methods 

are also suspended. 

Completion then is seen as a coordination mechanism among 

cooperating concurrent aethods. When a schema is su.ccessfull y 

recognized, all methods currently atte11ptinq the recognition of 

that sche■a or sub-schemata of that schema are suspended. 

completion vas characterized aboYe as a bot tom-up generator. 

This ■echanism is realized by the conventions described here, 

The bottom-up generator is coaposed of all the methods suspended 

by the completion process. on failare, the qenerator is resu11ed 

to generate a new plausible higher supergoal, resuminq all the 

suspended methods to continue the search for that next 

superqoal. 

3.8 Integration 

The presentation of this recognition ■od.el has so far 

concentrated on realizing bottom-up search mechanisms. One of 

the premises for the model's development was that it should 
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provide an integration of top-down and bottoa-up search. 

section describes such an integration. 

This 

In this aodel, methods aay execute either as subqoals or 

supergoals. A subgoal method .may atte ■pt to complete its task 

by using either top-down or bottom-up techniques. Top-down 

search is i ■ plemented in the familiar aanner by methods 

recursively calling the methods of other schemata as subgoals. 

As well, a subgoal method may use bottom-up techniques by 

computing a set of expectations for its schema, then atte11ptinq 

to satisfy those expectations by aakinq observations and 

deductions. This process may, itself, recursively use an 

inteqration of top-down and bottom-up techniques. The only 

restriction is that the subgoal method eventually return a 
I 

success or failure to its explicit caller. 

Likewise, supergoal methods may use either top-down or 

bottom-up search to achieve their tasks • . Supergoals aay call 

other methods as subgoals. Alternatively, a superqoal method 

may create a set of expectations for its sche11a, then either 

relinquish control to some other method, or using its heuristic 

knowledge, direct the discovery and deduction of i .nfor11ation to 

satisfy its own expectations. In summary, both top-down and 

bottom-up aethods can be interaixed freely. 

When a completing schema is atte ■ptinq to match the 

expectations of higher schemata, it must first find instances of 

those schemata to match. This device involves the semantic 

network matching described earlier. Part of the heuristic 
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knowledge contained in a schema's methods consists of procedures 

for searching the schema network to look for hiqher schemata to 

aatch. In fact, there is no sharp distinction between vhen a 

schema ceases the recognition of an insta nee 3. nd vhen it beqins 

the completion process. overlapping may occur to the point that 

the coapletion process involves using both top-down and 

bottom-up search techniques and the e.xpectation/matchinq cycle 

may involve aspects of coapletion. For instance, in order to 

efficiently calculate a next set of expectations, a method may 

need to match higher superqoals in order to constrain the number 

of expectations produced. This distinction is made more for 

conceptual than computational reasons. In a large schema 

system, it will be advantageous to blur the distinction in order 

to facilitate communication op and down the the schema 

hierarchy. 
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CHAPTER 4: AN !XUIPLE PRO! MACHINE V ISIOi 

4. 1 Perspective 

This chapter presents a detailed example of the operation 

of the recognition model on a computer vision task. This 

example has been i■ple ■ented as a running Pia.ya proqra11 vhich is 

qiven in Appendix-c. In the ne:1:t chapter, the i1aple11.entation of 

the example will be coTered as part of the description of .Ptaya. 

The exa■ ple chosen is a small but characteristic machine 

vision problem fro■ the "blocks world". The proble11 is to 

recognize from perfect line drawings a class of polyhedra 

including cu.bes, wedges, and pyramids. The recognizer operates 

from a sche a representation of polyhedra and accepts input 

scenes consisting of vertices and lines connectinq vertices. 

The problem is not a vision task of current research 

interest. It is presented to illustrate the operation of the 

recognition model developed in this thesis. There are three 

ma;or reasons for this choice. Pirst, the problem is 

characteristic of machine perception tasks. The world of 

polyhedral objects is believed to be the simplest task domain 

that captures the essential aspects of scene analysis 

( P.lackwortb, 1976) • Second, the example is restricted enouqh in 

its scope that heuristic concerns specific to a particular 
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vision task do not overshadow more general issues of 

representation and recogn.ition. And third• this example is 

similar to an example given by Kuipers (1975) to illustrate the 

operation of the top-dovn model of rec oqni tion for sche111a 

systems. _ This choice of example, therefore, permits a 

comparison of -the tvo recognition models. 

The method of presentation will be to first describe the 

overall structure of the proble■ •s solution, and then, bv 

utilizing a protocol produced by the prograa, explain the 

operation of the program and the underlvinq recognition model. 

Although the program does not explore all the issues addressed 

by the model, it does provide a handle for their discussion. 

4. 2 The Problem 

The knowledge of polyhedral objects is represented in this 

exaaple as a schemata network. The proqra m uses the simple 

composition hierarchy of Figure 4.1 to _represent stereotypical 

scenes of polyhedral blocks. Bach node in this hierarch v is a 

stereotype schema representing a named concept. Each 

downward-directed arc represents the composition relation 

between its schema and its sub-schemata. Scenes are composed of 

polyhedral objects. Polyhedra are composed of polygon faces 

which~ in turn, are co posed of primitive edges and vertices. 

Each upward-pointing arc represents the inve.rse composition 

relation. "part-of". 
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part-of ~- composition 

I, 

Figure 4.1: Scene Comfcsition Hierarchy 
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In this eraaple, polrhedral objects are differentiated into 

cuboids, wedges, and pyraaids. Cuboids are polfhedra collposed 

of parallelogram faces only • . Wedges are objects co■posed of 

para llelogra11 faces and a single triangle face, and, pyramids 

are ob1ect.s containing two or more triangle faces. Polyqons are 

differentiated into triangles, parallelogra■s, qeneral 

quadrilaterals, and arbitrary polygons of .five or ■ore sides 

called multilaterals. Notice that the differentiation of the 

generic polyhedron and polygon schemata into subclasses is not 

represented explicitly in the composition hierarchy. Polyhedra, 

for example, are not divided into cuboids, wedges and prramids 

each of which, in turn, would be divided into triangles and 

parallelograms • . To do so would expand considerably the size of 

the schewa system and force an explanation of this larqer 

structure in order to perform recognition. Instead, the 

knowledge of the division of stereotype classes into subclasses 

and finally into specific instances is represented 

in the methods attached to the stereotype schemata. 

the polyhedron schema's methods is to recognize 

cuboids, pyramids, and wedges. Likewise for 

met hods, their task is recognize from observation 

procedurallv 

The task of 

instances of 

the polyqon•s 

insta.nces of 

triangles, parallelograms, quadrilaterals, and multilaterals. 

Initially. the taxono■ic structure is represented within the 

procedural methods, but as specific instances of polygons and 

polyhedra are hypothesized and subsequently recognized, they are 

added to the instance hierarchy for those schemata. Thus the 
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structures are created dynamically. The construction of the 

hierarchical representation of a scene is based on evidence 

discovered in the input, not on all possible compositions 

compiled before the recognition begins. 

The program is run on the scene of Fiqure 4.2. The scene 

data is input to the program as a set of lines and vertices, 

each of which is represented as a primitive fully instantiated 

schema. As the data for each vertex is read, a schema instance 

is created and added to the vertex i.nstance hierarchy. This 

function is illustrated in Figure 4.3. Vertices are divided 

into four classes in this hierarchy. The,- are ARROW, POBK. T, 

and L. Because there are only a few primitive vertex instances · 

in the input data, the vertex hierarchy uses a simple 

organization. VERTEX maintains a si•ple list of its instances, 

FOR i, L, T, and ARROW. . Likewise, each of these stereotypes 

contains a list of its instances, the primitive input vertices. 

Besides organizing the database of vertices by vertex type, the 

hierarch., also proriaes an attribute inheritance mechanism. For 

instance, Vertex-1 inherits the sche ■a attributes of its 

stereotype, ARROW. which, in turn, inherits the more general 

properties of VERTEX., Inherited attributes can include 

procedures. variable bindings, pattern databases, and methods. 

thereby i•pleaenting metboa hierarchies. 

Pigure 4.4a illustrates a typical primitive vertex schema, 

Vertex-i. Each such verteI contains a number of named slots. 

The "ISA" slot (Fahl■an, 1975) represents the inverse instance 
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c:VERTEX-3 LINE-3-4 

~ VERTEX-4 

LINE-3-6 

~ LINE-2-3 LINE-4-5 

LvERTEX-6 

~VERTEX-2 

~VERTEX-5 

l VERTEX-1 

Figure 4.2: Input Scene 
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• Instances 

Figure 4.3: Vertex Instance Hierarchy 
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Figure 4.4a: Vertex Schemata 
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(VERTEX) 

{ INTEGER) LINE-i 

Figure 4.4b: Line Schemata 
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',1 ~ 
stereotype. · .:f,, This 

relation is automatically created by l'!aya when the instance is 

defined • . It vill point either to the PORK, L, T, or ARROW 

schema. 

A second slot in the vertex instance, called NAl'!E, points 

to an atom representing the schema •s name, Vertex-i. Three 

additional slots in the instance (two for L-vertices) are used 

to represent sectors of the picture plane that each vertex 

imposes on its i1111edia te locale, as shown in Figure 4. 5. When 

the vertex has been recognized as part of one or aore polygon 

faces, these sectors will be corners of those faces. 

The remaining slots of the vertex instance represent data 

for the particular Yertex. The slots labelled L1, L2, and L3 

point to the corresponding line instances qiven in the input 

picture. Likewise, the slots labelled ANGLE-L1-L2 and 

ANGLE-L2-L3 are used to indicate approximate angles of each of 

the sectors, as is illustrated in Pigore 4.5. 

In a similar manner, a schema instance is created for each 

line in the input data. Figure 4.4b depicts the structure of 

pri ■itive line schemata. Each line sche ■a is an instance of the 

generic LINE scheaa and has slots for its name. its lenqth in 

the picture, and the names of the tvo vertices, labelled V1 and 

V2, connected by it in the picture. _ As a matter of convenience, 

all of the input data is read and represented as schema 

instances before the recoqnition process begins. The output of 

the progra11 consists of a hierarchical description of the 
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Figure 4.5: vertex Labelling Conventions 
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recognized scene composed of fully specified schema instances, 

or conversely, a report of failure. 

4.3 Annotated Protocol 

In the following pages, a protocol is used to facilitate 

the explanation of the aodel. The sentences which are preceded 

by an asterisk and printed in upper case are the statements of 

the protocol produced by the program. All others are the 

author's commentary on the behavior of the program and the 

model. It may be useful to use Pignre 4.6 to follow the 

recognition process. The face schema instances created during 

the recognition are shown superimposed on the lines and vertices 

of the picture .. 

The recognition process begins bv sendinq the top-level 

schema a message to interpret the input data as a scene. In 

order to recognize a scene, the SCENE schema must find a 

polyhedral object in the data. The schema has the choice of 

applying top-down or bottoa-up techniques. If it chooses to 

conduct a top-down search, the difficulties mentioned with the 

top-down recognition aodel will appear. Specifically, the SCENE 

schema vill be forced to hypothesize alternatively cube, vedqe, 

and pyramid schemata as subgoals. If a hypothesis is incorrect, 

the scheaa vill have to choose a nex subqoal based only on that 

failure. Alternatively, the SCENE sche■a may begin its 

recognition using bottom-up search. Later, vhen sufficient 
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supporting evidence for a single hypothesis has been found, the 

hypothesi-zed schema can con.firm its recognition using top-down 

techniques. 

* NETHOD: TOP-LEVEL SCHE!l EXHAUSTIVELY OBSERVES EACH VERTEX 

Since no evidence has yet _ been discovered suppo.rting any 

particular hypothesis, the top-level Scene schema chooses to use 

bottom-up search techniques by making observations in the input 

data. The heuristic method used by this schema is the same as 

that qiven by Huff■an ( 1971). The scheaa exhaustively activates 

each primitive vertex scheaa in the scene, beginning vith the 

peripheral vertices as they are less ambiguous interpretation 

cues than interior vertices. 

The observation process consists of activa tinq each vertex 

schema to perform its completion phase. Since the recognition 

of each vertex is qiYen as. the input data, the vertex need only 

compute of which higher schemata in the rietwork it may he 

plausibly part. In this exaaple, vertices may be component 

parts of both triangle and paralleloqraa faces. 

* SCENE SCBEft
0

A OBSERVES VERTEX-1 

Vertex-1 is an ARROW vertex vhich, in turn, is an instance 

of the generic Vertex schema. ARROW, FORK, and T-vertices 

contain three sectors since they divide the picture plane 
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locally into three regions. Vertices containing three sectors 

are taken to be default ana the qeneric vertex sche■a provides a 

procedure for performing completion for these vertices. Each 

such vertex inherits this method fro■ the Vertex schema by the 

inverse instance relation maintained automatically by ~aya. The 

only vertex having two sectors is the L-vertex which has a 

completion procedure defined locally and need not inherit it 

from the vertex hierarchy. 

* FOR SECTOR-L1-L2 OF VERTEX-1, 

* CREATE A NEW SCHEMA: FACE-1 CONTAINING A CORNER FOR VERTEX-1 

A vertex can be part of more than one polygon face because 

each sect.or of a vertex is possibly a corner of a different 

face. The co ■pletion process for vertices therefore consists of 

finding and attempting to aatch polygon face schemata for each 

of these sectors. Por this fir~t vertex, there are, as vet, no 

instances of faces to match. Thus, the verte~ 11.a tches the 

qeneric 'polygon schema, FlCE, which, in turn, creates a new 

instance, Face-1. The observation of Vertex-1 is seen by FACE 

as a cue to hypothesize the existence of another face instance. 

The matching of Pace-1 by Vertex-1 activates a methdd associated 

with the nev schema instance as a su pergoal which proaptl y 

incorporates this vertex as a corner of its newly evolvinq 

description of a polygon face. 

At this point, a face has been hypothesized containing 
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vertex-1. Face-1 can nov continue the search via one of two 

mechanisas. The method could use faailar top-down search by 

calling the methods of other sub-schemata as s11bqoals. For this 

polygon, that would in•olve hypothesizing a particular polyqon 

face type (either parallelograa, triangle, quadrilateral, or 

multilateral) , then predicting what types of vertices each of 

the possible polygons could be composed of, and finally lookinq 

for those vertices. This aode is rejected by Face-1. 

The sec6nd aode of search uses a botto ■~up mechanism. The 

active method of Face-1 could compute dyna11ically a new set of 

expectations for the schema as a function of the information 

provided by Vertex-1. That is, Vertex-1 constrains the possible 

final interpretation of Face-1. tater, if evidence is 

discovered matching these expectations, the method will be 

resumed as a supergoal to continue Pace-1 1 s recoqnition. The 

schema can repeat this cycle of computing a nev set of 

expectations and waiting for so11e expectation to be satisfied. 

Alternatively, at some point in the cycle, it can apply top-down 

techniques to the Yerification of its hypothesis. 

* CREATE TWO PROCESSES BOUND TO EXPECTA TI01'S FOB LINE-1-6 AND 

LINE-1-5 

The ■ethod of Pace-1 creates two expectations and binds a 

nev method to each. Expectations are indices of the sche11a 

associative retrie•al ■echanis11. , These indices must be knowable 
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by both the scheaa creating the expectations and every other 

schema that can ■atch them. Expectations are constraints on the 

final interpretation. , Por this problem, the lines connecting 

vertices are such a convention. Since both Pace-1 and any 

vertices that can be part of Pace-1 have access to these lines, 

they can be used as constraining inforaation on the 

interpretation of vertices as polygon faces (Mackworth, 1975, 

1977b) • 

After creating a set of 

schema's method is still active. 

expectations for Face-1, the 

Since the method is designed 

for the recognition of polvqons, it can apply its techniques to 

the further recognition of its ovn schema, or it can relinquish 

control to the method of Vertex-1 which activated it. Should 

the method apply its techniques or defer to the more general 

knowledge of the scene schema at the top of the · method 

hierarchy? The choice is completelJ heuristic, and is based on 

the methods appraisal of its probability of success. The 

decision is made fro■ local in.formation, such as how much 

evidence has been collected supporting the sche11a • s hypothesis. 

Since very little evidence has been discoverei supportinq the 

recognition of Face-1,, its method suspends itself. 

• FOR SECTOR-L2-L3 0~ VERTEX-1, 

* ATTEftPT TO ftATCH THE EXPECTATIONS OF FACE-1 

control returns to Vertex-1 •hich is still actively pursuing its 
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completion phase. This time, however, it finds a polygon face 

instance to match since the polyqo.n instance hierarchy contains 

Face-1. The ■atch fails. ,, Sector-L2-L3 cannot be part of Pace-1 

because Sector-L1-L2 of the same vertex is already part of this 

.face. 

* CREATE A BEW SCHEftA: FlCE-2 CONTAINING A CORNED FOR VEBTEl-1 

A new face recognizer, F'ace-2, is nov hypothesized and its 

method activated as a supergoal of Vertex-1. As in the case of 

Face-1, the method creates the first corner of Pace-2 by 

incorporating Sector-L2-L3 of vertex-1 into its description. 

* CREATE TWO PROCESSES BOORD TO EXPECTATIONS FOR LINE-1-2 AND 

1.IIE-1-6 

Again the face sche•a creates tvo expectations, binds methods to 

them, and returns control to Vertex-1 which activated it. 

• POR SECTOR-L3-L1 OF VERTEX-1, 

* ATTEMPT TO fllATCH TRE EXPECTATIONS OF FlCE-2 

* ATTEftPT TO ftlTCH THE EXPECTATIONS OF PACE-1 

* CREATE A NEV SCRE8l: PACE-3 CONTAIMING l CORNER FOR VERTEX-1 

* CREATE TWO PROCESSES BOUBD TO EXPECTATIONS FOR LINE-1-5 AND 

LINE-1-2 
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Vertex-1 continues looking for hiqher schemata to match, 

this time for its third sector, Sector-L3-L1. Attempts at 

matching the tvo existing face recognizers fail, and a new 

schema, Pace-3, is created as before. Vertex-1 has now finished 

its coapletion phase by searching the polygon instance hierarchv 

for all schema instances of which its sectors might plausibly be 

part. In this eia■ ple, this search involves only atteaptinq to 

match the expectations of each face instance. In general, the 

search for higher ■ atchinq sche~ata within the schema hierarchy 

can .be arbitrarily coaplex, perhaps recursively involvinq 

recognition. 

* SCENE SCHE!l OBSERVES VER~EX-2 

Control has returned to the scene schema which continues to 

observe vertices in the heuristic ordering mentioned earlier. 

vertex-2 is activated next to perform its completion phase. The 

vertex will attempt to find face recognizers to match, that is, 

face hypotheses of which it can be part. 

* FOR SECT0R-L1-L2 OP VBRTEX-2, 

* ATTE"PT TO MATCH THE EXPECTATIONS OF FACE-3 

* ATTE"PT TO ftATCR THE EXPECTATIOIS OP PACE-2 

* FACE-2 HAS BEEN ftATCHED BY VERTEX-2 

vertex-2 has found Pace-2 and matched one of its 
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expectations, namely, that it shares Line-1-2 with the matchinq 

vertex. The 11etbod associated vith that e .xpectation is 

activated; it uses the following scheme for recognizing faces. 

Two methods are defined to follow the periphery of the face 

being recognized. one method follows the periphery of the face 

in a clockwise direction, the other in a counter-clockwise 

direction. 'l'he search proceeds from some vertex via a 

connecting line to the next vertex and so on until the region 

comprising the face has been closed. 

• VERIFY FACE-2 USING TOP-DOWN SEARCH 

When enough evidence has been discovered using bottom-up 

search to conclude that the recognition of a polygon face is 

likely, the schema applies a top-down method to the verification 

of the hypothesis. The discovery of two neighbouring vertices 

is considered by the face recognizer to be enouqh evidence to 

switch from bottom-up to top-down search mode. In qeneral, the 

choice of search modes is a heuristic decis.ion made by a 

schema's methods • . 

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-3 FR01' LINE-2-3 

* INCORPORATE THIS VERTEX INTO A NEW CORNER OF FACE-2 

The top-down method uses a clockwise tour of neiqhbourinq 

vertices until a closed figure is formed. As each vertex is 
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discovered, it is composed into a corner in the evolving 

description of the polygon face. If another face recognizer is 

discovered during this tour attempting the recognition of the 

same face, t.hen i t.s partially co11pleted description is merged 

into this face recogni'Zer• s description and the tour is 

continued. 'Note that this transfer of information .fro ■ one 

schema instance to another is straigh tf orvard and does not 

violate the criterion of schema modularity for the recognition 

model. Because both schemata are instances of the same 

stereotype, they already have access to information about the 

internal structure of each other. 

* GET lfEXT CLOCKWISE NEIGHBOUR VERTEX: VEBTEX-6 FROM LINE-3-6 

* INCORPORATE THIS VERTEX INTO l NEW CORNER OF :PACE-2 

* GET NEXT CLOC~VISE NEIGHBOUR VERTEX: VERTEX-1 PROft LINE-1-6 

* THIS VERTEX IS ALREADY CONTAINED IM PACE-2 

The top-down ■ethod continues to incorporate vertices into 

the description· of Face-2 until it attempts to add Vertex-1. 

Since this vertex is already part of this face, the top-down 

met hod has found a closed region, the pol fgon face. 

* cmtPARE .PACE-2 TO POLYGON !IODEL 

* COPIPLETED PACE-2 IS l PlRALLRLOGBAflt 

It is the task of Pace-2 to decide the type o.f its polygon 
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from information obtained durinq its recognition. 

example, part of that inforaation is the size of the 

In this 

angle of 

each vertex sector ill the face's description. Face-2 compares 

this inforaation to an internal model of triangles, 

parallelograms, quadrilaterals, and mul tilate rals, and decides 

that it is a parallelogram. In general, the aodels that a 

schema has of its ste.reotype concept guide the search process 

and are manifest as the aethods associated with the schema. 

* ltATCH THIS FACE TO THE EXPECTATIONS OF POLYHEDRON RECOGNIZERS 

Face-2 nov begins its completion phase as a high-level 

internal cue in the recognition process. Part of the knovledqe 

contained in the face sche■ a is of what higher concepts in the 

schema coaposition hierarchy polygons can be a part. In this 

example, polyqons can be part of only polyhedral obiects. 

Face-2 vill attempt to stimulate the recognition of particular 

polyhedron schemata by sending messages to each of the 

recognizers. 

The completed face schema is characterized as 

generator of possible higher schemata in the 

hierarchy. The algorith ■ used by this qenerator is 

a botto11-np 

composition 

to attempt 

to match a single polyhedron schema instance of which it .!.!!§! be 

a part. Palling to find such a sche ■a, it vill attempt to match 

every polyhedron schema that it may be part of. In this latter 

case, a nev polyhedron recognizer must also be created with this 
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polygon as its first component face because it could, 

conceivably, be part of no existing polfhedron instance. Since 

there are no existing polyhedra instances to ■a tch, Pace-2 

matches the generic polyhedra sche ■a. 

* IS PACE-2 COMPATIBLE WITH THIS CLASS OP POLYHEDRA? 

* YES 

The polyhedron instance analyzes Face-2 to decide whether 

it vill accept the completed .face as part of its description. 

As shown by this exaaple, the polygon schema can recoqnize aore 

types of polygons than the polyhedron sche ■a. can accept as valid 

faces of polyhedra • . This illustrates a modularity of the 

recoqnition ■odel. l sche■a need only knov a.bout recognizing 

instances of its own stereotype • . It does not need to know the 

require■ents of other sche■ata. If a schema can be part of some 

higher schema, then it will be able to aatch the ez:pectations of 

that schema doring · its completion phase. , The creation of 

expectations within a schema and the m.at.chinq of those 

expectations by anot.her sche11a is characterized as a procedural 

constraint satisfaction process between tvo schemata. 

