
..

* *
* A PROCEDURAL MODEL OF RECOGNITION FOR *
* MACHINE PERCEPTION *
* *
* by *
* *
* William s. Havens *
* *
* March 1978 *
* *
* Technical Report. 78-3 *
* *
* *
* *
* *

Department of Computer Science
The University of British Columbia

Vancouver, British Columbia V6T lWS

f

t•

•.

A PROCEDURAL MODEL OF RECOGNITION FOR MACHINE PERCEPTION

by

WILLIAMS. HAVENS

ft.Sc •• Virginia Polytechnic Institute, 1973
B.Sc., Virginia Polytechnic Institute, 1969

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
THE REQUIREMENTS FOR THE DEGREE OP

DOCTOR OF PHILOSOPHY'

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accep. t this thesis as con~t:•g
\)e rrN· ed standar .. i~A .. ,u.\ew,-(. ~.

t' ~· r(Jj.•') !: <..... - ?"""·- , ., -•' # . (..t.~ ... ~· ········
.................................. -

THE UNIVERSITY OF BRITISH COLUMBIA

March, 1978

(c) William s. Havens, 1978

OF

ii

This thesis is concerned with aspects of a theory of

machine perception. It is shown that a comprehensive theory is

emerging from research in computer vision, natural language

understanding, cognitive psychology, and Artificial Intelligence

proqramming language technology. A number of aspects of machine

perception are characterized. Perception is a recognition

process which co111poses new descriptions of sensory experience in

terms of stored stereotypical knowledge of the world.

Perception requires both a schema-based formalism for the

representation of knowledge and a model of the processes

necessary for performing search and deduction on that

representation. As an approach towards the development of a

theory of machine perception, a computational model of

recognition is presented. The similarity of the model to formal

mechanisms in parsing theory is discussed. The recoqnition

model integrates top-down, hypothesis-driven search with

bottom-up, data-driven search in hierarchical schemata

representations. Heuristic procedural methods are associated

with particular schemata as 11odels to quide their recognition.

Multiple methods may be applied concurrently in both top-down

and bottom-up search modes. The implementation of the

recoqnition model as an Artificial Intelligence proqramminq

lanquaqe called KAYA is described. MAYA is a multiprocessing

.,

iii

dialect of LISP that provides data structures for representing

schemata networks and control structures for inteqratinq

top-down and bottom-up processing. A characteristic exaaple

from scene analysis, written in ~AYA, is presented to illustrate

the operation of the model and the utility of the proqramminq

language. A proqraaming re .ference ma nua 1 for flAYA is included.

Finally, applications for both the recognition model and ~AYA

are discussed and some promising directions for future research

proposed.

1: Introduction
2: "echanis ■s for P.lachine Perception •••••••••••••••••••••••••

2. 1 Introduction •••

iv

1
5
5

2. 2 Artificial Intellig~nce and Psychology • • • • • • • • • • • • • • • • • 6
2.3 Programming Languages ···"••--.•·~························ 8

11
11
13
14
17
23
23
26
28
29
32
35
39
39
39
40
42
49
51
55
56
61
61
63
64
68
71
74
75
78
78
79
88

2.4 Representation of Knowledge •••••••••••••••••••••••••••
• ~ •••• 4' •••••••••••••••••••• 2.4.1 Logical Representations

2.4.2 The Procedural Reformation ••••••••••••••••••••••••
2.4.3 Schemata
2. 4. 4 Search

........ ~ : ~ ~········•• ·••·
2.5 Machine Vision ... ~. ~ ~

2.5.1 Roberts• Paradigm
2.5.2 Guzman's SEE
2.5.3 Huffman and Cloves
2.5.4 Waltz's Algorith■
2.5.5 P.lackvorth's P.IAPSEE
2.5.6 Preuder•s SEE!

................... ,,
••••••••• !I • • ~ •••••••••••••••••••

.......... , ~········
........................... ·•

••
3: A Procedural Model

3.1 Introduction
3.2 Model overview

3.2.1 Schemata
.......................... ~ ~

4:

3.2.2 Schema Hierarchies . •·•
3.2.3 Recoqnizers •

Boh-Deter■inis■ •••••••••••••••••••••••••••••••••••
Becursion •••••••••••••••••••.•••.••••••••.••.•••••

3.2.4
3. 2. 5

3.3 Earley•s Algorithm ... ~
3.4 Three Phases of Becognition ••••••••••••••••••••••••••• ~ 3.4.1 Expectation

3. 4. 2 Matching
3.4.3 Completion ···"· .. ·····~······················~······· ••

3.5 Scheduling " ~
3.6 Method Hierarchies ················· ···········~······· 3. 7 Coordination and Communication ••••••••••••••••••••••••
3.8 Integration ·•

An
4.1
4.2
4.3
4.4

Example fro■ P.lachine Vision •••••••••••••••••••••••••••
Per spec ti ve ••• 4! • ~ ·• The Problem
Annotated Protocol ••••••••••••••••••••••••••••••••••••
Conclusion ,,

5: Maya
5.1 Introduction ·····~···················•....••.•.

••••••••••••••••••••••••••••••••••••• .. 5.2 Language Overview
s.2.1 Data Types
5.2.2 Evaluation

5.3 Representation
................ ~

5.3.1 Scheaata
5.3.2 Plessages

•••
•••

114
115
115
116
116
120
122
122
126

..

5. 4 Pattern r!atching •••• • •
5.5 Top-down ~ethods
5.6 Bottom-up Methods

··········~·--·· ·-~····· ~
5. 7 Conclusion • " .. .

6: Recognition Revisited
6.1 Perspective•••••••••••••
6 .. 2 Recognition Revisited•••••••••••·••••••••••••••••••••
6.3 Applications and Future Research

Bibliography •• ' • • •••••• -•• '4111 • ·

Appendix-A: Earley•s Parsing Algoritha
Appendix-B: ~AYA Language Reference aanual :·.._· ... ~ B .. 1 Relating to MAYA

B.2 The Database ..
B.3 Evaluation ... ,
B.4 Error Conditions and the DEBUG System
B.5 Input/Output ~
B .. 6 Pattern rtatching •
B.7 Generators .. .
B.8 Processes and Recognizers

Appendix c: Example Program Listing

V

130
132
137
141
142
142
142
151
153
160
164
161'
166
171
173
177
178
183
186
188

3. 1: A Bicycle Sche■ a ••••••••••••••••••.•••••••••••••• ,
3.2: Bicycle Composition Hierarchy , .• ,, •.••••••
3.3: Indexed Instance Hierarchy •••• ~·~.-~ •.~.·~~ -........ ~ •••
3.4: Recognition c .ycles· ... •••·••·•·•~••••• .. •·•• .. ••••·••••••·••·•••••
4.1: Scene Composition Hierarchy••••••••••••••••••••••••••• ..
4.2: Input Scene
4 .. 3: Vertex Instance Hierarchy.•••••••••••••••••••••••• .. ••••
4.4a: Vertex Schemata ••••••••••••••••••••••
4.4b: Line Sche1lata ••••••.••••••••••••••••••••••••••• ••·••• •••
4.5: Vertex Labelling Conventions•••••••••••••••• .. ••••••••••
4.6: Recognition of a Wedge•••••••••••••••••••••••••••••••••
6.1: Perceptual Cycles•••••••••••·••••• .. •••••••••••••••••••
A.1: The Predictor Function••••••••••••••••••••••••••••••••
A. 2: The Scanner Function ••••••••••••••••••••••••••••••• • ••
A.3: The Completer Function••••••••••••••••••••••••••••••••

vi

41
44
48
66
80
83
84
85
85
87
89

148
162
162
162

vii

"When a pickpocket meets a holy man,
All he sees is his pockets."

Anonymous

I would like to thank ay doctoral committee for their

invaluable guidance and perspective, Rachel Gelbart, , Gordon

~ccalla, ftichael Kuttner, Peter Rovat, Jan "ulder, and Roqer

Browse for many helpful discussions and criticisms, Marian

Mackvorth for proofreading this thesis, my hoasemates for their

comraderie, tolerance, and understandinq, especially Richard

Rosenberg and Sheryl Ada■ for providing accomodation and

transportation, my dear friend L. R. Floyd for many insiqhts and

his faithful companionship, and above all, Alan Mackvorth for

supervising my research, sharing ay enthusiasm, and providinq

the constant support and faith of a friend.

This research was supported by a Postgraduate Scholarship

from the University of British Columbia and a Research

Assistantship fro• the Department of Computer Science.

1

~ff!f!~R 1: INTRODUCTION

The creation of intelligent automata has been a compellinq

dream of mankind for millennia. Each advancement in the

sophistication of our technology has been seen as a new tool for

the understanding of ourselves. Hydraulics, clockworks, the

steam engine, and the telephone switchboard have each, in their

time, been metaphors, taken as theories of the functioning of

the mind (Rapoport, 1963). Only in the last few years, however,

with the invention of the von Neumann digital computer has the

realization of intelligent machines been a serious possibility.

Such a possibility, encouraged by the early successes of Samuel

(1963), Gelernter (1963), Newell and simon (1963), and others,

created high expectations. Unfortunately, these expectations

have been maddeningly difficult to realize. In particular, we

do not yet have an adequate theory of perception as part of an

overall theory of machine intelligence. However, as Mackworth

(1977c) points out, elements of such a theory are emerging.

This thesis is concerned with aspects of this developinq

theory of machine perception. This work is motivated by the

belief that perception can be characterized as a recoqnition

by plans and expectations and driven by process guided

observation at d experience. A theory of machine perception is

seen as having tvo major parts a formalism for the

representation of knowledge and a model of the processes and

1: Introduction

2

control structures required to perform search and a.eduction on

that representation. The distinction between representation and

process is emphasized in order to point out an aspect of machine

perception that has not been sufficientlv developed. Presented

in this thesis is a procedural model of recognition for

perception. The

for perception

model is intended as a computational paradigm

research and is based on the following

characterization of perception.

Perception is a recognition process that composes new

descriptions of observed experience in terms of stored

stereotypical descriptions of the world. The new knowledqe

created in this process is abstract and relational, the

formation of the description of a percei~ed concept. Perception

is seen to exploit the sequential nature of evervday experience

by assuming causal relationships among events and observations.

Perception is a non-deterministic process. our sensory

experience of the world can be ambiguous and often illusory.

Likewise, the knowledge by which we interpret sensory experience

is incomplete and often erroneous. Yet perception operates in

this uncertain environment. The percept~al process must

tolerate non-determinacy by exploiting context and allowing

multiple partial interpretations to be hypothesized and their

confirmation attempted concurrently.

Perception is bDth an active process quided by hypothesis

and expectation and a passive process driven by events and

sensory observation. Observations act as cues which stimulate

1: Introduction

3

both the format.ion of bypotheses and the activation of heuristic

knowledge associated with specific hypotheses. such

hypothesis-specific knowledge is used to direct the recognition

process by making observations, creating new expectations, and

attempting to satisfy those ei:pectatio .ns.

Perception is also a recursive process. Cues are not

solely primitive observations bat may be, in fact, the result of

perception. The perceptual process uses the description of some

successfully perceived concept as an abstract cue in the

perception of higher concepts.

As an approach towards a theory of machine perception, a

procedural model is presented based on these characterizations.

The model provides an integrati~n of top-dovn, hypothesis-driven

search with bottom-up, data-driven search in hierarchical,

schema-based knowledge representations. The model defines

explicit mechanisms for employinq recursive cue/model

hierarchies in perception. Heuristic procedures, called

mg!hQA§, are used to quide the recognition pro=ess. ~ethods are

associated with specific stereotypial schemata to drive the

recoqnition of instances of those schemata. ftethods may be

applied in both top-dovn and bottom-up search modes and a number

of methods 11ay be active simultaneously. The model defines

mechanisms of communication and coordination between concurrent

methods and also defines a deductive method-schedulinq technique

based on the notion of computing a method's applicability to the

perception process.

1: Introduction

4

As an implementation of the perception moiel, a proqram111inq

lan guaqe called Ma va has been developed. Th is proqra 11 ■inq

language is designed as a ■ultiprocessinq dialect of LISP and

provides data structures for constructing, manipulating, and

accessing schemata-based knovledqe representations. As well,

Maya defines control primitives for integrating top-dovn and

bottom-up processinq. The lanquaqe also provides mechanisms for

creating and scheduling processes deductively and for

coordinating the interaction of processes.

In presenting the model of recognition

implementation, the thesis takes the following form:

and its

Chapter 2

reviews the contributions of recent research to the evolution of

a computational theory of perception. Examined are specific

representational theories, programming languages, and perception

programmes. Chapter 3 presents the procedural recognition model

in dettil. Chapter 4 presents a s■all but characteristic

example from coaputer vision to illustrate the benefits of the

model and to demonstrate the utility of Maya as a programming

lanquage. Chapter 5 provides an overview of the design of Mava,

a description of its features, and a small tutorial on ~aya

programming style. Chapter 6 re-examines other relevant

artificial intelligence research from the perspective of the

procedural model presented here. The relevance of this work to

the study of machine perception is investigated and suqqestions

are given as to the possible directions of future research.

1: Introduction

5

2.1 Introduction

If the dreaa of intelligent automata is to be realized,

there must exist a body of underlying principles from which

these machines will be built. The discovery of this body of

knowledge will have a profound effect on mankind. Its

principles will be manifest in mathematics, psvcholoqv, computer

science, linguistics, philosophy, and all other branches of

science concerned vith human reasoning. Its ultimate

implications for our society will be felt in now unimaginable

ways.

An apparent conYergence of ideas about the orqanizat4\.on of

memory, the understanding of language, the representation of

knowledge,

that there

and the machine perception of visual images suggests

must exist computational mecha nis ■s qoverninq

perception. The fact that similar mechanisms are being

investigated in the fields of cognitive psychology, artificial

intelligence, and linguistics indicates that these underlvinq

principles may reside not too far from the surface of our

present knowledge. In this chapter, a review of some evidence

from recent research supporting this view is presented.

2: Mechanisms for Machine Perception

6

2.2 Artificial Intelligence and Psychology

Both cognitive psychology and artificial intelligence are

co.ncerned with understanding the mechanisms of perception. The

computer has given psychologists both an information processing

metaphor for visualizing cognitive mech3nisms and a laboratory

in which to experiment vi th these mechanisms. In exchange,

their experiments have <Jiven artificial intelligence a test of

the validity of our computational mechanisms as a theory of

human perception. The approach of many resear=hers (Rumelhart &

Norman, 1973) (Collins & Quillian, 1972l (Newell & Siaon, 1972)

has been to propose an information-processing •odel of some

particular aspect of perception, memory, or learning; then to

compare the behavioural adequacy of the computer simulation to

the behaviour of human subjects given the same task.

A significant early example of this approach is the GPS

model of human problem solvinq (Newell,1963). The model uses a

simple "back-chaining" scheme of breaking a problem down into

smaller and smaller sub-problems until proqress on some

sub-problem can be made.

Another example is the EPA" model of verbal learning

developed by Feigenbaum (1963). The model uses a discrimination

tree as an associative memory for nonsense syllables. At each

node in the tree, only sufficient information is retained to

perform a binary discrimination test at the time the node is

constructed. As more nonsense syllables are added to the

2: Mechanisms for Machine Perception

.....

network, the

discrimination.

7

test becomes insufficient for proper

This leads to such retrieval errors as a

failure to respond to a stimulus, confusion between similar

stimuli, and oscillation between correct and incorrect

responses.

An important contribation to the development of machine

representations of knowledge is Quillian•s (1968) proposal of

semantic networks as a aodel of human memory. His work models

memory as an arc-labelled directed graph structure in which

nodes represent arbitrary concepts and arcs represent typed

binary relationships between concepts. The meaninq of a concept

in the network is considered to be the entire network as viewed

from the concept node.

As a representation scheme for machine perception, semantic

nets have an appealing property. The meaning of a concept is

not represented as a set of isolated facts, but as an

encyclopedic network of relationships with other concepts.

Although this representation is extremely rich in its structure,

Woods (1975) has analyzed these relationships and points out a

number of problems and misconceptions. Recently, Schubert

(1975) has extended the representational power of semantic

networks to incorporate logical quantifiers and connectives.

Hendrix (1975) also has augmented the representation with a

partitioning mechanis m to iricorporate q~antification and

hypothetical situations.

Quillian•s oriqina~ research and the more recent vork of

2: "echanisms for Machine Perception

8

Collins and Loftus (1975) have modelled human memory search as a

parallel spreading activation process in a semantic network.

From two concept nodes, the search proceeds in a breadth-first

manner to each of their neiqhbours until a path intersection

occurs. The types of arcs traversed durinq the search are

supposed to represent the semantic relationship between the two

concepts.

2.3 Programming Languages

A number of artificial intelligence proqramming languages

suggest aspects of a computational theory. These lanquaqes

include both a scheme for representing knovledqe and a control

structure scheme for operating on that representation. The most

popular such language has been the partial implementation of

Hewitt •s (1972) Planner language, called r.icro-Pla nne .r (Suss11an,

1973). Hevitt•s language provides a procedural realization of

an incomplete higher-order logic system. In Planner, facts are

represented declaratiYely as n-tuple patterns in a qlobal

associative database and as procedures, called theorems.

associated vith patterns. The language relies on three

mechanisms: associative database retrieval, pattern-directed

procedure invocation, and an automatic backtrackinq control

structure. The best

proposal is the Popler

(1973) at Edinburgh.

implementation of the original Planner

language written in Pop-2 by Davies

2: Mechanisms for Machine Perception

9

The utility of the Planner paradiqm was demonstrated by

Winograd (1973a). However, as bas been pointed out (Sussman &

l'JcDer.11ot t, 1972) (Ha yes, 1973) ; there are serious problems, most

notably the _lack of a precise representational se■antics and the

dependence on automatic backtracking for generatinq alternative

solution paths in a uniform and exhaustive depth-first manner.

Backtracking reverses the side-effects of any rejected

alternatives. The fact that each alternative at a decision

point is treated independently is the source of the difficulty.

No communication between competinq alternative solutions is

possible. Consequently, nothing is learned from failures. The

problem is farther aggravated by the intended modularity of the

pattern-invoked Planner theorems. The language attempts to use

all theorems matching a qiven pattern to achieye some qoal or

subgoal until one succeeds. However, each theorem is considered

to be a modular method alone capable of achieving the qoal.

Each theorem is independent of all others and, as a result, each

theorem is effectively ignorant of the efforts and methods of

every other.

ftcDermott and suss■an (1973), in an attempt to solve these

problems, designed and implemented a successor programminq

language, Conniver. The language supports multiprocessing by

using the control structure model suggested bv Bobrow and

Wegbreit (1973). Conniver provides neither automatic

backtracking nor automatic restoration of variables. Chanqes

made to the database normally remain changed unless specifically

2: Mechanisms for Machine Perception

10

restored by the progra.1111er. This 110 dif ica tion permits

communication a111onq "sister" processes explorinq alternative

solutions to a problem. Each process may consnlt the database

to discover the results of her siblings. In order to permit

processes to use hypothetical situations, conniver provides a

lavered context mechanism. Any process may request a separate,

experimental copy of the database. Any changes made to this nev

copy are not visible external to the context.

As previously •entioned, Conniver does not depend on

automatic backtracking to gen er ate alternatives. Instead, it

defines a co-routine mechanism calledgenerators vhich are

procedures

invocations.

that can maintain an internal state between

Generators may return multiple values in a

communication port called a possibilitie§ li§~. Instead of

being embedded within an aatomatic backtracking control

structure, alternatives are explicitly represented as data items

in the possibilities list. ConniYer also provides primitives

for manipulating the possiblities list and recalling generators.

-~ Conniver's authors intended to improve AI proqramminq

technoloqy by repairing some of the problems

encountered in the nse of Micro-Planner. Conniver has also

provided some representational mechanisms decidedly more
r-

powerful and flexible than those realized in 1'icro-Planner.

Conniver permits the representation of hypothetical worlds and

allows arbitrary properties to be associated with patterns. In

the next chapter, the utility of this last mechanism will be

2: ~echanisms for Machine Perception

11

investigated.

Conniver does not propose a model of computation in its

desiqn. In fact, it defeats the primitive model of

Plicro-Planner. However, the language does support the creation

and manipulation of multiple processes thus providing a

capability, if not the facility, for using bottom-up search

mechanisms. A second contribution of Conniver is its use of the

possibilities list to represent processes as 1 a ta structures to

be manipulated by other processes.

A very recent programming language, KRL-0, has been

proposed by Bobrow and Winograd (1977). They explicitly propose

a model of recognition for macbin e perception based on a

schematic representation and a notion of schema matching. KRL

will be discussed in more detail in the next section.

2.4 Representation of Knowledge

Suitable mechanisms for the co~puter representation of

knowledge are a major aspect of a theory of machine perception-(

The search for representations exhibiting desirable properties

for perception bas been an important research effort.

:,

2. 4.1 Logical Representations

as

First-order predicate calculus has been aivocatea by manv

a computational paradigm for Artificial Intelligence

2: Mechanisms for Machine Perception

12

(McCarthy S Hayes, 1969) (Green, 1969). Predicate calculus

offers the advantages of both a com ple tel V modular

representation and a precise and formal semantics. All

knowledge is represented factually and is spe~ifically divorced

from the proof procedures used to perform search on that

representation. A number of proof procedures have been

advocated, most notably the r~Ql.!!!iQ!l .e!:i.9£.i.El~ of Robinson

(1965). For the most part, these proof procedures are syntactic

mechanisms utilizing a uniform interpreter. There is no general

concept of process and control inherent in the logic system

itself.

A number of strategies have been proposed for controllinq

the search process in predicate calculus systems, includinq

dynamic pruning of the search space and attaching

domain-specific heuristic procedures to aiio ■s of the system.

Reiter (1973) has advocated the use of a model to restrict the

search space and to give advice to the proof procedure.

A number of researchers have advocated predicate calculus

as a programming language (Kowalski, 1974) {Van Emden, 1977). In

most implementations, a uniform proof procedure is used as the

control structure model for the programming langoaqe. I .n an

attempt to introduce logical semantics into the control

mechanism, Hayes (1973) is defining a lanquaqe of control

structure operators deducible by the logic system durinq

execution.

These efforts point to the need to have the deductive

2: ~echanisms for ~achine Perception

13

process quided by semantic knowledge instead of rel yinq on a

uniform syntactic procedure. , What is required is an integration

of the representation with a model of control and process.

2.4.2 The Procedural Reformation

The problems observed in the purely logica 1 f oraalism have

given impetus to the development of a procedural formalism fo .r

representing knowledge. As in any serious reformation. two

competinq schools, the proceduralists and the declarativists,

quickly delineated their respective points of view thereby

radicalizing those positions. A detailed discussion of these

positions is outlined by Winograd (1975).

The proceduralists contend that knowledge is best

represented in procedures. Their argument is that a larqe part

of man's knowledge of the world is knowledge of process -

knowinq "hov" instead of a factual knowing "what". The Actor

formalism of Hewitt (1973) defines the extreme of this point of

view. Hewitt states that his research is directed at putting

semantics on a firm procedural basis. The knowledge of some

entity is the behavior exhibited by the proceiure representing

that entity. Access to in formation in an actor is permitted

onlv bv sending the actor a message which it interprets by its

ovn means. The formalism can alternatively be viewed as the

decentralization of the system interpreter among the data

objects of the system. Actors are a generalization of the

2: ~echanisms for ~achine Perception

14

formal notion of classes and objects introduced in the Simula

programming language (Dahlr 1966).

It seems clear that method and process in general are best

expressed procedurally because temporal relationships are

handled automatically by the sequential nature of the

representation. Procedures provide a natural way to specify

interactions as operations and they are convenient for

representing higher order knowledge. Winograd (1975) points out

a duality between the modularity of declarative representations

and the interacti orl in her en t in procedural represent~ tions.

From the declared goal of developing a computational theory of

perception, that same duality can be seen as the distinction

between a theory of representation - the declarative aspect, and

a theory of recognition - the procedural aspect. What is needed

is an integration of the Modularity of a declarative

representation with the interactions that are specifiable in a

procedural representation. That inteqration cannot be a siaple

concatenation of techniques. Instead, there must be a synthesis

that respects the inherent duality between representation and

recognition, between form and process.

2.4.3 Schemata

Within the last few yearsr research into suitable

representations of knowledge in such diverse fields as human

memory research (Bobrow & Norman, 1975) (Pyl ysh yn, 1976) •

2: ~echanisms for Machine Perception

15

linguistics (Fillmore. 1968), and artificial intelligence

(Minsky, 1975) (Bobrow & Winograd, 1977) has led towards the

convergent notion of§£~~!~• The term is attributable to the

work of Bartlett (1932), although the concept has nov been

rediscovered under various names with many incarnations.

A general characterization of schem¼ta includes the

following aspects. Schemata are data structures for

representing stereotypical concepts including ob1ects, events,

actions, situations, and sequences of events, actions, and

sit uatio.ns. Schemata fora network structures like the semantic

the same rich networks of Quillian (1968) exhibiting

encvclopedic organization. .Each schema

concept. concepts may be siaple or

represents a generic

complex, concrete or

abstract. Complex concepts are represented as a composition of

si■ ple:r schemata. Because knowledge is orqanized into

conceptual modules, the interpretation of process can deal with

large related amounts of infor■ ation as single concepts, as

units at a single level of detail, or, alternatively, the

hierarchical data structure can be examined at a deeper level of

detail when required.

Each scheaa is composed of a set of named relations with

other schemata and

includes the notion

primitive values.

of stereotype and

The representation also

instance. Stereotype

schemata may be copied to yield multiple schema. instances. Each

schema stereotype initially may contain default values for some

of its named relations. when the schema is copied to represent

2: Mechanisms for ~achine Perception

16

an insta .nce of its stereotype, the default assignments serve two

functions. First, they provide generic knowledge about the

instance that aust be qenerally true of most occurrences of the

represented concept. Second, the default assignments are

interpreted as expectations of what type of information aay be

used to replace the default values in the instance. The process

of instantiating a schema instance becomes a search for

particular data or embedded sub-schema instances satisfying the

schema's expectations.