* CBEITE A MEI SCBEBA: POLYBEDROB-1 CORTAIWING PACE-2 

Parallelograms are valid faces of po1yhedra in this e:z:ample. · A 

new schema instance .is created and parallelogram Pace-2 is 
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incorporated into its nev description. This recognizer could 

use either top-dovn or botto■-up techniques to further the 

recognition of a polyhedron. . To use top-down search would 

involve hypothesizing the ezistence of particular polygon faces 

and then actiYating those sub-schemata as subgoals. Bottom-up 

search, on the other hand, would not require a com11it11ent to a 

particular hypothesis • . Instead, the polyhedron, based on its 

partial instantiation from Pace-2, can create nev expectations 

of what polygon faces would have to be discovered to propagate 

its recognition. Onlike top-dovn search vhere a co111mi ttment 

must be made to a single hypothesis at a time, usinq bottom-up 

111echanisas, the polyhedron scheaa can create expectations for 

multiple possible polygon faces, and vait for the discovery of 

such a face or faces. In this exa•ple, since there is little 

evidence supporting a particular hypothesis, Polyhedron-1 vill 

use the botto■-up mechanism. 

* COPIPUTE EXPECTATIONS ABOUT OTHER PACES OP POLYHEDRON-1 

Polyhedra are co■posed of polygonal faces connected by 

common edqes and yertices. To recognize inst.ances of polyhedra, 

the polyhedron schema compares the instances of polygonal faces 

that it has matched with its own internal model of polyhedra. 

Fo.r this example, the ■odel is based on the notion of edqe 

connectedness as used by Guzman (1968). Any two polygonal faces 

sharing a coamon edge vhich is the shank of an ARROW vertex are 
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part of the same object. These are called "connect" edges. 

Other edges shared by two faces are called n ■aybe-connect" 

edqes. The use of this scheme is intended to demonstrate the 

concept of model guided recognition. A whole variety of 

information about the interpretation of three-dimensional scenes 

("ackvorth, 1977b) has been ignored for the sake of siaplicity. 

* FOR LINE-1-6 OP PAC.E-2, 

* CREATE l PROCESS BOOID TO THE COBNECT EXPECTATION: LIIE-1-6 

* FOR LINE-3-6 OP r'ACE-2, 

* CREATE A PROCESS BOUND TO THE CONNECT EXPECTATION: LINE-3-6 

Polyhedron-1 creates expectations for each "connect" edqe 

of Face-2, bindinq a 11etbod to each expectation. The "connect" 

edges of Face-2 are Line-1-6 and Line-3-6 which are the shanks 

of ARROW vertices 1 and 3 respectively. 

* FOR LINE-2-3 OF FACE-2, 

* CREATE A PROCESS BOUND TO THE NAYBE-COBNECT EXPECTATION: 

LINE-2-3 

* FOR LIBE-1-2 OP PACE-2, 

* CREATE A PROCESS BOUND TO THE MAYBE-CONNECT EXPECTATION: 

LIN'E-1-2 

Different methods are bound to "maybe-connect" expectations for 

each other edge of Pace- 2. 
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After the active method of Polyhedron-1 has completed the 

expectation phase, it 11ay choose to ter■inate its execution or 

it may atteapt to stiaulate the recognition of polygon faces as 

cues to drive its own recoqnition and subsequently the 

recognition of a scene. Again, the choice is a heuristic 

decision. Pol ybedron-1 must estimate its likelihood of success. 

However, the choice is not critical. If Polyhedron-1 decides to 

direct the observation of vertices from the input scene but it 

is an invalid hypothesis for this scene, control vill soon 

migrate away from this schema. The vertices observed by 

Pol vhedron-1 will stimulate the recognition of faces which will 

attempt to match the expectations of polyhedron scheaata. If 

Polyhedron-1 is the wrong hypothesis, these faces will instead 

match other, possibly new, polyhedron recognizers thereby 

activating their ■et hods instead. , 

On the other hand, if Polyhedron-1 is indeed a valid 

hypothesis but the method yields control to the weaker method of 

the Scene schema above it in the method hierarchy, this method 

will discover a polygon face in the scene that vill succeed in 

matching an expectation of Polyhedron-1 thereby reactivating one 

of its methods. Thus search is seen to converge towards a valid 

interpretation. To the contrary, in the top-down model, a bad 

hypothesis can dominate the search process for a 

catastrophically long time. 

For these reasons, Polybedron-1 decides to apply a 

bot toa-up technique for sti ■ulating its own rec oqni tion. 
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* ft!T80D: SEARCH POR OTHER FACES OP POLYHEDBON-1 BY OBSEBVING 

VERTICES OP FACE-2 THAT ftAT BE PART OP ftOBE TRAN ONE 

FACE 

This heuristic observes that each sector of the vertices of this 

polyhedron can be part of ■ore than one face. This aethod is 

both more powerful than the si11ple enumeration of vertices used 

by the scene schema and aore specialized because such a second 

face is likely to be part of this saae polyhedron. However, its 

expertise is good only for recoqnizinq polyhedra, not scenes. 

This met hod hierarchy is seen to inc or pora te a trade-off bet veen 

power and applicability. 

* POLYBEDROtf-1 OBSERVES VERT EX-6 

The next 

Sector-L 1-L3 

vertex observed is a PORR vertex, Vertex-6. 

of this vertex is already part of Face-2, but the 

remaining tvo sectors aay be parts of two other, but, as yet, 

unknown faces. 

• FOR SECTOR-L1-L2 OP VERTEX-6, 

* lTTE!PT TO ftATCH THE EXPECTATIONS OP PACE-3 

* ATTEftPT TO ftATCH THE EXPECTATIONS OP FACE-1 

* FlCE-1 HAS BEEM ftATCBED BY VERTEX-6 

vertex-6 conducts its completion phase by attempting to 
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match the expectations previously created by Paces-3 and ,. 

Vertex-6 cannot be part of any interpretation of Face-3 and that 

match fails • . It is, however, successful at •atchinq an 

expectation of Pace-1, specifically, that it shares Line-1-6 

with so■ e vertex. The bottoa-up method that had been bound to 

this expectation is activated as a supergoal of Vertex-6. This 

is the second vertex discovered for Face-1 and,, as before, the 

Polygon scheaa atte■ pts to yerify the existence of this face 

instance using top-down search. In this example,, the top-down 

search at the vertex level is achieved by a si ■ple touring of 

the input schema instances because vertices were qiven as data • 

.In general, however, goal directed search can be of arbitrary 

complexity, perhaps involving recursively the use of bottom-up 

mechanisms. A subgoal at any level can create expectations, 

bind methods to those expectations, and then attempt to aake 

observations matching those expectations. The only restriction 

on the search mechanisms used by a subgoal is that it eventually 

111ust return a success or failure to its caller. 

* VERIFY PlCE-1 USING TOP-DOWN SEARCH 

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-4 FRO! LIHE-ll-6 

* INCORPORATE THIS VERTEX INTO A NEW CORREB OF FACE- 1 

• GET HEIT CLOCKWISE NEIGHBOUR VERTEX: VEBTEX-5 FRO!! LINE-4-5 

* INCORPORATE TBIS VERTEX IMTO l NEI CORNER OP PACE-1 

* GET NEX,- CLOCKWISE NEIGHBOUR VERTEX: VERTEX-1 PRO" LINE-1-5 

* THIS VERTEX IS ALREADY COBTIIIED IH FACE-1 
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* COMPARE PACB-1 TO POLYGOI ftODBL 

* C08PLETED PACE-1 IS A PARALLELOGRAft 

Pace-1 has fonnd a closed figure co•posed of 

vertices-1, 6 • 4, and 5. , l description of this polygon face is 

created with a corner for each vertex. The face is co■ pared 

against the polygon sche■a•s internal aodel of polygons. The 

fiqure is a quadrolateral having equal opposite angles, and is 

labelled as a valid parallelogram. 

* ftlTCH THIS ?ICE TO TBE EXPECTATIONS OP POLYHEDRON RECOGNIZERS 

Pace-1 begins its coapletion phase • . · It 11ust find instances 

of polyhedron recognizers having expectations of beinq ■atched 

by a parallelogra ■• ?ace-1 will resu ■e each successfully 

matched schema as a supergoal process. 'l'his supergoal 

activation is seen as an intelligent process scheduling 

■echanis ■• Instead of activating processes through so ■e global 

scheduling algorithm, each co ■pleting schema can use its own 

domain specific scheduling algoritha. Processes are scheduled 

by the discovery of evidence suggesting their applicability as 

superqoals. 

:Pace-1 will first attempt to aa tch the expectations of an 

existing polyhedron recognizer that it shares a "connect" edqe 

with. If it is successful, the method bound to the polyhedron •s 

expectation vill be resumed as a supergoal process. If Pace-1 
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is able to find such a "connect" expectation and aatch it 

successfullr, its task is done. , Otherwise, Face-1 must atteapt 

in sequence to aatch the expectations of all polyhedron 

recognizers vith which it shares a " ■aybe-connect" edqe, and it 

must also create a new polyhedron sche■a instance in case it is 

not part of any existing interpretation. Por each polyhedron 

recognizer matched bJ the face schema, the method bound to the 

matched ezpectation is resumed as a superqoal process. 

* ATTEftPT TO ftATCH THE CONNECT EXPECTATIONS OF POLYBEDROH-1 

* TRY LINE-ii-6 

* TRY LINE-1-6 

* A CONNECT EXPECTATION OP POL!HEDROR-1 HAS BEEM f!lTCHEO BY 

FACE-1 

Face-1 finds and attempts to aatch Polyhedron-1. This face 

schema shares a "connect" edge with Face-2 of the polyhedron, so 

the match is successful and the polyhedron's method is resumed. 

* IS FlC.E-1 COflPlTIBLE IITH THIS CLASS OF POLYHEDBA? 

* YES 

The method of Polyhedron-1 compares the polyqon instance to 

its internal aodel of polyhedra. In this system, polyhedra are 

co11posed of both triangles and parallelograms. Pace-1 is 

accepted and its interpretation results in the propaqation of 
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Polyhedron-1 1 s recognition. , 

* COftPOTE TRARS:ITIVB EOG! CLOSURE POR TRIS PACE 

* POR LiffE-1-5 OP PACE-1, 

• CREATE l PROCESS BOUND TO THE ftAYBE-CONBECT EXPECTATIOH: 

LIHE-1-5 

* FOB LIIE-4-5 OP PACE-1, 

* CREATE A PBOCESS BOORD TO THE KAYBE-CONNECT EXPECTATION: 

LINE-ij-5 

* POR LIBE-Q-6 OF PACE-1, 

* CREATE A PBOCESS BOOID TO THE COIIECT EXPECTATION: LIRE-4-6 

Polyhedron-1 incorporates the new face instance into its 

description by computing vhich edges of Pace-1 are edges already 

contained in Polfhedron-1. , This is called its transitive edqe 

closure. , At the sa■e time, a nev set of expectations are 

created for each reaaining edge of Pace-1 not closed vith edqes 

of the polyhedron. These edges represent the cues by which 

other co■pleting face· schemata vill be able to aatch this 

scheaa • s expectations. 

* DOES DESCRIPTION OJI' POLYHBDROR-1 SATISFY THE CRITERIA FOR A 

* NO 

COMPLETE POLYHEDRAL OBJECT? 

lt this point, the polyhedron checks to see if its instance 
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is fully instantiated. , It is not. , There are still "connect" 

expectations remaining unsatisfied. , 

* ftETBOD: OBSR!VE VERTICES THAT WILL DRIVE THE BECOGRITION OF 

NEIGHBOUBIMG PACES 

Having finished its expectation phase, Polyhedron-1 applies 

a bottom-up method by observing vertices which should stiaulate 

the recognition of neighbouring faces. The recognition of such 

faces will hopefullf satisfy its ovn expectations. It does this 

by observing three-line vertices of its component faces that aav 

be part of so■e yet unrecognized .face. Notice that there are 

now tvo aethods of Polyhedron-1 simultaneously active • . Both 

methods are observing vertices to sti■ulate the recoqnitio.n of 

neighbouring faces. , They aav communicate vith each other 

through their com■on data structure, the schema instance of 

Polyhedron-1. Both can contribute to its recognition, but their 

efforts must be coordinated • . If one of the aethods should 

decide that either a fully instantiated instance has bee.n found, 

or that the polyhedron is a bad hypothesis, the other aethod 

must be suspended. It is no longer applicable to the discovery 

of a scene. 

* POLYBEDROR-1 OBSEBVES VERTBX-4 

* FOR SECTOR-L 1-L2 OP VERTEX-4, 

* ATTEftPT TO ftATCH 'l'HE EXPECTlTIORS OP' FACE-3 
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* CBEATE A BEW SCHEftA: PACE-q CORTAilfllfG A CORI ER FOR VEST!i-4 

* CREATE TWO PROC~SSBS BOORD TO BXPECTATIORS
1 

FOR LIME-4-6 AMD 

Lill!-3-4 

~he polyhedron ■ethod first observes Vertex-4 because it is 

a vertex of one of its component .faces that could be part of 

another undiscovered face. vertex-4 begins its completion phase 

by trying to find existing unco ■pleted face recoqnizers to 

•atch. Only Pace-3 re■ains uncompleted, but the match fails. 

Sector-L 1-L2 of Vertez::-4 cannot be part of the background region 

repre·sented by Face-3. As a result,, Vertex-4 requests the 

polygon schema to create a new polyqon face instance • .Pace-4 is 

created,, a,dded to the polygon instance hierarchy,, and one of its 

methods is acti 'lated. The new recognizer incorporates· vertex-4 

into its description and uses the vertex to create a new set o'f 

expectations f~r the 

consist of ■ethods 

this case, Line-4-6 

sche•a. As be.fore, these expectations 

hound to patterns containing line cuesi; in 

and Line-3-4. Pace-4 has finished it~ 

expectation phase and returns control to Vertex-4. 

* POR SECTOR-L3-L1 OP VEBTEX-q, 

* ATTEftPT TO MATCH THE EXPECTATIONS OP FACE-4 

* ATTE!PT TO ftATCH THE EXPECTATIONS OP FACE-3 

* CREATE A NEW SCREl!U: PACB-5 CONTAilfIBG A CORNER FOR VERTEI-4 

* CREATE TWO PROCESSES BOUND TO EXPECTATIONS FOR LIBE-3-~ AND 

L:tBE-4--5 
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Vertex-4 still has one re•aining uncom•itted sector, 

Sector-L3-L1. Neither of the li.nes of this sector can 11atch 

Face-4. Hor can they 11atch the expectations of Face-3, thouqh 

they are part of the sa■e region. There is not yet constraininq 

information (possibly provided bJ Vert ex-5) to link the11 to saae 

interpretation. , Thus, a nev face, Pace-5, is created in the 

manner described for Pace-4. 

The behaviour of Vertex-4 is characterizea as a bottom-up 

qenerator of possible higher supergoals. Each ti•e control is 

returned to Vertex-4, it generates another plausible polygon 

face of which to be a part. As well, it generates these faces 

in heuristic order, first attempting to activate those already 

existing polygon recognizers which it can match successfully. 

Only if that fails, will it generate a nev polygon face 

instance. 

* POLYHEDRON-1 OBSERVES VEBTEI-6 

Vertez-q has finished generating supergoals and returns 

control to Polyhedron-1 which proceeds vith its method of 

observing likely vertices, this ti■e activating Vertex-6. 

* FOR SECTOR-L2-L3 OP fERTEX-6, 

* ATTEftPT TO ftlTCB THE EXPECTlTIOBS OP PACE-5 

* ATTEMPT TO ftATCH THE EXPECTATIONS OP FACH-4 

* FACE-4 HAS BEE! !ITCHED BY fBRTEX-6 
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5ector-L2-L3 .is the only sector of Vertex-6 not already 

part of some polygon .face. vertex-6 first attempts to aatch 

Pace-5 as a possible higher supergoal, but the match fails. An 

attempt at matching Pace-4 succeeds, thereby actiYatinq a method 

of this face. , 

* VERIFY FACE-II USING TOP-DOWN SEARCH 

* GE'!' NEXT CLOCKWISE RE'IGHBOUR VERTEX: VERTEX-3 PRO'flf LINE-3-6 

* I ·NCORPORATE THIS VERTEX IHTO l NEV CORNER Of' FACE-fl 

* GET BEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-4 P'ROl'! LINE-3-lJ 

* THIS VERTEX IS ALREADY CONTAINED IN PACE-4 

* COftPARE PACE-4 TO POLYGON ftODEL 

* CO~PLETED FACE-4 IS A TRIANGLE 

Pace-4 searches for its remaining vertices by hypothesizing 

another vertex, finding that vertex by followinq Line-3-6. It 

then confirms that its component lines and vertices for·m a 

closed figure and that its type is a triangle. 

• ftATCH THIS PACE TO THE EXPECTATIONS OP POLYHEDRON RECOGNIZERS 

* MATCH THE CONNECT EXPECTATIONS OF POLY HEDRON-1 

* TRY LitfE-3-6 

* A COIi.NEC'!' EXPECTATIOB OF POLYHEDROM-1 HAS BEEN PIATCBED BY 

PACE-4 

* IS FlCE-4 CO!PATIBLE WITH THXS CLASS OF POLYHEDRA? 

* YES 
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Pace-4 finds Polybedron-1, the single member of the 

polyhedron instance hierarchy, and matches a "connect" 
l 

expectation of this recognizer. , Both Pilce-4 and Pace-2 share 

the co■■on •connect" edge, Line-3-6. 

Expectations are equated with constraints. Line-3-6 

constrains the interpretation of Pace-4 and Face-2 to be part of 

the same object. The recognition process can be viewed as a 

procedural constraint propagatio.n, vhere the flov of control 

throuqh the sche■a ta network is (!irected by the procedural 

methods attached to the nodes in the network. 

* COMPOTE TRABSITIVE EDGE CLOSURE FOR TRIS PACE 

* FOR LINE-3-4 OF 1'ACE-4, 

* CREATE A PROCESS BOUND 'l'O THE IUYBE-CONNECT EXPECTATIOlf: 

LINE-3-IJ 

* FOR LINE-4-6 OP PACE-4• 

* LI ME-4-6 ftlTCBES A CORRECT EXPECTATION OF POLYBEDROl-1 

Polyhedron-1 incorporates the nev face into its description 

by computing the transitive edge closure of Face-4 with its 

other faces. 

* DOES DESCRIPTIOB OP POtYH!DROB-1 SATISFY THE CRITERIA POR l 

CO"PLETR POLYHEDRAL OBJECT? 

• YES: POLYHEDROB-1 IS A. WEDGE 
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been enough new information to 

of Polyhedro.n-1 to a fullY 

differentiated instance. There are no "connect" eipectations 

reaaining in the sche■a and each face in the schellia •s 

description is labelled "connect" with ev~ry other face vith 

which it s.hares an edge. The completed insta nee is coil pared 

aqa inst the scheaa• s internal ■odel of polyhedra and is labelled 

a wedge since it is coaposed of two parallelograms and a sinqle 

trianqle. 

* ftATCH C0ftPLBTED P0LJHEDRO&-1 TO THE EXPECTATI0IIS OF THE SCEllE 

SCHEftA 

The ethod of Polybedron-1 now begins its scbema•s 

completion phase. However, it is not the only method of this 

schema currently actiYe., There are two other concurrent methods 

observing Yertices. In fact, these other methods 11ete 

instrumental in obserYing the vertices that stiaulat~d 

Polybedron-1 1 s successful recognition,. These methods have now 

performed their task and they aust be suspended. 

The 11echanisa for achieving this coordination a•onq 

concurre-nt ■ethods is realized within completion. When a 

completing sche11a matches another schema as a supe.rgoal, the 

■et hod perforaing the co■ pletion and ~ll other active methods 

associated with the same completed schema instance are 

suspended. The iaple■entation of this control structure 

mechanis ■ as a naya language primitive is discussed in the next 
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chapter. 

In this example, Pol:rhedron-1 performs its co ■pletion phase 

rather deterministically. It knows that polyhedra are onl-J part 

of scenes. The scene schema has an expectation vaitinq to be 

matched by a completing polyhedron •. The ■atch is successful, 

and the method of the scene sche■a is activated. 

* SCBIE RBCOGRIZER HAS ¥001D A SCENE COftPOSED OP POLYHEDROH-1 

Por brevity, it is assu■ ed that a scene is composed of a 

single polyhedral object. The scene schema has completed its 

recognition, finding a scene co■posed of Polyhedron-1. The 

program terminates sucessfully, returning to top-level the 

hierarchical description of the scene • . 

4. 4 Conclusion 

This exaaple provides a high level description of the 

operation of this recognition aodel in a scene analysis program. 

eany of the ideas embodied in the ■ odel coold only be partially 

illustrated by this single exaaple. The precise specification 

of these ideas is ■ ade aanifest in this thesis as an artificial 

intelligence progra■■ing language called "aya. , The next chapter 

describes the design of this proqra■aing language. 
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5.1 Introduction 

!aya is a aultiprocessing LISP dialect that defines a 

number of extensions to the data types and control priaiti-ves of 

the LISP language. ftaya generalizes the OBLIST and property 

lists of LISP to a nev pri■itiYe data type called the 2lli~! 

which can be osed to represent scheaata and to construct frame 

systems and semantic networks. fllaya defines specific control 

structures for integrating top-down and bottom-up search in 

sche ■a-based representations. The language provides, as well, 

primitives for pattern ■ atchinq and for creating and scheduling 

multiple processes. ln extensiYe interactive debugging syste■ 

modelled after that of I1'TERLISP (Teitelman, 1974) is also 

provided. 

Although ftaya, as a progra■aing language, is concerned with 

developing progra■11inq technologJ, the 11oti•ation behind t.he 

language has been the experi ental impleaentation of the 

recognition ■odel presented in this thesis. The natural 

realization· of such a ■odel is a progra■minq language because it 

provides a general experi■ental vehicle vith vhich to evaluate 

the ideas of the model. ~aya focuses on general questions of 

representation and process involved in machine perception. 

5: l'!a ya 



116 

5.2 Language overview 

This section provides a general overview of ~aya by 

describing the data types defined in Mafa and their evaluation. 

A nu•ber of other general features of the language will also be 

mentioned. Issues of sche•a representation and recoqnition will 

be covered in subsequent sections of this chapter. A 

familiarity vith LISP must. be assumed in this discussion. The 

reader is referred to Appendix-B, the "aya Language Reference 

P!anual, for details of the various !laya pri11iti ves involved. 

5.2.1 Data Types 

PJaya extends the priaitive data types of LISP to facilitate 

programming in scheaa-based systems. ftaya is embedded in LISP 

and its data primiti•es are realized using LISP foras. Below is 

a BlfF qra11aatical representatio.n of the LISP implementation of 

Maya's data types • . · Angle brackets are used to deliait 

non-ter■inal symbols and the asterisk is used as the Kleene 

star, indicating zero or ■ore repetitions. 

(PORft> --> <ATOR> 
--> <VAR> 
--> <LIST> 
--> <TUPLE> 
--> <OBJECT> 

<YIR> --> ?<ATOft> 
<LIST> --> ((PORII>*) 

<TUPLE.> --> (I <POBft>*) 
<OBJECT> --> (iOBJECTli <TYPB><PAIR>*) 

<ITE!) --> (iITEMI <BES><PlIB>*) 
<PlIR> --> <lTOft><FOR!> 
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.. 

117 

A form in Maya may be an atoa, variable, list, n-tuple, item, or 

object. In LISP, an ato■ is used both as the name of a set of 

properties and as a variable. In Maya, an atom, <ATO">, is 

differentiated fro~ a variable, <VAR>, because it is desirable 

to distinguish between the name of an object and the value of a 

variable. Names are represented by atoms, whereas variables are 

represented by atoms prefixed by a question mark. 

Likewise, ltaya di .fferentiat es bet ween a list, <LIST>, and 

an n-tuple, <TOPLE>. Lists are used, as in LISP, to encode both 

actual lists a.nd function calls • . · The value of a list is the 

result of applyinq the function indicated by the CAR of the list 

to the CDR of the list. The value of a tuple, however, is a 

tuple of the values of its elements. Tuples are used 

extensively by the pattern matching functions. 

The ■ost significant extensions to the data types defined 

of LISP are the inclusion of ob1ects and items. The object, 

<OBJECT>, subsuaes the property lists, usually called plists, of 

LISP atoms • . It can be used to form schemata, frame systems, and 

semantic networks. A schema or frame may be thouqht of as a 

collection of named slots or relations. A node in a semantic 

network may be considered to be a set of named attribute/value 

pairs. <OBJECT>s can conveniently represent both of these 

s tr uct u.r es. 

An object is composed of a LISP list having the prefix, 
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iilOBJECT@, a user-supplied type indicator, <TYPE>, and a set of 

named attributes, <PAIR>s. It should be noted that the 

different prefi~es associated with obiects, tuples, and 

variables permit ftaya to type check the use of each data type. 

Within the definition of ob1ects, an extra type indicator is 

provided to allow farther user supplied type checking. Each 

<PAIR> in an ob1ect associates an atomic naae with a <FORM>. A 

name is said to be defined by its binding in some obiect. 

Obiects are created by the Maya primitive, OBJECT, which takes 

as arguments a type and a list of names and their new 

definitions. The fu.nction returns an object as value. 

Whereas objects associate atollic names with their 

definitions, i teas associate variable names vi th their local 

values. In Maya, generators, such as the pattern aatcher, 

always return items, i.e., they return a set of local variable 

bindings computed within the generator. An i te11. <ITEM>• is 

composed of a LISP list having the prefix, ilTEMi, followed by a 

processor reserved field, <RES>. Each <PAIR> of the iteN 

represents an association between a variable name and its value. 

Playa maintains a stack composed of objects, items, and a 

number of internal structures used by the processor for 

recording procedure invocations and the states of generators and 

the pattern matcher • . The object nearest the top of the stack is 

called the !m£l~M 2.luect. It represents the current sche■a, 

semantic network node, or immediate conte~t in which the user is 

noperating". 
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A number of Maya primitives operate on the enclosinq 

object. For instance, PUT* adds definitions to the enclosing 

object. This function tates tvo arguments, an atomic na11e and a 

form to be bound to that name in the enclosing object. If that 

name already exists in the obiect, its definition is replaced. 

The function, GET*, returns the definition of a na ■e from the 

enclosing object, whereas the priaitive, REM*, reaoves the 

definition of a specified na•e fro ■ within the ob1ect. A fourth 

primitive, called SELF, returns as value the entire enclosinq 

object.. This function provides a mechanism for obtaining a 

pointer to the current sche■a. 

In order to ■ake !aya and LISP as compatible as possible, a 

few of t.ISP 1 s SUBRs have been altered to accept objects instead 

of PLISTs. , LISP property list functions nov recoqnize the 

header at the front of each object. This overhead is justified 

because it allows "aya to consider all of LISP'S database, i.e., 

the OBLIST, as the · glOQ!! obj~1 of its database. Each LISP 

a tom which has properties associated v ith it will have a PLIST 

of the .following fora bound to its CDR: 

(@OBJECT@ itPLISTii <PAIR>*)• 

Por example. DEFUN and DEFINE always add their definitions 

to the enclosing object. This permits objects to contain 

function definitions local to the object. This mechanism will 

be used as one vay to incorporate procedural knovledqe into 

schemata. 
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r!a ya considers LISP 1 s variables to be the set of global 

Maya variables. Maya uses a deep-binding scheme to access 

variables on the processor stack. These variable bindinqs may 

appear in LA~BDA eipressions, PROG ezpressions, or as variables 

defined in iteas contained on the stack. The assiqnaent 

functions, SET and SETQ, which are ilnaloqous to their LISP 

counterparts, vill alter the value of the first variable of the 

specified na ■e that they find on the stack. Otherwise, they 

vil 1 assign a new value to the LISP ato11 of the sa ae na■e. 

5.2.2 Evaluation 

The evaluation algorithm for Maya data types is presented 

below in pseudo-LISP code. The behavior of the evaluator is 

then elaborated in some detail. Finally, the function types 

recoqni~ed by !aya are described. 

When ftaya is asked to evaluate a form, the following 

alqorithm is used (but not the following implementation of that 

alqoritha): 

(DEPUH EVALUATE (PORN) 
(COND ( (l'l'OM PORPJ) (PETCH-DBPIIITIO'N-PROM-STACIC PORM)) 

( (V!BP POR8) (PETCH-VlLUE-PROll-STACK FOR!!)) 
((TUPLEP PORl'I} (APPLY I it (CDR POR!!)l 
( (OBJECTP FORPJ) (ERROR)) 
( (ITEMP PORft) (ERROR)) 
( (ATOM (CAR PORl!)) 

(APPLY (PETCH-POBCTIOB (CAR PORPJ)) (CDB PORPI))) 
(T(APPLY-LlPJBDA (CAR FOBll) (CDR FOB!!))))) 

5: Ma va 



121 

If FOR! is an atom, then the definition of that na•e is 

fetched from its first occurrence on the stack. If it is not 

found on the stack, it is fetched fro■ the global object, the 

PLIST of the LISP atom. When presented an atom, !aya attempts 

to find its definition within the first enclosing object. If 

that fails, it atteapts to locate the definition within the next 

enclosing object, and so on • . If it is not to be found in any 

enclosing object, then the definition of the atom present in the 

global object is returned. , Note that for ever, atoa there will 

always .be a definition for it in the global object, al though 

that definition aay be the null 2k1~£~, NIL. 

If PORr! is a variable, its value is fetched from the fi .rst 

occurrence of the variable's na■ e on the stack. The variable 

may appear on the stack in tvo dif.ferent va ys. It aa 1 be a 

local Yariable of so■ e LAIIBDA or PROG expression. or it may 

appear as a variable bound in an item returned fro■ a qenerator. 

In either case. the first local binding found is .returned as the 

value of the variable. If , however, the processor cannot find 

the variable• s name on the stack, Pia ya fetches the global valae 

of the variable, that is, the LISP valae. 

If FORM is a tuple, it is evaluated by the tuple evaluator 

using inverse quote aode, that is, ato■s and pattern variables 

are treated as constants. The value of a tuple is a nev tuple 

of its Yaloes. 

If PORM is an object or an itea, an ERROR occurs. 

If the CAB of FORft is an ato ■, the atom is assumed to be 
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the name of a Playa or LISP function. The function is fetched 

from the first dninition of the atoa on the stack, else from 

the LISP PLIST of the ato■• If the function fetched is of the 

types recognized by "aya. it is applied to the CDR of the fora. 

If more than one function by the same na■e exists, t.he first o.ne 

found is used. If no recognizable function can be found, an 

error occurs. A discussion of the function types recoqnized by 

Maya is presented below. 

Otherwise, the CAR of FOR! is. not ato ■ic and is assumed to 

be a Playa LAftBDA or QLlftBDA expression. The expression is then 

applied to the CDR of FORft. If the CAR is not a LAMBDA or 

QLUIB.DA expression, an error occurs. 

5.3 Representation 

This section discusses the use of Kaya language primitives 

for implementing sc.heaata networks and for realizing procedural 

message passing and interpretation. 

5.3.1 Schemata 

Schemata and schemata networks are realized in Maya as 

objects. saya defines a ■echanis■ for considering an object as 

a schema stereotfpe and then creating multiple instances fro■ 

that stereotype. '!'he function. BEW, when applied to an ob1ect, 

creates an increaental copy of the object and assigns it type, 
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reflected in 

ob1ect. Por 

example, a stereotype sche■ a to represent the concept of "doq" 

could be constructed as follows: 

(PUT* 'DOG (OBJECT 'GENERIC NlftE I DOG CLASS 1 ffA.PIPllLil) ). 

This expression creates within the enclosing obiect, a 

definition of the name, DOG, as an object having type, GENERIC, 

a reflexive pointer to its own naae, and the indicator that doqs 

are of class, ~APIPIALIA. To create a specific instance of doq, 

the following expression could be then evaluated: 

(MEW DOG IIU!E •FLOYD OWNER •BILL). 

The name and ownership attributes of the dog instance are 

defined within the instance and not the stereotype. Fetchinq 

t.he name, CLASS, fro■ the instance will return f!Al!PIALIA but 

fetching llf!E vill yield FLOYD, the de.finition local to the 

instance. .Advantages of this scheme are that it makes instances 

co111putationallJ inexpensive and changes made to a stereotype are 

immediately reflected in each descendent instance, unless 

specifically redefined by the instance. 

The ~aya pri■itive, SEMO, is the basic mechanisa for 

accessing sche■ata networks, for traversing arcs in semantic 

networks, and for procedural message ~assing and interpretation. 

Its for■ is: 

(SEID <A1><A2> • •• <An>). 

The arguments, <A1> through <An>, are called a ~fil?age seg~.n£g. 

SEND evaloates each of its arguments in segoence returning the 
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evaluation of its last argument, <An>, as its value. If the 

value of some <Ai> yields an object or an item, then it is 

pushed onto the processor stack thereby auq11enting the 

environment for either atom definitions or variable bindinqs 

respectively. 

The sequence,. <A1> through <An>, is a .n encoding of a search 

procedure through the network. By pushing some object, <Ai>, 

onto the stack, the processor in effect "goes to" that object. 

Nov the evaluation of <Ai•1> is computed fro■ within the new 

enclosing object, perhaps itself yielding another obiect or 

item. 

Knowledge may be represented in schemata in three different 

ways. First, it can be represented declaratively as either 

atoms defined within t.he scheaa object or as patterns in a 

tt1plebase contained within the object. we sav above how atoms 

could be associated with definitions by creating a nev object 

using either OBJECT or NEW •. Atom bindinqs can also be added to 

existing objects by using SEND and PUT•. Por exaaple, to add a 

new schema slot to the generic sche a, DOG: 

(SEND DOG (PUT• 'VIBTUE 1 8ANS-BEST-FRIEID)). 

SEND first evaluates DOG which yields a.n object, the dog schema. 

This ob1ect is then pushed onto the processor stack, thus 

becoming the enclosing object. The evalaa tion o.f POT* then adds 

the nev definition of the atom, VIRTO'B, to the enc.losinq object. 

That is, a nev slot is added to the schema, DOG. 

To access slots in a schema, it is again necessary to 
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"goto" that scheaa•s object. For example, the form: 

(SEND DOG (PRINT CLASS) VIRTUE), 

will first print ftAftNALil and then return MANS-BEST-FRIEND. 

Declarative knowledge may also be realized as patterns in 

associative databases defined within schemata. !echanisas for 

pattern matching in schemata are discussed in the next section. 

The second way knovledqe can be represented in schemata is 

procedurally using local function definitions. In fllaya, the 

property list of an atoa is represented as an object bound to 

that atom. Since the EXPR function property is no different 

than any othe.r property, function definitions can be local 

properties of objects. Por example, 

(DEPUR POO (I) X) 

creates, as expected, a LAMBDA expression bound to the name, 

EXPR, on the property list of the atom, POO. However, 

evaluating the following form: 

(SEND FOO EXPR) 

returns the binding of the atom. EXPR, within the object, FOO, 

which is: 

{LAB BDA (I) X) • 

As well, a nev definition of POO can be locally associated with 

a particular ob1ect, for instance: 

(SEND DOG (DEPON FOO (X) 'VOOP)) • 

Evaluating fP'OO 'A) yields A but evaluatinq: 

(SEND DOG (FOO 'A) ) 

yields instead WOOF. Purtheraore, the data structure created by 
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this example is itself a network of objects which can be 

accessed as follows: 

(SEND DOG POO EXPR) 

which yields 

(LAftBDA (I) 'WOOF). 

The third mechanis ■ for representing knowledge in sche■ata 

is procedural attachaent (Winograd, 1975). In ftaya, both 

qenerators for perf oraing top-down search and processes for 

realizing bottom-up search can be associated with tuple patterns 

in tuplebases local to scbeaata. such procedures attached to 

patterns are l!aya•s mechanism for associating top-down and 

.bottom-up ■et hods vith a schema• s expectations, represented as 

patterns. Top-down and botto11-up methods vill be discussed in 

sections 5.5 and 5.6 respectively. 

5. 3. 2 f!essaqes 

The evaluation of SEND can also be defined recursively in 

terms of sending messages. The value of SEND applied to the 

sequence, [<l1><A2> • •• <An>], is recursively the result of 

sending <A1> the message, [<A2> ••• <An>], and so on, 

returning finally the value of <An>. Thusw evaluating a message 

sequence is sending the llil§ of the CAR'of the sequence a 

message, the CDR of the sequence. 

An e1:a111ple follows which illustrates in .Playa the 
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construction of instance hierarchies, and the use of soae of the 

~aya priaitiTes to interpret simple procedural messages. This 

exaaple is ertracted fro• a ftaJa program to play "Twenty 

Questions". In this program, an instance hierarchy is used as a 

discri■ination tree to interpret a series of responses from the 

user. Each node in the net contains a question plus the 

possible branches of the tree to take depending on the user's 

response. Although the example is simplistic, it demonstrates 

the use of Maya network structures and simple message passinq 

and interpretation. 

(DEFUN TWERTY-QUESTIOMS aEXPR NIL 
(PRINT '"PLEASE THINK OP SO~E OBJECT") 
(SEND TOP-NODE 

(ASIC 20))) 

The top-level function sends the Top-Mode of the discrimination 

net a message to ASK 20 questions. 

(DEFUN ASK itEXPR {B) 
(AND (ZEBOP ?H) (RETUBN '"YOU WI!I" 'TWENTI-QtJESTIONS)) 
(PRINT QUESTION) 
(SEND (EVAL (BEAD)) 

(ASK (SU.B1 ?N)))) 

In this example, the message sent to each node is 

procedural. It says: "Check to see if ve have asked ■ore than 

20 questions; if so. then lose. Otherwise, print your :<1tiestion 

and recursively send this saae message ( ■inus 1 froa N) to ~2Yt 

choice of next node." A few of the semantic net nodes of this 

proqra ■ follow: 
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(PUT* 'WIN-MODE (OBJECT 'NODE)) 
(SEND Will-NODE 

(DEFUN ASK iEXPR (N) 
(PRINT '"I VIN!!") 
?N)) 

(PUT* 1 NODE4 
(OBJECT I NODE 

QUBSTIOW ••ts IT A SNAKE?" 
YES V'IR-BOD! 
10 HODE7)) 

(PUT* 'HODE1 
(OBJECT 'RODE 

QUESTIOH '"HOW !ANY LEGS DOES IT HAVE?" 
ZERO NODE4 
TWO NODES 
FOUR NODE6)) 

(PUT* 'TOP-NODE 
(OBJECT 'NODE 

QUESTIOB '"IS IT AHIMAL, VEGETABLE. OR !INERAL?" 
All! !AL NODE1 
VEG ETA BL E NODE2 
ftINERAL NODE])) 
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In the recursive calls to ASX, hov does the recursion 

terminate? On failure, that is. after the twentieth question. 

the first line in the body of ASK vill terminate the recursion. 

on success hoveYer, the process is quite different. At NODE4, 

if the user answers "yes" to the question. "Is it a snake?"• a 

node called WIM-NODE is sent the message, 

(ASK (StJB 1 ?N) ) • , 

Within WIN-NODE is a local definition of the function, · ASK. 

WIN-NODE has its ovn interpreter for this particular message. 

It always interprets the message as a successful end of the 

game. 

This example serves to illustrate a fev basic features of 
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ftaya. Through the use of PUT* and OBJECT, s~mantie netvorks can 

be constructed. As well, SEND can be used to send simple 

procedural messages between objects • . In this e~a■ple, an ansver 

to the current question is elicited froa the user. 

answers are restrlcted to atoms, then the expression, 

(EVAL (READ)) 

If his 

will fetch an object, the next node of the discrimination ttee. 

SERD pushes this object onto the stack, and subsequently 

evaluates in this nev context the rest of the message, which is 

the recursive ca 11 to ASIC. 

SEND fetches each function from its name's first definition 

on the stack. !his pro•ides the mecha~ism to allow the object 

receiving a message to perform .its own local interpretation of 

that message. In this exaaple, when WIN-NODE is sent the 

message, ASK, the definition of ASK defined locally is used 

because SEBD had previously pushed II IR-NODE, including its local 

definition of ASK, onto the stack • . 

suppose, however, that the user types an ato■ic answer that 

the program is not expecting. The result would be unpredictable 

because Maya will fetch the first definition of the atom it can 

find. For a random answer, the definition is likely to be NIL. 

If we replace the form, (EVAL (READ)) in ASK with: 

(GET* (READ) ' (WHAT?) ) 

and define a new function, ve now have a solution: 
(DEPUR WHAT? iEXPR NIL 

(PRINT '"WHAT?") 
(RETURN ( ASK ?R) 1 ASIC)) 
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GET* always fetches definitions from within the current 

enclosing object. If GET* fails to find the name defined in the 

enclosing object, the second argu■ent is evaluated. In this 

case, (WHAT?) which just asks the same question again. 

5.4 Pattern flatching 

Syntactic pattern aatcbing provides a primitive level of 

comparison based only on syntactic fora. Maya defines a number 

of pattern matching primitives similar to those provided in most 

recent artificial intelligence programming languaqes, (Hewitt, 

1972) (l!cDer11ott, 1973) (Davies, 1973). flaya uses its pattern 

matcher to compare tuples, to perform associative retrieval of 

tuple patterns fro■ databases, to implement generators and 

processes, and as a syntactic base upon which to boild semantic 

associative retrieval over sche■ata systeas. This higher 

network matching ■ay in vol Ye active search and deduction (Bobrow 

& Winograd, 1977). semantic matching over schemata structures 

is, as has already been pointed out, another characterization of 

the recognition problem. 

The pattern matcher in Baya is called ftATCH. The for of a 

call to ftATCH is as follows: 

(MATCH <pattern><db>[ <else> J). 

Its first argument, <pattern>, is matched aqainst a datum. <db>, 

which is either another tuple or an associative database of 

tuples called a !gE!§R!~• The matcher, on a successfol aatch, 
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returns an item coaposed of the bindings of any pattern matching 

variables assigned during the match. On failure, an optional 

third arguaent, <else>, is evaluated. This optional argument is 

called a f~i!Y~! ex!! and is used to control failure driven 

search. 

An example of pattern matching in !!aya is given by the 

following: 

(l'UTCH '(ON !:X !:Y> '<ON B1 TABLE> 1 (POOl). 

The evaluation of this expression results in a successful match 

returning as value an itea containing the variables X bound to 

B1 and Y bound to TABLE. If the match had failed, the form, 

(POO), would have been evaluated and returned as the value of 

PIATCH. 

The item returned £roa the pattern matcher may also contain 

a ~ac!i!~1ion tag. This taq is a pointer to the current 

invocation of the ■atcher in order that it may be recalled ·tor 

another match. Because the pattern matcher is i ■ ple ■ented as a 

generator, ftATCH provides a non-deter ■ inistic search mechanism 

for tuplebases. 

Tuplebases are accessed by the pattern matcher, various 

database aaintenance functions, and a number of control 

structure functions for scheduling both top-down and bottom-up 

methods. Any tuple pattern in a tuplebase aav have an 

the associated value vhich is included in the item return from 

matcher as the value of the distinguished variable, 

Tuplebases are co■posed of an inverted index structure which 
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uses Maya objects to represent each level of the ind~•• , Since 

they are formed from a primitive data type, tuplebases may as 

vell be operated on vith ordinary object accessi~g functions. 

For example, to create a new tuplebase of assertions within the 

enclosing object: 

(PUT* 'ASSERTIONS (OBJECT 0)) 

Notice that as many tuplebases as desired may be created in this 

manner. 

In order to add a pattern assertion to this tuplebase, the 

following form could be evaluated: 

(PADD '<WOOF BE DOG> ASSERTIONS). 

Finally, to delete assertions from this tuplebase: 

(PRE!OVE 1 <PUSHKIN BAS FLEAS> ASSERTIONS). 

5.5 Top-down ~ethods 

Top-down search in 8aya is based on the notion of 

generators which are functions that may be recalled a number of 

times for a single invocation. Alternatively, generators may_be 

thought of as functions that retain an internal state between 

calls. There are four types of qenerators in ~aya: 

1. PIATCB 

2. QLAMBDA expressions and QEXPR functions. 

3. B1ST and 01ST. 

4. NEXT and FAIL. 
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The pattern matching function, !ATCH, has been already 

described. The second type of generator is realized by 

coabining the concept of QLA1'BDA expressions fro■ QLI SP (Davies, 

1973) and !aya ite■s. The aechanism is a qeneralization of the 

generators defined in CONNIVER (1'cDermott & Sass■an, 1973). 

Each QLAl'IBDA expression has a tuple pattern as its argument 

list. QLUIBDls are inToked by 11atcbinq a pattern in the form of 

a tuple against either the pattern argument of a specific 

QLA~BDA expression or aqainst a tuplebase of QLAMBDA 

expressions. QLAP!BDAs always return items as values. As in 

fUTCH, the item is composed of the bindings of the pattern 

variables assigned during the pattern match plus a possible 

reactiYation tag ,for the generator. QLAMBDA expressions may be 

given names by creating QEXPR type functions with DEFUN. 

QLAftBDAs and QEXPRs take optionally one or two arguments: 

( (QLAfllBDA <arg-pattern><body>) <pattern>[ <else>)) or 

(<qexpr><arg-pattern>{<else>]). 

The first argument, <pattern>, aust be a tuple and is the 

pattern to be matched against the argument list, <arg-pattern>. 

The second argument, <else>, is evaluated if the pattern match 

fails or if the QLlMBDA expression evaluates a call to PAIL. 

<Else> defaults to BIL. , Since QLAMBDAs and QEXPRs are treated 

bv the interpreter as any other fu.nction, they may be applied, 

mapped, and evaluated. 

QLAMBDA expressions may be stored in tuplebases by bindinq 

them to patterns identical to their pat tern arguments. A 
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mechanism is thus realized for associating top-down methods with 

patterns. Methods are added to a 11ethod tuplebase as follows: 

(PADD <arq-pattern><■ ethod-base><qxl>), 

where <arq-pattern> is the pattern argu ■ent of the method, <qxl> 

is either a Q.EXPR name or a QLA!IBDA expression, and 

<method-base> is a tuplebase of methods. Methods are deleted 

from taplebases in a si ■ilar fashion: 

(PRE"OVE <arg-pattern><aethod-base>). 

The third type of generator is used to access and then 

invoke QLUIBDA expressions in tuplebases by matchinq their 

associated patterns. Two different mechanisms are provided. 

D1ST searches a tuplebase of QLIMBDA expressions in depth-first 

order. The fora of calls to this function are: 

(D1ST <pattern> <db> [<else>1). 

01ST will fetch fro■ the tuplebase, <db>, a QLAMBDA eipression 

matching <pattern> and then invoke that function. A successful 

value returned fro11 the QLA!tBDA vill also be returned from D1S'1' 

with the addition of a reactivation tag. If the tag is later 

used to restart the generator, D1 ST vill recall the QLAMBDA 

expression to generate another itea. D1S'1' vill continue to 

recall that same QLAMBDA until it fails to qenerate any nev 

items. Then 01ST will return to the tuplebase to search for 

another QLAMBDl expression matching <pattern>. 

Similarly, B15T searches a tuplebase of QLAMBDA expressions 

in breadth-first order. The fora of this primitive is: 
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(81ST <pattern> <db> [<else>]). 

B1ST will invoke the first QLA!BDl expression it finds that 

matches <pattern>, and return the ite■ yielded by the QLAMBDA 

vit h the addition of a reactivation taq as its own value. 