Schemata may contain both active and passive knowledge. In

a stereotype, passive knowledge includes the expectations and

default values. In a fully specified instance, passive

knowledge consists of the values of the named relational

variables co■prising the description of the instance.

Minsky (1975) bas proposed a schema-based representation

which he calls fl:~ag ~X.§!~!§• Bis work is primarily concerned

with the development of schemata for computer vision knovledqe

representations, although he extends its applicability to other

domains. Recently, Winograd (1975) has further specified the

frames paradig■ for use in natural lanquaqe research. Schank

and Abelson (1975) have developed a schewa-based system for

narrative story understanding called §gti21§ which uses a small

number of primitive actions to represent cause and effect

relationships in simple narratives. Using a case parsing method

(Fill■ore,1968) to construct the schematic representation of a

story, Schank•s (1975) system can infer a paraphrase of the

2: Mechanisms for ftachine Perception

17

story including information not explicitly present in the

original narrative.

Similarly, Charniak (1975) has proposed a schema-based

story understanding system. In neither o.f these systems is the

process of translation from the narrative to the schematic

representation of primary concern.

representational and assume the

recognition mechanisms. ,

Their efforts are decidedly

existence of suitable

ftcCalla (1977) has recently modelled natural language

dialogue using schemata. His system integrates both svntactic

parsing using a case grammar and semantic analysis as message

passing and interpretation among cooperating schemata.

Bobrow and Norman (1975) and Rumelhart and ortonv (1976)

have presented a cbaracte.ri-zation of schemata for modellinq

human memory • . • As well, Norman, Rumelhart, et s!• (1975) have

proposed ~~ill 2!:rY£Uil! ~i~2tk§ as schemata for modellinq

memory processes in linguistic comprehension.

2. 4. 4 Search

A popular perspective in artificial intelligence has been

to view machine intelligence as a complex search task guided by

heuristic techniques (Slagle, 1971). Froa this perspective,

recognition aethods for machine perception can be characterized

as having two major aspects - the development of powerful search

mechanisms for particular representations and the discoYery of

2: "echanisms for Machine Perception

18

powerful heuristics for particular knowledge domains to order

and reduce the size of the search space • . A number of search

mechanisms have been adYanced for schema-based representations.

Fahl11an (1975) has advocated the use of parallel hardware.

Rieger (1974) has proposed the use of unrestricted forward

deduction. In the author's opinion, both of these proposals are

attempts to solve the perception problem with a "bigger hammer".

Although advances in the state of the hardware art mav ease our

programming plight, they should not be the basis of a theory of

perception.

Kuipers (1975) has advocated a top-down, hypothesis driven

recognition model for schema systems. In this model, schema

stereotypes contain heuristic knowledge to guide the search

process. As well, the stereotype's default expectations

constitute hypotheses about what to look for to fill the slots

of the instance. Schemata recognize instances by ■akinq

external observations and by recursively calling on the efforts

of other sub-schemata as subgoals. unfortunately, this

recognition scheme forces the use of purely goal driven search

mechanisms thereby suffering fro ■ a number of serious drawbacks.

Described below are three such deficiencies:

1. A scheaa must be explicitly hypothesized as a subgoal in

order to recognize instances of its stereotype.

A schema 11ay contain heuristic knowledge to guide the

2: ftechanisms for Machine Perception

19

recognition process. In order for this knowledge to become

available, the schema must be hypothesized explicitly as a

subgoal by some higher schema. This forces a reliance on

top-down. goal directed search strategies.

2. An ordering must be assigned to alternative hypotheses.

The top-down recognition model forces the choice of one subgoal

at a time. Furthermore, the mechanism for activating each

alternative subgoal is completely failure driven. Consider a

schema containing a number of alternative subqoals. Which

should be hypothesized first? One particular subgoal must be

chosen as the most likely hypothesis and called. This choice

must be aade on ".blind" expectation before the heuristic

expertise of the subgoal schema is available to help make the

decision. Each subgoal schema may contain heuristic knovledqe

to drive the recognition of its stereotype, yet that guidance is

available only after a committment has been made to the schema

as a subgoal.

3. Identical subgoals must be carried out independently.

A schema may be successful at achieving a number of its

subqoals. If. however, another necessarv subgoal should

subsequently fail. the schema must itself return a failure to

its caller. • Later, the system may re-compute those identical

2: Pfechanisms for Machine Perception

20

subgoals. This behavior has been called !:!n;:~.§h.!J!g (Bobrow &

Raphael, 197fJ).

Minsky (1975), anticipating this third objection, has

proposed a mechanism, first used by Winston (1975), that

attempts to avoid duplication of effort for identical subgoals.

When a schema discovers fro11 observation that it is not

applicable to a given situation, it consults a .§i~llAii!I

n~i!!.2!:k which recommends a replacement candidate. The schema

then attempts to 11ap its correctly completed subgoals into the

expectations of the new candidate schema and then passes control

to it. This mechanism assumes both that a mapping exists

between each failing schema and each next candidate and that the

similarity network is sufficiently complete that relatively few

inexplicable failures occur. such surprises force the system to

rely entirely on automatic backtracking to continue the search.

The above co1111ents are applicable not only to schemata, but

hierarchical hypothesis driven systems in general. Mackvorth

(1977b) has labelled the same phenomenon in vision research "the

chicken and egg proble11". Top-down, hypothesis driven search

heuristically orde.rs the search space by attemptinq more likelv

interpretations before trying less likely ones. However,

heuristic ordering is not in itself sufficient to solve the

recognition problem.

At the other extreme, botto■-up search is driven solely by

evidence discovered fro■ observation. such evidence can be

compared against domain specific knowledge to constrain the

2: Kechanisms for ~acbine Perception

..

21

interpretation.

backtracking is

Since no

not required.

hypotheses need be for11ed,

Unfortunately, bottoni-up search

mechanis•s provide no

expectation of future

are needed vhich allow

overall guidance to

bottom-up, data-driven

guidance either since there is no

experience. For perception, techniques

hypothesis directed search to qive

the recognition process, yet permit

techniques to circumvent the

inefficiencies of the purely top-dovn scheme.

One such approach is the use of multi processing to

integrate top-down and bottom-up search. Kaplan (1973) has

developed a natural language parsing system, GSP, based on a

multiprocessing sche■ e. The systea creates independent

processes to look for each grammatical constituent in a

sentence. GSP employs a priority queue schedulin(J mechanism and

uses a 9_!:amm!tical chart_as a communication mechanism between

processes. The syste■ is very flexible in that it can emulate,

at one extreme, top-dovn recognition such as Woods' (1970)

Augmented Transition Network parser and, at the other extreme,

bottoa-up recognition.

Recently* Bobrow and Winograd (1977), as mentioned earlier.

have reported on the development of a schema-based programming

lanquage supporting ■ultiprocessing called KRL. The lanquaqe is

designed as an integration of procedural and declarative forms

of knowledge with a recognition model based on schema ■ atchinq.

In KRL, schemata are composed of modular entities called

descriptions which may have associated procedures and

2: Mechanisms for ~achine Perception

22

attributes. A description is 11ade up of multiple _g~§£IifilQI§,

each describing the schema• s concept f roa a different vievpoin t.

As in Minsky's frames 11odel, the concept of stereotype and

instance are fundaaental to the representation. Descriptions

are basically intensional representations and may be composed

into higher schemata called !!nlt§. units are intended as a

mechanism for achieving ~edyI.a! ~!~~~h!~nt by associating a

set of descriptions with a set of procedures.

possess a category type which indicates to the

ls well, units

matcher how

operations are to be performed on the descriptions contained in

the unit. This semantic ■arker scheme provides a further level

of specialization for the matching process.

Bobrow and Winograd propose a model of recognition based on

an extended concept of description ■ atchinq. The KRL •atcher is

desiqned to compare two forms syntactically, or at the other

extreme, to drive the overall operation of the recoqnition

process. The matcher uses both the syntax of the descriptors

and domain specific knovledqe encoded as semantic markers and

procedural knowledge attached to units and descriptions. The

model as described is essentiallf hypothesis driven. To avoid

the problems noted with the top-down recognition model, the

authors propose a multiprocessing scheme that provides a process

priority queue vith user-supplied strateqies for schedulinq and

resource allocation.

2: Mechanisms for Machine Perception

23

2.5 Machine Vision

Recent research in machine vision has made a particularly

significant contribution to the development of a theory of

machine perception. The inherent complexity of vision has

forced the confrontation of the problem from two maior

directions. First, machine vision research has expanded our

understanding of the role of domain-specific knowledge in visual

perception. The use of this heuristic knowledge is recoqnized

as being essential to the perceptual process. second, machine

vision has, by necessity, been concerned vith developinq

computational methods suf.ficiently powerful for this research

domain. This second aspect of machine vision is particularly

germane to this thesis and will be examined in this section. A

more comprehensive review of machine vision can be found in

Mackvorth(1977b).

2.5.1 Roberts• Paradigm

The early research efforts of Roberts(1965) established a

paradigm for machine vision which has provided a siqnificant

contribution towards a theory of machine perception. Roberts

used a tvo-pass procedure to recognize scenes of simple

polyhedral objects. The first pass reduced gray-level picture

data to perfect line dravinqs fro which the second procedure

could perform object recognition. The ability of the first

2: ~echanis■ s for Machine Perception

24

procedure to produce perfect line draw inqs from realistic data

without performing higher-level interpretation has been doubted

(Mackvorth, 1977b).

From a perfect line drawing, Roberts• second procedure

attempts to compute a scene interpretation using geoaetrical

models of three prototypical polyhedra, specifically cubes,

wedges, and prisms • . Roberts used the predictive power of these

qeometric models to significantly constrain the search for a

scene interpretation. He noted that the complexity of the

search space could be reduced because the view of a particular

prototypical object in some given picture is topologically

invariant over a relatively wide range of viewpoints. Instead

of searching in the picture domain for lines that belong to some

polyhedron, a model can predict where in the picture to look for

those particular lines. In other words, Roberts exploited the

predictive ability of models to guide the recognition process.

A second contribution of his work is the use of picture

cues to hypothesize particular models. The proqra 11• s models are

invoked by the cliscoYery of specific cues that suggest the

appropriateness of a particular model. once a model is

selected, that aodel directs the remainder of the recoqnition

process by calculating, based on its partial instantiation,

where in the picture to look for the remaininq lines of the

model prototype. If a model is found to be inappropriate, then

the cue discovery process is continued to select another model.

When a model is successful in recognizing a simple polyhedron,

2: Mechanisms for Machine Perception

..

25

that object is "edited out" of the picture and the search for

new cues resumed. This technique provides a crude mechanism for

recognizing complex polyhedra as the composition of the three

simpler polyhedra modelled by · the program. The recognition

model embodied in Roberts' program has been characterized as a

cyclic process of discoverinq cues, activatinq a most likely

hypothesis, attempting to verify that hypothesis, and follovinq

the consequences of a successful hypothesis (l'lackvorth, 1977b).

On success, the recognized si•ple polyhedron is deleted from the

picture and the process iterates.

A third contribution of Roberts• work is that the cue

discovery process is realized as an ordered heuristic procedure.

This procedure depends on the notion of an ~BB!:Q~ed 2ol1gQ~

which is defined as a viev of a polygon face of any cube, wedge,

or prism. The procedure first attempts to find a picture vertex

surrounded by three approved polygons. If unsuccessful, it

attempts to find a line joining two approved polygons. If this

fails, the procedure attempts to find a polygon containinq a

three-line vertex. Otherwise, as a last resort, it looks for a

three-line vertex as a cue.

The very early work of Roberts can now be seen to have made

siqni .ficant steps towards a theory of machine perception.

First, he used geometric models of simple polyhedral objects to

guide the recognition process. Second, he used picture cues as

a mechanism for selecting a relevant model. This bot tom~ up

search mechanisa further constrained the search space by

2: Mechanisms for Machine Perception

26

utili%inq evidence discovered in the picture to select a viable

hypothesis. And third, the process of cue discovery was itself

a recognition task driven by a heuristic procedure.

In light of the present state of the art, Roberts• research

can be criticized for a nu11ber of shortco11ings. nost notably,,

the program uses only a single level of cue discovery. There is

no notion of a hierarchy of cues and models. cues are

completely context-free discoveries that cannot themselves be

the result of recognition. ls well, the process of recognizing

complex scenes is handled via a primitive composition mechanism

which operates, not in the interpreted scene,, but directly in

the picture domain. And lastly, the recognition process is

driven by a single global ■ ethod, the iterative cycle of cue

discovery, model invocation, and model satisfaction. There is

no possibility of using specific heur~stic methods for the

recognition of particular models. A single global method must

suffice for the recognition of all polygon types. Although

Foberts• research can now be easily faulted, it still remains an

amazing first step towards a theory for machine perception.

2.5.2 Guzman's SEE

Guzman's (1968) work diverqed from the paradigm established

by Roberts. Guz■an•s program, called SEE, attempts to partition

regions of line drawings into polyhedral obiects usinq only

local corner junction information. SEE employs a two pass

2: Mechanisms for Machine Perception

· I

27

method. In the first pass, relational "connectedness" links are

placed between adjacent regions as a function of the picture

junction types that the tvo regions share. In order to cope

with the inherent ambiguity of picture junctions, Guzman used a

number of complicated inhibition rules to temper the link

placing process.

The second pass attempts to compute the transitive closure

"-··
of regions sharing two or more links while again usinq

inhibition rules to moderate the process. The simple method of

this second pass depends critically o.n the "tuned" performance

of both its inhibition rules and the rules of the first pass.

The first pass must create enough links so that a complete seen~

labelling can be obtained; the second pass aethod must then

close enough regions so that a unique unambiguous interpretation

results. Both methods, however, must be conservative enouqh to

prevent the joining of separable objects to each other or the

background. Guzman claimed that SEE performed recognition

without the use of models, a divergence from the earlier

paradigm of Roberts. Yet, as Mackvort .h (1 977b) points out, the

model-specific knowledge represented in Roberts• cue recognition

procedure is hidden by Gu~ ■an implicitly in the complicated ~4

h2£ inhibition rules.

2: "ecbanisms for Machine Perception

28

2.5.3 Huffman and Cloves

Huffaan (1971) and Cloves (1971) later independently

generalized the work of Guz■ an to use junction shapes appearing

in the picture as cues for their interpretation as corners in

the scene. By differentiating between the . picture doaain and

the scene domain, both Huffman and Cloves reasoned that each

picture 1unction can have only a few valid corner

interpretations in scenes containing real three-dimensional

polyhedral objects. such physical constraints were seen to be

unary predicates on the vay a particular junction type can be

labelled. As vell, each such junction is further constrained by

a binary relation along the picture edges it shares with other

1unctions. An edge must have the same scene labelling at both

of the junctions defining its ends.

Cloves and Huff 11an significantly extended our knowledge of

recognition mechanisms suitable for machine vision. Unlike

Gu2man, they refrained fro■ trying to perform recognition in the

picture domain using only local .knowledge about junction type.

Instead. they used picture junctions as cues to invoke parallel

unary and binary constraints in the scene domain. They then

satisfied the resulting systea of simultaneous constraints by

employing. in one case, a depth-first search and in the other, a

breadth-first search.

Unfortunately. like their predecessor, both men neglected

the virtues of using explicit object models to guide the

2: Mechanisms for Machine Perception

29

recognition process. Instead, their models are effectively

compiled into the sets of possible corner interpretations. As

well, Huffman and Cloves used only primitive cues, the picture

junction types given in the input data. cue discovery is a

trivial computation independent of the semantics of the

particular scene being interpreted. In other words, cues cannot

be recursively the result of the recognition process.

Consequently, this recognition mechanism makes use neither of a

hierarchy of object models, nor of a hierarchy of cues

associated vith those aodels.

2.5.4 Waltz's Algorithm

The scene analysis program of Waltz (1972) elaborated

further the techniques developed by Guzman, Huffman, and Cloves.

Waltz extended their approach in two important directions.

First, he incorporated aore knowledge specific to the visual

world of toy blocks by expandinq the set of junction labels

nsed. The new set of labels included knowledqe about crack

edges between adjacent blocks and a crude representation of

shadows. Such an expanded label set created a huqe number of

possible corner labellings for each junction type, thereby

increasing considerably the complexity of the search space.

Waltz,. however, .noticed that after applyinq to each junction

type the unary constraint of what corner inte.rpretations could

appear in the "real vorld 0 , the remaining set of valid labels

2: "ecbanisms for ~achine Perception

30

was much reduced. , Adding more diaensions to the labelling of

polyhedron junctions increased the richness of the domains

semantics without exponentially increasing the complexity of the

search space.

second, in order to cope with the expanded set of labels,

waltz developed a junction filtering algoritha to further

constrain the search space before atte■pting a depth-first or

breadth-first search for a global scene inter pre ta tion. This

filterinq algorith• is based on the notion of a consistency

condition, "C", which holds true if, for every label assigned to

a particular junction, there is either a matching label

assign11.ent at each labelled, neighbouring junction, or that

junction has not yet been labelled.

The filtering algorithm operates by tourinq the set of

picture jonctions once in some arbitrary order. At each

junction, the algorithm first attaches a list of all corner

interpretations which satisfy the unary predicates for that

junction type. Waltz noted that such lists were static and

could be compiled once for each junction type. Next, the corner

interpretations of each nevly labelled junction are "pruned"

aqainst the label sets of each neighbouring junction sharing an

edqe with this junction such that condition ncn holds. That is,

any corner interpretation of the new junction havinq an edqe

label that does not 11atch an edqe label of each already la belled

neighbouring junction, is deleted. Then, in a spreading

breadth-first search, each neighbouring iunction prunes its

2: Mechanisms for Machine Perception

31

label set against this junction and each of its neighbours do

likewise until, once again, condition 11 C" holds throuqhout the

network • . , The siqnif icance of this algorit h• is that it requires

only a single pass through the set of picture junctions. When

it terminates, all inconsistent corner interpretations have been

eliminated. Often, the algorithm yields a sinqle labellinq for

each junction, thereby negating the need for a subsequent scene

interpretation search.

Walt'Z both extended the use in machine vision of domain

specific knowledge and introduced the use of constraint

propagation techniques to the field. He demonstrated that bv

incorporating enough semantic information about a "blocks vorld"

scene, an over-constrained network representation can be

constructed vhich through the use of constraint propagation

techniques can quickly yield a unique interpretation.

Prom the present perspective of developinq a computational

model of recognitio.n for perception, Waltz can be criticized for

the same deficiencies as his predecessors. His proqraa makes no

explicit use of models of the polyhedra it recognizes. Instead,

it relies on the i■plicit knowledge of polyhedra embedded in the

junction labels. Likewise, the cue discovery process is

completely a context-free process. cues are, in fact, primitive

entities, the picture junctions given in the input data. Their

disco•ery can be neither a function of the partial knowledge so

far known about a particular scene, nor can they be complex

abstract entities coaputed recursively as the result of

2: Mechanisms for Machine Perception

3.2

recoqni tion.

2.5.5 Kackworth•s ftAPSEB

The constraint satisfaction techniques developed by Waltz

and others have been recently generalized by "ackworth (1975,

1977a) to a class of n~!!QI! ~QJ§i§!~D£I algQ[i!h~~. ThesE are

shown to be more efficient search aethods than autoaatic

backtracking for search tasks vhich ~an be formulated as n-arv

constraint satisfaction probleas. Network consistency forms the

basis of a recognition aodel for machine perception which

applies general constraint satisfaction algorithms to networks

of simultaneous constraints.

Kackvorth (1977a) has recently used network consistency

techniques for the interpretation of freehand sketch 11aps. The

proqram, called Mapsee, interprets a hand-drawn map of an island

according to the conventional semantics of cartography. The

program begins by performing a very conservative partial reqion

segmentation of the input sketch to yield a set of primary cues

based on simple picture features. Cues are features derived

from the sketch such as acute angles, point clusters, free-ends

of lines, and junction types. These cues are then used to

invoke primary models that proYide partial interpretations of

the map in the locale of the cue. Note that the interpretation

provided by a model ■ ay be initially highly ambiguous. However,

each model establishes constraining relationships with its

2: "echanisms for Kachine Perception

33

geographic neighbours according to the cartographic semantics.

The resulting network can be visuali2ed as a h yper-qrapb vhose

nodes are pictorial objects (regions and chains of lines) and

whose n-ary arcs are constraining relations derived fro ■ the

models.

ftapsee then applies a network consistency algorithm to the

network that progressively eliminates inconsistent

interpretations for the various cartographic features

represented by the ■ odels. If the conventional semantics of the

models chosen is rich enough, and if a qi ven sketch map is

explicit in its representation, the resulting syste■ is over

constrained and the algorithm may converge to a single possible

interpre ta ti on.

ftapsee de■onstrates first that cue/model driven recognition

can be coabined with network consistency search techniques and

that these aethods may be applied to perception task doaains

outside the "blocks world". Second, Mapsee defines a cyclic

recognition model .for machine perception. Mack worth (1977b) has

noted that picture segmentation requires scene interpretation

and conversely that interpretation requires segmentation. Be

calls this phenomenon "the chicken and eqq problem" for machine

perception • . ftapsee•s initial conservative picture segmentation,

alt hough inadequate for a global interpretation, yields enouqh

primary cues to invoke appropriate models. The subsequent

constraint satisfaction a mong these aodels provides an initial

interpretation vhich can then be used to guide a more

2: ~echanisms for Machine Perception

34

context-sensitive re-segmentation. This process may be iterated

until a complete interpretation is obtained. Third, network

consistency alqorithas provide a uniform syntactic control

structure for searching declarative network representations.

Consistency algorithms tend to converge towards a unique

interpretation by focusing on those nodes in the network ~hich

remain the most ambiguous.

Each cycle in Mapsee•s recognition process computes a new

approximate scene interpretation that is nsed to drive a

context-sensitive re-segmentation, thereby yielding semanticallY'

richer cues for the next cycle. This iterative mechanism is

seen as a means of "bootstrapping" into an interpretation

thereby avoiding the "chicken and egg problem". However, since

Mapsee utilizes non-hierarchical descriptive models, cues must

still be primitive features detected by the re-segmentation.

They cannot be ■ore complex entities recoqnized. during the scene

intepretation as part of a hierarchY' of cues and models.

Network consistency techniques encourage the use of purely

declarative knowledge representations and exhibit the familiar

benefits and limitations of that representation (Winograd,

1975). Since models are realized as sets of constraining

relationships a ■ ong other models, network consistency is a very

modular comfutational paradigm. Bew constraints and new models

can easily be incrementally added and deleted froa the network.

As well, since all of the do11ain specific knowledge is embodied

in the declarative ■ odels, the system is portable. It can be

2: Mechanisms for Kachine Perception

·I

35

easily applied to other recognition tasks which exhibit a

semantics expressable as a system of mutual simultaneous

constraints. On the other han4, the divorce of the declarative

models from the procedures used to search the network structure

forces the use of a single global syntactic search method, the

network consistency algorithm. No domain-specific knowledge

such as heuristic search methods associated with particular

models is possible. ~ackvorth (1977c) has noted the limitations

of a uniform search method for non-hierarchical descriptive

models and has advocated "exploring control strategies for

schema-based theories of perception".

2.5.6 Preuder•s SEER

Preuder (1976) has recently developea a recoqnition model

for schema-based representations that is primarily concerned

with the specification of control structures for machine

perception. His program, SEER, recognizes a scene of a common

machinist's hammer represented as gray-lavel video data.

Freuder argues that most recognition schemes employ control

algorithms which do not rely on computed partial results or the

semantics o.f the scene being perceived. To the contrar,, SEER

employs the discoYery of partial hammer components combined with

general knowledge about ham11ers to guide the recognition

process.

In SEER, knowledge is represented in two forms of

2: Pl echanisms for l!ach ine Perception

36

hierarchical semantic network structures. General knovledqe

about hammers is represented in schema stru=tures called g_i

networks, whereas knowledge specific to a particular ha■ aer

instance is represented in a schema instance called a fl

network. The nodes of a GK network represent items of visual

knowledge about haaaers, such as handles and heads. The links

between these nodes represent hov these items aay establish each

other's recognition. On the other hand, a PK network represents

a partially instantiated instance of a GK concept and inherits

its structure and procedures.

Both the GK and PK net vorks fora tree data structures. At

the leaves of each PK tree are procedures which search for

instances of the specific GK concept. The leaves of a

particular PK tree structure represent the state of the

procedural methods concerned with the recognition of that schema

instance.

In Freuder•s model, recognition proceeds using both

top-dovn and botto■-up search within a PK structure. When a new

feature is discovered, it is used as bottom-up evidence for the

hypothesis of higher £S!njec1Y[.!§ of which the feature may be

part. A nev PK structure is created to represent this nev

possible relationship. As vell, the creation of nev conjectures

permits the top-dovn !lll?l2!:lli2!1 of their subqoals thereby

resulting in the creation of subordinate conjectures.

Since a nuaber of conjectures can be active simultaneously,

the control structure question centers about which conjecture to

2: Mechanisms for Machine Perception

31

explore next. The aechanisa used in SEER is the familiar

priority-queue au.ltiprocessing scheme. Coniectures are assigned

a priority vhen placed on the queue and their priority ■ ay be

changed during the recognition process. A global monitor then

selects the highest priority conjecture and attempts to confirm

it by activating one of its procedural aethods.

The recognition model defined by SEER follows a cyclic

process. A conjecture chosen by the scheduler is explored. If

the conjectu·re is achieved, it may then be ~!1212.i!~.!! resultinq

in the hypothesis of suggested higher coniectures as new PK

structures. These nev schemata are added to the priority queue

and the process is repeated.

Preuder•s work has focused attention on an iaportant aspect

of machine perception, the control of the processor durinq the

search process. Re has combined the use of a scheaa-based

representation with a hierarchy of cue invoked models. As well,

he defines a priority queue multiprocessing scheae to integrate

top-down and botto•-up search using multiple actiYe hvpotheses.

SEER realizes top-down search by simulating the exploration of

conjectures as subgoals and realizes bottom-up search by

exploiting the consequences of successfully recoqnized

con j,ect ures.

As vas pointed out for KRL, the use of aultiprocessinq to

si■ulate parallel search suffers fro ■ a number of

It is a syntactic, non-deterministic method

parallel execution, and is inept at realizing

deficiencies.

of simulating

intelligently

2: Nechanis■s for ftachine Perception

38

guided parallel search. The requirement that some procedure

compute a priority for a new process manifests the "chicken and

egg problem" in two significant vays. First, it assuaes that a

procedure can assign a global priority to a process beinq placed

on the priority gueue based only on in.formation local to that

procedure. And, aore importantly, this aethod requires that a

priority be assigned to a process h~fQ!:~ information is

discovered in the scene to help decide which processes to run.

The procedure that picks a priority for a process is, in effect,

computing a non-deterministic scheduling of processes. This

computation must be made before the information required to make

this decision has been discovered. This aachanism operates

essentially backwards. A mechanism is needed for simulating

parallel search that schedules processes semantically by

utilizing the discovery of particular cues durinq the

recognition process to schedule those pro=esses which can

exploit the existence of those very cues.

2: Mechanisms for ~achine Perception

39

3. 1 Introduction

This chapter presents the development of a procedural model

of recognition for schema-based representations. The model is

11otivated by both the characterization of perception outlined in

the first chapter and the current methodology of machine

perception examined in the second chapter. First, an informal

overview of the model vill be given in oraer to hiqhliqht a

number of its aspects. Then in the remainder of the chapter,

techniques for realizing the model as a computational mechanism

will be discussed in detail.

3.2 "odel Overview

A theory of

first chapter as

knovledqe and a

machine pecception was characterized in the

having both a formalism for representing

set of search ■ echanisms for performinq

recognition on that representation.

3: A Procedural "odel

lJO

3.2.1 Schemata

In this model, knowledge is represented as schemata. A

schema is a modular representation of ever.,thinq known about

some concept, object, event, or situation. That knowledge is

manifest in three for■s. First, each schema contains factual

knowledge about the concept that the schema represents. Such

facts form a description of the concept and may be represented

declaratively, procedurally, or as some combination of data and

attached procedures. .. Second, each schema may contain procedural

heuristic knowledge to quide the search process for the schema's

concept. And third, schemata form relations vi th other schema ta

thereby creating hierarchical network structures. This allows

coaq>lex concepts to be represented by coaposition as networks of

schemata and provides an encyclopedic retrieval mechanism

analogous to that of semantic networks (Quillian,1968).

For eraaple, Figure 3.1 illustrates a schema for a

hypothetical vision system. The notation employed is similar to

that used by Bobrow and Winograd (i977). This sche11a represents

a stereotypical bicycle and consists of a set of named relations

or §!Q1§ (!insky. 1975), each containing either a primitive

value (often a nam~, a pointer to another schema, or an

expectation indicating what type of information may be used to

.fil 1 the slot. Vhen the bicycle stereotype is used to represent

an .instance of a particular bicycle, the stereotype schema is

copied to create a schema instance and its slots, initially

3: A Procedural Nodel

41

-------------------------------- -,
I
I MARE: BICYCLE ' J

' ' I .FRONT-WHEEL: (A WHEEL DilftETER = (RANGE 19 27)
WITH (A TIRE WIDTH = BARROW)
TYPE = SPOKED

I
I
I

REAR-WHEEL: (l WHEEL

CONNECT (AND f'H.lftE CR AHK SET)
(TD-f!ETHOD FIND-BI KE-WHEEL)
(BU-ftETHOD FOUND-BIKE-WHEEL))

DIAftETEB = (RANGE 1.9 27)

WITH (l TIRE WIDTH= NARROW)
TYPE = SPOKED
CONNECT (AND PRAftE CRANKSET)

(TO-llfETHOD :PUID-BIKE-W HEEL)
(BO-NETHOD FOUND-BIKE-WHEEL)) 1

I
FRA!E: (l PRlftE TYPE= DOUBLE-DilKOND I

(TD-KETHOD PIND-8.IKE-P'RAPIE) I
(BU-!ETKOD POUND-BIKE-FRAME)) I

' CBANKSET: (A PIECHAHIS! TYPE= CHAIN-DRIVE I
lfIT H (A PEDAL-CRANK) I
MAY-HAVE (l MECHANISM I

Tf PE =DERAILLEUR) I
(TD-METHOD PIND-CRANKSET)) I

I
STEERING-SET: (A KECHANIS" TYPE= STEERING-FORK I

WITH (A HANDLE-BAR) I
(TD-!ETHOD PI ND-STEERING-SET)) I

I
ISA: VEHICLE t

I
INSTANCES: NIL I

L--------

Figure 3.1: Bicycle Schema

3: A Procedural ~odel

42

containing expectations, are replaced systematically by

information specific to the bicycle as it is discovered.

This stereotype bicycle scheaa illu st.rates a nu■ ber of

features of the recognition aodel. The first slot of the sche ■a

specifies that the name o.f the schema is BICYCLE. Bf naminq

each stereotype sche ■a, it can be referred to either by a

pointer or by simply using its name.

The next fiye slots in the schema represent composition

knowledge about bicycles. A bicycle is composed of a front

wheel, a rear wheel, a double-diamond frame, a power

transmission mechanism called a crankset, and a steering fork

mechanism called a steering-set. For perception, the

composition relations in a stereotype schema define those

structural and functional aspects of the concept that can be

used to recognize instances of that concept. l bicycle is

recognized by the discovery of its compo.nent parts composed in a

wav that represents the gestalt o.f a bicycle.

3.2.2 Schema Hierarchies

Schemata fora hierarchical networks in two significant

ways. Complex stereotypical concepts are represented by

schemata which are a composition of other concepts represented

by sub-schemata • . The resulting hierarchical structure is called

a £OmEQSi!i2n hieU££h~• This static hierarchy represents the

composition of all possible instances of the class.

3: A Procedural Model

r

43

Figure 3.2 shows a co ■position hierarchy for the

stereotypical bicycle schema. Bicycles are composed of wheels,

a frame, and various mechanical mechanisms. Each of these

qeneric coaponents form a stereotypical class of objects

represented by a stereotype schema. In turn, each of the these

stereotypes is composed of its own generic components

represented by stereotype sub-scheaata. , Por instance, the WHEEL

schema represents the class o.f all wheels. Each wheel instance

vill be composed of a tire, rim, and central hub assembly. A

particular wheel vill be represented by a specific tire instance

of a particular type and by specific instances of the stereotype

rim and hub schemas as well.

Figure 3.2 also illustrates the inclusion in the model of

an !~~~I~~ co■Eosition relatiQ!l between sche ■ata. For each

stereotype schema having a composition relation vith one or more

sub-schemata, each of these sub-schemata have an inverse

relation with that schema. ; This relation is usually called the

"part-of" relation and is essential to performing bottom-up

search within the sche■ata network.

Scheaata form hierarchi,es in a second vay. Each schema

represents a stereotypical concept that may h~ve many partially

specified instances. , These instances may themselves function as
,

stereotype scbeaata each having a number of more fully specified

instances. , In this manner, sche ata fora i!Hai!n~~ hiit~£hi~§.

At the top of an instance hierarchy is a schema representinq an

uninstantiated qeneric concept. Each of its sub- schema ta

3: A Procedural Model

44

CCfflfOSition .

Figure 3.2: Bicycle Ccmposition Hierarchy

3: A Procedural Model

instances represent partially specified occurrences of that

concept. Each of the descendants of these instances, in turn,

represents ■ore fully specified instances until, at the bottom

of the resulting tree structure, completely specified instances

beco.me leaves of the tree. Instance hierarchies are also

referred to as "ISA" hierarchies (Pahlman, 1975).

At each interior node in an instance hierarchy, the

partially instantiated schema represents a non-deterministic

description of a smaller class of concepts than its parent

stereotype a level above • . Schemata near the top of the instance

hierarchy represent large classes of possible instances,

whereas, sche•ata nearer the bottom represent smaller, more

fully specified classes of concepts.

In the bicycle schema, the last two slots of the schema

establish an instance hierarchy • . Since bicycles are instances

o.f the more general concept of vehicle, the ISA relation

indicates that this schema is an instance of another stereotype,

the VEHICLE schema. In this example, the bicycle sche•a has, as

yet, no instances of its own, as indicated by the BIL value for

the INSTANCES relation.

These two hierarchies serve di .fferent purposes.

Composition hierarchies are static data structures that

facilitate representing coaplex conceptual objects. The

creation of a particular bicycle instance uses the bicvcle

composition hierarchy as a template fro■ which to construct the

schema instance. E~ch occurrence of an expectation for a frame,

3: A Procedural Model

46

mechanism. or wheel in the bicycle stereotype will be replaced

by an instance (perhaps only partially specified) of that

stereotype.

In contrast. instance

structures that proYide a

hierarchies are dynamic data

primary associative retrieval

mechanism upon which to base search over the schemata network.

These hierarchies are viewed as taxonomies of concepts. Each

node in an instance hierarchy is a stereotype schema that

maintains an index of all its instances. Por small data-hases,

the schema's index can be a simple list of all its instances.

For larger networks, each schema maintains an index of its

sub-instances based on observable and recognizable cues. The

instance hierarchy then becomes an inverted index structure for

performing associative retrieval in the network. Analogous

syn tactic mechanisms include EPUt (Feiqen baua, 196.3 l and the

associative retrieval of patterns in most artificial

int.elliqence programming languages (Bobrow 6 Raphael, 1971').

Patterns are indexed in a tree structured database by common

patter.n elements. A similar se■antic mechanism is found in the

Linnaean botanical taxonomy vhere. for instance, plant life is

organized into a hierarchical database indexed bV easil v

perceived cues. The cues used are physical observable

properties of each class of plant life. The choice of cues is

not made fro• ~ ~i~ll considerations, but for convenience.

cues are recognizable features of each class that are easily

observed and can function as reliable discriminators.

3: A Procedural nodel

47

In this recognition aodel, instance hierarchies are indexed

by cues that are easily recognized features of a stereotype

class. Por example, consider an instance hierarchy for the

wheel scheaa. The stereotype wheel sche11a represents the class

of all wheels including all partially and fully specified

instances. Pora small nuaber of wheel instances, the databa~e

can be organized as a siaple list of instances bound to a

variable in the wheel stereotype. The advantage of this

scheae•s simplicity is balanced by the necessity of searchinq

the list sequentially to find a particular vhee 1 instance. such

a blind search makes no use of any observable features of the

desired instance used as cues.

For larger databases, the inverted ind.ex structure is

advantageous • . Pigure 3.3 illustrates an associative database

for the vheel instance hierarchy using this scheme. Indices of

the hierarchy are chosen to be readily observable features of

wheels that can effectively discriminate among various classes

of wheels • . · In this example, three different obserYable features

of wheels are used.

the choice of

Neither the structore of the hierarchy nor

indexed features is ■ade from 5l J!!:iQ~i

considerations. The choice of both structure and index is

arbitrarily based on the ability to discri11inate a■ong va.rious

wheels using such available information as the type of the

observed vbeel•s rim, the width of its tire, and its dia ■ eter.

Each of these features, as in the Linnaean taxonomy, is a cue

recognizable during the perception process.

3: A Procedural ftodel

narrow
tire

spoked
rim

instances instances

so-lid
rim

instances

Figure 3.3: Indexed Instance Hierarchy

> 13"
diam
tire

instances

48

3: A Procedural ~odel

3.2.3 Recognizers

Perception is not a passive reflection of sensat.ion but an

active process aotivated by plans, expectations, and desires

(Bartlett, 1932). Perception is a recognition task that

composes a description of a perceived concept from a sequence of

external observations of the world. This concept is represented

as a schema instance vh.ich is composed of relationships aaonq

other more priai ti ve concepts.

In this model, each stereotype schema is considered to be

an active !:~£,ognJ..!er for its stereotypical concept, an

individual recognizer in a system of such recognizers. Every

schema contains the active knovledqe necessary to quide the

recognition process for its concept from sensory observations.

Such active heuristic knowledge is called a M~h_gg. Methods are

procedures specifically tailored for the recognition of their

associated schemata. ftethods allow the exploitation of domain

specific search techniques. Instead of relying on general

search methods to conduct the search for every sche ■a in the

system, specific methods can be associated with particular

schemata to exploit special tech.niques that are particularly

effective for that schema.

The expectations associated with stereotype schemata play

an i111?ortant role in the recoqnition process. They are d yna111ic

properties of each scheaa that change as the uninstantiated

instance proceeds towards beinq fully specified. At each point

J: A Procedural ~odel

50

in the process, the scheaa•s expectations represent what

additional information is required t.o collplete its recognition.

From a different perspective, they represent the schema's

knowledge of the vorld: what it expects to occur next or be

found next from observation. Expectations embody the notion of

a plan or script (Schank & Abelson, 1975).

Expectations may be represented by simple default values to

be replaced b_y observed values when they are discovered, or they

may be represented by complex patterns with attached procedural

methods. These attached methods use both top-dovn and bottom-up

search mechanisms. Top-dovn methods are designed to search for

information to satisfy the requirements of its expectation.

Bottom-up ■et.hods are designed to continue the recognition of

their schemata based on satisfaction of their associated

expectations. The notions of these tvo different types of

procedural methods are similar to the characterization of

servants and De11ons proposed by Bobrow and Winog.rad (1977).

In the bicycle schema of Piqure 3.1, expectations are

represented as declarative specifications of the type of schema

instances which aay replace the expectation in the slot. Each

of these expectations has either or both a top-down method and

bottom-up 11ethod associated with it. Po.r example, both the

front and rear wheel slots of the bicycle schema contain

expectations that specify a spoked vheel 11ith a narrow tire

having a diameter between 19 and 27 inches. Attached to these

expectations are specific methods tailored for the recognition

3: A Procedural Model

51

of bicycle vheels. Two different methods are specified. One

method, FIND-BIKE-WHEEL, is a hypothesis-driYen procedure which

can be called upon to atteapt top-down search to fill the wheel

slot. The second aethod, called FOUN D-BIKE-WHE!L, is a

{>rocedure for performing bottom-up search. It vill be invoked

when a wheel ■atchinq the specified expectations for a bicycle

wheel has been recoqnized. Its function is to first replace the

expectation in the wheel slot with the nev recognized vbeel

instance, then to continue the recognition process for the

bicycle utilizing the knowledqe gained by the discovery of the

new vheel.

3.2.4 Non-Deterainism

Unfortunately, perception is not a deterministic process.

Perception requires the search of a knowledge base to assign an

interpretation to sensory input. P'or larqe knovledqe bases.

this search cannot be a simple top-dovn goal-directed process.

our knowledge of the world is far too co■plex to rely solely on

qoal-directed search mechanisms. Neither can the search be a

completely bottom-up process driven by observation. Sensory

data is too ambiguous to permit a reliance on purely data-driven

mechanisms. Machine perception ■ ost utilize an integration of

both goal-directed and data-driven search. Bobrov and Norman

(1975) have called these two modes, conceptually-driven and

data-driven. Goal-directed or conceptually-driven search

3: l Procedural Model

52

provides active guidance based on doaain-specific knovledq• of

the hypothesis being attempted, vhereas data-driven search

utilizes the observation of cues to intelligently select likely

hypotheses.

In this recognition

hypothesis-driYen and

model, schemata mav

data-driven methods to

employ

perform

both

the

recognition process. Hypothesis-driven recognition involves a

top-down search of a composition hierarchy. Schemata attempt to

recognize instances of their stereotypes by maki.nq observations

from sensory input and by recursively calling on the effo.rts of

their sub-schemata as subgoals.

In order to recognize a bicycle usi nq top-down search, the

bicycle schema attempts to look for sub-schemata instances that

satisfy its expectations. To do .so it will invoke its own

t.op-down methods asssociated vith each of its expectations in

some likely order. Each of these methods vill t .hen atteapt to

recognize suitable sub-schemata by calling on the methods of

those schemata as subgoals.

To realize bottom-up, data-driven search in schemata

networks requires that multiple hypotheses be allowed to exist

simultaneously. Since the recognition of the sche■ata

representing these hypotheses are conducted by procedural

methods, these methods must be allowed to apply their heuristic

techniques concurrently. In bottom-up search, therefore,

methods are realized as concurrent processes. In this model, a

multi-processing mechanism for simulating concurrent methods is

3: A Procedural Model

53

A

particular aethod, realized as a process, applies its heuristic

techniques to the recognition of its schema's stereotype until

one or more of the schema's expectations prove difficult to

achieYe. The aethod ■ay then saspend its execution by creating

new expectations for the scheaa that describe its unrealized

objectives. It re■ains attached to these new expectations until

such time as more evidence is discovered matching those

expectations and supporting the renewed probability of the

schema's success. ,

When such matching eYidence is discovered, the suspended

method is resumed. Methods iterate throuqh a cycle of ~einq

resumed by the discovery of matching evidence, ·then computing a

new set of expectati~ns about their evolving schema instancesr

and then suspending theaselves and possibly other methods to

those expectations. , Since multiple methods 11ay be attached to

multiple expectatio.ns, these e.xpectations represent diverse

possible direct ions for a schema• s script. The choice of search

path is not made by blind hypothesis but is data-drivenr chosen

by the discovery of evidence aatching a particular expectation.

The metho~ associated vith that expectation is then activated to

continae its scheaa•s recognition. A branch in the schema's

non-deterministic script has been taken.

'In the following situation, for example r a wheel i .nstance

bas been recognized in the input scene. Its features match the

expectations of either the front or rear wheel slots of the

3: A Procedural Model

54

bicycle schema. Both of the bottom-up aethods associated vith

these expectations may be actiYated • . We assume that the front

wheel's expectation is matched first and its method in~oked.

This botto■-up method vill e•ploit the fact that a front wheel

has been discovered to guide the search for other parts of the

bicycle. Since the .front wheel has a CONNECT relation vith the

steering-set, the 11ethod looks in the neighborhood of its known

wheel in the input scene for the remainder of the bicycle. Such

an application of co1111on-sense knowledge is realized as a

bottom-up procedural method associated with a particular schema.

Por this exa■ple, we assume that this bottom-up aethod does

not easilf discover significant information in the vicinity of

the known wheel instance. Instead of re taininq control

wastefully, it computes a nev set of expectations for the

bicycle based on that infor11ation which it has discerned.

Typical of the expectations which 11iqht be included. is the

discovery of a steering-set that must be connected to the

specific wheel instance. Its orientation must be above the

wheel in the scene, as is normally the case for bicycles. These

expectations will act as constraining information on the search

for new bicycle coaponents.

The method sospends itself and possibly other methods, as

well, to these new expectations. If evidence aatching one of

these expectations is discovered, its suspended method is

resumed to continue its techniques using the new information.

3: A Procedural Model

,.

55

3. 2. 5 Recursion

Perception is also a recursive process. The recognition of

some concept may be used recursively as an internal cue in the

perception of ■ore abstract concepts. In th is !lOdel, cues can

be primitive features of the external world or they can be

abstract internal features represented as schema instances.

when a method satisfies all its schema's expectations for a

fully specified concept, that instance becomes an internal hiqh

level cue. By allowing cues to be arbitrarily complex concepts,

a mechanism is realized for avoidinq the "chicken and eqq

problem" for schemata (Havens, 1976). startinq at the sensory

data level, primitive cues present in the input can be used to

drive the hypothesis and recognition of lov-level concepts.

These features then behave as higher level cues stimulatinq the

hypothesis of ■ore abstract interpretations. This bottom-up

recognition mechanism depends on the existence of the inverse

composition relations (Part-of) in the schemata network. When a

concept has been recognized, the completed instance uses its

knowledge of what higher scheaata in any co■ position hierarchies

it might plausibly be part of. Attempts are then made to match

the expectations of those schemata.

In this model, primitive cues are discovered from features

extracted from the input i•age using context-free cue discovery

methods. In the vision do main, such techniques include reqion

segmentation and line-finding algorithms. The primitive cues

3: A Procedural Model

are matched against

thereby activating

these methods then

hypothesis. When

56

the expectations of low-level scheaata

their attached bottom-up methods. Each of

attea pts to confirm its own schema's

one or more of these methods succeed, the

recognized schema instance becomes a higher-le•el cue usinq its

inverse composition knovledqe to attempt to match the

expectations of higher schemata of which it may be part. This

recursive process is seen to be a bottom-up recognition model

for schemata driven by both primitive context-free cues and

abstract context-sensitive cues recognized recursively.

To illustrate, when a wheel is found in the scene, its

discovery becomes an abstract cue in the higher hypothesis of

the bicycle schema. The fact that its ~ecoqnized features, such

as type and size, match the bicycle• s expectations indicates

that the bicycle is a likely hypothesis and that its methods

should be invoked. This is characterized as a matching process

between cue and expectation. Then, if the bicycle schema is

eventually successful in recognizing a bicycle instance, that

instance will beco■e a higher cue in the recognition process,

perhaps, in this example, hypothesizing a class of scenes

containing bicycles.

3.3 Earley•s Algorithm

In an attempt to develop computational aechanisms for

realizing this model, the author investiga~ed the formal

3: A Procedural Model

57

recognition models used in parsing theory. The context-free

parsing domain ca.n be viewed as a hiqbly restricted subset of

the perceptual domain. , Context-free parsing is a recognition

tast that assigns an interpretation to an input sentence based

on a hierarchical knowledge base, that is, a context-free

phrase-structure gramraa.r. . The interpretation is inherently a

recursive process for which both top-down and bottom-up

recoqnition algori th■ s have been developed exhibiting well

understood properties. In particular, the bottom-up parsin~

algorithm of Earley (1972) has some interesting properties from

the perspective of ■achine perception. Rarley•s algorithm is an

efficient bottom-up recognizer that can operate directly from

any non-left-recursive context-free grammar. The algorithm is

quite elegant • . It can operate in ti■e order n3 and space order

n2 where n is the lenqth of the input sentence. Morever, it

does not require backtracking to handle non-deter■ inism.

Appendix-A provides a for mal presentation of the algoritha.

In studying his algorithm, not as a parser, but as a

bookkeeping scheae for the si ■ulation of •ultiple bottom-up

processes simultaneously operating on the same input sentence,

it vas noticed that the algorithm dynamically inTerts certain

portions of a hierarchy (the grammar) based on a selection

function (the input sentence). The algorithm operates from a

context-free grammar and a set of valid parsers. Each parser

attempts to recognize a coaplete sentential form derived from

the right-hand-side of a particular rule in the qramaar.

3: A Procedural Model

58

Initially, the set contains only a single parser which '' attempts

to recognize a sentential form derived .fro11 the start symbol of

the qrammar. Such a derivation will he, of co~rse, a complete

sentence in the language. If a non-terminal symbol may appear

next in the derivation of any parser, new parsers are created

for every rule in the gram■ar having that non-terminal as its

left-hand-side. This function is called g[~gi£!i2D in the

alqorit h111.

The algorithm proceeds by scanning in a left-to-right order

each symbol in the input sentence. If the observed symbol can

be a valid next terminal symbol in the sentential forms of any

of the active parsers in the current parse list, then those

parsers are propagated into the next parse list. All other

parsers are deleted • . The algorithm scans the input once. It

hypothesizes new parsers by prediction froa the grammar vhen

their rule can appear next in the derivation. Old parsers vhich

cannot derive so■e portion of the input sentence to the current

position are then destroyed.

Earley•s algoritha exhibits some interesting properties

fro ■ the standpoint of a model of recoqnition for computer

perception.

bottom-up

hierarchy.

The algoritha provides a mechanism for impleaentinq

searc.h yet operates directly from a top-do vn

Portions of the hierarchy are dynamically inverted,

selectively, depending on vha t te.rminal symbols are observed in

the input and vhat .non-terminal symbols are recoqnized

recursively from the input. '1'hese are appealing attributes

3: A Procedural "odel

59

since schema syste■s are organized as top-down hierarchies and

it is desired to drive the bottom-up recoqnition process by the

discovery of both primitive and recognized cues.

As a bookkeeping scheme, Earley•s algorithm is applicable

not only to parsing but also to multiprocessing in general. 1'he

algorith■ systematically simulates aaltiple co-existent parsinq

processes operating froa the saae hierarchy and on the same

input. As well, it provides a scheduling mechanism based, not

on e■ulatinq parallel search, but on co.ncurrent deduction.

Parsers remain suspended until such time as the terminal or

non-terainal symbol for which they are looking is discovered.

Then, each such matched parser is resumed to co.ntin ue its

recognition.

The algorithm

efficiently. When

also handles non-determinism naturally and

a terminal symbol is scanned or a

non-terminal syabol is recognized, the algorithm propaqates into

the next parse list every suspended parser that vas expectinq

that constituent. All others are deleted. No backtrackinq is

required. Co.nstituents need be found onlT once in the input and

invalid interpretations are deleted as soon as possible.

Although t .he above properties are desirable, there are a

number of problems with adapting Earley•s alqorithm as a search

mechanisa for the general and more complex domain of perception.

"inker (1973) has considered and re1ected its use as a problem

space representation. Woods (1974) has favorably coapared its

abilities vith those of his augmented transition network

3: A Procedural ~odel

60

parsers.

There appear to be three major difficulties inherent in

this approach. , Pirst, the process of predicting vhich terminal

and non-terminal symbols aay appear next in the derivation is

too top-down, exhibiting aspects of "the chicken and egq

problem". For a large knowledge hierarchy, the predictio.n

process may have to tour very large branches of the hierarchy.

In the parsing domain, this inefficiency can be tolerated by

suitably restricting the graamars eaployed. For machine

perception, no such restrictions of the knowledge base are

feasible. In spite of this difficulty, Kaplan {1973) has

proposed a similar prediction scheme for creatinq parallel

interpretations in his parsing system, GSP.