However, when this generator is resumed again, B1ST vill attempt 

to find a different aatching QLAMBDA expression in the 

tuplebase. Only after it has invoked once all ■atching QLAMBDA 

methods will it recall each suspended QLAMBDA for a second time, 

and then each for a third tiae, and so forth. 

The last type of qenerator defined in ftava includes the 

control pri•itives for restartinq generators from the 

reactivation tags returned in their ite11s. The functions, NEXT 

and FAIL, are used for loop-driven and failure-driven search 

respectively. For a comparison of the two approaches, see 

Sussman and !cDermott (1972). 

NEXT, which is analogous to Conniver's TRY-NEXT, is a 

functio.n of two arguments: 

(HEXT <item> [<else>]). 

<Item> aust be an item created by another generator. NEXT looks 

for a reactivation tag in the item. If it finds such a tag, the 

attached generator is resumed • . otherwise, if no taq is found or 

the resuaed generator fails , NEXT evaluates <else>, its optional 

failure fora. Por example, to find in a tuplebase, TOYS, the 

na111es of all boxes, the following expression could be used: 

( PROG (X) 
(SETQ X (flllTCR '<BOX !:B> TOYS '(RETURN IIIL))) 
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(SEND ?X (PRilfT ?B)) 
(SETQ X (NEXT ?X '(RETURN NIL))) 
(GO LOOP)) 
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Failure-driven search is realized in Ma ya by using the FAIL 

function in con junction with another pri111i ti ve • ELSE. PAIL is a 

function of no arguments that causes Mava to begin discardinq 

control frames froa its processor stack until an i tea is found 

on the stack containing a reactivation tag. The qenerator 

attached to this tag is then restarted from that failpoint. 

The function ELSE provides the necessary mechanism for 

controlling failure-driven search. It is a very simple function 

of one argo■ent which creates an explicit failpoint with that 

unevaluated argument. ELSE returns an item containing only a 

taq bound to this failpoint. , When the taq is reinvoked by PAIL. 

the argument is finally evaluated. thereby providing a mechanism 

for capturing failure. , The mechanism is called a !~ilu~ h!.Qg 

and is illustrated in the following example: 

{SEND (ELSE' (FAILURE-EXIT)) 
(f!ATCH '<BLOCK !:X> TOYS '(PAIL)) 
( P!ATCH '<COLOUR ?I BLUE) TOYS. 1 (PAIL)) 

• 
• 

(SUCCESS-EXIT)) 

This progra■ segment attempts to find a blue block from the 

database of toys. If it is successful. control passes tbrouqh 

the block. Otherwise, a failure exit is taken. Failure blocks 

define a local backtrack search 11echanis ■ that follows separate 

control paths depending upon whether the local search succeeds 

5: Ma va 



137 

or fails. 

5.6 Botto■-up l!!ethods 

Bottom-up search is realized in PJaya via aultiprocessing. 

Processes consist of se11i-autonoaous procedures. A number of 

processes may co-exist simultaneously and may or ■ay not be 

associated vith particular sche111ata. Processes ■av be created, 

invoked, destroyed, and resumed by other processes. A process 

may terminate or suspend itself or it may via the COPJPLETE 

function suspend itself and all other processes associated vi th 

a particular schema. 

The procedure body of each process consists of a QLAKBDA 

expression. When a process is created, a specified pattern is 

matched against the pattern of the QLAPJBDA expression. 

Processes ■ay be suspended to patterns in a specified tuplebase 

of processes. · suspended processes may be resumed by matchinq 

those patterns. 

Processes are created in rtaya via the function,, PBOCESS,, 

which has the following form: 

(PROCESS <schema> <ql> <pattern> (<else>]). 

<Pattern> is matched against the pattern argument of the QtAMBDA 

expression. Should the match fail, <else> is evaluated if 

present or defaults to NIL. otherwise,, a nev process is created 

vith the QLAllBDA expression as the body of the process. The 

process is associated with an object, <schema>, or if NIL is 
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specified, with no object. The association of processes vith 

schemata is utilized by the system function, COMPLETE, which is 

described later. 

once a process is created, its procedure body is executed 

until it terainates or is suspended. A process may be 

terminated by executing the last form in its procedure body or 

by executing the EXIT or PAIL functions. Processes may be 

suspended via the SUSPEND or COMPLETE functions. SUSPEND is a 

primitive of tvo arguments, a tuple, <pattern>, and a tuplebase, 

<db>, as indicated in: 

(SUSPEND <pattern> <db>). 

The current running process is suspended to the pattern and is 

stored in the speci .fied tuplebase. Control retur.n·s to the 

process which invoked the now suspended process. 

ftaya recogni~es two types of processes in tuplebases; 

§~§E~nggg ~EQg§§§U and »g~ed - pro~§~~§• A suspended process 

consists of the segment of the stack: representing the current 

state of evaluation of the process plus an associated schema. A 

named process consists of either a QLAMBDl expression or a QEXPR 

name plus an associated scllema. I Suspended processes are added 

to a tuplebase via the SUSPEND function. Named processes are 

added to a tuplebase as follows 

(PlDD <pattern><db)(BAMED-PBOCESS <ql><scheaa>)). 

This for■ adds to the tuplebase, <db>, under the pattern, 

<pattern>, a named process whose proced nre body, <ql>, is a 

QLA"BDA expression or a QEXPR name. <Pattern> and the pattern 
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argument of <ql> must be identical. If <scheaa > is an objectr 

the process is associated with the scbeaa represented by the 

object. If <schema> is NILr the process is not associated vith 

anv schema. 

The ■ajor differences between named processes and suspended 

processes are the following. A suspended process 11a y be resumed 
' 

only once for each appearance in a tuplebase. When it is 

invokedr the pattern to which it was bound is deleted from the 

tuplebase. On the other handr a named process mav be invoked 

multiple times from the same pattern in a tuplebase r each 

invocation resulting in the implicit creation of a nev processr 

and _the pattern is not deleted froa the tuplebase. 

suspended and naaed processes are resumed .by the RESOME 

function which takes three arguments: a pattern, <pattern>r a 

tuplebase, <db>r and an optional failure forar <else>: 

(RESUftE <pattern> <db> [<else>]). 

<Pattern> is matched against the tuplebaser <db>. If the match 

fails. <else> is evaluated. otherwise. the process bound to -the 

matched pattern in the tuplebase is resuaed. 

It will be noticed that all the top-dovn and bottoa-up 

control primitives return items as Yalues. Thereforer functions 

such as RESUSE are also generators. In the case of process 

primitives, they are 1!2.t~::!ll! g~~!:~tQI§• The item returned as 

value fro■ RESUME can be operated on by NEXT and FAIL to 

sequentially generate and then to resume every process matching 

pattern. 
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A schema may have more than one of its associated processes 

active at any one time. The stack thus may contain a number of 

processes associated with the sa ■e schema. · All of these 

processes have a coa•on purpose, to whit, the recognition of an 

instance of the schema's stereotype. When a schema is 

successful in its recognition, the efforts of all its processes 

need to be suspended. This is called completion in the 

recognition model. The following function. COMPLETE, provides a 

mechanism for suspending all the processes of a scheaa and 

resuming the process of another specified schema or schemata: 

(COMPLETE <pattern> <db> (<else>]). 

<Pattern> is matched against the tuplebase of processes, <db>. 

On success, the current process, P1, is suspended as described 

below to a reactivation tag. C08PLETE then resumes the process 

matching <pattern>, P2. 

This complex function is the aain control structure 

mechanism in r!aya for realizinq the control aspects of the 

recoqnifion model. COMPLETE supports superqoals, heuristic 

method scheduling, and method hierarchies. The ■echanis■ is 

based on the assumption that for machine perception tasks all 

top-down and bottom-up methods associated with a particular 

schema are concerned with the ultimate recoqnition of that 

schema instance. Therefore, when a method associated with a 

particular schema has concluded that the recoqni tion of its 

instance is complete, all concurrently active methods associated 

with that same schema are no longer needed. They must be 
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suspended. In order to achieve this result, COP!PLETE searches 

the processor stack to find every occurrence of processes 

associated with the saae schema as the current process (la belled 

P1 above1. Every such process and its sub-processes are then 

suspended. Finally, P2 is resumed. 

5.7 Conclusion 

This chapter has presented a brief overview of a new 

artificial intelligence proqraaaing languaqe. The lanquaqe was 

discussed from the perspective of realizing the procedural 

mechanisms defined in the recognition model. Althouqh it is 

impossible to completely characterize a high-level proqra•ming 

language that introduces new complex control and data structures 

in the space available here, a number of its salient features 

have been discussed. A tutorial on ~a~a, desiqned to augment 

the descriptions presented here and to suppleaent the lanquaqe 

reference appearing in Appendix-B, is now in preparation. 
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6.1 Perspective 

In this final chapter, the author takes the opportunity to 

step back and re-exa•ine the work of this thesis. A 

recapitulation of the recognition ■odel is 11ade fro11 the 

perspective of its contribution to a theory of machine 

perception. Finally, applications for the model are discussed 

indicating some pro11ising directions for future research. 

6.2 Recognition Revisited 

task. 

Perception has been cha.racterized as an active recognition 

such a view of perception is held by Bobrow and Winoqrad 

(1977): 

Reasoning is dominated by a process of recognition 
in which nev objects and events are compared to 
stored sets of expected prototypes, ana in which 
specialized reasoning strategies are keyed to these 
prototypes (p.4). _ 

This process is more than a simple passive retrieval from 

memory of a stored description of the thing perceived. 

Experience is much too varied and co•plex to depend on such a 

mechanis11. We are constantly experiencing new situations, 
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seeing new objects, understanding new sentences. We probably 

never perceive exactly t.he same experience in the same situation 

more than once. Thus, perception is a generative process, 

composing nev descriptions of experience in ter ■s of a stored 

finite knowledge of the vor1d (Choasky, 1957). Jaynes {1976) 

argues that perceiving an experience is a process of arrivinq at 

a metaphor to describe that experience. 

Generations aqo ve woold understand 
thunderstorms perhaps as the roaring and ruablinq 
about in battle of soperbuman gods. We vould have 
reduced the racket that follows the streak of 
lightning to fa11iliar battle sounds:, for exa ■ ple. 
Similarly today, ve reduce t be storm to various 
supposed experiences vitb friction, sparks, vacuuas, 
and the iaag:Lnation of bulqeous bernks of burly air 
smashing together to make the noise. None of these 
really exist as ve picture them. our images of 
these events of physics are as far fro■ the 
actuality as fighting gods. Yet they act as 
metaphor and they feel fa ■iliar and so ve say ve 
understand the thunderstorm (p.52). 

Thus, descriptions of experience are metaphorical. We 

perceive the sensor, world in ter ■s of our stored descriptive 

knowledge of that world. 

machine percept.ion, ve must 

In order to develop a theory of 

characterize mechanisas for 

emulating this qeneratiYe process. The specification of a 

theory faces two ■ajor issues: representation and recoqni tion. 

What is the fora and organization of memory and what types of 

procedural ■echanis ■s 

representation? 

can perform rec oqni tion on that 

The psychological question of 11e ory organization is far 
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from resolved. There is experiaental evidence supporting both 

imagery and structural representations (Yuille,. 19 76) • Ho vever,. 

Chase and Simon ( 1973) have shown that chess 11asters are much 

better at reme■bering chess board positions from actual chess 

games than fro■ random bpard arrangements. The expert's ability 

at reaembering random boards approaches that of non-chess 

players,. thus indicating a definite dependence on structural 

descriptions. It seems clear that high-level reasoning Qepends 

predo ■inantly on schematic mechanisms (Pylyshyn, 1976),. althouqh 

perception most certainly makes use of both imagery and 

schemata. 

A major aspect of this thesis is the characterization of 

perception as an active process that exploits heuristic 

knovledqe of the world. The value of active heuristic knovledqe 

has been demonstrated by Winograd's (1973a) natural languaqe 

system, SHRDLU. His system was a siqnificant advance in the 

state of the art, incorporating procedural semantics in a 

language understanding system. The apparent lesson of his 

research was that procedural semantics is ■ore pov~rful than 

declarative se11antics for performance-based syste■s. A more 

insightful lesson is that procedural semantics coupled with 

hypothesis-driven search provides a aechanism for introducinq 

heuristic knowledge to quide the perception process. Procedures 

are only the vehicle for the improvement in performance, not the 

reason. The same capability can be obtained in purely logical 

systems,. as Hayes (1971) has argued , by defining deductive 
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control operators within the formal logic system. Again, such 

mechanisms provide the vehicle for introducing active knowledge 

into the perceptual process. 

Unfortun~tely, the incorporation of heuristic guidance to 

hypothesis-driven recognition has not been a sufficiently 

powerful aechanism to solYe the ■achine perception problem. 

Winograd (1973b) has noted the appearance of a "co■plexitv 

barrier" to the advancement of the art. The barrier . arises from 

the dependence on top-down search mechanisms. Such methods 

require the system to hypothesize the correct interpretation for 

some sensory input before it can be found. 

not hypothesis-driven search, but the fact 

schema must be chosen as a plausible 

The deficiency is 

that a particular 

interpretation and 

attempted before any of its heuristic recognition knowledge 

becomes available to direct the search process. Its expertise 

comes too late! 

Hypothesis-driven recognition has also been proposed for 

schemata representations (Minsky, 1975). The recoqnition model 

described by Kuipers (1975) is p.robably the best. known. As was 

pointed out, his model attempts to avoid the inadequacies of 

top-down search by appealing to a failure-dri vEn si milari t'y 

network to recommend likely alternative hypotheses. This 

mechanism does not confront the real problem. Sensory data is a 

highly ambiguous encoding of experience. The interpretation of 

sensory data requires a ■ethodoloqy that exploits contexts and 

can tolerate larqe degrees of non-determinism. The top-down 
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model appeals implicitly to the "little man in the head" or 

homunculus theory of perception {Pylyshynr 1973). consider the 

following verba 1 example qi ven by Kuipers ( 1975) : 

A frame [schema] represents a certain limited 
domain, and hence a range of variation for obiects 
which belong to that domain. As ve saw in the room 
scenarior the features of a frame may be frames in 
their own right, embodyinq ranges of variation. On 
entering a room, you are prepared fo.r certain 
typical pieces of furniture. A park bench or 
diamond-encrusted throne vould be outside the 
permissible ranqe of variation in this frame. Such 
an anomaly may indicate to the correction mechanism 
that another frame is called for (p.159). 

In this description, the perception problem has been 

finessed by assuming that it is easier to recoqnize a park bench 

than a room. They are, in fact, problems of the same order of 

complexity. Postponing the problem will not solve it. Relying 

on the expectations of the roo■ schema to handle all or even 

most possible contents of a room abdicates the responsibility of 

the search process to failure mechanisms. Upon enterinq a room 

containing an unanticipated ob1ect, the search process will 

blindly select one bad hypothesis after another until an 

"appropriate" schema is found. Only then will that schema's 

domain-specific knowledge be available to guide the recoqnition. 

That knowledge was needed much earlier. One must conclude that 

hypothesis-driven recognition is not the mechanism upon which to 

build machine perception regardless of the type of auxiliary 

attachments added to improve its performance. 

In order to surmount this complexitv harrier, machine 
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perception requires both hypothesis and data-driven recoqnition. 

Hypothesis-driven search applies heuristic methods associated 

with the recoqnition of a particular scheaa once a commitment 

has been made to that scheaa. Data-driven search provides the 

means to select likely hypotheses based on the discovery o .f 

supporting evidence and c11es. Top-down and bottom-up search 

methods can be integrated in a synergistic manner. , Bottom-up 

search drives the activation of plausible higher scheaata as 

superqoals. After being established as likely hypotheses, these 

schemata attempt to confira their recognition both by usinq 

top-down search via subqoaling to sub-schemata and by observinq 

cues in the input data to drive the bottom-up search for other 

schemata. 

Recently, a number of other 11odels have been proposed for 

perception. ~ackvorth (1977c) has offered the cyclic model 

depicted in Figure 6.1a which he attributes to the oriqinal work 

of Roberts (1965). In this model, perception is seen as an 

iterative process. The discovery of cues invoke appropriate 

models. Plfode ls a tte■ pt to ver ifv their hypotheses by 

observation. Successfully recognized hypotheses cause the 

elaboration of the consequences of their models, resultinq in 

the discovery of nev cues. 

Figure 6.1b illustrates a similar cyclic model of 

perception 

expectations 

Exploration 

given by Neisser ( 1976). Schema ta represent 

which direct the exploration of the sensory world. 

results in observations which match these 
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expectations thereby ■odi .fying the sche■ata and propagating the 

process. Beisser uses this model to stress the inherently 

sequential nature of percei:,tion involving the modification of 

sche11.ata over time. 

llthouqh each author allows for the existence of a 

cue/model hierarchy, in neither model is a •echanism for the 

perception of cues as abstract entities sufficiently elaborated. 

Fiqure 6.1c illustrate~ the recursive model of perception 

presented in this thesis. The model can be seen to generalize 

the purely cyclic aodels of Figures 6.1a and 6.1b. As in these 

models, recognition follows a cyclic path of cue discovery and 

schemata invocation. A particular schema may pass throuqh this 

cycle a number of times. However, vhen a schema's recognition 

is completed, the recognition cycle ascends one level in a 

hierarchy of cues and models • . Schemata reco(fnized at one level 

becoaes cues in the recognition at the next higher level in the 

hierarchy. 

Despite the fact that the necessity of cue/model 

hierarchies in the cycle of perception has been clear for some 

time (1'ackvorth, 1976, 1977c), a ■ echanis ■ for achieving this 

goal has not been specified. The aajor contribution of this 

thesis is the precise characteri%ation of such a mechanism. 

The notion of co•pletion provides an explicit mechanism for 

capturing the recursive nature of perception. When a schema has 

recogni-zed a fully specified instanc.e of its stereotypical 

concept, it must return that success to one or more higher 
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schemata. If the schema was activated as a subqoal by a hiqher 

schema, it must return its completed description to that schema. 

Otherwise, the completed schema has been recognized usinq 

bottom-up methods and has no explicit caller. It then exists as 

an abstract cue which attempts to ■atch the expectations of 

higher schemata activating the ■ as supe'rgoals. Ru.melhart and 

Ortony ( 1976) have addressed similar control structure issues 

for schemata. 

It may be helpful to think o.f these processing 
issues in terms of a computer programming metaphor, 
for one can think of a schema as being a kind of 
2£Q~~dur~. Procedures have s~brouttnes and one can 
think of the activation of a schema as being like 
the invocation of a procedure. The variables of a 
schema are thus analogous to the variables of a 
procedure while the sub-schemata are analogous to 
the subroutines which may be invoked from within it. 
The activation of subschema ta within a schema is 
like the calling-up or invocation of the subroutines 
within a procedure. Tbis is the paradigm case of 
conceptually-driven processing. However, unlike 
ordinary procedure calls, in which the flow of 
control is only from procedure to subroutine. the 
flow of control in a schema system operates both 
ways. It is as thouqh a given procedure not only 
could inYoke those procedures in which it was itself 
a subroutine (data-driven processinq). Finally. one 
must imagine these procedures as all operating 
simultaneously (p.46). 

The realization of this programming metaphor as an operatinq 

programming language is the second major contribution of this 

thesis. Maya defines explicit language primitives for creatinq 

sch -emata and schemata networks, for associating procedural 

methods vith schemata, and for invokinq those methods both as 

subgoals using conceptually-driven search and as superqoals 
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using data-driven techniques. As well, r!aya utilizes the 

completion aspect of the recognition model as a multiprocess 

scheduling mechanism for simulating the concurrent application 

of methods. 

6.3 Applications and Future Research 

The issues addressed in this thesis are currently of 

interest in a number of research areas. For this reason, the 

recognition model and its realization as Maya should have 

general applications in such perception research as machine 

vision, natural language understanding, and episode 

understanding. r!oreover, problems of control in automatic 

deduction systems are similar to the control structure issues in 

machine pe .rception. Issues of integrated hypothesis-driven and 

data-driven recognition are analoqous to similar issues of 

backward and forvc'\rd deduction. The ideas developed in this 

model concerning active heuristic guidance and concurrent 

methods should also have application the.re. 

Future research will focus on a specific task domain that 

exhibits the following four criteria. First, the task must have 

a well-defined semantics, preferably an explicit conventional 

semantic representation such as exhibited by sketch maps 

(Mactworth, 1977a). Second, in order to eEploit fully the 

advantages of integrated top-dovn and bottom-up recognition, the 

prob le■ should have a hiqhly aabiquous input data 
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representation. Third, the problem should inherently have a 

hierarchical knowledge representation in order to demonstrate 

the advantages of recursive cue/■odel hierarchies in machine 

perception. And finally, the domain must be generally accepted 

as a a perceptual task for which previous recoqnition mechanisms 

have been shown to be inadequate. Possible research tasks 

exhibiting these criteria include the interpretation of LANDSAT 

video i■ aqes, the analysis of electronic circuit schematic 

diagrams (Stallman & suss ■an. 1977), and the understanding of 

handwriting. 
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The follovinq presentation of Earley•s algorithm is 

intended to supplement the informal discussion of Chapter 3. A 

still more formal treatment is proYided by Aho and Ullman 

(1972). 

We are gi•en a context-fre.e qrammar,, G=(P,N,K,,S), where P 

is a set of production rules,, N is the set of non-terminal 

symbols,, K is the set of terminal symbols,, ands is the start 

symbol which is a distinguished symbol in N. The algorithm 

operates on an input sentence,, w=a (1 )a (2) ••• a (n) and 

determines whether v is contained in L(G),, the lanquaqe 

generated by G. Upper case letters are used to represent 

non-terminal symbols,, the lover case letters,, "i", "i",, "k",, and 

11 n" represent indices,, and a (i) is used to represent the i' th 

symbol in the input sentence. Other lover case lettP-rs 

represent sentential forms composed of both terminal and 

non-terminal symbols. 

For O~i,~n. the alqorithm constructs 2~r~g !i2.1§ of items. 

An item, [A-➔m.q,,il Ofi~j,, is an element of the parse list I(il 

if and only if a sentential form, rAu, with 

r=a(1)a(2) ••• a(i) can be derived from s and 

a(i+1) ••• a(j) can be derived from m. That is,, i through i 
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bracket the portion of v derivable from m, and the production 

rule, A-➔ mg, can be used in the qen~ration of v up to position 

1. All items in a parse list, I(j), represent derivations which 

aqree with v up to position j. The items in a given parse list, 

I(j), can be viewed as independent parsers, each attempting to 

recognize an instance of its own production rule from the input 

sentence. 

The algorithm is initialized by forming a parse list I(O) 

containing the single seed ite■ fs- ➔ .w,OJ. As each new input 

symbol a(j+1) of w is read, the algorithm generates a nev parse 

list I (j+1) from I (0) •• I (1). This process continues until 

the last symbol a(n) in w is read and I(n) generated, or until 

no nev parse list can be generated, indicating w is not 

contained in the language of G. If, at tha ena of this process, 

an item, (s-➔m.,01, is contained in I(n), then vis in L(G). 

The algorithm proceeds by the cyclic application of three 

functions, called the ~U~i£tQ~, the §g~n§t, and the £Qll"tgr, 

until the last symbol is read from v or until some I(i} is found 

to be empty. First, the predictor computes from the rules of G 

and the derivation found to date what derivations may possibly 

follow. It spawns new parsers to look for these derivations. 

If [A-➔m.Bq,i] is an element of parse list I(j), and B-➔ r is a 

rule in P, then [B-➔.r,j] is added to I(j). The index, j, in 

the item indicates at vhat position, j, in the parse a new 

parser was created to look for the right-hand-side of the rule, 

B-➔r. See Figure A. 1. 
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Next, the scanner .function, by reading the next symbol, 

a(j+1), fro ■ v generates a seed item for the next parse list, 

1(1+1). Por each [B-➔m.aq,i] that is contained in I(i) and 

v-=a(1} •• a(j)a •• a(n) then (B-➔ma.g,i] is added to 1(1+1). 

The scanner propagates all parsers in I(j) to the next parse 

list that were expecting a (i+ 1) to appear next in the input 

sentence. As is illustrated in Figure A.2, the scanner 

increments the internal state of an item by moving the parsinq 

dot one terminal symbol to the right. 

The completer function performs bottom-up reductions of 

sentential for11s that appear as right-hand-sides of production 

rules in P to their non-terminal left-hand-sides. If (A- ➔r.,il 

is an element of I(j), then the non-terminal symbol, A, has been 

recognized in v. From I(i), the generating item, [B-➔m.Aq,k] is 

found and [B-➔aA.q,k] is added to I(j+1). The completer acts as 

a scanner for no.n-terminal symbols, as is shown in Fiqure A.3. 
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This manual is a descr ipt ion of an Artificial Intelligence 
proqramming language called MAYA. Included in this lanquaqe are 
facilities for perfor11inq pattern matching, primitives for 
constructing semantic networks and schemata, primitives for 
creatinq and manipulating processes, and control structures for 
integrating top-down and bottom- up search techniques. The 
language is designed as a dialect of LISP havinq a number of 
extensions and a few restrictions. The extensions vill be 
described in detail in the following pages and the restrictions 
will be noted as well. 

B.1 Relating to MAYA 

This section explains the operation of the interpreter. 
Since this language is experimental, it is subject to occasional 
changes in behaviour. l!o§! changes will be upwardly compatible 
and this document will be promptly edited to reflect those 
cha nqes. 

To run ftAYA under MTS: 

$RON CS:LISP SCARDS:CS:LOADER+*SOURCE* 
(RESTORE MAYA:SYSGEN) 

MAYA will be started in a top-level EAR and the creation date 
for the current version of the interpreter will be printed. 

The following list of functions are the basic mechanisms 
for controlling the interpreter. The form of each function call 
is given followed by the type of the function. EXPR, NEXPR, and 
FEXPR type functions can be used froa both MAYrt and LISP. 
Square brackets indicate optional arguments, and the asterisk is 
used as the Kleene star indicating zero or more repetitions. 
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1. (PIAYA) {EXP R} 

Executed from LISP. Initializes the processor and enters 
a a top-level EAR. 

2. (HALT [<form>]) {alFSUBR} 

The value of <form> is returned to LISP. If no arqument 
is supplied, NIL is returned. HALT leaves the current 
invocation of the processor intact. 

3. ( RESTART <form>) [NEXPB} 

Executed from LISP. Restarts the interpreter from the 
previous HALT. Computation proceeds with <form> 
substituted for the call to HALT. RESTART and HALT can be 
used as a co-routine mechanism between MAYA and LISP. 
HALT returns a value to LISP at the point the interpreter 
was called, leaving the process intact. RESTART returns a 
value to MAYA at the point that the process vas previously 
halted. 

4. (@INIT) 

Reinitializes the processor. 
If evaluated from MAYA, a 
returned. 

5. (EAR) 

[EXPR) 

Meaningful onlv from LISP. 
varni~q is given and NIL is 

(@SUBR} 

Enters a READ-EVAt-PRINT loop. Since ~AYA permits 
multiple co-existant processes, this function permits the 
user to create multiple READ-EVAL-PRINT loops. Reads 
forms from each <file>. Each form is MAYA EVALed. 

6. (INFI LE <file>*) {alSUBR) 

This function is analogous to DISKIN in LISP. There is 
however no DISKOUT analogue because MAYA function 
definitions may be local to objects in the data base. 

Since MAYA makes use of both read and print macro 
characters, it is unwise for the user to prefix his own atoms 
with these characters. The characters reserved by MAYA arE: 

The "@" is not actuallf a macro character but all MAYA internal 
names beqin with this character. If it is inconvenient to abide 
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by these conventions, then the follovinq tvo functions mav be 
used. 

7. (@OFF-STATUS) 

Turns off read macro processing. 

8. (@ON-STATUS) 

Turns on read macro processing. 

{EXPRl 

{EXPRl 

To facilitate communication betvee.n LISP and MAYA, tvo 
prefixes are provided. Prom LISP, ¢<form> will return the ~AYA 
value of <form>. From ~AYA, S<for m> will return the LISP value 
of <form>. For example, from LISP, tSt$t$t$t$ (FOO) vill return 
the LISP value of (POO). Note that (lUYA) is (@INIT) followed 
by t/. (EAR) • 

B.2 The Database 

~any of the primitive functions defined in ~AYA are 
concerned vith creating obiects, for■ ing semantic networks from 
obiects, searching arc paths through these networks, and 
interpretinq objects as schemata. These .functions create and 
manipulate obiects and the schemata and nodes that can be 
created from objects. 

9. (OBJECT <type><pair>*} (@PSUBR & FEXPRl 

Each <pair> is of the form, <name><form>. OBJECT creates 
a new object of the user tvpe, <type>. havinq for each 
<pair> a binding defined between the naae, <name>, and its 
definition, <form>. OBJECT evaluates its odd arguments, 
and its even arguments must be <AT0M>s. Note that both a 
MAYA and LISP version of this function are included in the 
system. 
Example: 

! 
(OBJECT 'NODE CLASS 1 TAaLE HAS-AS-PARTS (LIST 'LEGS 'TOP)) 

(@0BJECTi NODE CLASS TABLE HAS-AS-PARTS (LEGS TOP)) 

10. (NEW <object> <pair.>*) f@FSUBR 6 FEXPRl 

If <object> is not an object, an error occurs. NEW 
creates a new iBstgn£~ of <object> of type, ~INSTANCP.m. 
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The new ob1ect consists of the bindinqs of <pair>s 
concat{:!nated with <object>. The new instance is of the 
for■: 

(aOBJECT@ @INSTANCE@ <pair>*) II <object>, 

where It indicates list concatenation. Note that both a 
"AYA and LISP version of this function are included. 
Exa11ple: 

(PUT* 1 DOG (OBJECT 1 G.ENERIC NAME 'DOG CLASS '"UHULIA) t 
! (@O.BJECT~ GENERIC NAME DOG CLASS KAf!ll!ALI A) 
_ (BEW DOG NA~E 'FLOYD OWNER 'BILL) 
! (@OBJECT@ @INSTANCE@ NAME FLOYD OWNER BILL @OBJECT@ 
! GENERIC NAME DOG CLASS MAMMALIA) 

11. (OBJ ECTP <thing>) 

If <thing> is an object, its type is returned. 
is returned. 

12. (STEREO <object>) 

{EXPRl 

Else NIL 

{@SUBR l 

If <object> is an instance, its stereotype object is 
returned. If <object> is object but not an instance of 
some other object, <obiect> itself is returned. Else NIL 
is returned. 

13. (GET* <name> (<else> l) (alSUBR 6 EXPR} 

Fetches the definition of <name> from within the enclosinq 
obiect. Both a MAYA and a LISP version are provided. If 
there is no <name> defined in. the enclosinq obiect, <else> 
is evaluated. If <else> is not given, NIL is returned. 
If the.re is no enclosing object on t .he stack, the qlobal 
object is taken to be the enclosing object. 
Examples: 

! 
{GBT* 1 CONS) 

(aOBJECTi @PLISTi SUBR *) 
(GET* 1 DPDPDGGGG ''ELSE) 

! NIL 
_ ; NOTE: GLOBAL OBJECT HAS EVERY 

(SEND (OBJECT 'TYPE A 1 ADEF) 
(GET* 'A)) -! 

-
! 

ADEP 
(SEND (OBJECT 'TYPE A 'ADEF) 

(GET* • B 1 ' ELSE) ) 
ELSE 

NAME DEFINED. 
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14. (PUT* <name><form>) {EXPR} 

Puts within the enclosing object the binding of <name> to 
its nev definition, <form>. <Name> must be atomic. If a 
previous definition existed, it is replaced. If no 
enclosinq obiect exists on the stack, the bindinq is added 
to the global object, i.e., the CDR of <name> is set to 
<form>. If the enclosing object is an instance of some 
parent sterotype object, the stereotype ob1ect is 
quaranteed to remain unaltered. PUT* returns <form>. 
Examples: 

! 

-

(PUT* 'A 1 ADEF) 
ADEP 

A 
! ADEP 
_ (COR 'A) 
! ADEF 

(: (PUT* 'B (OBJECT 'NODE)) 
(PUT* •c •coEP) 
(SEL 'f')) 

! (@OBJECT~ NODE C 1 CDEF) 
B 

! (@OBJECTj NODE C 1 CDEP) 

15. (REM* <name>) [@SUBRl 

Removes the definition of <name> from the enclosing 
object9 If there is no enclosinq object on the stack, the 
CD"R of the atom, <name>, is set to NIL. If the enclosinq 
object is an instance, its stereotype object remains 
unaltered. REL! returns the binding of <name>. If the 
binding of <name> is not defined in this object or within 
this instance, NIL is returned. 
Examples: 

B 
! (ilOBJECTa NODE C 1 CDEP') 

- (SEND B (REM* 'C)) 
! NIL 

B -
! ( @OBJ ECTit 'NODE) 

- (REM* • B) 
! NIL 

B -
! NIL 
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16. (SELF) (@SUBR} 

Returns the current enclosing object from the stack. If 
there is no enclosing object, an error occurs. 
Exaaples: 

_ (: (OBJECT 'TYPE A 'ADEP) 
(POT* 'A 'NEW-ADEP) 
(SEL .F)) 

! (@OBJECT! TYPE A NEW-A DEP) 
(SELF) = ERROR: NO ENCLOSING OBJECT ON THE STACK 

17. (ITEM <pair>*) {@SU BR 1 

Each pair is of the form, <name><value>. ITEM creates a 
new item containing a new instances of each variable, 
<name>, having value, <value>. ITEM evaluates its even 
arguments, and its even arguments must be atoms. The new 
item is returned as value. 
Example: 

_ (ITEM X 'XVAL Y (LIST 'YYY)) 
! (@ITEM@ NIL X XVAL Y (YYY)) 

(SETQ I 'XVAL) 
! XVAL 
_ (: ( lT EM X ' ZZ Z Y ? X) 

(PRINT ?J) 
?X) 

! XVAL 
! zzz 

18. (SET <pair>*) [ iilSUBRl 

Each <pair> is of the form, <name><value>. SET binds each 
variable name, <name>, to its new value, <value>. SET 
evaluates all its arguments and its odd arguments must 
evaluate to atoms. SET returns the value of the last 
<pair>. 

19. (SETO <pair>•) (iJP'SUBR} 

Each <pair> is of the form, <name><value>. SETQ behaves 
as SET except it evaluates only its even arquments. Both 
SET and SETQ search the stack lookinq for the first 
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occurrence of the variable, <name>. If no variable exists 
on the stack having name, <name>, the LISP value of the 
atom, <name>, is changed to <value>. Note that only the 
variable, <name>, is changed and not the definition of the 
atom, <name>. SET and SETQ bind values whereas PUT* binds 
definitions. 

20. (DEFUN <defn>) {FEXPR} 

DE.FUN has been extended to per11i t the definition of ii EX PR, 
jNEXPR, @FEXPR, and QEXPR type functions. DEFUN may be 
used from either ,.l\YA or LISP to defi.ne any of the 
function types from both lanquages. DEFON always adds its 
definition, <defn>, to the enclosing object and may 
therefore be used to provide function definitions local to 
specfic objects. DEPUN honors inst.a nee boundaries. 
Examples: 

(DEFON TEST NIL (PRINT 'OUTSIDE) T) 
! TEST 
_ (SEND (OBJECT 1 CONTEXT) 

-
! 
! 

! 

(DEFUM TEST NIL (PRINT 'INSIDE) 
(TEST)) 

INSIDE 
NIL 

(TEST) 
OUTSIDE 
T 

21. (@ P 1 P2 • • • Pn l 

NIL) 

{@FSU.BR & FEXPRl 

The tuple evaluator. The value of a tuple is a new tuple 
of the values of its elements, P1, P2, ••• Pn. The 
tuple evaluator uses i!!.Y~r..§~ 51YQ1~ !!Qg~ during evaluation. 
Ato•~ and matcher variables are treated as constants, 
i.e., they evaluate to themselves. All other forms are 
EVALed, note that (@ P1 P2 ••• Pn) can be abbreviated 
using angle brackets as <P1 P2 ••• Pn>. Both a HAYA and 
a LISP version are included. Note also that anqle 
brackets cannot be used as LISP super-parentheses. 
Examples: 

<ABC> 
! <ABC> 
_ <' A (LIST I B I C) > 
! < l\ ( B C) > 
_ (SETQ Y I YVAL} 
! YVAL 

<A <B !:X> ?Y> 
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! <A <B !:X> YVAL> 

22. (TUPLEP <thing>) {EXPRl 

Returns T if <thing> is a tuple, else returns NIL. 

23. (VARP <thing>) fEXPR} 

Returns the name of <thinq> if it is a MAYA variable, else 
NIL. Pattern variables return NIL. 

24. (ITEP!P <thinq>) (EXPRl 

Returns T if <thing> is an item, else NIL. 

B.3 Evaluation 

The 
included 
executed 
function 
types: 

follovi .nq paragraphs describe the fu net ion types 
in MAYA. Valid LISP functions are acceptable and are 

directly by LISP for "AYA. In addition to LISP's 
types, the interpreter also recogni ze.s the f ollowinq 

@SUBR, aFSUBR, @EXPR, iNEXPR, iFEXPR, and QEXPB. 

If desired, the interpreter may be extended to include other 
function types as well. Please see ae for details. 

@SUBR's and iPSUBR's are the system supplied functions of 
MAYA. @SUBRs evaluate their arguments but iFSUBRs bind the list 
of unevaluated arguments to their single parameter, as expected. 
@EXPB, @NEXPR, and iFEXPR are ffAYA's user defined function tvpes 
that are analogous to their LISP. counterparts. QEXPR type 
functions are somewhat analogous to the Q-tvpe functions of 
QLISP (Reboh, 1913). QEXPRs are implemented via QLAMBDA 
expressions and take a single tuple as argument. Thev return as 
value an item representing the result of a pattern match b~tween 
the tuple argument and the tuple pattern of the QLAMBDA 
expression • . Please see the sections on pattern matchinq, 
Generators, and Recognizers. 

The interpreter uses the following algorithm when applyinq 
a function to its arguments: 

• If the function is an ~SUBR or an @EXPR, its 
arguments are evaluated and the function is applied to 
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• If the function is an @PSUBR or an @PEXPR, then the 
function is applied to the list of unevaluated 
arguments. 

• If the function is an @NEXPR, it is applied to the 
unevaluated arguments. 

• If the function is a QEXPR, the tuple argument is 
evaluated and the pattern matcher called on the value. 
If the match succeeds, the function is applied to tbE 
result. 

• Else the function is a LISP for~. If it is a SDBR 
or EXPR, the arguments are evaluated and the function 
is LISP APPLYed to the result. If the function is an 
NEXPR, FEXPR, NSUBR, or FSUBR, then the form is LISP 
EVALed. 
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Functions which make no use of the parallelism, control 
structures, or data structures of rtAYA can be written in LISP 
and executed from MAYA thereby gaining a considerable increase 
in efficiency. While in LISP, any forms defined within IUYA can 
be evaluated via the "t" prefix and references to HAYA variables 
can be fetched via the "?n prefi:r;. 

25. (AVAL <form>) {@SUBR} 

MAYA evaluates its argument. <form>. If <fora> is a list 
whose CAR is an atom, AVAL fetches the MAYA function from 
the first definition of the atoa on the stack. If there 
is no function definition within the first occurrence of 
the atom on the stack, an error occurs. 

26. (EVAL <form>) {@SUBR l 

MAYA evaluates its argument, <fora>. If <form> is a list 
whose CAR is an atom, EVAL fetches the function definition 
from within the global obiect. That is, EVAL fetches 
function definition from the PLIST of the atom. EVAL is 
therefore faster than AVAL, but does not recoqnize 
function definitions local to enclosing obiects. rtAYA 
functions use EV.AL for evaluation unless otherwise noted. 

27. (SEND (A1><A2> ••• <An>) {@FSUBR} 

SEND AVALuates each element in the sequence, 
<A1><A2> •• <An>, in a left-to-right order. If the value 
returned froa <Ai> is an object or an item, then it is 
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pushed onto the stack. Next, <Ai+1> is evaluated in this 
new environment. The final value returned from SEND is 
the value of <An>. SEND may be abbreviated by a single 
colon,":". 
Examples: 

(SEND PRINT) 
! (@OBJECTi @PLIST@ SUBR *) 

(: PRINT SUBR) 
! • 

(SETQ NET (OBJECT 'NODE)) 
(: ?NET 

(PUT* 'A (OBJECT 1 BOOE)) 
(PUT* 'B (OBJECT 1 .NODE)) 

- (PUT* •c 'CD.EP)) 
! CDEF 

(SEND ?NET (PRINT A) (PRINT B) {PRINT C)) 
! ( atOBJ ECTi NODE B (llOBJECTi NODE C CDEF)) 
! (itOBJECTi NODE C CD.EP) 
! CDEP 
! CDEF 

B.4 Error Conditions and the DEBUG System 

There are tvo classes of errors that can occur during the 
execution of MAYA. They are errors trapped by MAYA and errors 
trapped by LISP. Errors trapped bv MAYA cause an "appropriate" 
error message to be printed and MAYA's DEBUG System to be called 
on the form causing the error. This form is called the 
Breakform. Note that there is one exception. If the error 
detected by MAYA is an undefined name or an undefined variable 
occuring at the top-level of an EARr then the error message is 
printed but an immediate return is made to the EAB. In this 
case, there is no form to BREAK on. 

The second class of errors cause a LISP BREAK to be entered 
for one of the follovinq reasons: 

• A LISP error occurred in a user's LISP function. 
• An unexpected condition occurred within the interpreter 
causing it to abnormally terminate • 
• An error occurred within a "AYA EXPR, NEXPR, or PEXPR 
type function. 

If a LISP BREAK is entered for one of the above reasons, and the 
user desires to be instead in a MAYA BREAK, a transfer may be 
made using the functio,n, OOPS, described below. 
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The DEBUG system provided in MAYA is modelled after the 
LISP/MTS DEBUG Packaqe. Most of the facilities included in the 
LISP system are provided in MAYA and a familiarity with the LISP 
DEBUG Packaqe is assumed here. PO\YA 's DEBUG System can be 
called in a number of ways. It can be ca led explicitly on a 
form via the functions, DEBUG and BREAK. The svstem may be 
called implicitly on the body of a function via settinq a 
Breakpoint in that function. And lastly, the DEBUG svstem is 
called by the interpreter whenever a ~AYA error occurs. 

The LISP BREAK functions, BREAKF, UNBREAKF, and UNSET, have 
been modified to work with mEXPR, and QEXPR type functions as 
~ell as EXPRs. As in LISP/~TS, Breakpoints can set on an entire 
function, or a form within a function. Both tvpes may have an 
optional predicate which determines whether the break is 
ac.knovledged vhen encountered. However, care must be taken with 
the LISP global atoms, "?BREAKSW", "?DEBUG", and "?BROKEN". If 
they are to be altered or examined, they must be enclosed in 
double quotes to prevent them from beinq treated as variables by 
MAYA or alterna·tively, read macro -processinq can be disabled via 
@OPF-ST1\TUS. 

Care must also be taken vith local function definitions. 
To set a Breakpoint on FOO within some object, FR1: 

(: FR1 (BREAKP FOO)). 

To negate the Breakpoint, you must again "GOTO" that object: 

(: FR 1 (UNBREAKP FOO)) or 

(: PR 1 (UNSET)). 

28. (DEBtJG <fora>) 

Calls the DEBUG System explicitly on <form>. 

29. (BREAK <message>*) 

{@FSUBB) 

{@SUBR) 

BREAK is provided as a user errror handler. It prints 
each <message> on @ERROOT then calls the DEBUG System on 
the current form being evaluated, i.e., in most cases 
BREAK itself. 

30. (OOPS) [EXPR} 

A very useful function! OOPS allows the user to recover 
from a catastrophic error that has caused a LISP break to 
be entered. OOPS will return control to MAYA's Break 
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package with the form that was being evaluated in f'AYA at 
the ti11e of the error as the Break.form. 

OOPS may also be used to Break on MAYA @SUBRs and @PSUBRs by 
settinq a LISP Breakpoint on the internal MAYA routine. When 
the LISP Break is acknovledqed, t,-pinq (OOPS) will transfer 
control back to MAYA'S Debug System with the MAYA @SUER or 
@FSUBR as the Break.for■• 

31. (@BK) {EXPRl 

Prints a J?Q§§iJ?!Y long backtrace of the stack. 

32. (@TRACE) {EXPRl 

Begins the printing of a trace of the evaluation of each 
non-atomic for • The form is printed before its body is 
entered. 

33. (@UNTRACE) [EXPR} 

Turns off tracing. 

A summary of the commands recognized by the DEBUG System 
follows: 

BK [ n] 

BKO r n l 

BKE [n] 

* 

Abbreviation: none 
Prints a backtrace of the stack starting at the 
stack-pointer for lenqth "n" which defaults to 10. 

Abbreviation: none 
Prints a backtrace of all obiects and 
stack starting at the stackpointer for 
w~ich defaults to 10. 

A.bbreviat ion: none 

items on 
a length of 

the 
n n" 

Prints a backtrace of all MAYA forms on the stack 
starting from stackpointer. "n" defaults to 10. 

Abbreviation: none 
Prints the Breakfor11. Note that 
Breakform is never on top of the stack 
BREA! is entered. 

in PIAYA, the 
at the time the 

PP Abbreviation: none 
Pretty-prints the for■ where the stack-pointer points. 

PP* Abbreviation: none 
Pretty-prints the Breakform. 
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Abbreviation: P 
Prints the form vhere the stackpointer points. 

Abbreviation: none 
Resets the stackpointer to the top of the stack. Note 
that since Break.form bas not been pushed onto the 
stack at the time the BREAK occurs, the top of. the 
stack and Breakfora do not coincide. The top of the 
stack is always the form that called Breakform. 

FIND <loc>* Abbreviation: P 
Finds a form on the stack and sets the stack-pointer 
to that point. Each <loc> is either a number of forms 
to move the stackpointer dovn the stack or the name of 
a function on the stack. 

GO [<loc>*l Abbreviation: G 
Finds a form on the stack as in the FIND command, then 
restarts computation BREAKing on that form. <Loe> may 
be ommi tted. 

RETURN <form> Abbreviation: RET 
Evaluates <form> 
Breakfor11. 

and returns it as the value of the 

FESTART (<form>) Abbreviation: RES 
Restarts computation from vbere the stackpointer 
points using <fora>. If <form> is not coded, 
computation is restarted usinq the previous form on 
the stack. 

CONTINUE Abbreviation: C CO 
Continues with Breakform. If Breakform has been 
previously evaluated via the EVAL command, it will not 
be re-evaluated. 

STEP [ n] Abbreviation: S 

NEXT 

EVAL 

UP 

Steps through the evaluation of the next "n" forms and 
generates a new BREAK. "n" defaults to 1. 

Abbreviation: N NX 
Evaluates Breakform and breaks on the next 
Breakf or11 has been previously evaluated 
command, it vill not be re-evaluated. 

Abbreviation: E 

form. If 
via the EVAL 

Evaluates Breakform and prints its value. Note that 
Breakform is AVALUATEd. 

Abbreviation: t 
causes the DEBUG System to ascend one level. If there 
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is no higher BREAK level, control is returned to 
top-lev?.1. 

Abbreviation: NIL II 
Causes a return to top-level. 

EDIT [ <loc>•] Abbreviation: ED 
Calls EDITE on 
If <loc>• is 
executed. 

the form where the stackpointer points. 
coded, an implicit FINO command is 

Any form tvped at DEBUG other than the above comMands or 
there abbreviations will be AV!Led and its value printed. Note 
that the DEBUG System always uses AVAL for all evaluations, 
i.e., all function definitions are fetched from the first 
definition found on the stack. 