Second, the a lgorith11 depends upon the strict sequential

nature of parsing to efficiently limit the proliferation of

parsers. After the next input symbol has propagated all parsers

still valid to the next parser set, all the re■aining parsers

can be deleted. They represent invalid interpretations of some

portion of the input sentence. In perception, however, some

aspects are encoded sequentially, such as t~e surface form of

natural language. However, other aspects have very little

sequential content, for example, image analysis. Where sequence

is an explicit part of perception, it can be effectively used to

constrain invalid interpretations, but an efficient perception

mechanism 11ust handle non-sequential aspects as well.

The last difficulty perceived with Earley•s algorithm is

3: A Procedural ftodel

61

that the mode of search employed is completely bottom-up. There

is no top-down mode defined. As has been seen, for perception,

both top-down and bottom-up mechanisms are essential.

3.4 Three Phases of Recognition

The context-free parsing alqoritha of Earley vas shown to

exhibit a number of properties desirable for a recognition model

for machine perception • . · A few difficulties we.re also noted.

This section develops a nev recognition model for perception

using some of the techniques developed by Earley while, at the

same time, avoiding the difficulties inherent in his algorithm.

This ■odel supports both top-do~n and bottom-up search in

schema-based representations. The bottom-up mechanisms vill be

explained first since they are derived,. in part,. fro11 the

previous d.iscussion. The recognition model consists of three

phases, called ~!~~£!~!!21!, ~~!£bing, and £Q~El~!i2n•

3.4.1 Expectation

The expectation phase of this aodel is analogous to the

prediction function of Earley•s algorithm. In the top-dovn

recognition model for sche■ ata giYen by Kuipers (1975),

e~pectat.ions are described as static properties of the

stereotype which are systematically replaced by spEcific

information as it is discovered. In this aodel, expectations

3: A Procedural Model

62

are computed dynamically during the recognition process as a

function of the current partial instantiation of the sche■ a. At

any point, a schema• s expectations represent a non-deterainistic

description of all possible final instantiations of the sche ■a.

Bound to each expectation is a method designed to continue the

recognition of the sche■ a based on the satisfaction of that

specific expectation.

ln instance hierarchy is regarded, in this model, as a

non-deterministic representation of a general class of objects.

Recognition is characterized as the differentiation of the

stereotype into a specific instance. This process of refining

the expectations of a stereotype towards a fully specified

instance has been called §.E.!!£i~liJ!!!2n (Bobrow & Winograd,

1977). In the top-down recognition model, hoveve.r, a schema

stereotype is portrayed as representing a particular class of

objects such as tables or chairs. The recognition process

results in the description of a particular table or chair. If,

during this process, the scheaa is found to be inappropriate, a

replacement schema must be selected by some substitution

procedure • . In this model, this substitution is not necessar~

The schema instantiation is characterized as being a process of

differentiation instead of selection.

3: A Procedural Model

63

3.4.2 Platching

The second phase of t.he 11odel is the matching phase. The

expectation and aatching phases form an iterative recognition

cycle. In bottom-op recognition. the expectations bound within

schemata are satisfied by suitable observations from some input

mediu ■ or by the recu.rsive recognition of other schemata. After

a scbe■a has created a set of expect at ions and bound methods to

those expectations. the expectations may be matched by observed

or recognized evidence. thereby activatinq the associated

methods. Each method first incorporates the nev evidence into

the evolving instance of its schema•s stereotype. It ■av then

calculate. based on this new evidence, a next set of

expectations. suspending itself and perhaps other methods to

these new expectations. This ~l.2~£i~t,iQ!lL!~i£.l!i.ng ~le may

co-exist over time with the recognition cycles of manr other

schemata. This cycle realizes a multiprocessing mechanism for

simulating parallel search.

The matching phase depends on the availability of an

associative retrieval mechanism in the schemata network. New

evidence, discovered by observation and deduction, aust be able

to find those scheaata containing expectations which it can

match. Tvo such mechanisms are proposed, both of which involve

pattern matching over sche■ a systems and are si•ilar to the

extended concept of description matching advocated by Bobrow and

Winograd (1977) • In general however, the problem is quite

3: A Procedural ~odel

64

complex. Indeed, a co11prebensive theory of deductive

associative retrieTal over semant.ic networks is required. This

problem can be seen to be, recursively, the recognition problem.

The first mechan is ■ uses simple pattern aa tching and

associative retrieval as is familiar in the newer Planner-like

artificial intelligence programming languages (Bobrow 6 Raphael,

1974). In this syste11, the expectatio.ns of a schema are

represented as n-tuple patterns in a pattern associative

database contained within the schema. !cCalla {1977) has

advocated such an i11pleaentation .for schemata i.n a natural

language dialogue system.

The second aechanism involves using the instance

hierarchies as associative databases. Such a taxonomic

orqanization vi thin the system of schemata provides the

necessary retrieval 11echanis■ s to support the matchincr phase of

the recognition model. The matchirig process therefore involves

a cue-driven search over the schemata network in con ;unction

with syntactic matching of expectations represented as patterns.

3.4.3 Completion

A schema completes the recognition of an instance when all

its expectations are satisfied. It most return that success to

hiqber schemata of which the instance can be a component part.

This is the completion phase of the recognition model and is

analogous to the co11pletion function of Earley• s alqo.rith11

3: A Procedural Model

65

(Appendix-A). If the completing schema•s method yas called

usinq top-down search as a §UbgQ~!, then the sche11a has an

explicit caller and •ust eventually return a success or failure

to that caller. on the other hand, a schema's method may be

activated using bottom-op search by having an asso~iated

expectation matched bf some other process. This method has no

explicit caller and is referred to as a §!lruU:9.2§.!• The

distinction between subgoals and supergoals is based on the way

in which they are activated. Subgoals are activated · as

subroutines attached to the calling routine, whereas superqoals

are activated as processes whose existence mav continue after

control has returned to the caller. Both tvpes of methods are

directed at completing the recognition of their schemata and

both ■ay use a combination of top-down and bottom-up techniques

to do so.

When a supergoal has satisfied its schema's internal

requireaents for the recognition of an instance of the schema's

stereotype, the recoq.nized concept becomes an abstract cue. It

enters the matching phase by attemptinq to match the

expectations of those higher schemata of which the particular

instance might be a plausible part. Such knowledge is available

to the completed schema instance through the inverse composition

relations of its stereotype.

Figure 3.4 illustrates both the cyclic and the recursive

nature of this process. For example, the recognition · of

Schema-1 at the first level in the hierarchy may proceed over

3: A Procedural ftodel

level 3

level 2

other

level 1

c\ f/igher
cohcEpts

~
COMPLETION

J
EXPECTATION '::/

SCHEMA-2

COMPLETION

EXPECTATION_)

SCHEHA-3

MATCHING MATCHING -<:

66

cues J ~LET~ a~stract cues j context-sensitive

EXPECTATION

SCHEMA-1

.MATCHING

lprimitive

?expectation/matching
cycle

cues~ from observaticn
- context-free

Figure 3.4: Recognition Cycles

3: A Procedural ~odel

67

ti■ e with the recognition of other schemata • . Sc~e ■a-1 may qo

through several cycles of creating expectations, suspendinq its

■et hods to those expectations, and being resumed bV 11a tchinq

primitive cues co■ puted fro ■ the input data. When all the

expectations o.f Scheaa-1 have been satisfied, it then enters its

completion phase. Since it was not called as a subgoal of any

higher schema, its description is, in effect, an abstract

high-level cue. From the information contained in this

description, it attempts to match the expectations of schemata

at the second level in the hierarchy, in this case, Schema-2 and

Schema-3. If the match is successful, the aethods of one or

both of these schemata are resuaed as supergoals of Schema-1 to

continue their recognition. Their recognition may also proceed

through a nu■ber of expectation/11atchinq cycles concurrent with

other recognizers. Butr unlike Schema-1r their expectations are

matched bJ non-priaitive cues recognized recursiTely as the

result of perception.

Completion is seen as a "handle" in the recognition model

for realizing a number of desirable features of a theory of

■achine perception. It provides a mechanism for simulating

parallel search via a deductive method scheduling scheme, for

realizing a .recursive cue/model hierarchy, for realizing aethod

hierarchies, and for coordinating the efforts of concurrent

■ et hods. The re■aining sections of this chapter will explain

hov these features are achieved in the model.

In the analysis of Earley•s algorithm, it was pointed out

3: A Procedural ftodel

68

that the prediction phase may be computationally very expensive.

In this recognition model, the p.roble11 is avoided by noting that

the expectation phase for some particular schema need not be

performed until such ti■ e as another co■ pleting superqoal or

some input observation attempts to match that schema. When a

superqoal attempts to aatch a scheaa of which it can likely be

part, it must first search for a particular instance of that

schema to match. If no such instance can be found, then the

supergoal calls upon the schema stereotype to create a new

instance. Thereby, the expectation phase is performed only vhen

needed.

3. 5 Scheduling

Proposals for simulating parallel search usually employ a

multiprocessing scheme that relies on soae global algorithm to

allocate the processor. A popular technique is a veiqhted

time-slicing mechanism based on a priority queue (Bobrow &

Winograd, 1977). This type of mechanism is effective at

simulating the concurrent evaluation of procedures but it is not

effective at si•ulating the parallel application of

non-deterministic search methods. The technique is directed at

scheduling processes, not at the methods that are i ■ ple11ented as

processes. The sche■e is too low level. It typically forces

the programmer to assign a global numeric priority to a process

when it is placed on the priority queue.

3: A Procedural Model

69

A scheduling mechanism, operating at a higher level• is

needed. l!ethod s should becoae act.iv e when their applica bili tv

to the recognition process is discovered or deduced, not when a

process spontaneous! y reaches the front of a priority qneue.

TO illustrate this further, consider an automatic deduction

system that is implemented in a multiprocess environaent. The

systea is atteapting a complex proof. One particular deductive

process has shown considerable promise but has been unable to

achieve some result, say P(x) • . The process decides to suspend

itself until such tiae as another process has succeeded in

deducing P (x). In this priority driven system, which priori tv

should be assigned to this suspended -process? Bov does one

assign a priority number to a process in order that it wait for

a specific situation to occur? Obviously, a ■ ultiprocessinq

sche■e based on deductive scheduling instead of simple
I

parallelism is required. Processes should be scheduled w.hen

their applicability to the system• s task has been coaputed. The

bottom-up search problem is not to simulate parallellis■, but to

coordinate the simultaneous efforts of multiple methods. , When a

■ et hod achieves so11e inter ediate result, the schedulinq

aechanis ■ should ask, "What methods are suspended vaitinq for

this result?".

The completion phase of the recognition model provides such

a schedulinq 11 echanis• • . In fact, the recognition model can be

characterized as the co putation of what methods should be

scheduled nezt. ftethods remain s11speniled to patterns

3: A Procedural ~odel

70

representing expectations until resumed ez:plici tl v by some lower

completing supergoal. A ■ethod is resumed when .it is deduced

that the method could be applicable to the recoqni tion process.

A completing soperqoal ■ aJ resume, in turn, the methods bound to

expectations of all higher schemata that its schema instance can

succeed in matching • . · Each such resoaed method is act.i va ted also

as a supergoal and proceeds to continue the recognition of its

ovn schema. The recognition of a schema instance need be

computed only once. By sequentially resuaing more than one

higher supergoal, a single schema instance can be part of the

recognition of multiple higher schemata. Bo backtracking of

subgoals or use of siailarity network schemes is required.

Each completing supergoal behaves as a heuristic scheduling

mechanism, resuming the aethods of those higher schemata which

it is successful at matching. That scheduling mechanism may be

tailored specifically for each situation. _ l syntactic global

scheduler is not required. Por instance, a superqoal can resume

hiqber met hods in order of expected likelihood. of applicability

or it can resume first only the methods of those schemata which

already have existing instances. If none of those succeed, then

it can create new schema instances to ■atch, thereby saving the

expense of the expectation process until it is needed.

The completion mechanism can be characterized as a

h2t!.2A=!l.2 Un!!lli2~ in contrast to the top-down generators of

conniver. When a completing method matches a higher supergoal,

it is generating a possible successor process. It tours a

3: A Procedural ~odel

71

schema hierarchy in inverted, bottoa-up order. The completinq

method's co■putations are suspended while the hiqher schema •s

supergoal atteapts to complete its recognition. If control

returns to the completing method, it will then generate the next

possible higher supergoal. This mechanism is a generator for

bottom-up search instead of top-dovn search.

3.6 ffethod Hierarchies

It is clear that machine perception must utili-ze heuristic

domain-specific search knovledqe in order to cope with the

complexity of the perceptual process. By incorporatinq this

knowledge as procedural methods associated with stereotvpical

schemata in a composition hierarchy, a method hierarchy (Newell,

1972) isomorphic to the composition hierarchy is formed.

Met hods exhibit a tradeoff between applicability and power.

~ethods applicable to a large class of search problems are

inherently inefficient for any specific proble.lll. converselv,

methods heuristically engineered for the accomplishment of a

narrow specific task can achieve power and efficiency. A

comprehensive recognition scheme for perception must include

provisions for such a method hierarchy to in telliqentl v qui de

the search process • . ·

In the purely top-down recognition model, a method

hierarchy capability is straightforward. The methods associa·ted

with each schema may be created specifically to search for

3: A Procedural Model

72

instances of that schema. The hierarchy is realized by the fact

that, in top-down search, schemata call on the efforts of other

schemata as subgoals. Each leYel of subgoalinq applies a ■ore

powerful and specific •et bod to the achieve aent of that

particular subgoal.

In bottom-up search. however, achieving a method hierarchy

is not so straightforward. , Multiple methods 11.ay be active

simultaneously. Which method should~ at any qiven instant,

direct the search process? ftost _bottom-up search schemes have

used a single top-level aethod to drive the operation of the

system (Waltz, 1972) (!lack.worth, 1977a) • Plul ti processing

schemes typically alternate the application of methods as

processes which are run and then suspended again on the priority

queue. There is, however, poor coordination between alternatinq

met hods.

The following mechanism is utilized to realize a method

hierarchy in bottom-up search. As has been described, a

supergoal method can compute, based on the partial instantiation

of its sche■ a, a next set of expectations. It may then suspend

other methods to patterns within the schema representing those

expectations. After the ■ethod bas perfor■ed the expectation

phase, it can either ter■inate

control to some higher ■ethod,

its execution, relinquishinq

or it can remain active,

retaining access to the processor • . This mechanism provides

effectively an extra "degree of freedom" in the search process.

If the method relinquishes control, then it is relying on the

3: A Procedural "odel

73

efforts of other aethods to discover evidence that will
·.\' .

aatch' ·

!!§ schema's expectations. On the other hand, if the method

retains control of the processor, it may use its ovn specialized

knowledge to direct the discovery and deduction of evidence to

satisfy its own expectations.

This mechanis■ allows each schema the choice of applying

its ovn speciali~ed heuristic knowledge to direct the search

process or yielding to ,4:he heuristics of hiqher, more general

methods. In top-down search, each ■ethod, as a subqoal, is

forced to direct the search process regardless o.f tb.e schema •s

applicability or expertise. A major reason for ~he patholoqical

behavior of pure top-dovn search (Sussman & McDer ■ott, 1972t is

that inapplicable ■ethods do not know when to quit.

In bottom-up search, however, the choice of when to apply a

method's techniques is not critical. The decision is based

locally on a scheaa•s anticipation of success. If a schema

applies a bottom-up method, but the schema itself is

inappropriate, control will soon propaqate to the ■ethods of

more appropriate schemata. Evidence will be discovered vhich

matches the expectations of those more appropriate schemata.

Their methods will then assume control thereby correcting the

mistake. The essential difference from top-dovn search is that

this decision does not have to be made locally by each method.

Instead, it is made globally by the discovery of evidence

supporting the choice of a different method. In the worst case,

all that is lost is soae efficiency for a short while. There is

3: A Procedural Model

74

no chronic pathological behavior. l!ackworth (1977a) has noted a

similar convergence effect in the use of bis bottom-up

constraint propagation algorithm, NC.

3.7 Coordination and Communication

Since multiple methods can be active concurrently, methods

may simultaneously attempt to recognize different schemata or

1110.re than one method may attempt to recognize the same schema

instance. It is necessary to provide coordination and

communication a•ong sister aethods.

In this ■ odel, coamunication among sister methods is

accomplished through their common sc .he ■a instance. The instance

is a data structure accessed by all methods associated with that

schema. Each aethod contributes to the instantiation of the

schema and is aware of the contributions of its sisters. When

some particular aethod decides that the recognition of this

schema instance has been completed, it aust communicate that

success to every active sister method. Such a mechanisa is

defined within the completion phase. When a method beqins the

completion phase, it is assumed that the efforts of all other

methods associated with the recognition of this particular

schema instance are no longer needed. All such sister methods

are suspended within the completed schema instance.

As well, there must be coordination a onq the methods of a

method hierarchy. A number of methods in the hierarchy may be

3: A Procedural ~odel

75

simultaneously atte■pting the recognition of their associated

schemata. Since the method hierarchy is isomorphic to the

composition hierarchy. when a method at so■e level in the method

hierarchy is successful at recognizinq a schema instance at that

level, the methods at lover levels are no longer needed. These

lo-er ■ethods were attempting to recognize components of the now

completed sche■a instance and to discover cues to propagate its

recognition. That recognition is nov complete and these methods

are also suspended.

Completion then is seen as a coordination mechanism among

cooperating concurrent aethods. When a schema is su.ccessfull y

recognized, all methods currently atte11ptinq the recognition of

that sche■a or sub-schemata of that schema are suspended.

completion vas characterized aboYe as a bot tom-up generator.

This ■echanism is realized by the conventions described here,

The bottom-up generator is coaposed of all the methods suspended

by the completion process. on failare, the qenerator is resu11ed

to generate a new plausible higher supergoal, resuminq all the

suspended methods to continue the search for that next

superqoal.

3.8 Integration

The presentation of this recognition ■od.el has so far

concentrated on realizing bottom-up search mechanisms. One of

the premises for the model's development was that it should

3: A Procedural Model

16

provide an integration of top-down and bottoa-up search.

section describes such an integration.

This

In this aodel, methods aay execute either as subqoals or

supergoals. A subgoal method .may atte ■pt to complete its task

by using either top-down or bottom-up techniques. Top-down

search is i ■ plemented in the familiar aanner by methods

recursively calling the methods of other schemata as subgoals.

As well, a subgoal method may use bottom-up techniques by

computing a set of expectations for its schema, then atte11ptinq

to satisfy those expectations by aakinq observations and

deductions. This process may, itself, recursively use an

inteqration of top-down and bottom-up techniques. The only

restriction is that the subgoal method eventually return a
I

success or failure to its explicit caller.

Likewise, supergoal methods may use either top-down or

bottom-up search to achieve their tasks • . Supergoals aay call

other methods as subgoals. Alternatively, a superqoal method

may create a set of expectations for its sche11a, then either

relinquish control to some other method, or using its heuristic

knowledge, direct the discovery and deduction of i .nfor11ation to

satisfy its own expectations. In summary, both top-down and

bottom-up aethods can be interaixed freely.

When a completing schema is atte ■ptinq to match the

expectations of higher schemata, it must first find instances of

those schemata to match. This device involves the semantic

network matching described earlier. Part of the heuristic

3: A Procedural Model

11

knowledge contained in a schema's methods consists of procedures

for searching the schema network to look for hiqher schemata to

aatch. In fact, there is no sharp distinction between vhen a

schema ceases the recognition of an insta nee 3. nd vhen it beqins

the completion process. overlapping may occur to the point that

the coapletion process involves using both top-down and

bottom-up search techniques and the e.xpectation/matchinq cycle

may involve aspects of coapletion. For instance, in order to

efficiently calculate a next set of expectations, a method may

need to match higher superqoals in order to constrain the number

of expectations produced. This distinction is made more for

conceptual than computational reasons. In a large schema

system, it will be advantageous to blur the distinction in order

to facilitate communication op and down the the schema

hierarchy.

3: A Procedural Model

78

CHAPTER 4: AN !XUIPLE PRO! MACHINE V ISIOi

4. 1 Perspective

This chapter presents a detailed example of the operation

of the recognition model on a computer vision task. This

example has been i■ple ■ented as a running Pia.ya proqra11 vhich is

qiven in Appendix-c. In the ne:1:t chapter, the i1aple11.entation of

the example will be coTered as part of the description of .Ptaya.

The exa■ ple chosen is a small but characteristic machine

vision problem fro■ the "blocks world". The proble11 is to

recognize from perfect line drawings a class of polyhedra

including cu.bes, wedges, and pyramids. The recognizer operates

from a sche a representation of polyhedra and accepts input

scenes consisting of vertices and lines connectinq vertices.

The problem is not a vision task of current research

interest. It is presented to illustrate the operation of the

recognition model developed in this thesis. There are three

ma;or reasons for this choice. Pirst, the problem is

characteristic of machine perception tasks. The world of

polyhedral objects is believed to be the simplest task domain

that captures the essential aspects of scene analysis

(P.lackwortb, 1976) • Second, the example is restricted enouqh in

its scope that heuristic concerns specific to a particular

4: An Example from "achine Vision

19

vision task do not overshadow more general issues of

representation and recogn.ition. And third• this example is

similar to an example given by Kuipers (1975) to illustrate the

operation of the top-dovn model of rec oqni tion for sche111a

systems. _ This choice of example, therefore, permits a

comparison of -the tvo recognition models.

The method of presentation will be to first describe the

overall structure of the proble■ •s solution, and then, bv

utilizing a protocol produced by the prograa, explain the

operation of the program and the underlvinq recognition model.

Although the program does not explore all the issues addressed

by the model, it does provide a handle for their discussion.

4. 2 The Problem

The knowledge of polyhedral objects is represented in this

exaaple as a schemata network. The proqra m uses the simple

composition hierarchy of Figure 4.1 to _represent stereotypical

scenes of polyhedral blocks. Bach node in this hierarch v is a

stereotype schema representing a named concept. Each

downward-directed arc represents the composition relation

between its schema and its sub-schemata. Scenes are composed of

polyhedral objects. Polyhedra are composed of polygon faces

which~ in turn, are co posed of primitive edges and vertices.

Each upward-pointing arc represents the inve.rse composition

relation. "part-of".

4: An Example fro ■ ftachine Vision

80

part-of ~- composition

I,

Figure 4.1: Scene Comfcsition Hierarchy

4: An Example from Machine Vision

81

In this eraaple, polrhedral objects are differentiated into

cuboids, wedges, and pyraaids. Cuboids are polfhedra collposed

of parallelogram faces only • . Wedges are objects co■posed of

para llelogra11 faces and a single triangle face, and, pyramids

are ob1ect.s containing two or more triangle faces. Polyqons are

differentiated into triangles, parallelogra■s, qeneral

quadrilaterals, and arbitrary polygons of .five or ■ore sides

called multilaterals. Notice that the differentiation of the

generic polyhedron and polygon schemata into subclasses is not

represented explicitly in the composition hierarchy. Polyhedra,

for example, are not divided into cuboids, wedges and prramids

each of which, in turn, would be divided into triangles and

parallelograms • . To do so would expand considerably the size of

the schewa system and force an explanation of this larqer

structure in order to perform recognition. Instead, the

knowledge of the division of stereotype classes into subclasses

and finally into specific instances is represented

in the methods attached to the stereotype schemata.

the polyhedron schema's methods is to recognize

cuboids, pyramids, and wedges. Likewise for

met hods, their task is recognize from observation

procedurallv

The task of

instances of

the polyqon•s

insta.nces of

triangles, parallelograms, quadrilaterals, and multilaterals.

Initially. the taxono■ic structure is represented within the

procedural methods, but as specific instances of polygons and

polyhedra are hypothesized and subsequently recognized, they are

added to the instance hierarchy for those schemata. Thus the

4: An Example fro■ Kachine Vision

82

structures are created dynamically. The construction of the

hierarchical representation of a scene is based on evidence

discovered in the input, not on all possible compositions

compiled before the recognition begins.

The program is run on the scene of Fiqure 4.2. The scene

data is input to the program as a set of lines and vertices,

each of which is represented as a primitive fully instantiated

schema. As the data for each vertex is read, a schema instance

is created and added to the vertex i.nstance hierarchy. This

function is illustrated in Figure 4.3. Vertices are divided

into four classes in this hierarchy. The,- are ARROW, POBK. T,

and L. Because there are only a few primitive vertex instances ·

in the input data, the vertex hierarchy uses a simple

organization. VERTEX maintains a si•ple list of its instances,

FOR i, L, T, and ARROW. . Likewise, each of these stereotypes

contains a list of its instances, the primitive input vertices.

Besides organizing the database of vertices by vertex type, the

hierarch., also proriaes an attribute inheritance mechanism. For

instance, Vertex-1 inherits the sche ■a attributes of its

stereotype, ARROW. which, in turn, inherits the more general

properties of VERTEX., Inherited attributes can include

procedures. variable bindings, pattern databases, and methods.

thereby i•pleaenting metboa hierarchies.

Pigure 4.4a illustrates a typical primitive vertex schema,

Vertex-i. Each such verteI contains a number of named slots.

The "ISA" slot (Fahl■an, 1975) represents the inverse instance

4: An Example fro• ~achine Vision

83

c:VERTEX-3 LINE-3-4

~ VERTEX-4

LINE-3-6

~ LINE-2-3 LINE-4-5

LvERTEX-6

~VERTEX-2

~VERTEX-5

l VERTEX-1

Figure 4.2: Input Scene

4: An Example from Machine Vision

84

• Instances

Figure 4.3: Vertex Instance Hierarchy

4: An Example frcm Hachine Vision

{LINE-NAME)-< - ·

{INTEGER)

{VERTEX)

Ll

{VERTEX-TYPE) ·

INSTANCE

S£croR
SfcroR -L 3-L1
srcr0 -L2--L3

l?-Ll-L2

L2
L3

~ {CORNER)

ANGLE-L2-L3

VERTEX-i

Figure 4.4a: Vertex Schemata

(LINE)

INSTANCE

(VERTEX)

{ INTEGER) LINE-i

Figure 4.4b: Line Schemata

85

4: An Example from Machine Vision

relation between every instance and its

86

',1 ~
stereotype. · .:f,, This

relation is automatically created by l'!aya when the instance is

defined • . It vill point either to the PORK, L, T, or ARROW

schema.