B.5 Input/Output 

When ~AYA is running, all I/0 is performed through buffers 
separate from the ones used by MTS/LISP. Reading is performed 
through ~LISPIN with the file prefix character"-"• Writinq is 
performed through ~LISFOUT with the file prefix character "!". 
All I/0 functions behave, except for the choice of I/0 buffers, 
as they do in LISP. 

34. (TPRIN1 <form> ( <IO-atom> J) (EXPR} 

PRIN1' s <form> .in a terse mode. Printing descends only a 
set number of levels into the given structure. Any 
non-atomic structures greater than this level are 
represented by an"&". If the second argument, <IO-atom>, 
is given, <form> is written in its buffer. Else <form> is 
written in @LISPOUT. TPRIN1 returns T. 

35. (TPRINT <form> [(IO-atom>]) [EXPR} 

same as TPRIN1 except that the buffer is emptied both 
before and after <form> is written. 

36. (TPRINT-LEVEL <n >) fNEXPRl 

Sets the level to which TPRIN1 and TPRINT will descend. 
Default is (TPRINT-LEVEL 2). 
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B.6 Pattern Matching 

This section describes the pattern matching functions and 
pattern element definitions provided in MAYA. 

37. (fltATCH <pattern><db>[ <else>]} (mSUBR} 

<Pattern> must be a tuple. <Db> must evaluate to either a 
tuple or an object representing a tuple database. See 
below. The <pattern> is matched against the <db>. If a 
match can be found, MATCH returns an item containing the 
bindings of any pattern variables contained in the 
<pattern> plus a reactivation TAG. This TAG is an stack 
segment which permits the •atcher to be recalled again 
from the point of its last successful match. If <db> is a 
tuplebase, the value associated with the matching datua is 
bound to the variable, "*", in the returned item. If <db> 
is a tuple,"?*" defaults to T. If MATCH fails to find a 
match between <pattern> and <db>, <else> is evaluated. 
<Else> defaults to NIL. 
Examples: 

(!!ATCH I <A B C> '<A B C>} 
! ( @ITEl'lal NIL * T itTAGit • . . ) 

(!UTCH • <A B C> '<A B>} 
! NIL 

(MATCH '<A B C> '<A B> ' (LIST 'A)) 
! (A) 

A tuple data base, called a t.!:!B!~Q~~, is the associative 
data base aechanism in ~AYA. Each tuplebase is composed of an 
obiect having a type indicator of either "@INDEX@" or some 
positive integer number. Tuplebases are operated on bv the 
system functions: MATCB, NEXT, PADD, PREMOVE, PDELETE, 81ST, 
D1ST, SUSPEND, RESUME, COffPLETE, etc •. The user may as well 
operate on tuplebases by treating them as ordinary obiects. 

When MAYA is 
within the qlobal 
purposes are: 

loaded 
object. 

itTOPLEi 
@METHOD@ 
iiPROC@ 

three empty tuplebases are created 
By conYention, their names and 

for declarative patterns, 
for generator methods, and 
for suspended processes. 

To create a new, empty tuplebase within some enclosing object 
under the name, <name>, one may write: 
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(PUT* <name> (OBJECT 0)). 

38. (PADD <datu11><db>[ <£or■ >]) f@SOBR} 

The <data ■>, which aust be a tuple, is added to the tuple 
database, <db>. Associated with <datu11> in the database 
is the value of <fora>. If <form> is not coded, <datum> 
is given the value, T. If <datum> is already present in 
the <db> its value is replaced with <form>. PADD rEturns 
the value of <fora>. If <db> is not a tuplebase, an error 
occurs. 
Examples: 

(PADD '< A B C> @TUPLE@) 
! T 

(f'!ATCR '<A B C> aJTUPLEit) 
! (iiITE~@ NIL* T @TAG~ ••• ) 
_ (PADD '<ABC> ~TUPLE@ 'PFF) 
! FFP 

(MATCH '<A B C> @TUPLEii) 
! (@ITEK@ NIL * FFP @'l'AG«i ••• ) 

39. (PREfWVE <da tum><db>) {@SUBR} 

Removes <datum> from the tuple database, <db>, <Datum> 
must be a tuple and <db> must be a tuplebase. PREMOVE 
returns <datum> if it was present in the tuple database. 
If it was not present NIL is returned. 
Exa11ples: 

(PADD '<S D> @TUPLF.it) 
! <S D> 
_ (PREMOVE '<SD> iTUPLEi) 
! <SD> 
_ (KATCH '<SD> @TUPLE~) 
! NIL 
_ (PREMOVE '<S D> @TUPLEal) 
! NIL 

40. (PDELETE <pattern><db>[ <else>]) 

"atches <pattern> against <db>. If the 
PDELETE deletes the •atchinq datum from 
<db>, and returns an item containing 
<pattern>, the variable, "", bound to the 

{@SUBR1 

match succeeds, 
the tuplebase, 
the bindinqs of 

value associated 
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with the matched datu~, and a 
PDELETE. If the match fails, <else> 
defaults to NIL. 

reactivation tag 
is eval ua tea 

for 
which 

Note that PREIIOVE does not call the pattern matcher. The datum 
in the tuplebase that exactly matches <pattern> svntactically, 
is removed. PDELETE on the other hand deletes the first datum 
which matches <pattern> and it returns a taq .for subsEquent 
deletions. 

41. (PDUMP <db>) (itSUBR} 

Prints a dump of the patterns and their associated values 
from the tuplebase, <db>. 
Example: 

(PADD '<A B C> @TUPLE@) 
! T 

(PADD '<A B> @TUPLE<i) 
! T 

- (PADD '<WOOP> @TUPLE@ 'FLOYD) 
! FLOYD 

(PDO!P @TUPLE@) 
! <A B> = T 

<A B C> = T 
! (WOOP> = FLOYD 
! NIL 

Patterns in KAYA are represented as tuples. Each tuple is 
composed of pattern elements called Patels. There are three 
types of Patels: 

1. Patels that match values, 
2. Patels that yield values to be matched, 
3. Patels that are recursively sub-patterns, i.e., tuples. 

The following paraqraphs will explain in some detail the 
different pattern elements that are defined in MAYA. Because 
the type-2 Patels are somewhat more straiqhtforward than the 
others, they will be explained first. 

Type-2 Patels are pattern elements that yield 
matched. Type-2 Patels can match Type-1 Patels. 
match type-3 Patels and other type-2 Patels on 
following forms are included as type-2 Patels: 

values to be 
They can also 

EQUAL. The 
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<LIST> 
?<var> 
! ?<var> 
!-.<var> 
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Note that some of the Patels have prefixes. These prefixes 
determine the manner in which the Patels yield their values. 
The semantics of Type-2 Patels are presented below: 

?<var> 

Atoms and lists are considered constants in MAYA patterns. 
Their values are thems~lves. This format is so•etimes 
called "inverse quote mode". They yield their values 
immediately. 
Examples: 

(MATCH '<A (B C) > '<A (B C) >) 
! (iITEf'li NIL* T @TAG@ • •• ) 
_ {MATCH •<A (BC)> '<A <BC>>) 
! MIL 

Yields the current ftAYA 
its value will match as 
bound, an error occurs. 
Examples: 

(SETQ Y 1 B) 
! B 
_ (MATCH '<AB> '<l ?Y>) 

value of <var>. Matches whatever 
a constant. If <var> is not 

! (@ITEi!@ NIL * T @TAG@ • • • ) 
(PIATCB '<A ?Y> '<A C>) 

! NJ:t 
(MATCH '<B ?Y> '<?Y ?Y>) 

! (@ITEM@ NIL* T @TAG@• •• ) 

!?<var> 

Matches the current matcher value of <var> from the same 
side of the match. If <var> has not been bound on the 
same side of the match, the current match fails. 
Examples: 

(IUTCH t < ! : X !?X> '<A A>) 
! (iITErt<t NIL * T X B @TAG@ • • • ) 

- (~ATCH '<A !?X> '<A A>) 
! NIL 

(PIATCH '< !'?X ! : X> '<A A>) 
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! NIL 

!-,<var> 

This patel is valid only on the <db> side of the match or 
as a Pa tel in a QLUIBDA expression. It does not yield a 
value immediately but only at the time the match succeeds. 
It therefore can be used as a mechanism for returninq a 
result from a method or the datum side of a match. This 
patel can only match type-1 P;:t.tels. 
Examples: 

(MATCH I<!: X B> '<!.,z ! : Z>) 
! (itITENa Nil. • T X B @TAG@ • . . ) 

(lUTCff • <! :X B> •<!.,z B>) 
! NIL 

(MATCH '<AB> •<1..,z ! : Z>) 
! NIL 

Type 1 patels include all of the pattern variables defined 
in MAYA. They match values yielded by the other tvo patel types 
and bind their variable names to those values. If the matcher 
succeeds, the bindings of all Type 1 patels on the pattern side 
of the match are to■ posed into the item returned from the match. 

MAYA permits £~!t~.rn. ~tor2 (Hewitt, 1972) to act as 
predicates on Type 1 patels. Each pattern variable is of the 
form: 

<var-prefix><atom> or 
<var-prefix>(<atom><pred>*) 

where <atom> is the name of the pattern variable, <var-prefix> 
restricts the types of values that the pattern variable can 
match, and <pred>* is zero or ore forms whose evaluation must 
be non-NIL for the match to succeed. The predicates are 
evaluated in a left-to-right order. If one of the predicates 
fails, the remainder are not evaluated and the matcher attempts 
a different match. <Atom> is ·bound to its matching value .QefQ!__g 
the predicates are evaluated and each <pred> may reference 
<atom> as a free variable, e.q., 

!: (X (PRINT ?X) (POO ?X ?Y)). 

The following pattern variables are currently included in 
MAYA: 

! : <var> or!: (<var><pred>*) 
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! : <var> 

~atches a single pattern element which must be 
Type-2 patel or a Type-3 patel containing 
variables. 
Examples: 

(MATCH 1( !:X ! : Y> '<A <B C>>) 
! (@ITEPJii NIL * T X A y <BC> itTAGa • • • ) 

(SETQ Y 'YVAL) 
YVAL 

- (PJATCH '< ! : X B> '<<A ?Y> ! : Z>) 
! (@ITEPJ@ NIL* T X '<A YVAL> @TAG@ • • • ) 

- (MATCB '<!: X B> '<<A !:'Z> B>) 
! NIL 

!•<var> 
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either a 
no pattern 

"atches a segment of patels of lenqth zero or longer. The 
segment must contain no T~pe-1 patels. <Var> is bound to 
a copy of the segment. 
Examples: 

(ftATCB '<A !*X> •<A B C>) 
! (~ITEPJ@ NIL* TX <BC> a'l'AG@ • . . ) 

(MATCH '<A ! •x B> '<A B>) 
! (@ITEMat NIL* TX<> @TAG@ • • • ) 

- (MATCH '<A ! *X> •<A <B ?Y> C>) 
! (itITEM@ N.IL * T X <<B YVAL> C> @TAG@ • • • l 
- (ftATCH '<A ! *X> '<A ! : y B>) 
! NIL 

(MATCH '<A ! *X> '<A !*Y B>) 
! (@ITEM@ NIL* T X <B> ilTlG@ • • • ) 

Type-3 patels are tuples, that is, recursive sub-patterns. 
Each patel in a sub-pattern may be either a Type-1, Type-2, or 
Type-3 patel. 

B. 7 Generators 

42. (D1ST <pattern><db>( <else>]) {@SCJBR l 

Generates items in depth-first order, i.e., in a tuplebase 
of QLlMBDA methods, 01ST vill recall the same QLAMBDA 
generator repeatedly until it fails to return a nert item. 
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D1ST will then atteapt to aatch another QLAMBDA expression 
in the tuplebase. <Pattern> is matched against <db>. 
<Pattern> must be a tuple a.nd <db> must be a tu plebase of 
QLAftBDA expressions or QEXPR names. If the match fails, 
<else> is eyaluated which defaults to NIL. If the match 
succeeds, the matched QLA~BD~ expression is evaluated 
using the item from the datum side of the pattern match as 
the actual arguments to the function. If the QLANBDA 
successfully terminates, 01ST returns an item from the 
match plus a reactivation taq for the generator. If 
however, the QLAftBDA terminates unsuccessfully bv 
executing the PAIL function, D1ST will attempt to find 
another match in <db>. 
Example: 

_ (DEFUH GENA QEXPR <A !,X> 
(SETQ X 'A 1) 
(POST) 

_ ( S ETQ X ' A 2) ) 
! GENA 
_ (PADD '<A !~X> i~ETBODi 'GENA) 
! GENA 
_ (PADD 1 <B ! ~Y> 

iPIETHODit 

-

1 (QLAPIBDA <B !~Y> 
(PROG (N) 

(SETQ N 0) 
LOOP 

(SETQ H (ADD1 ?N) Y (PIKATO!! 
( AND (EQ ?N 3) (EXIT}) 
(POST) 
(GO LOOP}))) 

! ( QL Af'! BDA '<B !-,Y) • • • ) 
_ (01ST '<!:AB !:V> @METHOD@) 
! (iITE~i NIL AB AV A1 aTAGi ••• ) 
_ ( : (ELS E • ( R ET U R N ' DON E ' : ) ) 

(01ST '<!:AB !:V> iftRTHOD@ '(PAIL)) 
(PRINT ?V) 
(FAIL)) 

A1 
12 
B1 
B2 
BJ 
DONE 

'B ?N)) 
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43. (B 1ST <pattern>< db>[ <else> }l (iiSOBR} 

Generates ite■ s in breadth-first order. The arqu•ents and 
behaYior of B1ST are identical to D1ST except th.at B1ST 
calls only once each generator in the specified tuplebase, 
<db>, t hat matches the pattern, <pattern>. Only after it 
has called all possible ■atchinq QLANBDAs vill it recall 
each s uspended generator for the second time, then each 
for the third tiae, etc. 
Example: 

! 

;PROM THE TUPLEBASE OP IIETHODS DEFINED 
(81ST '<!:AB !:V> aftETHODa) 

(@ITE!i NIL AB AV 11 iTAGi •. •• ) 
_ (: (ELSE 1 (RETURB 1 D01fE ':)l 

-! 
! 
! 
! 
! 
! 

(81ST 1 <!:1B !:V> ~~ETBOD@ '(FAIL)l 
(PRINT ?V) 
( .FAIL)) 

A1 
B1 
A2 
B2 
B3 
DONE 

t 

ABOVE 

(alSUBR} 

Terminates i■ 11ediately the current enclosing generator or 
process. The exited generator or process returns an item 
from the previous invoking pattern match. If it is a 
process associated with a schema, then the highest process 
on the stack associated with that sche a is exited. 

45. (POST) {itSUBRl 

Returns an item froa a generator. POST is analogous to 
the lU-BEVOIR function of CONN.IV ER. POST causes the first 
enclosing generator to retarn an item representing the 
match that invoked the qenerator plus a reactivation taq. 
When the qenerator is resumed, POST returns JUL. 
Exaaple: see D1ST. 

The last genera tor type is used for re-invo.kinq a generator 
from a reactiYation tag anC, for implementing a restricted 
automatic backtracking capability. 
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46 •. (NE.IT <i te11>[ <else>]) (ilStJBB} 

<Ite■> must be an item containing a reactivation taq. 
NEXT uses the tag in the itea to resume the generator in 
order to see.k a new match. If the qene rator succeeds 
again, IBXT returns the new ite■ containing the nev 
bindings of the pattern variables froa the pattern side 
plus a new reactivation TAG • .. · If the generator fails, NEXT 
returns the evaluation of <else> which defaults to NIL. 

47. (PAIL) (@SOBR} 

Provides a si ■ple 11echanis ■ for realizing backtrack 
search. PAIL locates the first i tea on the stack 
containing a reactivation tag. The stack is truncated 
just past the item and the function which created the ite■ 
is resumed. If the res1111ed function returns a new item, 
computation proceeds forvard again. , If however, the 
function returns failure, FAIL evaluates itself 
recursively, i.e., it continues failing up the stack. If 
FAIL encounters a generator or process ~arker on the 
stack. the generator or process i11aediately returns NIL. 

48. (ELSE <form>) 

creates an 
containing 
<for■>. If 
encountered 

[ISU.BR} 

explicit failpoint. ELSE returns an item 
a single binding, a reactiva. tion taq bound to 
NEXT is applied to the itea or if the item is 
on the stack by PAIL, <for•> is evaluated. 

B.8 Processes and Recognizers 

49. (PROCESS <sche■a><ql><pattern>[ <else>]) (iSUBR} 

creates a new process and begins its execution • . <QI> must 
be either a OLl!BDl expression . or the na■e of QEXPR 
function. The pattern of <JLA.MBDA expression is ■atched 
against <pattern> which must be a tuple • . If the etch 
succeeds, a new process is created and associated with 
<schema> which ■ ust be either an ob1ect or NIL. If NIL is 
specified, the process is not associated with any schema. 
control is passed to the body of the QLlfllBDA expression 
which is · used as the body of the process • . .If the ■atch 
fails. <else> is evaluated. <Else> defaults to BIL. When 
the process ter■.inates or is suspended, PROCESS returns an 
item fro11 the ■atch of <pattern>. 
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50. (SUSPEND <pattern><db>) {@SUBR) 

The current process. P1, is suspended to <pattern> in the 
tuplebase. <db>. <Pattern> must be a tuple and <db> a 
tuplebase of p.rocesses. control retu .rns to P 2, the 
process which invoked P1. ; When resumed, SUSPEND returns 
an item representing the match to <pattern>. 

51. (RESUJIIE <pattern><db>[ <else>]) ( iiSU BR) 

Resu•es suspended processes and creates new named 
processes. , <Pattern>, which must be a tuple, is matched 
against <db> which must be a tuplebase of processes. If 
the aatch fails, <else> is evaluated vhich defaults to 
NIL. If the match succeeds, the matched process is 
resumed if it is a suspended process or a nev process is 
created and begun if it is a named process. When the 
process returns, RESfJME retu.rns an item re presenting the 
■atch to <pattern> plus a reactivation tag for RESUME. 

52. (C08PLETE <pattern><db>{<else>]) (@SUBR} 

Suspends all active processes associated vith the same 
schema as the current process, P1, to a reactivation taq, 
then resu111es a specified process, P2. If P1 is not 
associated vith any schema, only P1 is suspended. 
<Pattern>, vhich must be a tuple, is matched against <db>, 
which aust be a tuplebase of processes. If the match 
fails, <else> is evaluated which defaults to NIL. If the 
■atch succeeds, P1 ~is suspended to a reactivation taq. P2 
is resumed if it vas a suspended process or created if it 
vas a naaed process. Included in the item returned to the 
invocation of P2 is the reactiYation for P1. If P2 
terminates via any £unction except EXIT, P1 vill be 
resumed from the COPIPLETB function. COPIPLETE returns an 
itea representing the aatch of <pattern> plus a 
reactivation tag for subsequent invocations of the 
function. 
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;*** A POLYHEDRAL BLOCKS RECOGNIZER*** 
; W. S. HAVERS• UBC, VANCOUVER, CANADA, MAY 1977 • . 
I 

; TOP-LEVEL CALL. 
(DEFUR RECOGBIZE @EXPR NIL 

(: SCENE 
; CREATE A TOP-LEVEL PROCESS. 
(PROCESS (SELF) 

'(OLAl'IBDl <!,DESCRIPTION> 
(COPl"EHTARY '"!ETHOD: TOP-LEVEL RECR EXHAUSTIVELY 

OBSERVES EACH VER1'EX") 
;EXHAUSTIVELY OBSERVE EACH VERTEX. 
(fUPC '(LUIBDA (V) (: ;SEID THIS VERTEX. 

(AVAL ?Y) 

?VERTEX-LIST) 

(COPll'IENTARY '"SCENE RECR OBSERVES" 
?V) 

;A MESSAGE TO CO!PLETE. 
(RESUl'IE '<OBSERVE-VERTEX> PROC))) 

; A SCENE BAS NOT BEEN POUND. 
(PRINT 'PAILUBE) 
(PAIL)) 

'<!:DESCRIPTION> 
'(RETURN NIL 'RECOGNIZE)) 

;SUCCESS! 
(BREAK'"** SUCCESS!**" ?DBSCRIPTIOM))) 

; CREATE GENERIC SCHE"ATA 
(: (POT* 'SCENE (OBJECT •SCHEMA tUME 'SCENE 

;SCENE COMPLETION PBOCESS • . 

COltPOS .ITION 'POLYHEDRON 
PROC (OBJECT 0))) 

(PADD '<SCENE-RECR !:POLY> PROC (BA!ED-PROCESS 1 SCENE-CO~PLETE 
(SELF))) 

;SCENE COKPLETIOH PROCESS. 
(DEFUN SCBNE-COfi!PLETE QEXPR <SCERE-RECR !:POLY> 

(COfUIEKTARY '"SCENE BECOGNIZBR HAS POUND l SCENE COMPOSED OF" 
(: ?POLY HUIE)) 

(SETQ DESCRIPTION ?POLY) 
(EXIT)) 

;END or SCENE SCHEKA. 
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(POT* 'LINE (OBJECT 'SCHE.l!IA !Al!E 'L.I'NE)) 

(: (PUT* 'VERTEX (OBJECT 'SC ff Elf A PROC (OBJECT 0))) 

;VERTEX CO!PLETION PROCESS. 
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(PADD 1 <OBSERVE-VERTEX> PROC ( NUIED-PROCES 5 'OBS ERVE-YERTEX)) 

; OBSERVATION OP A VERTEX 
;DEPAULT IS 3-LIWE VEBTICES 
(DEPUB OBSERVE-VERTEX QEXPR <OBSEBVE-VERTEX> 

(: ;SAVE POillTEB TO THIS VERTEX. 
(ITEM SELP (SELF)) 
(ELSE '(RETURN NIL 1 :)) 

;FOR EACH SECTOR OP THIS VERTEX ••• 
(GEN-SECTORS '<?SELF !:L-LIBB !:B-LINE !:ANGLE !:SECTOR> 

(PAIL)) 
;IF ALREADY OBSERVED THEM FAIL 
(AN.D (GET* ?SECTOB) (PAIL)) 
(CO!HIB!l'TART 1 "FOR" ?SECTOR '"OF" (: ?SELF NAME)} 
;GOTO PACE 
PACE 
;EITHER ~ATCB THIS SECTOR TO AM EXISTING PACE RECR ••• 
(OR 

;POR EACH PACE RECR ••• 
(lUPC 1 (LAl!BDA (RECR) 

(: ?RECR 
;~ATCH IT CWISE OR CCWISE 
(COfHIENTARY 111 ATTEMPT TO ft lTCB THE 

EXPECTATIONS OP" 
(: ?R ECR RUf E)) 

(OB (COMPLETE '<FlCE-RECR 
CWISE 
?R-LINE 
! : (FV (N EQ ?PV ?SELF)) 
?SELF 
?L-LINE 
?ANGLE 
?SECTOR> 

CONSTRAINTS) 
(COl!PLETE '<PACE-RECR 

CCiISE 
?L-LI NE 
! : (FV (N EQ ?J!V ?SELF)) 
?SELF 
?R-LIRE 
?ANGLE 
?SECTOR> 

CONSTRAI HTS) 
(RETURN N.IL I L AM BDA)) 

;ftATCH SUCCEEDED. 
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(RETURN 'T 1 KAPC))) 
DNET) 

;OR A NEW ONE. 
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(: (NEW-P'ACB-RECR '<?SELF ?L-LINE ?R-LIRE ?ANGLE ?SECTOR>))) 
;RETURN .FOR :NEXT SECTOR. 
(PAIL))) 

) ;END OP VERTEX. 

; DEFINE VERTEX TYPES. 
(PUT* 'ARROW-VERTEX (NEW VERTEX TYPE 1 ARBOW)) 
(PUT* 1 FORK-VEBTEX (NEW VERTEX TYPE 'PORK)) 
(PUT* 'T-VERTEX (NEW VERTEX TYPE 1 T)) 
(POT* 'L-VERTEX (NEW VERTEX TYPE 'L)) 
(: VERTEX (PUT* 'INSTANCES (LIST ARROW-VERTEX 

FORK-VERTEX 
T-VERTEX 
L-VERTEX))) 

; DEFINE FACE SCHEMA 
(: (PUT* 'PACE (OBJECT 1 SCHEKA MAME 1 PACE 

; NEW PACE RECOGNIZER 

COMPOSITION ' (VERTEX LINE) 
DNET NIL 
NRECBS 0)) 

(DE.FON NEW-PACE-RECR QEXPR <!:FIRST-VERTEX 
! :L-EDGE 
!:R-EDGE 
! : ANGLE 
! :SECTOR> 

(: ;CREATE AR INIT.IAL CORNER FOR THIS FACE 
(ITEM COBNER (OBJECT 'SNET 

VERTEX (: ?FIRST-VERTEX NAPIE) 
L-EDGE ?L-EDGE 
R-EDGE ?R-EDGE. 
ANGLE ?ANGLE)) 

;VERTEX -SECTOR .IS THIS NEW CORNER. 
(: ?FIRST-VERTEX (PUT* ?SECTOR ?CORNER) T) 
;CREATE A MEW PACE RECOGNIZER 
(NEW FACE 

NAPIE (PIKATOPI '"PACE-" (ADD1 (: PACE HBECRS))) 
CONSTBAIBTS (OBJECT 0) 
CORNERS (LIST ?CORNER) 
EDGES NIL 
CCW-CORRER ?CORNER 
CW-CORRER ?CORNER) 

(ITEPI SELF (SELP)) 
(COKftEBTARY '"CREATE A NEW RECR:" NA!E '"CONTAINING 
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A CORNER POR" (: ?FIRST-VERTEX NAftE)) 
(: ?CORNER (PUT* 1 PlBT-OP ?SELP) T) 
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;CREATE 2 PROCESSES TO EXPECT VERTICES CVISE ARD CCWISE 
; AROUND TRIS FACE. 
(COftftENTARY '"CREATE TWO PROCESSES BOUND TO EXPECTATIONS 

FOR" ?L-EDGE '"AND 0 ?R-EDGE) 
(PROCESS ?SELF •cw-FACE-RECR •<?L-EDGE ?FIRST-VERTEX>) 
(PROCESS ?SELP I CCV-FACE-RECR '<?R-E DGE ?PIRST-VER"l'EX>) 
;RECORD THIS RECR IMSTABCE IN TBE GENERIC PACE SCHEMA 
PACE 
(PUT* 'NRECRS (ADD1 NBBCRS)) 
(POT* 1 DNET (CONS ?SELP DNET)))) 

(DEFUN CW-FACE-RECR QEXPR <!:EXPECT !:FIRST-VERTEX> 
(: ;GET THIS SCHEftA. 

(ITEK SEI.F (SELP)) 
;SUSPERO THIS PROCESS TO cnsE EXPECTATIONS 
(SUSPEND <PACE-RECB 

CWISE 
?EXPECT 
?FIRST-VERTEX 
! : VERTEX 
! : If EXT-EXPECT 
!:ANGLE 
!:SECTOR> 

CONSTRAINTS) 
(COK!EYTARY (: ?SELP BAME) '"HAS BEEB MATCHED BY" 

(: ?VERTEX HAI,E)) 
; CREATE A NEW CORRER FOR THIS VERTEX. 
(ITE~ CORNER (OBJECT 1 SNET 

PART-OP ?SELP 
VERTEX (: ?VERTEX RAMEl 
R-EDGE ?EXPECT 
L-EDGE ?NEXT-EXPECT 
ANGLE ? AltGLE 
NEXT-CCV CW-CORNER)) 

; VERTEX SEC'l'OR COMPRISES THIS NEW CO.RN ER. 
(: ?VERTEX (Pff'?* ?S.ECTOR -?CORNER) T) 
;ADD TO LIST OP CORNERS POR THIS P'ACE 
?SELF 
(PUT* • CORNERS (CONS ?CORNER CORNERS)) 
;UPDATE L:IS'l' OF EDGES FOB THIS PACE. 
(PUT* 'EDGES (CONS ?EXPECT EDGES)) 
;EXCHANGE CWISE ARD CCWISE POINTERS. 
(: CW-CORMER (PUT* 'NEXT-CW ?CORNER) T) 
(: ?CORVER (POT* 1 BEXT-CCW CW-CORNER) T) 
;UPDATE CW-CORNER 
(: (PUT* 'CW-CORBER ?CORNER) T) 
;VERIFY THIS PACE USING TOP-DOWN SEARCH 
(COftfllENTARY '"VERIFY" (: ?SELF NAME) '"USING TOP-DOWN 

SEARCH") 
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(VERIPY-PACE ?SELF (ADD (: CV-CORNER AMGLE) 
(: CCW-CORMER lNGLE))))) 

(DEPUN CClf-PACE-RBCR QEXPR <!: EXPECT ! : FIRST-VERTEX> 
(: ;GET THIS SCHEMA. 

(I'l"EPI S ELP (SELF)) 
;SUSPERD THIS PROCESS TO CCWISE EXPECTATIONS. 
(SUSPEND <PACE-RECR 

CCWISE 
?EXPECT 
?FIRST-VERTEX 
! :VERTEX 
! :NEXT-EXPECT 
! : ANGLE 
!:SECTOR> 

COHSTB AIN'l'S) 
(COftPIEHTARY (: ?SELF Nlf!E) '"HAS BEEN MATCHED BY" 

(: ?VERTEX NAME)) 
;CREATE A MEW CORNER FOR THIS PACE. 
(ITEM CORNER (OBJECT 'SMET 

PART-OF ?SELF 
VERTEX (: ?VERTEX NlftE) 
R-EDGE ?NEXT-EXPECT 
L-EDGE ?EXPECT 
ANGLE ? ANGLE 
NEXT-CW CCW-COR'NER)) 

;VERTEX SEC'l'OR COMPRISES THIS NEW CORNER. 
(: ?VERTEX (POT* ?SECTOR ?CORNER) T) 
; ADD TO LIST OP CORKE.RS POR THIS FACE. 
?SELF 
(PUT* 1 CORNERS (CONS ?CO:BHER CO.RKERS)) 
;UPDATE LIST OP EDGES POR THIS PACE. 
(PUT* 'EDGES (CONS ?EXPECT EDGES)) 
;EXCHANGE CWISE AND CCWISE POINTERS. 
(: CCW-CORNER (PUT* 'MEXT-CCW ?CORNER) T) 
(: ?CORNER (PUT* 'NEXT-CW CCW-CORSER) T) 
;UPDATE CCWISE CORNER. , 
(: (PU'?* 'CCW-COBIER ?COBRER) . T) · 
; VERIFY THIS FACE tJSING TOP-DOWN S ElBCH. 
(COfll!EtfTARY • "!IETHOD: VERIFY" (: ?SELF Nl!E) 

'"USING TOP-DOWN SEARCH") 
(VERIFY-PACE ?SELF (ADD (: CW-CORNER .ANGLE) 

(: CCV-CORNER ANGLE))))) 

;SEARCH TOP-DOWJ FOR THE REMAIRDBB OF THIS PACE. 
(DEPUR VERIPI-FlCE iEXPR (THIS-P lCE EX-ANGLE) 

(: ;GET NEIGHBORING CWISE VERTEX. 
(ITEM NEIGHBOR-VERTEX (: ?THIS-FACE 

CW-CORNER 
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(NEIGHBOR-VERTEX L-EDGE VEBTEX))) 
(CO~MENTABY '"GET NEXT CLOCKWISE NEIGHBOR VERTEX:" 
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(: ?NEIGHBOR-VERTEX HA!E) 
'"PROflJ" (: ?THIS-PACE CW-CORNER L-EDGE)) 

;GET FACE RECR THAT THIS CVISE SECTOR IS PART OP. 
; ELSE NIL. 
(ITEi! OTHER-PACE (: ?THIS-FACE 

CW-CORNER 
?NEIGHBOR-VERTEX 
(GET* (: (CWISE-SECTOR L-EDGE)) 

'(RETURN NIL':)) 
PART-OF)) 

(CORD ;IS THIS VERTEX PART OP THIS FACE RECR? 
((EQ ?THIS-PACE ?OTHER-PAC~ 

193 

(COftl!EBTARY '"THIS VERTEX IS ALREADY CONTAINED IN" 
(: ?THIS-PACE NAME) J 

(: ;COMPLETE THE DESCRIPTION OP THIS FACE. 
?THIS-PACE 
;UPDATE LIST OP EDGES. 
(POT* 'EDGES (CONS (: CW-CORNER L-EDGE) EDGES)) 
;fUKE CWISE AWD CCWISE BilfGS. 
(: CW-CORNER (PUT* 'NEXT-CW CCW-CORNER) T) 
(: CCW-CORNER (PUT* 'NEXT-CCW CW-CORNER) T) 
;TEST THE CO~PLETED PACE. 
(COMIIERTARY '"COMPARE" (: ?THIS-FACE NAME) 

• "TO POL IGOR MODEL") 
(TEST-COftPLETED-PlCE ?~HIS-PACE ?EX-ANGLE} 
;MATCH THIS FACE TO POLYHEDRON SOPERGOlLS. 
(COMPLETE-PACE ?THIS-PACE))) 

;IS THIS SECTOR PART OP SOME OTHER RECR? 
( ?OTHER-FACE 

(COftftEBTARY '"ITS CWISE SECTOR IS ALREADY PART 
OP A CORNER OP" (: ?OTHER-PACE NAME)) 

;DELETE THE OTHER PACE PROff DNET OP GENERIC PACE. 
(: PACE (PUT* 'DNET (DELQ ?OTHER-PACE DNET)) T) 
;INCORPORATE ITS CORNERS INTO THIS PACE. 
;EXCHANGE CWISE ABD CCWISE POINTERS. 
(: ?OTHER-PACE 

CCW-CORNER 
(PUT* 'NEXT-CCW (: ?THIS-FACE CW-CORNE~))) 

(: ?THIS-PACE 
CW-CORNER 
(PUT* 'NEXT-CW (: ?OTHER-PACE CCW-CORNER))) 

; FOLLOW THE EDGES OF THE OTHER PACE CWISE. 
(COM1'ENTARY '"IHCORPO RATE THE CORNERS OP" 

(: ?OTHER-PACE NAftE) '"INTO" 
(! ?THIS-FACE NAME)) 

(: (FOLLOW-FACE ?TBlS- PACE ?EX-ANGLE))) 
; ELSE THIS VERTEX HAS NOT BEEN OBSERVED BEPOBE. 
(T (COMKENTARY '"INCORPOBATE THIS VERTEX INTO A 

HEW CORNEB OP" (: ?THIS-PACE NAftE)J 
(: ;CREATE A NEV CORN ER FOR THIS VERTEX. 

?THIS-FACE 
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?NEIGHBOR-VERTEX 
(ITE! CORNER (OBJECT 1 SNET 

PART-OF ?THIS-FACE 
VERTEX NAME 
L-EDGE 
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(: CW-CORNER (CW-LINE L-EDGE)l 
R-EDGE L-EDGE 
ANGLE 

(: CW-CORNE B 
(CW-ANGLE L-EDGE) l)) 

;ftAKE VERTEX POINT TO CORNER. 
(PUT* (: (CWISE-SECTOR (: CW-CORNER L-EDGE))) 

?CORNER) 
; ADD TO THIS PACE. 
?THIS-PACE 
(PUT* 'CORNERS (CONS ?CORNER CORNERS)) 
; OPDlTE LIST OF ED.GES POR THIS PACE. 
(PUT* 'EDGES (CONS (: CW-CORNER L-EDGE) EDGES)) 
;EXCRlRGB CWISE AND CCWISE POINTERS. 
(: CW-CORRER (POT* 'NEXT-CW ?CORNER) T) 
(: ?CORNER (PUT* 'NEXT-CCW CW-CORNER) T) 
;UPDATE CWISE CORNER 
(: (PUT* 'CW-CORMER ?CORNER) T) 
;RECURSE OH THE NEXT CWISE VERTEX. 
(VERIFY-FACE ?TRIS-FACE CADD ?EX-ANGLE 

(: ?CORNER ANGLE)))))))) 

.;INCORPORATE THE NEW CORNERS INTO THIS FACE. 
(DEPON FOLLOW-PACE it EXPR (?THIS-PACE ? EX- ANGLE) 

(: ;GOTO CWISE CORNER OP THIS PACE. 
?THIS-PACE 
CW-CORNER 
(COMD ; IS THERE A NEXT ClfISE CORNER? 

((GET* 'MEX'l'-Ci) 
(COlU.IENTARY 1 "IMCLODE THE CORNER FOR" 

(: NEXT-CW VERTEX)) 
;INCLUDE IN CORNERS LIST. 
(: ?THIS-l'ACE 

(POT* 'CORNEBS (CONS NEXT-CW CORNERS)) 
(POT* 'EDGES (CONS L-EDGE EDGES))) 

;ADVANCE POINTER TO THE NEXT CWISE CORNER. 
(: ?TBIS-FACE (POT* 'CW-CORNER NEXT-CW)) 
;!!AKE THIS CORNER POINT TO '!'HIS PACE. 
(: CW-CORNER (PUT * 'PART-OP ?THIS-PACE)) 
;RECURSE ON THE REIT CORNER. 
(:(FOLLOW-PACE ?THIS-FACE (ADD ANGLE ?EX-ANGLE)))) 

;VERIFY EACB CWISE VERTEX. 
(T(COftKEMTARY •"ALL CORNERS HAVE BEER INCLUDED") 

(: (VERIPJ-l'ACE ?THIS-FACE 
(lDD ANGLE ?EX-ANGLE))))))) 
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;TEST THIS FACE AND ASSIGN ITS TYPE. 
(DEPON TEST-COfllPLETED-PACE al EX PR ('PACE EX-ANGLE) 

(: ?FACE 
. ;CHECK THE SU! OP THE FACE'S EXTERIOR ANGLES. 

(COND ( (EPSILO!f 10 360 ?EX-ANGLE) 
(PUT* 1 TYPE 'INSIDE-CLOSURE)) 

((BPSILOM 10 -360 ?EX-ANGLE) 
; DECIDE PACE'S TYPE. 
( SELECTQ (LENGTH EDGES) 

(3 (PUT* 'TYPE 'TBIAHGLE)) 
(4 (COND ;IS FACE A PARALLELOGRAft? 
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((AND (EPSILON 10 (MINUS (: CW-CORNER ANGLE)) 
(: CCW-CORNER NEXT-CW ANGLE)) 

(EPSILON 10 (ftINUS (: CCW-CORNEB ANGLE)) 
(: CW-CORNER NEXT-CCW ANGLE))) 

(PUT* 'TYPE 1 PARALLELO:;BAM)) 
(T tPUT* 'TYPE •ou ADRALATERAL)))) 

(POT* 'TYPE 1 ft0LTILATERAL)))) 
(COM!ENTlRY '"COMPLETED" RAKE '"IS A" TYPE))) 

;l'lATCH THIS PACE TO POLYHEDRON RECRS. 
(DEFUN COPJPLETE-FACE @EXPB (THIS-PACE) 

i DELETE THIS RECR FROM DNET OF PACE RECRS. 
(: PACE (PUT* 'DNET (DELQ ?THIS-FACE DNET))) 
(COI.U!ERTARY '"PIATCB THIS PACE TO THE EXPECTATIONS O.F 

POLYHEDRON RECOGNIZERS•) 
(: POLYHEDRON 

(OR ;"ATCH "CORRECT" EIPEC'l'lTIONS OF SOftE POLYHEDRON RECR. 
(ftlPC '(LAPIBDA (RECR) 

(CO!ftENTlRt '"BATCH THE CONNECT EXPECTATIONS 
OF" (: ?RECB NA aE)) 

(: ?BECR 
(ELSE 1 (RETURN NIL':)) 
;GENERATE ALL CONNECT EDGES FOR THIS ?ACL 
(GEN-EDGES '<?THIS-PACE 

!:EXPECT 
! : EDGE-TYPE> 

I (FAIL)) 
(OR (EQ ?EDGE-TYPE 1 CORNBCT) (FAIL)) 
(COPl!,ENTARY '"TRY" ?EXPECT) 
;PIATCH THIS RECR' S EXPECTATIONS. 
(COffPLETE ' <POLYHEDROM-RECR 

CONNECT 
?EXPECT 
! : NODE 
?THIS-FACE> 

CONSTRAINTS 
I (FAIL)) 

;DONE. 
(RETURN T •~APC))) 
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RECRS) 
;ELSE fllATCH "IUYBE-CONNECT" EXPECTATIONS OP ALL RECRS. 
(PROGN 

(ftAPC '(LAKBDA (RECR) 
(COftMEHTARY '"ftATCH THE MAYBE-CONNECT 

EXPECTATIONS OP" (: ?RECR NlME)) 
(: ?RECR 

(ELSE '(RETURN NIL ':)) 
; GENERATE KA YBE CONNECT EXPECTATIONS. 
(GEN-EDGES '<?THIS-PACE 

! : EXPECT 
! : EDGE-TYPE> 

' (PAIL) ) 
(OR (EQ ?EDGE-TYPE 'ft A YBE-CONNECT) (FAIL) l 
(COllftERTlRY '"TRY" ?EXPECT) 
;ftATCH THIS RECR'S EXPECTATIONS. 
(COMPLETE '<POLYHEDRON-RECR 

!UY BE-CONNECT 
?EXPECT 
!:NODE 
?THIS-PACE> 

CONSTRAINTS 
' (PAIL)) 

; DONE WITH THIS RECR. 
(RETURN BIL • :))) 

RECRS) 
;AND CREATE A NEW RECB POR THIS FACE. 
(: (HEi-POLYBEDBOH-BECR ?'!'HIS-PACE)))))-) 

;GENERATES THE EDGES AND EDGE TYPES FOR A GIVEN FACE. 
(DEFUH GEN-EDGES QEXPR (!:PAC! !,EDGE !,EDGE-TYPE> 

(: ?FACE 
;FOR EACH EDGE IH THIS PACE ••• 
(PJAPC ' (LAMBDA (E) 

(: (AVAL ?E) 
(COND ((OR(: (AVAL V1)(AND (EQ TYPE 'ARROW) 

(EQ L2 ?E))) 
(: (AVLL V2) (AND (EQ TYPE 'ARROW) 

;THEN 
(SETO 

(T ; ELSE 
(SETQ 

(POST)) l 
EDGES) 

(PAIL))) 

) ; END OP FACE 

EDGE IS 
EDGE ?E 
EDGE IS 
EDGE ?E 

(EQ L2 ?E)))) 
CONNECT. 
EDGE-TYPE 'CORRECT)) 
lU YBE-CORJfECT. 
EDGE-TYPE 'MAYBE-CONNECT))) 
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(: (PUT* 1 POLYHEDRON (OBJECT 'SCHEMA 
NAftE 'POLYHEDRON 
COftPOSITION 'FACE 
RECRS MIL 
NRECRS 0)) 

;CREATES A NEV POLtffEDRON RECR. 
(DEPUN NEW-POLYHEDRON-RECR IEXPR (PACE1) 

;IS THIS FIRST PACE COMPATIBLE WITH THIS RECR'S ftODEL 
; OF POLYHEDRA? 
(OR (: POLYHEDROI (TEST-PACE-TYPE ?FACE1)) 

(RETURN NIL 1 WEi-POLYHEDRON-RECR)) 
(: ;CREATE A COBNECT NODE TO REPRESENT THIS FACE. 

(ITEM NODE (OBJECT I SN.ET 
NJ.PACE ?PACE1 
CONNEC'l' NIL) ) 

;CREATE A POLYHEDRON SCHE~A INSTANCE. 
(NEW POLYHEDRON 
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NAl!E (ftKATOP.I 1 "POLYHEDRON-" (: POLYHEDRON (ADD1 HRECRS))) 
CONSTRAINTS (OBJECT 0) 
NODES (LIST ?NODE) 
l!AYBE-NODES NIL) 

;SAVE POINTER TO THIS RECR. 
(ITEM R ECR (SELF)) 
(COMPIEHTARY • "CREATE A NEW RECR:" NA.ME • "CONT AINI.NG" 

(: ?PACE1 NAPIE)) . 
(COMMENTARY '"CO~PUTE EXPECTATIONS ABOUT OTHER PACES OP" 

NAPIE) 
;RECORD IM THE GENERIC POLYHEDRON SCHEKA. 
(: POLYHEDRON 

(PUT* 'RECRS (CONS ?RECR RECRS)) 
(POT* 'RRECBS (ADD1 NRECRS))) 

;CBElTE A PBOCESS BOUND 1"0 Alf EXPECTATION FOR EACH EDGE 
; IN THIS PACE. 
(: (ELSE ' (RETURN NIL 1 :)) 

;GEIERATE EACH EDGE OP THIS PACE AND ITS TYPE. 
(: PACE (GEN-EDGES 1 (?.FlCE1 ! : EOO E ! : EDGE-TYPE> 1 (PA.IL))) 
(COPU!ENTARY '"POR" ?EDGE '"OF"(: ?PACE1 NAPIE)) 
;EITHER A CONNECT OR ftAYBE-CONNECT PROCESS. 
(COllD ( (EQ ?EDGE-TYPE 1 CORN !CT) 

(PROCESS ?RECR 
'ACCEPT-CONNECT-FACE 
'<?RECR ?EDGE ?NODE>)) 

( (PROCESS ?RECR 
'ACCEPT-"AYBE-CONNECT-FACE 
' <?RECR ?EDGE ?NODE>))) 

;GO BACK FOB NEXT EDGE. 
(PAIL) ) 

;SEARCH FOR OTHER FACES OF THIS POLYHEDRON BY OBSERVING 
; 3-LINE VERTICES OP THIS FACE. 