A second slot in the vertex instance, called NAl'!E, points

to an atom representing the schema •s name, Vertex-i. Three

additional slots in the instance (two for L-vertices) are used

to represent sectors of the picture plane that each vertex

imposes on its i1111edia te locale, as shown in Figure 4. 5. When

the vertex has been recognized as part of one or aore polygon

faces, these sectors will be corners of those faces.

The remaining slots of the vertex instance represent data

for the particular Yertex. The slots labelled L1, L2, and L3

point to the corresponding line instances qiven in the input

picture. Likewise, the slots labelled ANGLE-L1-L2 and

ANGLE-L2-L3 are used to indicate approximate angles of each of

the sectors, as is illustrated in Pigore 4.5.

In a similar manner, a schema instance is created for each

line in the input data. Figure 4.4b depicts the structure of

pri ■itive line schemata. Each line sche ■a is an instance of the

generic LINE scheaa and has slots for its name. its lenqth in

the picture, and the names of the tvo vertices, labelled V1 and

V2, connected by it in the picture. _ As a matter of convenience,

all of the input data is read and represented as schema

instances before the recoqnition process begins. The output of

the progra11 consists of a hierarchical description of the

4: An Exaaple from Machine Vision

L2
SECTOR-L2-L3 \

ANGLE-L2-L3

f SECTOR-U-L2

L3 Ll

~SECTOR-L3-Ll _.A'

For ARROW, FORK, and T-Vertices

L2

~SECTOR-Ll-L2

(
SECTOR-L2-Ll

\
For l-Vertex

Figure 4.5: vertex Labelling Conventions

87

4: An Example from Machine Vision

88

recognized scene composed of fully specified schema instances,

or conversely, a report of failure.

4.3 Annotated Protocol

In the following pages, a protocol is used to facilitate

the explanation of the aodel. The sentences which are preceded

by an asterisk and printed in upper case are the statements of

the protocol produced by the program. All others are the

author's commentary on the behavior of the program and the

model. It may be useful to use Pignre 4.6 to follow the

recognition process. The face schema instances created during

the recognition are shown superimposed on the lines and vertices

of the picture ..

The recognition process begins bv sendinq the top-level

schema a message to interpret the input data as a scene. In

order to recognize a scene, the SCENE schema must find a

polyhedral object in the data. The schema has the choice of

applying top-down or bottoa-up techniques. If it chooses to

conduct a top-down search, the difficulties mentioned with the

top-down recognition aodel will appear. Specifically, the SCENE

schema vill be forced to hypothesize alternatively cube, vedqe,

and pyramid schemata as subgoals. If a hypothesis is incorrect,

the scheaa vill have to choose a nex subqoal based only on that

failure. Alternatively, the SCENE sche■a may begin its

recognition using bottom-up search. Later, vhen sufficient

4: An Eiample from Machine Vision

VERTEX-3

ll

l2

VERTEX-2

Pigure 4.6: Recognition of a iedge

l3

L1

VERTEX-5

89

4: An Example £rem Machine Vision

90

supporting evidence for a single hypothesis has been found, the

hypothesi-zed schema can con.firm its recognition using top-down

techniques.

* NETHOD: TOP-LEVEL SCHE!l EXHAUSTIVELY OBSERVES EACH VERTEX

Since no evidence has yet _ been discovered suppo.rting any

particular hypothesis, the top-level Scene schema chooses to use

bottom-up search techniques by making observations in the input

data. The heuristic method used by this schema is the same as

that qiven by Huff■an (1971). The scheaa exhaustively activates

each primitive vertex scheaa in the scene, beginning vith the

peripheral vertices as they are less ambiguous interpretation

cues than interior vertices.

The observation process consists of activa tinq each vertex

schema to perform its completion phase. Since the recognition

of each vertex is qiYen as. the input data, the vertex need only

compute of which higher schemata in the rietwork it may he

plausibly part. In this exaaple, vertices may be component

parts of both triangle and paralleloqraa faces.

* SCENE SCBEft
0

A OBSERVES VERTEX-1

Vertex-1 is an ARROW vertex vhich, in turn, is an instance

of the generic Vertex schema. ARROW, FORK, and T-vertices

contain three sectors since they divide the picture plane

4: An Bxaaple from ftachine Vision

\

91

locally into three regions. Vertices containing three sectors

are taken to be default ana the qeneric vertex sche■a provides a

procedure for performing completion for these vertices. Each

such vertex inherits this method fro■ the Vertex schema by the

inverse instance relation maintained automatically by ~aya. The

only vertex having two sectors is the L-vertex which has a

completion procedure defined locally and need not inherit it

from the vertex hierarchy.

* FOR SECTOR-L1-L2 OF VERTEX-1,

* CREATE A NEW SCHEMA: FACE-1 CONTAINING A CORNER FOR VERTEX-1

A vertex can be part of more than one polygon face because

each sect.or of a vertex is possibly a corner of a different

face. The co ■pletion process for vertices therefore consists of

finding and attempting to aatch polygon face schemata for each

of these sectors. Por this fir~t vertex, there are, as vet, no

instances of faces to match. Thus, the verte~ 11.a tches the

qeneric 'polygon schema, FlCE, which, in turn, creates a new

instance, Face-1. The observation of Vertex-1 is seen by FACE

as a cue to hypothesize the existence of another face instance.

The matching of Pace-1 by Vertex-1 activates a methdd associated

with the nev schema instance as a su pergoal which proaptl y

incorporates this vertex as a corner of its newly evolvinq

description of a polygon face.

At this point, a face has been hypothesized containing

4: An Example from ftachine vision

92

vertex-1. Face-1 can nov continue the search via one of two

mechanisas. The method could use faailar top-down search by

calling the methods of other sub-schemata as s11bqoals. For this

polygon, that would in•olve hypothesizing a particular polyqon

face type (either parallelograa, triangle, quadrilateral, or

multilateral) , then predicting what types of vertices each of

the possible polygons could be composed of, and finally lookinq

for those vertices. This aode is rejected by Face-1.

The sec6nd aode of search uses a botto ■~up mechanism. The

active method of Face-1 could compute dyna11ically a new set of

expectations for the schema as a function of the information

provided by Vertex-1. That is, Vertex-1 constrains the possible

final interpretation of Face-1. tater, if evidence is

discovered matching these expectations, the method will be

resumed as a supergoal to continue Pace-1 1 s recoqnition. The

schema can repeat this cycle of computing a nev set of

expectations and waiting for so11e expectation to be satisfied.

Alternatively, at some point in the cycle, it can apply top-down

techniques to the Yerification of its hypothesis.

* CREATE TWO PROCESSES BOUND TO EXPECTA TI01'S FOB LINE-1-6 AND

LINE-1-5

The ■ethod of Pace-1 creates two expectations and binds a

nev method to each. Expectations are indices of the sche11a

associative retrie•al ■echanis11. , These indices must be knowable

4: An Exaaple from ftachine Vision

93

by both the scheaa creating the expectations and every other

schema that can ■atch them. Expectations are constraints on the

final interpretation. , Por this problem, the lines connecting

vertices are such a convention. Since both Pace-1 and any

vertices that can be part of Pace-1 have access to these lines,

they can be used as constraining inforaation on the

interpretation of vertices as polygon faces (Mackworth, 1975,

1977b) •

After creating a set of

schema's method is still active.

expectations for Face-1, the

Since the method is designed

for the recognition of polvqons, it can apply its techniques to

the further recognition of its ovn schema, or it can relinquish

control to the method of Vertex-1 which activated it. Should

the method apply its techniques or defer to the more general

knowledge of the scene schema at the top of the · method

hierarchy? The choice is completelJ heuristic, and is based on

the methods appraisal of its probability of success. The

decision is made fro■ local in.formation, such as how much

evidence has been collected supporting the sche11a • s hypothesis.

Since very little evidence has been discoverei supportinq the

recognition of Face-1,, its method suspends itself.

• FOR SECTOR-L2-L3 0~ VERTEX-1,

* ATTEftPT TO ftATCH THE EXPECTATIONS OF FACE-1

control returns to Vertex-1 •hich is still actively pursuing its

4: An Example from Kachine Vision

94

completion phase. This time, however, it finds a polygon face

instance to match since the polyqo.n instance hierarchy contains

Face-1. The ■atch fails. ,, Sector-L2-L3 cannot be part of Pace-1

because Sector-L1-L2 of the same vertex is already part of this

.face.

* CREATE A BEW SCHEftA: FlCE-2 CONTAINING A CORNED FOR VEBTEl-1

A new face recognizer, F'ace-2, is nov hypothesized and its

method activated as a supergoal of Vertex-1. As in the case of

Face-1, the method creates the first corner of Pace-2 by

incorporating Sector-L2-L3 of vertex-1 into its description.

* CREATE TWO PROCESSES BOORD TO EXPECTATIONS FOR LINE-1-2 AND

1.IIE-1-6

Again the face sche•a creates tvo expectations, binds methods to

them, and returns control to Vertex-1 which activated it.

• POR SECTOR-L3-L1 OF VERTEX-1,

* ATTEMPT TO fllATCH TRE EXPECTATIONS OF FlCE-2

* ATTEftPT TO ftlTCH THE EXPECTATIONS OF PACE-1

* CREATE A NEV SCRE8l: PACE-3 CONTAIMING l CORNER FOR VERTEX-1

* CREATE TWO PROCESSES BOUBD TO EXPECTATIONS FOR LINE-1-5 AND

LINE-1-2

4: In Example fro■ Machine Vision

95

Vertex-1 continues looking for hiqher schemata to match,

this time for its third sector, Sector-L3-L1. Attempts at

matching the tvo existing face recognizers fail, and a new

schema, Pace-3, is created as before. Vertex-1 has now finished

its coapletion phase by searching the polygon instance hierarchv

for all schema instances of which its sectors might plausibly be

part. In this eia■ ple, this search involves only atteaptinq to

match the expectations of each face instance. In general, the

search for higher ■ atchinq sche~ata within the schema hierarchy

can .be arbitrarily coaplex, perhaps recursively involvinq

recognition.

* SCENE SCHE!l OBSERVES VER~EX-2

Control has returned to the scene schema which continues to

observe vertices in the heuristic ordering mentioned earlier.

vertex-2 is activated next to perform its completion phase. The

vertex will attempt to find face recognizers to match, that is,

face hypotheses of which it can be part.

* FOR SECT0R-L1-L2 OP VBRTEX-2,

* ATTE"PT TO MATCH THE EXPECTATIONS OF FACE-3

* ATTE"PT TO ftATCR THE EXPECTATIOIS OP PACE-2

* FACE-2 HAS BEEN ftATCHED BY VERTEX-2

vertex-2 has found Pace-2 and matched one of its

4: An Example from ~achine Vision

96

expectations, namely, that it shares Line-1-2 with the matchinq

vertex. The 11etbod associated vith that e .xpectation is

activated; it uses the following scheme for recognizing faces.

Two methods are defined to follow the periphery of the face

being recognized. one method follows the periphery of the face

in a clockwise direction, the other in a counter-clockwise

direction. 'l'he search proceeds from some vertex via a

connecting line to the next vertex and so on until the region

comprising the face has been closed.

• VERIFY FACE-2 USING TOP-DOWN SEARCH

When enough evidence has been discovered using bottom-up

search to conclude that the recognition of a polygon face is

likely, the schema applies a top-down method to the verification

of the hypothesis. The discovery of two neighbouring vertices

is considered by the face recognizer to be enouqh evidence to

switch from bottom-up to top-down search mode. In qeneral, the

choice of search modes is a heuristic decis.ion made by a

schema's methods • .

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-3 FR01' LINE-2-3

* INCORPORATE THIS VERTEX INTO A NEW CORNER OF FACE-2

The top-down method uses a clockwise tour of neiqhbourinq

vertices until a closed figure is formed. As each vertex is

4: &n Example from ~achine Vision

97

discovered, it is composed into a corner in the evolving

description of the polygon face. If another face recognizer is

discovered during this tour attempting the recognition of the

same face, t.hen i t.s partially co11pleted description is merged

into this face recogni'Zer• s description and the tour is

continued. 'Note that this transfer of information .fro ■ one

schema instance to another is straigh tf orvard and does not

violate the criterion of schema modularity for the recognition

model. Because both schemata are instances of the same

stereotype, they already have access to information about the

internal structure of each other.

* GET lfEXT CLOCKWISE NEIGHBOUR VERTEX: VEBTEX-6 FROM LINE-3-6

* INCORPORATE THIS VERTEX INTO l NEW CORNER OF :PACE-2

* GET NEXT CLOC~VISE NEIGHBOUR VERTEX: VERTEX-1 PROft LINE-1-6

* THIS VERTEX IS ALREADY CONTAINED IM PACE-2

The top-down ■ethod continues to incorporate vertices into

the description· of Face-2 until it attempts to add Vertex-1.

Since this vertex is already part of this face, the top-down

met hod has found a closed region, the pol fgon face.

* cmtPARE .PACE-2 TO POLYGON !IODEL

* COPIPLETED PACE-2 IS l PlRALLRLOGBAflt

It is the task of Pace-2 to decide the type o.f its polygon

4: An Example from "achine Vision

98

from information obtained durinq its recognition.

example, part of that inforaation is the size of the

In this

angle of

each vertex sector ill the face's description. Face-2 compares

this inforaation to an internal model of triangles,

parallelograms, quadrilaterals, and mul tilate rals, and decides

that it is a parallelogram. In general, the aodels that a

schema has of its ste.reotype concept guide the search process

and are manifest as the aethods associated with the schema.

* ltATCH THIS FACE TO THE EXPECTATIONS OF POLYHEDRON RECOGNIZERS

Face-2 nov begins its completion phase as a high-level

internal cue in the recognition process. Part of the knovledqe

contained in the face sche■ a is of what higher concepts in the

schema coaposition hierarchy polygons can be a part. In this

example, polyqons can be part of only polyhedral obiects.

Face-2 vill attempt to stimulate the recognition of particular

polyhedron schemata by sending messages to each of the

recognizers.

The completed face schema is characterized as

generator of possible higher schemata in the

hierarchy. The algorith ■ used by this qenerator is

a botto11-np

composition

to attempt

to match a single polyhedron schema instance of which it .!.!!§! be

a part. Palling to find such a sche ■a, it vill attempt to match

every polyhedron schema that it may be part of. In this latter

case, a nev polyhedron recognizer must also be created with this

4: An Example from ftachine Vision

99

polygon as its first component face because it could,

conceivably, be part of no existing polfhedron instance. Since

there are no existing polyhedra instances to ■a tch, Pace-2

matches the generic polyhedra sche ■a.

* IS PACE-2 COMPATIBLE WITH THIS CLASS OP POLYHEDRA?

* YES

The polyhedron instance analyzes Face-2 to decide whether

it vill accept the completed .face as part of its description.

As shown by this exaaple, the polygon schema can recoqnize aore

types of polygons than the polyhedron sche ■a. can accept as valid

faces of polyhedra • . This illustrates a modularity of the

recoqnition ■odel. l sche■a need only knov a.bout recognizing

instances of its own stereotype • . It does not need to know the

require■ents of other sche■ata. If a schema can be part of some

higher schema, then it will be able to aatch the ez:pectations of

that schema doring · its completion phase. , The creation of

expectations within a schema and the m.at.chinq of those

expectations by anot.her sche11a is characterized as a procedural

constraint satisfaction process between tvo schemata.

* CBEITE A MEI SCBEBA: POLYBEDROB-1 CORTAIWING PACE-2

Parallelograms are valid faces of po1yhedra in this e:z:ample. · A

new schema instance .is created and parallelogram Pace-2 is

4: An Exa ple fro■ "achine Vision

100

incorporated into its nev description. This recognizer could

use either top-dovn or botto■-up techniques to further the

recognition of a polyhedron. . To use top-down search would

involve hypothesizing the ezistence of particular polygon faces

and then actiYating those sub-schemata as subgoals. Bottom-up

search, on the other hand, would not require a com11it11ent to a

particular hypothesis • . Instead, the polyhedron, based on its

partial instantiation from Pace-2, can create nev expectations

of what polygon faces would have to be discovered to propagate

its recognition. Onlike top-dovn search vhere a co111mi ttment

must be made to a single hypothesis at a time, usinq bottom-up

111echanisas, the polyhedron scheaa can create expectations for

multiple possible polygon faces, and vait for the discovery of

such a face or faces. In this exa•ple, since there is little

evidence supporting a particular hypothesis, Polyhedron-1 vill

use the botto■-up mechanism.

* COPIPUTE EXPECTATIONS ABOUT OTHER PACES OP POLYHEDRON-1

Polyhedra are co■posed of polygonal faces connected by

common edqes and yertices. To recognize inst.ances of polyhedra,

the polyhedron schema compares the instances of polygonal faces

that it has matched with its own internal model of polyhedra.

Fo.r this example, the ■odel is based on the notion of edqe

connectedness as used by Guzman (1968). Any two polygonal faces

sharing a coamon edge vhich is the shank of an ARROW vertex are

4: An Example from f!achine Vision

101

part of the same object. These are called "connect" edges.

Other edges shared by two faces are called n ■aybe-connect"

edqes. The use of this scheme is intended to demonstrate the

concept of model guided recognition. A whole variety of

information about the interpretation of three-dimensional scenes

("ackvorth, 1977b) has been ignored for the sake of siaplicity.

* FOR LINE-1-6 OP PAC.E-2,

* CREATE l PROCESS BOOID TO THE COBNECT EXPECTATION: LIIE-1-6

* FOR LINE-3-6 OP r'ACE-2,

* CREATE A PROCESS BOUND TO THE CONNECT EXPECTATION: LINE-3-6

Polyhedron-1 creates expectations for each "connect" edqe

of Face-2, bindinq a 11etbod to each expectation. The "connect"

edges of Face-2 are Line-1-6 and Line-3-6 which are the shanks

of ARROW vertices 1 and 3 respectively.

* FOR LINE-2-3 OF FACE-2,

* CREATE A PROCESS BOUND TO THE NAYBE-COBNECT EXPECTATION:

LINE-2-3

* FOR LIBE-1-2 OP PACE-2,

* CREATE A PROCESS BOUND TO THE MAYBE-CONNECT EXPECTATION:

LIN'E-1-2

Different methods are bound to "maybe-connect" expectations for

each other edge of Pace- 2.

4: An Example from Machine Vision

102

After the active method of Polyhedron-1 has completed the

expectation phase, it 11ay choose to ter■inate its execution or

it may atteapt to stiaulate the recognition of polygon faces as

cues to drive its own recoqnition and subsequently the

recognition of a scene. Again, the choice is a heuristic

decision. Pol ybedron-1 must estimate its likelihood of success.

However, the choice is not critical. If Polyhedron-1 decides to

direct the observation of vertices from the input scene but it

is an invalid hypothesis for this scene, control vill soon

migrate away from this schema. The vertices observed by

Pol vhedron-1 will stimulate the recognition of faces which will

attempt to match the expectations of polyhedron scheaata. If

Polyhedron-1 is the wrong hypothesis, these faces will instead

match other, possibly new, polyhedron recognizers thereby

activating their ■et hods instead. ,

On the other hand, if Polyhedron-1 is indeed a valid

hypothesis but the method yields control to the weaker method of

the Scene schema above it in the method hierarchy, this method

will discover a polygon face in the scene that vill succeed in

matching an expectation of Polyhedron-1 thereby reactivating one

of its methods. Thus search is seen to converge towards a valid

interpretation. To the contrary, in the top-down model, a bad

hypothesis can dominate the search process for a

catastrophically long time.

For these reasons, Polybedron-1 decides to apply a

bot toa-up technique for sti ■ulating its own rec oqni tion.

4: An EKaaple fro• ftachine Vision

103

* ft!T80D: SEARCH POR OTHER FACES OP POLYHEDBON-1 BY OBSEBVING

VERTICES OP FACE-2 THAT ftAT BE PART OP ftOBE TRAN ONE

FACE

This heuristic observes that each sector of the vertices of this

polyhedron can be part of ■ore than one face. This aethod is

both more powerful than the si11ple enumeration of vertices used

by the scene schema and aore specialized because such a second

face is likely to be part of this saae polyhedron. However, its

expertise is good only for recoqnizinq polyhedra, not scenes.

This met hod hierarchy is seen to inc or pora te a trade-off bet veen

power and applicability.

* POLYBEDROtf-1 OBSERVES VERT EX-6

The next

Sector-L 1-L3

vertex observed is a PORR vertex, Vertex-6.

of this vertex is already part of Face-2, but the

remaining tvo sectors aay be parts of two other, but, as yet,

unknown faces.

• FOR SECTOR-L1-L2 OP VERTEX-6,

* lTTE!PT TO ftATCH THE EXPECTATIONS OP PACE-3

* ATTEftPT TO ftATCH THE EXPECTATIONS OP FACE-1

* FlCE-1 HAS BEEM ftATCBED BY VERTEX-6

vertex-6 conducts its completion phase by attempting to

ij: An Example from Machine Vision

104

match the expectations previously created by Paces-3 and ,.

Vertex-6 cannot be part of any interpretation of Face-3 and that

match fails • . It is, however, successful at •atchinq an

expectation of Pace-1, specifically, that it shares Line-1-6

with so■ e vertex. The bottoa-up method that had been bound to

this expectation is activated as a supergoal of Vertex-6. This

is the second vertex discovered for Face-1 and,, as before, the

Polygon scheaa atte■ pts to yerify the existence of this face

instance using top-down search. In this example,, the top-down

search at the vertex level is achieved by a si ■ple touring of

the input schema instances because vertices were qiven as data •

.In general, however, goal directed search can be of arbitrary

complexity, perhaps involving recursively the use of bottom-up

mechanisms. A subgoal at any level can create expectations,

bind methods to those expectations, and then attempt to aake

observations matching those expectations. The only restriction

on the search mechanisms used by a subgoal is that it eventually

111ust return a success or failure to its caller.

* VERIFY PlCE-1 USING TOP-DOWN SEARCH

* GET NEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-4 FRO! LIHE-ll-6

* INCORPORATE THIS VERTEX INTO A NEW CORREB OF FACE- 1

• GET HEIT CLOCKWISE NEIGHBOUR VERTEX: VEBTEX-5 FRO!! LINE-4-5

* INCORPORATE TBIS VERTEX IMTO l NEI CORNER OP PACE-1

* GET NEX,- CLOCKWISE NEIGHBOUR VERTEX: VERTEX-1 PRO" LINE-1-5

* THIS VERTEX IS ALREADY COBTIIIED IH FACE-1

4: An Exa ■ple from ~achine Vision

..

10'5

* COMPARE PACB-1 TO POLYGOI ftODBL

* C08PLETED PACE-1 IS A PARALLELOGRAft

Pace-1 has fonnd a closed figure co•posed of

vertices-1, 6 • 4, and 5. , l description of this polygon face is

created with a corner for each vertex. The face is co■ pared

against the polygon sche■a•s internal aodel of polygons. The

fiqure is a quadrolateral having equal opposite angles, and is

labelled as a valid parallelogram.

* ftlTCH THIS ?ICE TO TBE EXPECTATIONS OP POLYHEDRON RECOGNIZERS

Pace-1 begins its coapletion phase • . · It 11ust find instances

of polyhedron recognizers having expectations of beinq ■atched

by a parallelogra ■• ?ace-1 will resu ■e each successfully

matched schema as a supergoal process. 'l'his supergoal

activation is seen as an intelligent process scheduling

■echanis ■• Instead of activating processes through so ■e global

scheduling algorithm, each co ■pleting schema can use its own

domain specific scheduling algoritha. Processes are scheduled

by the discovery of evidence suggesting their applicability as

superqoals.

:Pace-1 will first attempt to aa tch the expectations of an

existing polyhedron recognizer that it shares a "connect" edqe

with. If it is successful, the method bound to the polyhedron •s

expectation vill be resumed as a supergoal process. If Pace-1

4: An Example fro■ ftachine Vision

106

is able to find such a "connect" expectation and aatch it

successfullr, its task is done. , Otherwise, Face-1 must atteapt

in sequence to aatch the expectations of all polyhedron

recognizers vith which it shares a " ■aybe-connect" edqe, and it

must also create a new polyhedron sche■a instance in case it is

not part of any existing interpretation. Por each polyhedron

recognizer matched bJ the face schema, the method bound to the

matched ezpectation is resumed as a superqoal process.

* ATTEftPT TO ftATCH THE CONNECT EXPECTATIONS OF POLYBEDROH-1

* TRY LINE-ii-6

* TRY LINE-1-6

* A CONNECT EXPECTATION OP POL!HEDROR-1 HAS BEEM f!lTCHEO BY

FACE-1

Face-1 finds and attempts to aatch Polyhedron-1. This face

schema shares a "connect" edge with Face-2 of the polyhedron, so

the match is successful and the polyhedron's method is resumed.

* IS FlC.E-1 COflPlTIBLE IITH THIS CLASS OF POLYHEDBA?

* YES

The method of Polyhedron-1 compares the polyqon instance to

its internal aodel of polyhedra. In this system, polyhedra are

co11posed of both triangles and parallelograms. Pace-1 is

accepted and its interpretation results in the propaqation of

4: An Bxa ■ple from "achine Vision

,,

107

Polyhedron-1 1 s recognition. ,

* COftPOTE TRARS:ITIVB EOG! CLOSURE POR TRIS PACE

* POR LiffE-1-5 OP PACE-1,

• CREATE l PROCESS BOUND TO THE ftAYBE-CONBECT EXPECTATIOH:

LIHE-1-5

* FOB LIIE-4-5 OP PACE-1,

* CREATE A PBOCESS BOORD TO THE KAYBE-CONNECT EXPECTATION:

LINE-ij-5

* POR LIBE-Q-6 OF PACE-1,

* CREATE A PBOCESS BOOID TO THE COIIECT EXPECTATION: LIRE-4-6

Polyhedron-1 incorporates the new face instance into its

description by computing vhich edges of Pace-1 are edges already

contained in Polfhedron-1. , This is called its transitive edqe

closure. , At the sa■e time, a nev set of expectations are

created for each reaaining edge of Pace-1 not closed vith edqes

of the polyhedron. These edges represent the cues by which

other co■pleting face· schemata vill be able to aatch this

scheaa • s expectations.

* DOES DESCRIPTION OJI' POLYHBDROR-1 SATISFY THE CRITERIA FOR A

* NO

COMPLETE POLYHEDRAL OBJECT?

lt this point, the polyhedron checks to see if its instance

4: An Example fros "achine Vision

108

is fully instantiated. , It is not. , There are still "connect"

expectations remaining unsatisfied. ,

* ftETBOD: OBSR!VE VERTICES THAT WILL DRIVE THE BECOGRITION OF

NEIGHBOUBIMG PACES

Having finished its expectation phase, Polyhedron-1 applies

a bottom-up method by observing vertices which should stiaulate

the recognition of neighbouring faces. The recognition of such

faces will hopefullf satisfy its ovn expectations. It does this

by observing three-line vertices of its component faces that aav

be part of so■e yet unrecognized .face. Notice that there are

now tvo aethods of Polyhedron-1 simultaneously active • . Both

methods are observing vertices to sti■ulate the recoqnitio.n of

neighbouring faces. , They aav communicate vith each other

through their com■on data structure, the schema instance of

Polyhedron-1. Both can contribute to its recognition, but their

efforts must be coordinated • . If one of the aethods should

decide that either a fully instantiated instance has bee.n found,

or that the polyhedron is a bad hypothesis, the other aethod

must be suspended. It is no longer applicable to the discovery

of a scene.

* POLYBEDROR-1 OBSEBVES VERTBX-4

* FOR SECTOR-L 1-L2 OP VERTEX-4,

* ATTEftPT TO ftATCH 'l'HE EXPECTlTIORS OP' FACE-3

4: ln Exaaple fro■ !achine Vision

109

* CBEATE A BEW SCHEftA: PACE-q CORTAilfllfG A CORI ER FOR VEST!i-4

* CREATE TWO PROC~SSBS BOORD TO BXPECTATIORS
1

FOR LIME-4-6 AMD

Lill!-3-4

~he polyhedron ■ethod first observes Vertex-4 because it is

a vertex of one of its component .faces that could be part of

another undiscovered face. vertex-4 begins its completion phase

by trying to find existing unco ■pleted face recoqnizers to

•atch. Only Pace-3 re■ains uncompleted, but the match fails.

Sector-L 1-L2 of Vertez::-4 cannot be part of the background region

repre·sented by Face-3. As a result,, Vertex-4 requests the

polygon schema to create a new polyqon face instance • .Pace-4 is

created,, a,dded to the polygon instance hierarchy,, and one of its

methods is acti 'lated. The new recognizer incorporates· vertex-4

into its description and uses the vertex to create a new set o'f

expectations f~r the

consist of ■ethods

this case, Line-4-6

sche•a. As be.fore, these expectations

hound to patterns containing line cuesi; in

and Line-3-4. Pace-4 has finished it~

expectation phase and returns control to Vertex-4.

* POR SECTOR-L3-L1 OP VEBTEX-q,

* ATTEftPT TO MATCH THE EXPECTATIONS OP FACE-4

* ATTE!PT TO ftATCH THE EXPECTATIONS OP FACE-3

* CREATE A NEW SCREl!U: PACB-5 CONTAilfIBG A CORNER FOR VERTEI-4

* CREATE TWO PROCESSES BOUND TO EXPECTATIONS FOR LIBE-3-~ AND

L:tBE-4--5

4: An Example from ftachine Vision

110

Vertex-4 still has one re•aining uncom•itted sector,

Sector-L3-L1. Neither of the li.nes of this sector can 11atch

Face-4. Hor can they 11atch the expectations of Face-3, thouqh

they are part of the sa■e region. There is not yet constraininq

information (possibly provided bJ Vert ex-5) to link the11 to saae

interpretation. , Thus, a nev face, Pace-5, is created in the

manner described for Pace-4.

The behaviour of Vertex-4 is characterizea as a bottom-up

qenerator of possible higher supergoals. Each ti•e control is

returned to Vertex-4, it generates another plausible polygon

face of which to be a part. As well, it generates these faces

in heuristic order, first attempting to activate those already

existing polygon recognizers which it can match successfully.

Only if that fails, will it generate a nev polygon face

instance.

* POLYHEDRON-1 OBSERVES VEBTEI-6

Vertez-q has finished generating supergoals and returns

control to Polyhedron-1 which proceeds vith its method of

observing likely vertices, this ti■e activating Vertex-6.

* FOR SECTOR-L2-L3 OP fERTEX-6,

* ATTEftPT TO ftlTCB THE EXPECTlTIOBS OP PACE-5

* ATTEMPT TO ftATCH THE EXPECTATIONS OP FACH-4

* FACE-4 HAS BEE! !ITCHED BY fBRTEX-6

4: An ExaMple froa Machine Vision

111

5ector-L2-L3 .is the only sector of Vertex-6 not already

part of some polygon .face. vertex-6 first attempts to aatch

Pace-5 as a possible higher supergoal, but the match fails. An

attempt at matching Pace-4 succeeds, thereby actiYatinq a method

of this face. ,

* VERIFY FACE-II USING TOP-DOWN SEARCH

* GE'!' NEXT CLOCKWISE RE'IGHBOUR VERTEX: VERTEX-3 PRO'flf LINE-3-6

* I ·NCORPORATE THIS VERTEX IHTO l NEV CORNER Of' FACE-fl

* GET BEXT CLOCKWISE NEIGHBOUR VERTEX: VERTEX-4 P'ROl'! LINE-3-lJ

* THIS VERTEX IS ALREADY CONTAINED IN PACE-4

* COftPARE PACE-4 TO POLYGON ftODEL

* CO~PLETED FACE-4 IS A TRIANGLE

Pace-4 searches for its remaining vertices by hypothesizing

another vertex, finding that vertex by followinq Line-3-6. It

then confirms that its component lines and vertices for·m a

closed figure and that its type is a triangle.

• ftATCH THIS PACE TO THE EXPECTATIONS OP POLYHEDRON RECOGNIZERS

* MATCH THE CONNECT EXPECTATIONS OF POLY HEDRON-1

* TRY LitfE-3-6

* A COIi.NEC'!' EXPECTATIOB OF POLYHEDROM-1 HAS BEEN PIATCBED BY

PACE-4

* IS FlCE-4 CO!PATIBLE WITH THXS CLASS OF POLYHEDRA?

* YES

4: An Example from Machine Vision

112

Pace-4 finds Polybedron-1, the single member of the

polyhedron instance hierarchy, and matches a "connect"
l

expectation of this recognizer. , Both Pilce-4 and Pace-2 share

the co■■on •connect" edge, Line-3-6.

Expectations are equated with constraints. Line-3-6

constrains the interpretation of Pace-4 and Face-2 to be part of

the same object. The recognition process can be viewed as a

procedural constraint propagatio.n, vhere the flov of control

throuqh the sche■a ta network is (!irected by the procedural

methods attached to the nodes in the network.

* COMPOTE TRABSITIVE EDGE CLOSURE FOR TRIS PACE

* FOR LINE-3-4 OF 1'ACE-4,

* CREATE A PROCESS BOUND 'l'O THE IUYBE-CONNECT EXPECTATIOlf:

LINE-3-IJ

* FOR LINE-4-6 OP PACE-4•

* LI ME-4-6 ftlTCBES A CORRECT EXPECTATION OF POLYBEDROl-1

Polyhedron-1 incorporates the nev face into its description

by computing the transitive edge closure of Face-4 with its

other faces.

* DOES DESCRIPTIOB OP POtYH!DROB-1 SATISFY THE CRITERIA POR l

CO"PLETR POLYHEDRAL OBJECT?

• YES: POLYHEDROB-1 IS A. WEDGE

4: ln Example from aachine Vision

The addition of Pace-Q has

constrain the interpretation

113

been enough new information to

of Polyhedro.n-1 to a fullY

differentiated instance. There are no "connect" eipectations

reaaining in the sche■a and each face in the schellia •s

description is labelled "connect" with ev~ry other face vith

which it s.hares an edge. The completed insta nee is coil pared

aqa inst the scheaa• s internal ■odel of polyhedra and is labelled

a wedge since it is coaposed of two parallelograms and a sinqle

trianqle.

* ftATCH C0ftPLBTED P0LJHEDRO&-1 TO THE EXPECTATI0IIS OF THE SCEllE

SCHEftA

The ethod of Polybedron-1 now begins its scbema•s

completion phase. However, it is not the only method of this

schema currently actiYe., There are two other concurrent methods

observing Yertices. In fact, these other methods 11ete

instrumental in obserYing the vertices that stiaulat~d

Polybedron-1 1 s successful recognition,. These methods have now

performed their task and they aust be suspended.

The 11echanisa for achieving this coordination a•onq

concurre-nt ■ethods is realized within completion. When a

completing sche11a matches another schema as a supe.rgoal, the

■et hod perforaing the co■ pletion and ~ll other active methods

associated with the same completed schema instance are

suspended. The iaple■entation of this control structure

mechanis ■ as a naya language primitive is discussed in the next

4: ln Example from Machine Vision

11Q

chapter.

In this example, Pol:rhedron-1 performs its co ■pletion phase

rather deterministically. It knows that polyhedra are onl-J part

of scenes. The scene schema has an expectation vaitinq to be

matched by a completing polyhedron •. The ■atch is successful,

and the method of the scene sche■a is activated.

* SCBIE RBCOGRIZER HAS ¥001D A SCENE COftPOSED OP POLYHEDROH-1

Por brevity, it is assu■ ed that a scene is composed of a

single polyhedral object. The scene schema has completed its

recognition, finding a scene co■posed of Polyhedron-1. The

program terminates sucessfully, returning to top-level the

hierarchical description of the scene • .

4. 4 Conclusion

This exaaple provides a high level description of the

operation of this recognition aodel in a scene analysis program.

eany of the ideas embodied in the ■ odel coold only be partially

illustrated by this single exaaple. The precise specification

of these ideas is ■ ade aanifest in this thesis as an artificial

intelligence progra■■ing language called "aya. , The next chapter

describes the design of this proqra■aing language.

4: ln Example fro■ ~achine Vision

115

5.1 Introduction

!aya is a aultiprocessing LISP dialect that defines a

number of extensions to the data types and control priaiti-ves of

the LISP language. ftaya generalizes the OBLIST and property

lists of LISP to a nev pri■itiYe data type called the 2lli~!

which can be osed to represent scheaata and to construct frame

systems and semantic networks. fllaya defines specific control

structures for integrating top-down and bottom-up search in

sche ■a-based representations. The language provides, as well,

primitives for pattern ■ atchinq and for creating and scheduling

multiple processes. ln extensiYe interactive debugging syste■

modelled after that of I1'TERLISP (Teitelman, 1974) is also

provided.

Although ftaya, as a progra■aing language, is concerned with

developing progra■11inq technologJ, the 11oti•ation behind t.he

language has been the experi ental impleaentation of the

recognition ■odel presented in this thesis. The natural

realization· of such a ■odel is a progra■minq language because it

provides a general experi■ental vehicle vith vhich to evaluate

the ideas of the model. ~aya focuses on general questions of

representation and process involved in machine perception.

5: l'!a ya

116

5.2 Language overview

This section provides a general overview of ~aya by

describing the data types defined in Mafa and their evaluation.

A nu•ber of other general features of the language will also be

mentioned. Issues of sche•a representation and recoqnition will

be covered in subsequent sections of this chapter. A

familiarity vith LISP must. be assumed in this discussion. The

reader is referred to Appendix-B, the "aya Language Reference

P!anual, for details of the various !laya pri11iti ves involved.

5.2.1 Data Types

PJaya extends the priaitive data types of LISP to facilitate

programming in scheaa-based systems. ftaya is embedded in LISP

and its data primiti•es are realized using LISP foras. Below is

a BlfF qra11aatical representatio.n of the LISP implementation of

Maya's data types • . · Angle brackets are used to deliait

non-ter■inal symbols and the asterisk is used as the Kleene

star, indicating zero or ■ore repetitions.

(PORft> --> <ATOR>
--> <VAR>
--> <LIST>
--> <TUPLE>
--> <OBJECT>

<YIR> --> ?<ATOft>
<LIST> --> ((PORII>*)

<TUPLE.> --> (I <POBft>*)
<OBJECT> --> (iOBJECTli <TYPB><PAIR>*)

<ITE!) --> (iITEMI <BES><PlIB>*)
<PlIR> --> <lTOft><FOR!>

5: Maya

..

117

A form in Maya may be an atoa, variable, list, n-tuple, item, or

object. In LISP, an ato■ is used both as the name of a set of

properties and as a variable. In Maya, an atom, <ATO">, is

differentiated fro~ a variable, <VAR>, because it is desirable

to distinguish between the name of an object and the value of a

variable. Names are represented by atoms, whereas variables are

represented by atoms prefixed by a question mark.

Likewise, ltaya di .fferentiat es bet ween a list, <LIST>, and

an n-tuple, <TOPLE>. Lists are used, as in LISP, to encode both

actual lists a.nd function calls • . · The value of a list is the

result of applyinq the function indicated by the CAR of the list

to the CDR of the list. The value of a tuple, however, is a

tuple of the values of its elements. Tuples are used

extensively by the pattern matching functions.

The ■ost significant extensions to the data types defined

of LISP are the inclusion of ob1ects and items. The object,

<OBJECT>, subsuaes the property lists, usually called plists, of

LISP atoms • . It can be used to form schemata, frame systems, and

semantic networks. A schema or frame may be thouqht of as a

collection of named slots or relations. A node in a semantic

network may be considered to be a set of named attribute/value

pairs. <OBJECT>s can conveniently represent both of these

s tr uct u.r es.

An object is composed of a LISP list having the prefix,

5: Ma ya

118

iilOBJECT@, a user-supplied type indicator, <TYPE>, and a set of

named attributes, <PAIR>s. It should be noted that the

different prefi~es associated with obiects, tuples, and

variables permit ftaya to type check the use of each data type.

Within the definition of ob1ects, an extra type indicator is

provided to allow farther user supplied type checking. Each

<PAIR> in an ob1ect associates an atomic naae with a <FORM>. A

name is said to be defined by its binding in some obiect.

Obiects are created by the Maya primitive, OBJECT, which takes

as arguments a type and a list of names and their new

definitions. The fu.nction returns an object as value.

Whereas objects associate atollic names with their

definitions, i teas associate variable names vi th their local

values. In Maya, generators, such as the pattern aatcher,

always return items, i.e., they return a set of local variable

bindings computed within the generator. An i te11. <ITEM>• is

composed of a LISP list having the prefix, ilTEMi, followed by a

processor reserved field, <RES>. Each <PAIR> of the iteN

represents an association between a variable name and its value.

Playa maintains a stack composed of objects, items, and a

number of internal structures used by the processor for

recording procedure invocations and the states of generators and

the pattern matcher • . The object nearest the top of the stack is

called the !m£l~M 2.luect. It represents the current sche■a,

semantic network node, or immediate conte~t in which the user is

noperating".

5: Maya

119

A number of Maya primitives operate on the enclosinq

object. For instance, PUT* adds definitions to the enclosing

object. This function tates tvo arguments, an atomic na11e and a

form to be bound to that name in the enclosing object. If that

name already exists in the obiect, its definition is replaced.

The function, GET*, returns the definition of a na ■e from the

enclosing object, whereas the priaitive, REM*, reaoves the

definition of a specified na•e fro ■ within the ob1ect. A fourth

primitive, called SELF, returns as value the entire enclosinq

object.. This function provides a mechanism for obtaining a

pointer to the current sche■a.

In order to ■ake !aya and LISP as compatible as possible, a

few of t.ISP 1 s SUBRs have been altered to accept objects instead

of PLISTs. , LISP property list functions nov recoqnize the

header at the front of each object. This overhead is justified

because it allows "aya to consider all of LISP'S database, i.e.,

the OBLIST, as the · glOQ!! obj~1 of its database. Each LISP

a tom which has properties associated v ith it will have a PLIST

of the .following fora bound to its CDR:

(@OBJECT@ itPLISTii <PAIR>*)•

Por example. DEFUN and DEFINE always add their definitions

to the enclosing object. This permits objects to contain

function definitions local to the object. This mechanism will

be used as one vay to incorporate procedural knovledqe into

schemata.

5: Mava

120

r!a ya considers LISP 1 s variables to be the set of global

Maya variables. Maya uses a deep-binding scheme to access

variables on the processor stack. These variable bindinqs may

appear in LA~BDA eipressions, PROG ezpressions, or as variables

defined in iteas contained on the stack. The assiqnaent

functions, SET and SETQ, which are ilnaloqous to their LISP

counterparts, vill alter the value of the first variable of the

specified na ■e that they find on the stack. Otherwise, they

vil 1 assign a new value to the LISP ato11 of the sa ae na■e.

5.2.2 Evaluation

The evaluation algorithm for Maya data types is presented

below in pseudo-LISP code. The behavior of the evaluator is

then elaborated in some detail. Finally, the function types

recoqni~ed by !aya are described.

When ftaya is asked to evaluate a form, the following

alqorithm is used (but not the following implementation of that

alqoritha):

(DEPUH EVALUATE (PORN)
(COND ((l'l'OM PORPJ) (PETCH-DBPIIITIO'N-PROM-STACIC PORM))

((V!BP POR8) (PETCH-VlLUE-PROll-STACK FOR!!))
((TUPLEP PORl'I} (APPLY I it (CDR POR!!)l
((OBJECTP FORPJ) (ERROR))
((ITEMP PORft) (ERROR))
((ATOM (CAR PORl!))

(APPLY (PETCH-POBCTIOB (CAR PORPJ)) (CDB PORPI)))
(T(APPLY-LlPJBDA (CAR FOBll) (CDR FOB!!)))))

5: Ma va

121

If FOR! is an atom, then the definition of that na•e is

fetched from its first occurrence on the stack. If it is not

found on the stack, it is fetched fro■ the global object, the

PLIST of the LISP atom. When presented an atom, !aya attempts

to find its definition within the first enclosing object. If

that fails, it atteapts to locate the definition within the next

enclosing object, and so on • . If it is not to be found in any

enclosing object, then the definition of the atom present in the

global object is returned. , Note that for ever, atoa there will

always .be a definition for it in the global object, al though

that definition aay be the null 2k1~£~, NIL.

If PORr! is a variable, its value is fetched from the fi .rst

occurrence of the variable's na■ e on the stack. The variable

may appear on the stack in tvo dif.ferent va ys. It aa 1 be a

local Yariable of so■ e LAIIBDA or PROG expression. or it may

appear as a variable bound in an item returned fro■ a qenerator.

In either case. the first local binding found is .returned as the

value of the variable. If , however, the processor cannot find

the variable• s name on the stack, Pia ya fetches the global valae

of the variable, that is, the LISP valae.

If FORM is a tuple, it is evaluated by the tuple evaluator

using inverse quote aode, that is, ato■s and pattern variables

are treated as constants. The value of a tuple is a nev tuple

of its Yaloes.

If PORM is an object or an itea, an ERROR occurs.

If the CAB of FORft is an ato ■, the atom is assumed to be

5: Pia ya

122

the name of a Playa or LISP function. The function is fetched

from the first dninition of the atoa on the stack, else from

the LISP PLIST of the ato■• If the function fetched is of the

types recognized by "aya. it is applied to the CDR of the fora.

If more than one function by the same na■e exists, t.he first o.ne

found is used. If no recognizable function can be found, an

error occurs. A discussion of the function types recoqnized by

Maya is presented below.

Otherwise, the CAR of FOR! is. not ato ■ic and is assumed to

be a Playa LAftBDA or QLlftBDA expression. The expression is then

applied to the CDR of FORft. If the CAR is not a LAMBDA or

QLUIB.DA expression, an error occurs.

5.3 Representation

This section discusses the use of Kaya language primitives

for implementing sc.heaata networks and for realizing procedural

message passing and interpretation.

5.3.1 Schemata

Schemata and schemata networks are realized in Maya as

objects. saya defines a ■echanis■ for considering an object as

a schema stereotfpe and then creating multiple instances fro■

that stereotype. '!'he function. BEW, when applied to an ob1ect,

creates an increaental copy of the object and assigns it type,

5: P!ava

~INSTANCEi. Any changes made to the instance are

the incremental copy and not the stereotype

123

reflected in

ob1ect. Por

example, a stereotype sche■ a to represent the concept of "doq"

could be constructed as follows:

(PUT* 'DOG (OBJECT 'GENERIC NlftE I DOG CLASS 1 ffA.PIPllLil)).

This expression creates within the enclosing obiect, a

definition of the name, DOG, as an object having type, GENERIC,

a reflexive pointer to its own naae, and the indicator that doqs

are of class, ~APIPIALIA. To create a specific instance of doq,

the following expression could be then evaluated:

(MEW DOG IIU!E •FLOYD OWNER •BILL).

The name and ownership attributes of the dog instance are

defined within the instance and not the stereotype. Fetchinq

t.he name, CLASS, fro■ the instance will return f!Al!PIALIA but

fetching llf!E vill yield FLOYD, the de.finition local to the

instance. .Advantages of this scheme are that it makes instances

co111putationallJ inexpensive and changes made to a stereotype are

immediately reflected in each descendent instance, unless

specifically redefined by the instance.

The ~aya pri■itive, SEMO, is the basic mechanisa for

accessing sche■ata networks, for traversing arcs in semantic

networks, and for procedural message ~assing and interpretation.

Its for■ is:

(SEID <A1><A2> • •• <An>).

The arguments, <A1> through <An>, are called a ~fil?age seg~.n£g.

SEND evaloates each of its arguments in segoence returning the

5: l!a va

124

evaluation of its last argument, <An>, as its value. If the

value of some <Ai> yields an object or an item, then it is

pushed onto the processor stack thereby auq11enting the

environment for either atom definitions or variable bindinqs

respectively.

The sequence,. <A1> through <An>, is a .n encoding of a search

procedure through the network. By pushing some object, <Ai>,

onto the stack, the processor in effect "goes to" that object.

Nov the evaluation of <Ai•1> is computed fro■ within the new

enclosing object, perhaps itself yielding another obiect or

item.

Knowledge may be represented in schemata in three different

ways. First, it can be represented declaratively as either

atoms defined within t.he scheaa object or as patterns in a

tt1plebase contained within the object. we sav above how atoms

could be associated with definitions by creating a nev object

using either OBJECT or NEW •. Atom bindinqs can also be added to

existing objects by using SEND and PUT•. Por exaaple, to add a

new schema slot to the generic sche a, DOG:

(SEND DOG (PUT• 'VIBTUE 1 8ANS-BEST-FRIEID)).

SEND first evaluates DOG which yields a.n object, the dog schema.

This ob1ect is then pushed onto the processor stack, thus

becoming the enclosing object. The evalaa tion o.f POT* then adds

the nev definition of the atom, VIRTO'B, to the enc.losinq object.

That is, a nev slot is added to the schema, DOG.

To access slots in a schema, it is again necessary to

5: Ma va

125

"goto" that scheaa•s object. For example, the form:

(SEND DOG (PRINT CLASS) VIRTUE),

will first print ftAftNALil and then return MANS-BEST-FRIEND.

Declarative knowledge may also be realized as patterns in

associative databases defined within schemata. !echanisas for

pattern matching in schemata are discussed in the next section.

The second way knovledqe can be represented in schemata is

procedurally using local function definitions. In fllaya, the

property list of an atoa is represented as an object bound to

that atom. Since the EXPR function property is no different

than any othe.r property, function definitions can be local

properties of objects. Por example,

(DEPUR POO (I) X)

creates, as expected, a LAMBDA expression bound to the name,

EXPR, on the property list of the atom, POO. However,

evaluating the following form:

(SEND FOO EXPR)

returns the binding of the atom. EXPR, within the object, FOO,

which is:

{LAB BDA (I) X) •

As well, a nev definition of POO can be locally associated with

a particular ob1ect, for instance:

(SEND DOG (DEPON FOO (X) 'VOOP)) •

Evaluating fP'OO 'A) yields A but evaluatinq:

(SEND DOG (FOO 'A))

yields instead WOOF. Purtheraore, the data structure created by

5: Ma ya

126

this example is itself a network of objects which can be

accessed as follows:

(SEND DOG POO EXPR)

which yields

(LAftBDA (I) 'WOOF).

The third mechanis ■ for representing knowledge in sche■ata

is procedural attachaent (Winograd, 1975). In ftaya, both

qenerators for perf oraing top-down search and processes for

realizing bottom-up search can be associated with tuple patterns

in tuplebases local to scbeaata. such procedures attached to

patterns are l!aya•s mechanism for associating top-down and

.bottom-up ■et hods vith a schema• s expectations, represented as

patterns. Top-down and botto11-up methods vill be discussed in

sections 5.5 and 5.6 respectively.

5. 3. 2 f!essaqes

The evaluation of SEND can also be defined recursively in

terms of sending messages. The value of SEND applied to the

sequence, [<l1><A2> • •• <An>], is recursively the result of

sending <A1> the message, [<A2> ••• <An>], and so on,

returning finally the value of <An>. Thusw evaluating a message

sequence is sending the llil§ of the CAR'of the sequence a

message, the CDR of the sequence.