Appendix-c: Example Program Listing 



(COPU1ENTARI 1 "f!ETHOD: SEARCH FOR OTHER FACES OP" 
(: ?RECR RAftE) '"BY OBSERVING VERTICES OP") 

(CO!ftENTARY '" " (: ?PACE1 NAME) 
'"THAT MAY BE PABT OP NOBE THAN ONE PACE") 

?PACE1 
("APC 1 (LAftBDA (CORNER) 

(: ?CORNER 
(AVAL VERTEX) 
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(CORD ((ftEMQ TYPE '(ARROW FORK T)) 
(COMMENTARY (: ?RECR NAME) '"OBSERVES" 

BAME) 
(RESUME '<OBSERVE-VERTEX) PROC))))) 

CORNERS))) 

; ACCEPTS fUTCHIRG CONNECT F'AC B INTO THIS POLYHEDRAL DESCRIPTION. 
(D.EPUN ACCEPT-CONNECT-PACE QEXPR <! :RECR ! :EXPECT ! :EXPECT-NODE> 

(COM"ENTARY '"CREATE A PROCESS BOUND TO THE CONNECT 
EXPECTATION:" ?EXPEC't') 

(: ?R ECR 
;SUSPEND THIS PROCESS TO THIS EXPECTATION. 
(SUSPEND <POLYBEDROM-RECB CONNECT ?EXPECT ?EXPECT-NODE 

! : PACE> CONSTRAINTS) 
(COMMENTARY '"l CONNECT EXPECTATION OF" (: ?RECR NAME) 

'"HAS BEEN "ATCHED BY" (: ?FACE NAME)) 
;IS NEW PACE CO!!PATIBLE WITH THIS PIODEL OF POLYHEDRA? 
(OR (: (TEST-FACE-TYPE ?PACE)) (PAIL)) 
;CREATE A NOOE IN THIS RECR'S DESCRIPTION FOR THIS PACE. 
(ITEl'l BODE (OBJECT 'SRE'l' 

MPACE ?FACE 
~AYBE-CONHECT NIL 
CONNECT (LIST ?EXPECT-NODE))) 

(PUT* 'HODES (CONS ?NODE NODES)) 
(: ?EXP.ECT-IIODE (.PUT* 'CONNECT (CONS ?NODE CONNECT))) 
;CO!PUTE TRANSITIVE CLOSURE OF EDGES FOR THIS PACE. 
(CO~!ENTARY '"COftPUTE TRANSITIVE EDGE CLOSURE FOR THIS FACE") 
(: (ELSE '(RETURN NIL':)) 

;POR EACH OTHER EDGE IN THIS PACE ••• 
(: PACE (GEN-EDGES '<?PACE !:EDGE !:EDGE-TYPE> '(PAIL))} 
;IS IT THE PREVIOUS EXPECTATION? 
(AND (EQ ?EDGE ?EXPECT) (PAIL)) 
(COMMENTARY '"FOR" ?EDGE '"OP" (: ?PACE NAME)) 
;ELSE CO!PUTE CLOSURE FOR TBIS EDGE. 
(EDGE-CLOSURE ?RBCR ?EDGE ?EDGE-TYPE ?NODE) 
;GET REX~ EDGE. 
(PAIL)) 

;PIATCH PUIBE CONNECT PACES TO THESE NEW EXPECTATIONS. 
(tUPC ' {LU'8DA {!NODE) 

(: (ITEtf !lfPACE (: ?flNODE !fFACE)) 
(COft~ENTABY '"ATTE"PT TO ftlTCH !AYBE-CONNECT 

PACE:" (: ?!!FACE NAME) '"TO THESE NEW 
EXP EC Tl TIOllS") 
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(ELSE '(BBTUBN NIL':)) 
;FOB ANY CONBECT EDGE IN THIS FACE ••• 
(: PACE (GEN-EDGES '(?"PACE !:EDGE !:EDGE-TYPE> 

1 (Fl:IL))) 
(OR (EQ ?EDGE-TYPE 'CONNECT) (FAIL)) 
(COMMENTARY '"TRY" ?EDGE) 
; IS THIS EDGE NOW CONNECT WITH THIS RECR? 
(PllTCH '<POLYHEDRON-RECH 

CONIECT 
?EDGE 
! : EXPECT-NODE 
XX> 

CONSTRAINTS 
1 (PAIL)) 

(COP!r!EIT ARY (: ?PIFACE NA fl!E) '" IS CONNECT WITH" 
(: ?R ECR NU!E) ) 

;THEN PIOVE THIS NODE TO CONNECT LIST. 
(PUT* 'NODES (CONS ?f!NODE NODES)) 
(PUT* 1 tU !BE-NODES (DELQ ? ft NODE 15AYBE-lfO0ES)) 
;ADD CONNECT LINK TO PREVIOUS ptAfBE CONNECT. 
(: ?EXPECT-NODE (POT* 'CONNECT 

(CORS ?PINODE CONNECT))) 
;COPIPOTE TRANSITIVE CLOSURE l"O:R EDGES 
; OP TRIS 80 DE. 
(COftl!ENTARY '"COPIPUTE TRANSITIVE EDGE CLOSURE 

FOR" (: ?!PACE NAME)) 
(: (ELSE ' (RETURN NIL ':)) 

; FOR EACH EDGE IN THIS FACE• •• 
(: PACE (GEN-EDGES '<?f1FACE 

! : EDGE 
! : EDGE-TYPE> 

• (PAIL))) 
;EXCEPT EDGE OF PREVIOUS l'IAYBE-CONJECT? 
(AND (EO ?EDGE (: ?MN ODE .f1EDGE)) (PAIL) l 
(COfU,ENTARY '"FOR" ?EDGE "'OP THIS .PACE") 
;COftPrJTE CLOSURE FO.R THIS EDGE. 
(EDGE-CLOSURE ?RECR ?EDGE ?EDGE-TYPE ?~NODE) 
;GET NEXT . EDGE. 
(PAIL)) 

;FINISHED WITH THIS NODE. 
(RETURN NIL 'LA"BDA})) 

ftAYBE-RODES) . 
(COND ;DOES DESCRIPTION SATISFY POLYHEDRON MODEL? 

((:(TEST-POLY ?RECR)) (:(COMPLETE-POLYHEDRON ?RECRt)) 
;ELSE SEARCH POR OTHER PACES OP THIS VERTEX BY 
; OBSERVING 3-LINE VERTICES THAT ARE AT THE 
; PERIPHERY OF TH.IS INCOflPLETE POLYH EORON. 
(T(COftMEHTAR! '"METHOD: OBSERVE VERTICES THAT WILL 

DRIVE THE RECOGNITION OF NEIGHBORING FACES") 
(: ( ELSE '(RETURN llIL •:)) 

; FOR EACH EXPECTATION IN THIS RECR. • • 
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(PllTCH '<POLYBEDROH-RECR 
! : EDGE-TYPE 
! :EDGE 
! :EIPECT-NODE 
XX> 

CO.IISTRlIHTS 
' (FlIL)) 

( AV lL ?EDGE) 
; OBSERVE ElTHBR VERTEX OF EDGE IF A 3-LINE VERT EX. 
(: (AVAL V1) (CORD ( (REPIQ TYPE '(ARROW FORK T)) 

(CO!IPIENTARY (: ?RECR HAf!E) 
'"OBSERVES" NAME) 

(RESUPIE '<OBSERVE-VERTEX> 
PBOC)})) 

(: (AVAL V2) (COND ( (PIE!IQ TYPB ' (ARROW PORK T)) 
(COMltENTA.BY (: ?RECR NAl!E) 

'"OBSERVES" MAKE) 
(RESUME '<OBSERVE-VERTEX> 

PROC)))) 
;GO BACK FOR NEXT EXPECTATION. 
(:PAIL)))))) 

; ACCEPTS 1'11BE-CONHECT !'ACES INTO THIS RECR. 
(DEFUM lCCEPT-MAYBE-COlfllECT-PACE QEXPR 

<!:RECR !:EXPECT !:EXPECT-NODE> 
(COtU!EMTARY '"CREATE A PROCESS BOUND TO THE fll!BE-CONNECT 

EXPECTATION:" ?EXPECT) 
(: ?RECR 

; SUSPEND THIS PROCESS TO THIS EXPECTATION. 
(SUSPEND <POLYHEDROB-RECR 

!IAYBE-CONNECT 
?EXPECT 
?EXPECT-NODE 
! :PACE> 

CONSTRAINTS) 
(COMMENTARY '"A PllYBE-COBIECT EXPECTATION OP" 

(: ?RECR NUIE) '"HAS BEEN ftlTCHED BY" (: ?FACE lfAf!E)) 
;IS N.EW NODE COl!PATIBLE WITH. PIODEL OP POLYHEDRA? 
(OR (:(TEST-PACE-TYPE ?PACE)) (PAIL)) 
;CREATE A MEW NODE FOR THIS FACE. 
(ITEft NODE (OBJECT 'SNET 

NFACE ?PACE 
f!E.DGE ?EXPECT 
CORllECT (LIST ? EXPECT-NODE))) 

;INCORPORATE THIS IODE INTO TRIS POLYHEDRON DESCRIPTION. 
(PUT• 1 !AYBE-MODES (CONS ?HOOE ftAYBE-NODES))}) 

; CO!PUTES THE TRANSITIVE CLOSURE OP CONNECT EDGES. 
(DEPON EDGE-CLOSURE itEXPR (THIS-RECH EDGE EDGE-TYPE NEW-NODE) 

(: ?TBIS-RECR 
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(COND ;DOES EDGE .!IATCH EXPECTATIONS OF THIS RECR? 
((: (PDELETE '<POLYHEDRON-RECR 

?EDGE-TYPE 
?EDGE 
! : THIS-NODE 
XX> 

CONSTRAINTS 
'(RETURI ·NIL 1 :) ) 

(COlUtEIITARY ?EDGE '"IUTCHES A" ?EDGE-TYPE 
"'EtPECTlTIOB OP" (: ?THIS-RECR Nl8E)) 

;EXCHANGE CONNECT LINKS BETVEEM HODES. 
?TRIS-tlODE 
(PUT* 'CONNECT (CORS ?HEW-NODE CONNECT)) 

?NEV-NODE 
(PUT* 'CONNECT (CONS ?THIS-MODE CONNECT)))) 
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; ELSE CREATE A CONNECT OR fUYBE-CONNECT PROCESS. 
((EQ ?EDGE-TYPE 'CONNECT) 

(PROCESS ?'!'HIS-RECR 
'ACCEPT-CONNECT-PACE 
1 <?THIS-RECB ?EDGE ?N EW-IIODE>)) 

((PROCESS ?THIS-RECR 
'ACCEPT-!llYBE-CONNBCT-PACE 
•<?TRIS-RECR ?EDGE ?NEW-NODE>))))) 

; ftATCH COllPLETED POLYHEDRON TO EXPECTATIONS OF SCENE SCHEMA. 
(DEPON COftPLETE-POLYHEDRON IEXPR (R ECR) 

(CO"ftENTARY '"!lATCH COMPLETED" (: ?RECR NAME) 
'"TO THE EXPECTA'l'I0.15 OP THE SCENE RECR") 

(: SCENE (COftPLETE 1 <SCENE~RECR ?RECR> PROC '(PAIL)))) 

;TEST POR COBPLETED POLYHEDRON. 
(DEFON TEST-POLY iEXPR (RECR) 

(COMftENTARY '"DOES DESCRIPTION OF" (: ?~ECR HAftE) 
'"SATISFY THE CRITERIA FOR l COMPLETE POLYHEDRAL OBJECT?") 

(: ?RECR 
;ARE THERE RO !ORE CONNECT EXPECTATIONS FOR THIS POLYHEDRON? 
(COHD (("ATCH '<POLYHEDROB-RECR CONNECT !:XX !:XX XX> 

CONSTRAINTS) 
(CO!l"ENTABY '"NO") 
NIL) 

( (PROG (NTRI) 
(SETQ NTRI 0) 
(IUPC ' (LAftBDl (NODE) 

(: ?NODE 
NFACE 
(AND (EQ TYPE I TRI ANGLE) 

(S ETQ NTRI (ADD1 ?NTRI))))) 
NODES) 

(SELECTQ ?NTRI 
(0 (PUT* 1 'l"YPE 'CUBE)) 
( 1 (PUT* 'TYPE 'WEDGE)) 
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(PUT* 'TYPE 'PYRAMID)) 
(COfU!ENTARY '"YES: n NAME 1 " IS A" TYPE) 
T))))) 

;IS PROPOSED PACE COftPATIBLE WITH l'JODEL OF POLYHEDRA? 
(DEFUN TEST-PACE-TYPE ~EXPR (PACE) 

(COMMENTARY '"IS" (: ?FACE BAME) 
'"COMPATIBLE WITH THIS CLASS OP POLYHEDRA?") 

(COND ( (P!EPIQ (: ?FACE TYPE) '(TRIANGLE PARALLELOGRUl)) 
(COft"ENTARY '"YES") 
T) 

(T(CO!KERTlRY '"RO: REJECT THIS FACE") 
NIL))) 

) ; END OF POLYHEDRON. 

;AUXILIARY FUNCTIONS. 

(: VERTEX 
;GENERATES SECTORS OP A 3-LINE VERTEX. 
(DEFUN GEN-SECTORS QEXPB 

<!:VERTEX !,L-LINE !,R-LIHB !,ANGLE !,SECTOR> 
{: ?VEBTEX 

(SETQ L-LIRE L2 
R-LINE L 1 

(POST) 

ANGLE (SUB 180 AMGLE-L1-L2) 
SECTOR 1 SECTOB-L1~t2) 

(SETQ L-LIRE L3 
R-LIME L2 

(POST) 

ANGLE (SUB 180 ANGLE-L2-L3) 
SECTOR 1 SECTOR-L2-L3) 

(SETO L-LI RE L 1 
R-LIIIE L3 
ANGLE (SUB (ADD ANGLE-L1-L2 ANGLE-L2-L3) 180) 
SECTOR 1 SECTOR-L3-t1))) 

; RETURNS THE CWIS E SECTOR "NAME OP' THE ENCL OS ING VERTEX 
; WHOSE R-LIBE IS ?LINE. 
;DEFAULT IS FOR 3-LIBE VERTICES. 
(DEFON CWISE-S.BCTOR iEXPR {LINE) 

(COND ((EQ ?LINE L1) 'SECTOR-L1-L2) 
((EQ ?LINE L2) 1 SECTOB-L2-L3) 
((EQ ?LIWE L3) 'SECTOB-L3-L1) 
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((BREAK'"*** ERROR: LIDE IS NOT PABT OP TRIS VERTEX" 
?LINE)))) 

;RETURNS THE CCWISE SECTOR NA!E WHOSE L-LINE IS ?LINE OF 
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; THE ENCLOSING VERTEX. 
(DEPUM CCWISE-SECTOR aEXPR (LIIE) 

(CORD ((EQ ?LINE L1) 'SECTOR-L3-L1) 
( (EQ ?LINE L2} 'SECTOB-L1-L2l 
( (EQ ?LINE L3) 'SECTOB-L2-L 3) 
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((BREAK'"*** ERROR: LINE IS NOT PART OF THIS VERTEX" 
?LIRE)))) 

; RETURNS THE CCW NEXT LIKE OF AM ENCLOSING 3-LIIIE VE.RTEX. , 
(DEPUN CCW-LINE iEXPR (LINE) 

(COND ((EQ ?LINE L1) L3) 
((EQ ?LIHE L2) L1) 
( (EQ ?LIME L3) L2) 
((BREAK'"*** LINE IS NOT PART OP THIS VERTEX" ?LINE)))) 

; RETURNS THE CW NEXT LIRE OP AN ENCLOSING 3-LINE VERTEX. 
(DEPUN CW-L.Ilf E ~EXPR (LIME) 

(CORD ((EQ ?LINE L1) L2) 
((EQ ?LINE L2) L3) 
((EQ ?LIME L3) L1) 
((BREAK'"*** LINE IS NOT PART OF THIS VERTEX" ?LINE)))) 

(DEPUN CW-ANGLE @EXPR (LINE) 
(CORD ((EQ ?LINE L1) (SOB 180 ANGLE-L1-L2)) 

((EQ ?LINE L2) (SUB 180 AHGLE-L2-L3)) 
( ( EQ ?LINE L3) 

(SUB (ADD ANGLE-L1-L2 ANGLE-L2-L3) 180)) 
((BREAK'"*** LINE IS NOT PART OP THIS VERTEXn ?LINE)))) 

(DEPUN CCV-ANGLE ~EXPB (LINE) 
(COMD ( (EQ ?LINE LJ) (SUB 180 ANGLE-L2-L3)) 

((EQ ?LINE L2) (SUB 180 ANGLE-L1-L2)) 
( ( EQ ? LI NE L 1 ) 

(SUB ( ADD ANGLE-L2-L3 lNGLE-L 1-L2) 180)) 
( (BREAK 1 "*** LINE IS NOT PART OF THIS VEBTEX" ?LINE)))) 

) ; END OF VERTEX 

(: L-VEBTEX 
;GENERATES SECTORS OF A 2-LINE VERTEX. 
(DEFUN GEN-SECTORS QEXPR ' 

<!:VERTEX !,t-LINE !,R-LIRE !~ANGLE !,SECTOR> 
(: ?VERTEX 

(SETQ L-LINE L2 
B-LINE L1 
ANGLE (SOB 180 ANGLE-L1-L2) 
SECTOB 1 SECTOR-L1-L2) 

(POST) 
(SETQ L-LINE L1 
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R-LINE L2 
ANGLE (SUB ANGLE-L1-L2 180) 
SECTOR 'SECTOR-L2-L1))) 
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;RETURNS THE CWISE SECTOR NAKE WHOSE R-LINE IS ?LINE OF THE 
; ENCLOSING VERTEX. 
; FOR 2-LINE VERTICES. , 
(DEFUR CWISE-SECTOR aEXPR (LINE) 

(COND ((EQ ?LIBE L1) 1 SECTOR-L1-L2) 
( (EQ ?LINE L2) 'SECTOR-L2-L 1) 
((BREAK'"*** BRBOR: LINE IS NOT PART OP THIS VERTEX" 

?LINE)))) 

;RETURNS THE CClflSE SECTOR NAl'IE WHOSE L-LINE IS ?LINE 
; OP TH.E ENCLOSING VERTEX. 
;FOR 2-LINE VERTICES. 
(DEFUR CCWISE-SECTOR iEXPR (LIRE) 

(COND ((EQ ?LINE L1) 1 SECTOR-L2-L1) 
((EQ ?LINE L2) 1 SECTOR-L1-L2) 
((BREAK'"*** ERROR: LINE IS NOT PART OF THIS VERTEX" 

?LINE) ) >) 

; RETURNS THE CCW OR CW NEXT LINE OF AN ENCLOSING 2-LINE VERTEX. 
(DEPUN CW-LINE iEXPR (LINE) 

(COND ( (EQ ?LINE L 1) L2) 
{ (BQ ?LINE 1.2) Ll) 
((BREAK'"*** LIBB IS ROT PART OF THIS VERTEX" ?LINE)))) 

(: (PUT* 'CCW-LINE CW-LINE) T) 

(DEFUH CW-ANGLE ~EXPR (LINE) 
(COND ( (EQ ?LINE L 1) (SOB 180 ANGLE-L1-L2)) 

( (EQ ?LINE L2) 
(SOB ANGLE-L1-L2 180)) 

((BREAK'"*** LINE IS NOT PART OF THIS VERTEX" ?LIRE)))) 

(DEFUN CCV-ANGLE @EXPR (LINE) 
(COHO ( (EQ ?LI RE L2) (SUB 180 ANGLE-L 1-L2)) 

((EQ ?LINE L1) {SUB ABGLE-L1-L2 180)) 
((BREAK'"*** LINE IS NOT PART OP THIS VERTEX" ?LINE)))) 

) ;END OP L-VBRTEX. 

; CREATE GIVEN NETWORK OY VERTICES AND LINES. 
; DEPINES VERTEX OBJ EC'l'S AND BINDS THE!'I TO THEIR NAPlES. 
; CALLS ARE OP THE FOR": (DEFINE-VERTEX <NA!E> <TYPE> <PAIR>*) 
(DEFUR DEFINE-VERTEX aPEXPR (L) 

(: (PUT* (CAR ?L) 
(APPLY 'NEW (CDR ?L))) 
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(PUT* 'Nlfl!E (CA .R ?L))) 
(SETQ VERTEX-LIST (NCONC ?VERTEX-LIST (LIST (CAR ?L)))) 
(CAR ?L)) 

(SETQ VERTEX-LIST NIL) 

; DEFINES LIBE OBJECTS AND BINDS THEfl! TO THEIR NAfl!ES. 
; CALLS ARE OF THE PORll: (DEFINE-LIME <NUIE> <PlIR)*) 
(DEFUN DEFINE-LINE ~P'EXPR (L) 

(: (POT* (CAR ?Ll 
(APPLY 'REW (APPEND* 1 (LINE) (CDR ?L)))) 

(PUT* 'NAfl!E (CAR ?L))) 
(SETQ LINE-LIST (BCONC ?LINE-LIST (LIST (CAR ?L)))) 
(CAR ?L)) 

(SETQ LINE-LIST NIL) 

;GENERATES ITE!S FROM A LIST. 
(DEPOM LGEN QEXPR (!:LIST !~EL> 

( f'IAPC ' (LU.IBDl (N) (SETQ EL ?N) (POST)) ?LIST) 
(PAIL)) 
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; RETURNS THE BEIGHBOB VERTEX OF SOftE VERTEX NAHE GIVEN A LINE. 
{DEPUN NEIGHBOR-VERTEX @EXPR (LIRE ME) 

(: (AVAL ?LINE) 
(COND ( (EQ V1 ?ME) (AVAL V2)) 

{ (EQ V2 ?ME) (l VAL V 1)) 
({BREAK '"***ERROR: LIME DOES NOT CONTAIN THIS VERTEX" 

? ME))})) 

; BETUBNS EPSILON IF THE ABSOLUTE SUft OF ITS 1ST ARG IS LESS THAN 
; ITS 2ND THRU LAST ARG ELSE IT RETURNS HIL. 
; CALLS ARE OP THE POR!: (EPSILON <EPS> (NUft>*) 
(DEFCJN EPSILOlf N 

(PROG (TALLY) 
(SETQ TALLY 0) 
LOOP 
(COND ( (NEQ N 1) (SETQ TALLY (ADD TALLY (AR3 N)) N (SUB1 N)) 

(GO LOOP)) 
((LESSP (ABS TALLY) (ARG 1)) TALLY)))) 

;PRINTS CO!MENTABY. 
(DEPON COMMENTARY ~FEXPR (LCOf'I} 

(OR ?COl!flENTARY-SWITCH (RETURN NIL • corutENTARf), 
(TEBPRI) 
(,.APC '(LAMBDA (COM) (PRIN1 (AVAL ?COM))) ?LCOflJ) 
(TERPRI)) 

(SETQ COMPIENTA.RY-SWITCH T) 
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; DATA FOR THIS PROBLE~: 

(DEPINE-VEBTEX VERTEX-1 
ARROW-VERTEX 
L1 'LINE-1-5 
12 1 LINE-1-6 
L3 'LINE-1-2 
ANGLE-L1-L2 60 
ANGLE-L2-L3 45) 

(DEFINE-VERTEX VERTEX-2 
L-VEBTEX 
L 1 'LINE-1-2 
L2 'LINE-2-3 
ANGLE-L1-L2 135) 

(DEFINE-VERTEX VERTEX-3 
ARROW-VERTEX 
L1 'LINE-2-3 
L2 'LIHE-3-6 
L3 'LINE-3-4 
ANGLE-L1-L2 45 
!HGLE-L2-L3 30) 

(DEFINE-VERTEX VERTEX-4 
A BROW-VERTEX 
L 1 'L INE-3-4 
L2 'LINE-4-6 
L3 'LINE-4-5 
ANGLE-L1-L2 40 
ANGLE-L2-L3 60) 

(DEFINE-VERTEX VERTEX-5 
L-VERTEX 
t 1 'LilfE-4-5 
L2 'LINE-1-5 
ANGLE-L1-L2 120) 

(DEPINE-VERTEX VERTEX-6 
PORK-VERTEX 
L 1 ' LI NE-1-6 
L2 'LIN E-4-6 
L3 1 LINE-3-6 
ANGLE-L 1-L2 120 
ANGLE-L2-L3 110) 

(DEFINE-LIRE LINE-1-5 
V1 'VERTEX-1 
V2 'VERTEX-5 
LENGTH 28) 
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(DEFINE-LINE LINE-1-2 
V1 'VERTEX-1 
V2 'VERTEX-2 
LENGTH 35) 

(DEFINE-LINE LINE-2-3 
V1 1 VERTEX-2 
V2 1 VERTEX-3 
LENGTH 26) 

(DEFINE-LINE LINE-3-4 
V 1 'VERT.EX-3 
V2 'VERTE.X-4 
LENGTH 52) 

(DEFINE-LINE LINE-4-5 
V1 'VERTEX-4 
V2 1 VERTEX-5 
LENGTH 25) 

(DEFINE-LINE LINE-4-6 
V1 'VERTEX-4 
V2 1 VERTEX-6 
LENGTH 28) 

(DEFINE-LINE LINE-3-6 
V 1 1 VERTEX-3 
V2 'VE:RTEX-6 
LENGTH 35) 

(DEFINE-LINE LINE-1-6 
V 1 'V ER'l'EX-1 
V2 'VERTEX-6 
LENGTH 25) 

; END OP DATA. 
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