An e1:a111ple follows which illustrates in .Playa the

5: J!llava

127

construction of instance hierarchies, and the use of soae of the

~aya priaitiTes to interpret simple procedural messages. This

exaaple is ertracted fro• a ftaJa program to play "Twenty

Questions". In this program, an instance hierarchy is used as a

discri■ination tree to interpret a series of responses from the

user. Each node in the net contains a question plus the

possible branches of the tree to take depending on the user's

response. Although the example is simplistic, it demonstrates

the use of Maya network structures and simple message passinq

and interpretation.

(DEFUN TWERTY-QUESTIOMS aEXPR NIL
(PRINT '"PLEASE THINK OP SO~E OBJECT")
(SEND TOP-NODE

(ASIC 20)))

The top-level function sends the Top-Mode of the discrimination

net a message to ASK 20 questions.

(DEFUN ASK itEXPR {B)
(AND (ZEBOP ?H) (RETUBN '"YOU WI!I" 'TWENTI-QtJESTIONS))
(PRINT QUESTION)
(SEND (EVAL (BEAD))

(ASK (SU.B1 ?N))))

In this example, the message sent to each node is

procedural. It says: "Check to see if ve have asked ■ore than

20 questions; if so. then lose. Otherwise, print your :<1tiestion

and recursively send this saae message (■inus 1 froa N) to ~2Yt

choice of next node." A few of the semantic net nodes of this

proqra ■ follow:

5: Maya

(PUT* 'WIN-MODE (OBJECT 'NODE))
(SEND Will-NODE

(DEFUN ASK iEXPR (N)
(PRINT '"I VIN!!")
?N))

(PUT* 1 NODE4
(OBJECT I NODE

QUBSTIOW ••ts IT A SNAKE?"
YES V'IR-BOD!
10 HODE7))

(PUT* 'HODE1
(OBJECT 'RODE

QUESTIOH '"HOW !ANY LEGS DOES IT HAVE?"
ZERO NODE4
TWO NODES
FOUR NODE6))

(PUT* 'TOP-NODE
(OBJECT 'NODE

QUESTIOB '"IS IT AHIMAL, VEGETABLE. OR !INERAL?"
All! !AL NODE1
VEG ETA BL E NODE2
ftINERAL NODE]))

128

In the recursive calls to ASX, hov does the recursion

terminate? On failure, that is. after the twentieth question.

the first line in the body of ASK vill terminate the recursion.

on success hoveYer, the process is quite different. At NODE4,

if the user answers "yes" to the question. "Is it a snake?"• a

node called WIM-NODE is sent the message,

(ASK (StJB 1 ?N)) • ,

Within WIN-NODE is a local definition of the function, · ASK.

WIN-NODE has its ovn interpreter for this particular message.

It always interprets the message as a successful end of the

game.

This example serves to illustrate a fev basic features of

5: l!ava

129

ftaya. Through the use of PUT* and OBJECT, s~mantie netvorks can

be constructed. As well, SEND can be used to send simple

procedural messages between objects • . In this e~a■ple, an ansver

to the current question is elicited froa the user.

answers are restrlcted to atoms, then the expression,

(EVAL (READ))

If his

will fetch an object, the next node of the discrimination ttee.

SERD pushes this object onto the stack, and subsequently

evaluates in this nev context the rest of the message, which is

the recursive ca 11 to ASIC.

SEND fetches each function from its name's first definition

on the stack. !his pro•ides the mecha~ism to allow the object

receiving a message to perform .its own local interpretation of

that message. In this exaaple, when WIN-NODE is sent the

message, ASK, the definition of ASK defined locally is used

because SEBD had previously pushed II IR-NODE, including its local

definition of ASK, onto the stack • .

suppose, however, that the user types an ato■ic answer that

the program is not expecting. The result would be unpredictable

because Maya will fetch the first definition of the atom it can

find. For a random answer, the definition is likely to be NIL.

If we replace the form, (EVAL (READ)) in ASK with:

(GET* (READ) ' (WHAT?))

and define a new function, ve now have a solution:
(DEPUR WHAT? iEXPR NIL

(PRINT '"WHAT?")
(RETURN (ASK ?R) 1 ASIC))

5: ffaya

130

GET* always fetches definitions from within the current

enclosing object. If GET* fails to find the name defined in the

enclosing object, the second argu■ent is evaluated. In this

case, (WHAT?) which just asks the same question again.

5.4 Pattern flatching

Syntactic pattern aatcbing provides a primitive level of

comparison based only on syntactic fora. Maya defines a number

of pattern matching primitives similar to those provided in most

recent artificial intelligence programming languaqes, (Hewitt,

1972) (l!cDer11ott, 1973) (Davies, 1973). flaya uses its pattern

matcher to compare tuples, to perform associative retrieval of

tuple patterns fro■ databases, to implement generators and

processes, and as a syntactic base upon which to boild semantic

associative retrieval over sche■ata systeas. This higher

network matching ■ay in vol Ye active search and deduction (Bobrow

& Winograd, 1977). semantic matching over schemata structures

is, as has already been pointed out, another characterization of

the recognition problem.

The pattern matcher in Baya is called ftATCH. The for of a

call to ftATCH is as follows:

(MATCH <pattern><db>[<else> J).

Its first argument, <pattern>, is matched aqainst a datum. <db>,

which is either another tuple or an associative database of

tuples called a !gE!§R!~• The matcher, on a successfol aatch,

5: Maya

'i' ··,
131

returns an item coaposed of the bindings of any pattern matching

variables assigned during the match. On failure, an optional

third arguaent, <else>, is evaluated. This optional argument is

called a f~i!Y~! ex!! and is used to control failure driven

search.

An example of pattern matching in !!aya is given by the

following:

(l'UTCH '(ON !:X !:Y> '<ON B1 TABLE> 1 (POOl).

The evaluation of this expression results in a successful match

returning as value an itea containing the variables X bound to

B1 and Y bound to TABLE. If the match had failed, the form,

(POO), would have been evaluated and returned as the value of

PIATCH.

The item returned £roa the pattern matcher may also contain

a ~ac!i!~1ion tag. This taq is a pointer to the current

invocation of the ■atcher in order that it may be recalled ·tor

another match. Because the pattern matcher is i ■ ple ■ented as a

generator, ftATCH provides a non-deter ■ inistic search mechanism

for tuplebases.

Tuplebases are accessed by the pattern matcher, various

database aaintenance functions, and a number of control

structure functions for scheduling both top-down and bottom-up

methods. Any tuple pattern in a tuplebase aav have an

the associated value vhich is included in the item return from

matcher as the value of the distinguished variable,

Tuplebases are co■posed of an inverted index structure which

5: Maya

132

uses Maya objects to represent each level of the ind~•• , Since

they are formed from a primitive data type, tuplebases may as

vell be operated on vith ordinary object accessi~g functions.

For example, to create a new tuplebase of assertions within the

enclosing object:

(PUT* 'ASSERTIONS (OBJECT 0))

Notice that as many tuplebases as desired may be created in this

manner.

In order to add a pattern assertion to this tuplebase, the

following form could be evaluated:

(PADD '<WOOF BE DOG> ASSERTIONS).

Finally, to delete assertions from this tuplebase:

(PRE!OVE 1 <PUSHKIN BAS FLEAS> ASSERTIONS).

5.5 Top-down ~ethods

Top-down search in 8aya is based on the notion of

generators which are functions that may be recalled a number of

times for a single invocation. Alternatively, generators may_be

thought of as functions that retain an internal state between

calls. There are four types of qenerators in ~aya:

1. PIATCB

2. QLAMBDA expressions and QEXPR functions.

3. B1ST and 01ST.

4. NEXT and FAIL.

5: Mava

133

The pattern matching function, !ATCH, has been already

described. The second type of generator is realized by

coabining the concept of QLA1'BDA expressions fro■ QLI SP (Davies,

1973) and !aya ite■s. The aechanism is a qeneralization of the

generators defined in CONNIVER (1'cDermott & Sass■an, 1973).

Each QLAl'IBDA expression has a tuple pattern as its argument

list. QLUIBDls are inToked by 11atcbinq a pattern in the form of

a tuple against either the pattern argument of a specific

QLA~BDA expression or aqainst a tuplebase of QLAMBDA

expressions. QLAP!BDAs always return items as values. As in

fUTCH, the item is composed of the bindings of the pattern

variables assigned during the pattern match plus a possible

reactiYation tag ,for the generator. QLAMBDA expressions may be

given names by creating QEXPR type functions with DEFUN.

QLAftBDAs and QEXPRs take optionally one or two arguments:

((QLAfllBDA <arg-pattern><body>) <pattern>[<else>)) or

(<qexpr><arg-pattern>{<else>]).

The first argument, <pattern>, aust be a tuple and is the

pattern to be matched against the argument list, <arg-pattern>.

The second argument, <else>, is evaluated if the pattern match

fails or if the QLlMBDA expression evaluates a call to PAIL.

<Else> defaults to BIL. , Since QLAMBDAs and QEXPRs are treated

bv the interpreter as any other fu.nction, they may be applied,

mapped, and evaluated.

QLAMBDA expressions may be stored in tuplebases by bindinq

them to patterns identical to their pat tern arguments. A

5: l!a ya

134

mechanism is thus realized for associating top-down methods with

patterns. Methods are added to a 11ethod tuplebase as follows:

(PADD <arq-pattern><■ ethod-base><qxl>),

where <arq-pattern> is the pattern argu ■ent of the method, <qxl>

is either a Q.EXPR name or a QLA!IBDA expression, and

<method-base> is a tuplebase of methods. Methods are deleted

from taplebases in a si ■ilar fashion:

(PRE"OVE <arg-pattern><aethod-base>).

The third type of generator is used to access and then

invoke QLUIBDA expressions in tuplebases by matchinq their

associated patterns. Two different mechanisms are provided.

D1ST searches a tuplebase of QLIMBDA expressions in depth-first

order. The fora of calls to this function are:

(D1ST <pattern> <db> [<else>1).

01ST will fetch fro■ the tuplebase, <db>, a QLAMBDA eipression

matching <pattern> and then invoke that function. A successful

value returned fro11 the QLA!tBDA vill also be returned from D1S'1'

with the addition of a reactivation tag. If the tag is later

used to restart the generator, D1 ST vill recall the QLAMBDA

expression to generate another itea. D1S'1' vill continue to

recall that same QLAMBDA until it fails to qenerate any nev

items. Then 01ST will return to the tuplebase to search for

another QLAMBDl expression matching <pattern>.

Similarly, B15T searches a tuplebase of QLAMBDA expressions

in breadth-first order. The fora of this primitive is:

5: flJaya

135

(81ST <pattern> <db> [<else>]).

B1ST will invoke the first QLA!BDl expression it finds that

matches <pattern>, and return the ite■ yielded by the QLAMBDA

vit h the addition of a reactivation taq as its own value.

However, when this generator is resumed again, B1ST vill attempt

to find a different aatching QLAMBDA expression in the

tuplebase. Only after it has invoked once all ■atching QLAMBDA

methods will it recall each suspended QLAMBDA for a second time,

and then each for a third tiae, and so forth.

The last type of qenerator defined in ftava includes the

control pri•itives for restartinq generators from the

reactivation tags returned in their ite11s. The functions, NEXT

and FAIL, are used for loop-driven and failure-driven search

respectively. For a comparison of the two approaches, see

Sussman and !cDermott (1972).

NEXT, which is analogous to Conniver's TRY-NEXT, is a

functio.n of two arguments:

(HEXT <item> [<else>]).

<Item> aust be an item created by another generator. NEXT looks

for a reactivation tag in the item. If it finds such a tag, the

attached generator is resumed • . otherwise, if no taq is found or

the resuaed generator fails , NEXT evaluates <else>, its optional

failure fora. Por example, to find in a tuplebase, TOYS, the

na111es of all boxes, the following expression could be used:

(PROG (X)
(SETQ X (flllTCR '<BOX !:B> TOYS '(RETURN IIIL)))

5: Ma ya

LOOP
(SEND ?X (PRilfT ?B))
(SETQ X (NEXT ?X '(RETURN NIL)))
(GO LOOP))

136

Failure-driven search is realized in Ma ya by using the FAIL

function in con junction with another pri111i ti ve • ELSE. PAIL is a

function of no arguments that causes Mava to begin discardinq

control frames froa its processor stack until an i tea is found

on the stack containing a reactivation tag. The qenerator

attached to this tag is then restarted from that failpoint.

The function ELSE provides the necessary mechanism for

controlling failure-driven search. It is a very simple function

of one argo■ent which creates an explicit failpoint with that

unevaluated argument. ELSE returns an item containing only a

taq bound to this failpoint. , When the taq is reinvoked by PAIL.

the argument is finally evaluated. thereby providing a mechanism

for capturing failure. , The mechanism is called a !~ilu~ h!.Qg

and is illustrated in the following example:

{SEND (ELSE' (FAILURE-EXIT))
(f!ATCH '<BLOCK !:X> TOYS '(PAIL))
(P!ATCH '<COLOUR ?I BLUE) TOYS. 1 (PAIL))

•
•

(SUCCESS-EXIT))

This progra■ segment attempts to find a blue block from the

database of toys. If it is successful. control passes tbrouqh

the block. Otherwise, a failure exit is taken. Failure blocks

define a local backtrack search 11echanis ■ that follows separate

control paths depending upon whether the local search succeeds

5: Ma va

137

or fails.

5.6 Botto■-up l!!ethods

Bottom-up search is realized in PJaya via aultiprocessing.

Processes consist of se11i-autonoaous procedures. A number of

processes may co-exist simultaneously and may or ■ay not be

associated vith particular sche111ata. Processes ■av be created,

invoked, destroyed, and resumed by other processes. A process

may terminate or suspend itself or it may via the COPJPLETE

function suspend itself and all other processes associated vi th

a particular schema.

The procedure body of each process consists of a QLAKBDA

expression. When a process is created, a specified pattern is

matched against the pattern of the QLAPJBDA expression.

Processes ■ay be suspended to patterns in a specified tuplebase

of processes. · suspended processes may be resumed by matchinq

those patterns.

Processes are created in rtaya via the function,, PBOCESS,,

which has the following form:

(PROCESS <schema> <ql> <pattern> (<else>]).

<Pattern> is matched against the pattern argument of the QtAMBDA

expression. Should the match fail, <else> is evaluated if

present or defaults to NIL. otherwise,, a nev process is created

vith the QLAllBDA expression as the body of the process. The

process is associated with an object, <schema>, or if NIL is

5: Mava

138

specified, with no object. The association of processes vith

schemata is utilized by the system function, COMPLETE, which is

described later.

once a process is created, its procedure body is executed

until it terainates or is suspended. A process may be

terminated by executing the last form in its procedure body or

by executing the EXIT or PAIL functions. Processes may be

suspended via the SUSPEND or COMPLETE functions. SUSPEND is a

primitive of tvo arguments, a tuple, <pattern>, and a tuplebase,

<db>, as indicated in:

(SUSPEND <pattern> <db>).

The current running process is suspended to the pattern and is

stored in the speci .fied tuplebase. Control retur.n·s to the

process which invoked the now suspended process.

ftaya recogni~es two types of processes in tuplebases;

§~§E~nggg ~EQg§§§U and »g~ed - pro~§~~§• A suspended process

consists of the segment of the stack: representing the current

state of evaluation of the process plus an associated schema. A

named process consists of either a QLAMBDl expression or a QEXPR

name plus an associated scllema. I Suspended processes are added

to a tuplebase via the SUSPEND function. Named processes are

added to a tuplebase as follows

(PlDD <pattern><db)(BAMED-PBOCESS <ql><scheaa>)).

This for■ adds to the tuplebase, <db>, under the pattern,

<pattern>, a named process whose proced nre body, <ql>, is a

QLA"BDA expression or a QEXPR name. <Pattern> and the pattern

5: Ma ya

..

139

argument of <ql> must be identical. If <scheaa > is an objectr

the process is associated with the scbeaa represented by the

object. If <schema> is NILr the process is not associated vith

anv schema.

The ■ajor differences between named processes and suspended

processes are the following. A suspended process 11a y be resumed
'

only once for each appearance in a tuplebase. When it is

invokedr the pattern to which it was bound is deleted from the

tuplebase. On the other handr a named process mav be invoked

multiple times from the same pattern in a tuplebase r each

invocation resulting in the implicit creation of a nev processr

and _the pattern is not deleted froa the tuplebase.

suspended and naaed processes are resumed .by the RESOME

function which takes three arguments: a pattern, <pattern>r a

tuplebase, <db>r and an optional failure forar <else>:

(RESUftE <pattern> <db> [<else>]).

<Pattern> is matched against the tuplebaser <db>. If the match

fails. <else> is evaluated. otherwise. the process bound to -the

matched pattern in the tuplebase is resuaed.

It will be noticed that all the top-dovn and bottoa-up

control primitives return items as Yalues. Thereforer functions

such as RESUSE are also generators. In the case of process

primitives, they are 1!2.t~::!ll! g~~!:~tQI§• The item returned as

value fro■ RESUME can be operated on by NEXT and FAIL to

sequentially generate and then to resume every process matching

pattern.

5: Ma ya

140

A schema may have more than one of its associated processes

active at any one time. The stack thus may contain a number of

processes associated with the sa ■e schema. · All of these

processes have a coa•on purpose, to whit, the recognition of an

instance of the schema's stereotype. When a schema is

successful in its recognition, the efforts of all its processes

need to be suspended. This is called completion in the

recognition model. The following function. COMPLETE, provides a

mechanism for suspending all the processes of a scheaa and

resuming the process of another specified schema or schemata:

(COMPLETE <pattern> <db> (<else>]).

<Pattern> is matched against the tuplebase of processes, <db>.

On success, the current process, P1, is suspended as described

below to a reactivation tag. C08PLETE then resumes the process

matching <pattern>, P2.

This complex function is the aain control structure

mechanism in r!aya for realizinq the control aspects of the

recoqnifion model. COMPLETE supports superqoals, heuristic

method scheduling, and method hierarchies. The ■echanis■ is

based on the assumption that for machine perception tasks all

top-down and bottom-up methods associated with a particular

schema are concerned with the ultimate recoqnition of that

schema instance. Therefore, when a method associated with a

particular schema has concluded that the recoqni tion of its

instance is complete, all concurrently active methods associated

with that same schema are no longer needed. They must be

5: Maya

141

suspended. In order to achieve this result, COP!PLETE searches

the processor stack to find every occurrence of processes

associated with the saae schema as the current process (la belled

P1 above1. Every such process and its sub-processes are then

suspended. Finally, P2 is resumed.

5.7 Conclusion

This chapter has presented a brief overview of a new

artificial intelligence proqraaaing languaqe. The lanquaqe was

discussed from the perspective of realizing the procedural

mechanisms defined in the recognition model. Althouqh it is

impossible to completely characterize a high-level proqra•ming

language that introduces new complex control and data structures

in the space available here, a number of its salient features

have been discussed. A tutorial on ~a~a, desiqned to augment

the descriptions presented here and to suppleaent the lanquaqe

reference appearing in Appendix-B, is now in preparation.

5: Pia ya

142

6.1 Perspective

In this final chapter, the author takes the opportunity to

step back and re-exa•ine the work of this thesis. A

recapitulation of the recognition ■odel is 11ade fro11 the

perspective of its contribution to a theory of machine

perception. Finally, applications for the model are discussed

indicating some pro11ising directions for future research.

6.2 Recognition Revisited

task.

Perception has been cha.racterized as an active recognition

such a view of perception is held by Bobrow and Winoqrad

(1977):

Reasoning is dominated by a process of recognition
in which nev objects and events are compared to
stored sets of expected prototypes, ana in which
specialized reasoning strategies are keyed to these
prototypes (p.4). _

This process is more than a simple passive retrieval from

memory of a stored description of the thing perceived.

Experience is much too varied and co•plex to depend on such a

mechanis11. We are constantly experiencing new situations,

6: Recognition Revisited

r.
t

143

seeing new objects, understanding new sentences. We probably

never perceive exactly t.he same experience in the same situation

more than once. Thus, perception is a generative process,

composing nev descriptions of experience in ter ■s of a stored

finite knowledge of the vor1d (Choasky, 1957). Jaynes {1976)

argues that perceiving an experience is a process of arrivinq at

a metaphor to describe that experience.

Generations aqo ve woold understand
thunderstorms perhaps as the roaring and ruablinq
about in battle of soperbuman gods. We vould have
reduced the racket that follows the streak of
lightning to fa11iliar battle sounds:, for exa ■ ple.
Similarly today, ve reduce t be storm to various
supposed experiences vitb friction, sparks, vacuuas,
and the iaag:Lnation of bulqeous bernks of burly air
smashing together to make the noise. None of these
really exist as ve picture them. our images of
these events of physics are as far fro■ the
actuality as fighting gods. Yet they act as
metaphor and they feel fa ■iliar and so ve say ve
understand the thunderstorm (p.52).

Thus, descriptions of experience are metaphorical. We

perceive the sensor, world in ter ■s of our stored descriptive

knowledge of that world.

machine percept.ion, ve must

In order to develop a theory of

characterize mechanisas for

emulating this qeneratiYe process. The specification of a

theory faces two ■ajor issues: representation and recoqni tion.

What is the fora and organization of memory and what types of

procedural ■echanis ■s

representation?

can perform rec oqni tion on that

The psychological question of 11e ory organization is far

6: Recoqnition Revisited

144

from resolved. There is experiaental evidence supporting both

imagery and structural representations (Yuille,. 19 76) • Ho vever,.

Chase and Simon (1973) have shown that chess 11asters are much

better at reme■bering chess board positions from actual chess

games than fro■ random bpard arrangements. The expert's ability

at reaembering random boards approaches that of non-chess

players,. thus indicating a definite dependence on structural

descriptions. It seems clear that high-level reasoning Qepends

predo ■inantly on schematic mechanisms (Pylyshyn, 1976),. althouqh

perception most certainly makes use of both imagery and

schemata.

A major aspect of this thesis is the characterization of

perception as an active process that exploits heuristic

knovledqe of the world. The value of active heuristic knovledqe

has been demonstrated by Winograd's (1973a) natural languaqe

system, SHRDLU. His system was a siqnificant advance in the

state of the art, incorporating procedural semantics in a

language understanding system. The apparent lesson of his

research was that procedural semantics is ■ore pov~rful than

declarative se11antics for performance-based syste■s. A more

insightful lesson is that procedural semantics coupled with

hypothesis-driven search provides a aechanism for introducinq

heuristic knowledge to quide the perception process. Procedures

are only the vehicle for the improvement in performance, not the

reason. The same capability can be obtained in purely logical

systems,. as Hayes (1971) has argued , by defining deductive

6: Recognition Revisited

145

control operators within the formal logic system. Again, such

mechanisms provide the vehicle for introducing active knowledge

into the perceptual process.

Unfortun~tely, the incorporation of heuristic guidance to

hypothesis-driven recognition has not been a sufficiently

powerful aechanism to solYe the ■achine perception problem.

Winograd (1973b) has noted the appearance of a "co■plexitv

barrier" to the advancement of the art. The barrier . arises from

the dependence on top-down search mechanisms. Such methods

require the system to hypothesize the correct interpretation for

some sensory input before it can be found.

not hypothesis-driven search, but the fact

schema must be chosen as a plausible

The deficiency is

that a particular

interpretation and

attempted before any of its heuristic recognition knowledge

becomes available to direct the search process. Its expertise

comes too late!

Hypothesis-driven recognition has also been proposed for

schemata representations (Minsky, 1975). The recoqnition model

described by Kuipers (1975) is p.robably the best. known. As was

pointed out, his model attempts to avoid the inadequacies of

top-down search by appealing to a failure-dri vEn si milari t'y

network to recommend likely alternative hypotheses. This

mechanism does not confront the real problem. Sensory data is a

highly ambiguous encoding of experience. The interpretation of

sensory data requires a ■ethodoloqy that exploits contexts and

can tolerate larqe degrees of non-determinism. The top-down

6: Recoqnition Revisited

146

model appeals implicitly to the "little man in the head" or

homunculus theory of perception {Pylyshynr 1973). consider the

following verba 1 example qi ven by Kuipers (1975) :

A frame [schema] represents a certain limited
domain, and hence a range of variation for obiects
which belong to that domain. As ve saw in the room
scenarior the features of a frame may be frames in
their own right, embodyinq ranges of variation. On
entering a room, you are prepared fo.r certain
typical pieces of furniture. A park bench or
diamond-encrusted throne vould be outside the
permissible ranqe of variation in this frame. Such
an anomaly may indicate to the correction mechanism
that another frame is called for (p.159).

In this description, the perception problem has been

finessed by assuming that it is easier to recoqnize a park bench

than a room. They are, in fact, problems of the same order of

complexity. Postponing the problem will not solve it. Relying

on the expectations of the roo■ schema to handle all or even

most possible contents of a room abdicates the responsibility of

the search process to failure mechanisms. Upon enterinq a room

containing an unanticipated ob1ect, the search process will

blindly select one bad hypothesis after another until an

"appropriate" schema is found. Only then will that schema's

domain-specific knowledge be available to guide the recoqnition.

That knowledge was needed much earlier. One must conclude that

hypothesis-driven recognition is not the mechanism upon which to

build machine perception regardless of the type of auxiliary

attachments added to improve its performance.

In order to surmount this complexitv harrier, machine

6: Recoqnition Revisited

147

perception requires both hypothesis and data-driven recoqnition.

Hypothesis-driven search applies heuristic methods associated

with the recoqnition of a particular scheaa once a commitment

has been made to that scheaa. Data-driven search provides the

means to select likely hypotheses based on the discovery o .f

supporting evidence and c11es. Top-down and bottom-up search

methods can be integrated in a synergistic manner. , Bottom-up

search drives the activation of plausible higher scheaata as

superqoals. After being established as likely hypotheses, these

schemata attempt to confira their recognition both by usinq

top-down search via subqoaling to sub-schemata and by observinq

cues in the input data to drive the bottom-up search for other

schemata.

Recently, a number of other 11odels have been proposed for

perception. ~ackvorth (1977c) has offered the cyclic model

depicted in Figure 6.1a which he attributes to the oriqinal work

of Roberts (1965). In this model, perception is seen as an

iterative process. The discovery of cues invoke appropriate

models. Plfode ls a tte■ pt to ver ifv their hypotheses by

observation. Successfully recognized hypotheses cause the

elaboration of the consequences of their models, resultinq in

the discovery of nev cues.

Figure 6.1b illustrates a similar cyclic model of

perception

expectations

Exploration

given by Neisser (1976). Schema ta represent

which direct the exploration of the sensory world.

results in observations which match these

6: Recoqnition Revisited

I
CUE

MODEL
ELABORATION

MODEL
VERIFICATION DISC__

MODEL
INVOCATION

__)
Figure 6.1a

OBJECT

modifies

EXPLORATION
directs

Figure 6.1b

~ SCHEMATA

invokes(direct--=--\

EXPECTATIONS . OBSERVATION

matches\ primitive }

~ CUE <_/
success

DISCOVERY

~ abstract

'-_, __ COMPLE'IICN

FIGURE 6.1C

6: Recognition Revisited

I
I

I

i ,.

149

expectations thereby ■odi .fying the sche■ata and propagating the

process. Beisser uses this model to stress the inherently

sequential nature of percei:,tion involving the modification of

sche11.ata over time.

llthouqh each author allows for the existence of a

cue/model hierarchy, in neither model is a •echanism for the

perception of cues as abstract entities sufficiently elaborated.

Fiqure 6.1c illustrate~ the recursive model of perception

presented in this thesis. The model can be seen to generalize

the purely cyclic aodels of Figures 6.1a and 6.1b. As in these

models, recognition follows a cyclic path of cue discovery and

schemata invocation. A particular schema may pass throuqh this

cycle a number of times. However, vhen a schema's recognition

is completed, the recognition cycle ascends one level in a

hierarchy of cues and models • . Schemata reco(fnized at one level

becoaes cues in the recognition at the next higher level in the

hierarchy.

Despite the fact that the necessity of cue/model

hierarchies in the cycle of perception has been clear for some

time (1'ackvorth, 1976, 1977c), a ■ echanis ■ for achieving this

goal has not been specified. The aajor contribution of this

thesis is the precise characteri%ation of such a mechanism.

The notion of co•pletion provides an explicit mechanism for

capturing the recursive nature of perception. When a schema has

recogni-zed a fully specified instanc.e of its stereotypical

concept, it must return that success to one or more higher

6: Recognition Revisited

150

schemata. If the schema was activated as a subqoal by a hiqher

schema, it must return its completed description to that schema.

Otherwise, the completed schema has been recognized usinq

bottom-up methods and has no explicit caller. It then exists as

an abstract cue which attempts to ■atch the expectations of

higher schemata activating the ■ as supe'rgoals. Ru.melhart and

Ortony (1976) have addressed similar control structure issues

for schemata.

It may be helpful to think o.f these processing
issues in terms of a computer programming metaphor,
for one can think of a schema as being a kind of
2£Q~~dur~. Procedures have s~brouttnes and one can
think of the activation of a schema as being like
the invocation of a procedure. The variables of a
schema are thus analogous to the variables of a
procedure while the sub-schemata are analogous to
the subroutines which may be invoked from within it.
The activation of subschema ta within a schema is
like the calling-up or invocation of the subroutines
within a procedure. Tbis is the paradigm case of
conceptually-driven processing. However, unlike
ordinary procedure calls, in which the flow of
control is only from procedure to subroutine. the
flow of control in a schema system operates both
ways. It is as thouqh a given procedure not only
could inYoke those procedures in which it was itself
a subroutine (data-driven processinq). Finally. one
must imagine these procedures as all operating
simultaneously (p.46).

The realization of this programming metaphor as an operatinq

programming language is the second major contribution of this

thesis. Maya defines explicit language primitives for creatinq

sch -emata and schemata networks, for associating procedural

methods vith schemata, and for invokinq those methods both as

subgoals using conceptually-driven search and as superqoals

6: Recoqnition Revisited

151

using data-driven techniques. As well, r!aya utilizes the

completion aspect of the recognition model as a multiprocess

scheduling mechanism for simulating the concurrent application

of methods.

6.3 Applications and Future Research

The issues addressed in this thesis are currently of

interest in a number of research areas. For this reason, the

recognition model and its realization as Maya should have

general applications in such perception research as machine

vision, natural language understanding, and episode

understanding. r!oreover, problems of control in automatic

deduction systems are similar to the control structure issues in

machine pe .rception. Issues of integrated hypothesis-driven and

data-driven recognition are analoqous to similar issues of

backward and forvc'\rd deduction. The ideas developed in this

model concerning active heuristic guidance and concurrent

methods should also have application the.re.

Future research will focus on a specific task domain that

exhibits the following four criteria. First, the task must have

a well-defined semantics, preferably an explicit conventional

semantic representation such as exhibited by sketch maps

(Mactworth, 1977a). Second, in order to eEploit fully the

advantages of integrated top-dovn and bottom-up recognition, the

prob le■ should have a hiqhly aabiquous input data

6: Recognition Revisited

152

representation. Third, the problem should inherently have a

hierarchical knowledge representation in order to demonstrate

the advantages of recursive cue/■odel hierarchies in machine

perception. And finally, the domain must be generally accepted

as a a perceptual task for which previous recoqnition mechanisms

have been shown to be inadequate. Possible research tasks

exhibiting these criteria include the interpretation of LANDSAT

video i■ aqes, the analysis of electronic circuit schematic

diagrams (Stallman & suss ■an. 1977), and the understanding of

handwriting.

153

AHO A. & ULUUN, J. (1972) !h§ ll~2~~ Qf f~[§i..ng. !!~D.2!~llQ!1,
~n~ £Q112ilirui. vol 1, Prentice Hall, Englewood Cliffs,
N.J., p.320.

BARTLETT, F.c. (19.32) Re11g11b~tiru1, Cambridge Univ. Press,
Cambridge, England.

BOBROW, D. G. & NORl!AW, D. A. (1975) Some Principles of rtemory
Schemata, in D. G. Bobrow & A. Collins (eds,) , Rfil:!resenta tion
and Understanding, Academic Press, Nev York.

BOBROW, D.G. & RAPHAEL, B. (1974) New Programming Languages
for A. I. Research, ~E.• ~J!~,!;gy2 , vol 6, pp. 153-174.

BOBROW, D.G. & WBGBREIT, B. (1973) A Model and Stack
Implementation of rtultiple Environments, CACM, Oct. 1973,
vol 16, t10, p.5~1.

BOBROW, D.G. & WINOGRAD, T. (1977) An Overview of KRL: A
Knowledge Representation La.nquage, £Q9!Li1!.!g Science,
vol 1, t1, Jan 1977.

CHARHIAK, E. (1975) Organization and Inference in a :Frame-Like
system of Common Knowledge, Proc. Theoretical Issues in
Natural Languaqe Processinq, Cambridge, ftass., June 1975,
p. 46.

CHASE, W. G. & SIMON, H. (1973) Perception in Chess, Cogni,1:i,y~
E~I£hQ!QgI, 14, pp.55-81.

CHOMSKY. N. (1957) 21ntacti£ li1UA£t.Y.!:.~.§, The Hague: ltouton and
co.

CLOWES, M. B. (1971) On Seeing Things, Artificial Intelli_gence,
vol 2, t1, pp.79-112.

COLLINS, A~ & LOFTUS, B. (1975) A Spreading Activation Theory
of Semantic Processing, Ps1chological Review, vol 82, t5.

COLLINS, A. & QUILLIAN, fl • . R. (1 972) How to Make a Language
User, in organization of MeJDCLrv, E.Tulvinq & W.Donaldson
(eds.), Academic Press, Nev York.

DAHL, o. & NYGAARD, K. (1976) SIMULA-An Algol-based Simulation
Language, £A~~. vol 9, Sept. 1976.

DAVIES, D. J. (1973) Popler-1.5 Reference Manual, TPU
Reportt1, School of Artificial Intelliqence, u.ni v. Of
Edinburgh, Edinburgh, Scotland.

154

EARLEY, J. (1970) An Efficient context-Free Parsinq Algorithm,
~!~a, vol 13, t2, Feb 1970, pp.94-102.

PAHL.MAN, S.E. (1975) Thesis Proqress Report: A System for
Representing and Using Real-World Knowledge, AIM-331, A.I.
Lab, MIT, Cambridge, Mass.

FE I GEN BAUM, E. A. (1963) The Simulation of verbal Learning
Behavior, in Com:QJAters and Tho~ht, Feigenbaum, E.A. &
Peldman, J. (eds.), McGraw-Hill, New York, p.297.

FILLMORE, c. (1968) The Case for case, in E.Bach & R.I.Harris
(eds.), Universals in Ling_yistic TheorI, Holt, Rhinehart &
Winston, Nev York.

PREUDER, E.c. (1976) A computer System for Visual Recognition
using Active Knowledge, Ph.D. Thesis, AI-TR-345, ftIT AI
Laboratory, Cambridqe, Mass.

GELERNTER, ff. (1963) Realization o.f a Geometry Theorem-ProV"inq
l'lachine, in E.A.Peiqenbaum & J,Peldman (eds.), C0,!,2Yte.i;.2
!!11!! Th~!!g_!!!, rtcGrav-Hill, Nev York.

GREEN, c. (1969) Application of Theorem-Proving to Problem
Solving, Proc. IJCAI1, Washinqton, D.c., May 1969.

GUZMAN, A. (1968) Computer Recognition of Three-Dimensional
Objects in a Visual Scene, MAC-TR-59, Proiect lfAC, MIT,
Cambridge, Mass.

RAVENS, w. s. (1976) Can Prames Solve the chicken ana Eqq
Problem?, Proc. First CSCSI/SCEIO Nat. Conf., UBC,
Vancouver, Canada, August 1976.

HAYES, P. J. (1973) Coaputation and Deduction, Proc. 1973 MFCS
Conf., Czechoslovakian Academy of Sciences.

HENDBIX, G. (1975) Expanding the Utility of semantic Networks
through Partitioning, Proc. IJCAI4, Tbilisi, Georgia, USSR,
Sept. 1975, pp.115-121.

HEWITT, c. (1972) Description and Theoretical Analysis (using
Sche■at~ of PLANNER: A Language for Provinq Theorems and
ftanipulatinq Models in a Robot, Ph.D. Thesis, A.I. Lab,
MIT, Cambridge, ~ass.

HEWIT'l', c., BISHOP, P., & STEIGER, R. (1973) A Universal
Nodular ACTO.R For11alis11 for Artif icia 1 Inte lliqence,
IJCAI3, Stanford Oniv., Stanford, Calif., Auqust 1973.

155

HUFP!UN, D. A. (1971) Impossible Objects as Nonsense Sentences,
in ~achine Intelligence 6, B.Meltzer & D.Michie (eds.),
Edinburgh Univ • . Press, Edinburqh, Scotland.

JAYNES, J. (1976) The origin of Consciousness j,n tl!e Breakd,2wn
Qf th~ !!l:Qsmer_a,! llind, Houghton-Mifflin, Boston.

KAPLAN, B. (1973) A General Syntactic Processor, in n. Rustin
(ed.), Natural Langugge Processi.ng_, A lqori thmic Press, New
York.

KOWALSKI, R. A. (1974) Predicate .Logic as a Proqra11111ing
Language, Proc. IFIP74, North-Holland, pp.569-574.

KUIPERS, B.J. (1975) A Frame for Frames: Representinq
Knowledge for Recognition, in R~Q£~§~nt~ti2n ~ng
Understandilli!, D.G.Bobrov & A.Collins (eds.), Academic
Press, Nev York.

M ACKWORTH, A. K. (1975) Consis tency in Networks of Relations,
TR-75-3, Comp. Science Dept •• Univ.of British Columbia,
Vancouver, Canada, also Ar titicial Intelligence, vol 8, 11,
pp.99-118.

l'IACKWORTH, A. K. (1976) Model Driven Interpretation in
Intelligent Vision systems, Per£gJ!i:1:,Q!!, vol 5, pp. 349-370.

PIACKWORTB, A.K. (1977a) On Reading Sketch Kaps, TR-77-2,
Dept.of computer Science, Univ.of British Columbia,
Vancouver, Canada, also Proc. IJCAI-77, MIT, Cambridge,
Mass., August 1977, p.598.

~ACKWORTH, A.K. (1977b) How to See a Simple World, in ~~~hiu~
In!el!.igen~ ~, E.W.Elcock & D.t'lichie (eds.), Halsted
Press, Nev York.

MACKWORTH, A.K. (1977c) Vision Research Strategy: Black Maqic,
Metaphors, Mechanisms, "inivorlds, and Maps, Proc. Workshop
on Comp. Vision syste■s, June 1977, u. ~ass, Amherst, Mass.

~cCALLA, G • . (1977) An Approach to the Orqanization of
Knowledqe for the "odellinq of Conversation, Ph.D. Thesis,
Comp. Science Dept., Univ.of British Columbia, Vancouver,
Canada.

156

McCARTHY, J. & HAYES, P. (1969) Some Philosophical Problems
from the Standpoint of Artificial Intelliqence, in Machi!!~
Intelligence 4, B.Meltzer 6 D.Michie (eds.), Edinburqh
University Press, Edinburgh, Scot land.

~cDERMOTT, D. V. & SUSSMAN, G. (1973) ~Q!! Qf !;21!!!.ll~R: I.h~
~Q!f.NI!ER !{ef~~!!~ AM.Yal, MIT AI Lab, Cambridqe, r!ass.

fllcDERfllOTT, D. v. (1975) Very Large Planner-Like Databases, l1IT
AI Lab, fllemo 339, Cambridge, Mass., Sept. 1975.

~INKER, J. & VANDENBRUG, G.J. (1973) The Earley Algorithm as a
Problem Representation, Tech. Report TR-247, Co■ p. Science
center, Univ.of fllaryland, College Park, !'larylana.

P.IINSKY, fll • . (1975) A Framework for Representinq Knowledge, in
The Psychology of Co]!_puter Vision. P.Winston (ed.),
McGraw-hill, Nev York.

NEISS:ER, u. (1976) Cogni!.ion and Reality, w. H. Freeman 6 co.,
San Francisco.

NEWELL, A. & Sil'IOH, H. (1963) GPS: A Program that Simulates
Human Thought, in ~o•p~~~2 ~ng !bQ~gh!, E.A.Peiqenbaum &
J.Feldman (eds.), McGraw-Bill, Hev York, p.279.

NEWELL, A. & SIMOR, B. (1912) Human Problem SolviJ!g,
Prentice-Hall, Englewood-Cliffs , New Jersey.

NILSSON, R. (1971) f~2 blem ~2!~ing tt~bQQ2 in Arii!i~iA1
In!tlliggng~, ftcGr a w- Bill, Nev York.

NOR!AN, D.A., RUftELHART, D.E., et.al. (1975) ~XElQiatiQD§ in
fggnitiQ!l, W.H.Freeman & Co., San FTancisco.

PYLYSHYN, 'l. W. (1973) What the Mind's Eye Tells the ftind•s
Brain: a Critique of Mental Iaagery, Ps~Ql2~i£il ~ulle1in,
1973, 180, pp.1-24.

PYLYSHYN, 1.. w. (1976) I magery and Artificial Intelligence, in
w.savage (ed.), Minnesota studies in the PhilosoEhI of
~£i~n£~, vol IX, University of Minnesota Press,
fllin nea polis.

QUILL! AN, M. R. (1968) Se11ant ic fte■ory, in ,Semantic In.fo1:11~ ti2n
fIQ~22ing, M.ftinsky (ed.), MIT Press, Cambridge, Nass.,
p.227.

RAPOPORT, A. (1963) Technological Models of the Nervous
svste11, in K.M.Sayre & F.J.crosson (eds.), The Modelling 2f
~i~g, Simon & Schuster, Nev York, p.25.

..

157

REBOH, R. & SACERDOTI, E. (1973) A Preli11inarv QLISP Manual,
Stanford Research Institute AI Lab, Tech Note 181, August
1973 •

REITER, R. (1973) Semantically Guided Deductive System for
Automatic Theorem Provinq, Proc • . IJCAI3, Stanford Univ.,
Stanford, Calif., Aug. 1973, p. 41.

RIEGER, c. (1974) Conceptual Me11orv: A Theory and computer
Program for Processing the Meaning Content of Natural
Language Utterances, Ph.D. Thesis, AIPl-233, Stanford Univ.,
Stanford, calf.

ROBERTS,. L. G. (1965) f1achine Perception of Three-Dimensional
Objects, in Q}?tical and Electro-OEtical Information
Processing, J.T.Tippet et.al. (eds.), KIT Press, Cambridge,
Mass., pp.159-197.

ROBINSON, J.A. (1965) A ftachine-Oriented Logic Based on the
Resolution Principle, ~A~l!, vol 12, 11, pp.23-41.

BUPIELBART, D. & NORMAN, D. (1973) Active Semantic Networks as
a Model of Human P!emory, Proc. IJCAI3, Stanford Univ.,
Stanford, Calif., Aug. 1973, p.450.

RUl'IELHART, D. E. & ORTONY, A. (1976) The Representation of
Knowledge in !eaory, Tech. Report t55, center for Human
Info. Processing, Dept.of Psychology, Univ.of Calif. At San
Dieqo, La Jolla, Calif.

SAMUEL, A. L. (1963) Some Studies in Plachine Learning Usi_nq
the Game of Checkers, in E.A.Feigenbaum & J,Peldman (eds.),.
CQm}!Yters and Though!, PlcGrav-Rill, New York.

SCHANK. R. (1975) Using Knowledge to Understand, Proc.
Theoretical Issues in Natural Language Processing,. l'IIT,
Cambridge, P!ass., June 1975, p.131.

SCHANK, R. & ABELSO.N, R. (1975) Seri pts, Plans and Knovledqe,
Proc. IJCAI4, Tbilisi, Georgia, USSR, Sept. 1975,
pp. 151-157.

SCHUBERT, L. (1975) Extending the Expressive Power of Semantic
Networks, Proc • . IJCAI4, Tbilisi, Georgia, USSR, Sept. 1975,.
p. 158.

SLAGLE, J. R. (1971) Artificial Intelligence: The fieyrisli£
Erogra••ing A~Eroach , P!c-Grav-Hill, Nev York.

1'58

STALLMAN, R. M. & SUSSMAN, G. J. (1977) Forward Reasoninq and
Dependency-Directed Backtracking in a System for
Computer-Aided Circuit Analysis, Artificial Intelligence,
vol 9., t2, Oct. 1977, p.135.

SUSSMAN, G. & l!cDERPIO'l'T, D. (1972) Why Con niv inq is Better
than Planning, lIM-255A, A.I. Lab, MIT, Cambridge, Plass.

SUSSPJAN, G. J., WINOGRAD, T., & CHARNIAK, E. (1973)
MICRO-PLANNER Reference Manual, AI Lab memo t203A, MIT,
Cambridge, Mass.

TEITELPIAN, w. (1974) INTERLISP Iteference t\anual, xerox Palo
Alto Research Center, Palo Alto, Calf.

Van EMDEN, "• H. (1977) Proqra mminq vi th Resolution Logic,, in
Machine Intglligence 8, E. w. Elcock & D. l!ichie (eds.),
Halsted Press, New York, pp.266-299.

WALTZ, D. L. (1972) Generating Semantic Descriptions from
Drawings of Scenes with Shadows, Ph.D. Thesis, AI-TR-271,
MIT, Cambridge, Mass.

WINOGRAD,. T. (1q73a) Understanding Natural t_anguA,ge, Academic
Press, Bew York.

WINOGRAD,, T. (197.3 b) Breaking the Complexity Barrier (Aqain) ,
Proc. AC" SIGIR-SIGPLAN Interface Meeting, Nov. 1973.

WINOGRAD, T. (1915) Frame Representations and the
Procedural-Declarative Contraversy, in ~E!:~.2.~t~!i.2n and
Understanding,. D.G.Bobrov & A.Collins (eds.), Academic
Press, New York, pp.185-210.

WINSTON, P. H. (1975) Le a rning Structural Descriptions from
Examples, in !h.~ f§YChQ!Q9I of ~Q!!.1?!!1:~!: !i.eiQ!h P.H.Winston
(ed~}, "cGrav-Bill, Ne w York.

WINSTON, P. H. (1977) Artificial Intelli~nce, Addison-Wesley,
Reading, t!ass.

WOODS, w. A. (1970) Transition NetvorJc Grammars for Natural
.Language Analysis, .£!.£!1, vol 13, t10, pp.591-606.

WOODS, W.A. (1974) Recursive Transition Networks and the
Earley Recognition Algorithm, unpublished workinq paper,
Bolt, Beranek, & Kevman, Ca mbridge, Mass.

WOODS, w. A. (1975) Whats in a Link, in Reeresentatj.on and
Understanding, D.G.Bobrov & A.Collins (eds.), Academic
Press, Nev York, pp. 35-82.

YUILLE, J. c. (1977) The Role of Imagery in Models of
Cognition, Journal of Mental Iaager.1, 1977, #1.

159

!PPJ!I2ll !

~~IY'S il~~!!§ A12QB!!H~

160

The follovinq presentation of Earley•s algorithm is

intended to supplement the informal discussion of Chapter 3. A

still more formal treatment is proYided by Aho and Ullman

(1972).

We are gi•en a context-fre.e qrammar,, G=(P,N,K,,S), where P

is a set of production rules,, N is the set of non-terminal

symbols,, K is the set of terminal symbols,, ands is the start

symbol which is a distinguished symbol in N. The algorithm

operates on an input sentence,, w=a (1)a (2) ••• a (n) and

determines whether v is contained in L(G),, the lanquaqe

generated by G. Upper case letters are used to represent

non-terminal symbols,, the lover case letters,, "i", "i",, "k",, and

11 n" represent indices,, and a (i) is used to represent the i' th

symbol in the input sentence. Other lover case lettP-rs

represent sentential forms composed of both terminal and

non-terminal symbols.

For O~i,~n. the alqorithm constructs 2~r~g !i2.1§ of items.

An item, [A-➔m.q,,il Ofi~j,, is an element of the parse list I(il

if and only if a sentential form, rAu, with

r=a(1)a(2) ••• a(i) can be derived from s and

a(i+1) ••• a(j) can be derived from m. That is,, i through i

Appendix-A: Earley 's Parsing Alqorithm

161

bracket the portion of v derivable from m, and the production

rule, A-➔ mg, can be used in the qen~ration of v up to position

1. All items in a parse list, I(j), represent derivations which

aqree with v up to position j. The items in a given parse list,

I(j), can be viewed as independent parsers, each attempting to

recognize an instance of its own production rule from the input

sentence.

The algorithm is initialized by forming a parse list I(O)

containing the single seed ite■ fs- ➔ .w,OJ. As each new input

symbol a(j+1) of w is read, the algorithm generates a nev parse

list I (j+1) from I (0) •• I (1). This process continues until

the last symbol a(n) in w is read and I(n) generated, or until

no nev parse list can be generated, indicating w is not

contained in the language of G. If, at tha ena of this process,

an item, (s-➔m.,01, is contained in I(n), then vis in L(G).

The algorithm proceeds by the cyclic application of three

functions, called the ~U~i£tQ~, the §g~n§t, and the £Qll"tgr,

until the last symbol is read from v or until some I(i} is found

to be empty. First, the predictor computes from the rules of G

and the derivation found to date what derivations may possibly

follow. It spawns new parsers to look for these derivations.

If [A-➔m.Bq,i] is an element of parse list I(j), and B-➔ r is a

rule in P, then [B-➔.r,j] is added to I(j). The index, j, in

the item indicates at vhat position, j, in the parse a new

parser was created to look for the right-hand-side of the rule,

B-➔r. See Figure A. 1.

Appendix-A: Earlev•s Parsing Algorithm

16:7.

m • r

r-,.A. \
a i . . . a j an

Fiqure A~1: The Predictor Function

Fjgure A.2: The Scanner Function

• an

Figu~e A.3: The Completer Function

Appendix-A: Earley's Parsinq Alqcrithrn

163

Next, the scanner .function, by reading the next symbol,

a(j+1), fro ■ v generates a seed item for the next parse list,

1(1+1). Por each [B-➔m.aq,i] that is contained in I(i) and

v-=a(1} •• a(j)a •• a(n) then (B-➔ma.g,i] is added to 1(1+1).

The scanner propagates all parsers in I(j) to the next parse

list that were expecting a (i+ 1) to appear next in the input

sentence. As is illustrated in Figure A.2, the scanner

increments the internal state of an item by moving the parsinq

dot one terminal symbol to the right.

The completer function performs bottom-up reductions of

sentential for11s that appear as right-hand-sides of production

rules in P to their non-terminal left-hand-sides. If (A- ➔r.,il

is an element of I(j), then the non-terminal symbol, A, has been

recognized in v. From I(i), the generating item, [B-➔m.Aq,k] is

found and [B-➔aA.q,k] is added to I(j+1). The completer acts as

a scanner for no.n-terminal symbols, as is shown in Fiqure A.3.

Appendix-A: Earlev•s Parsing Algorithm

164

This manual is a descr ipt ion of an Artificial Intelligence
proqramming language called MAYA. Included in this lanquaqe are
facilities for perfor11inq pattern matching, primitives for
constructing semantic networks and schemata, primitives for
creatinq and manipulating processes, and control structures for
integrating top-down and bottom- up search techniques. The
language is designed as a dialect of LISP havinq a number of
extensions and a few restrictions. The extensions vill be
described in detail in the following pages and the restrictions
will be noted as well.

B.1 Relating to MAYA

This section explains the operation of the interpreter.
Since this language is experimental, it is subject to occasional
changes in behaviour. l!o§! changes will be upwardly compatible
and this document will be promptly edited to reflect those
cha nqes.

To run ftAYA under MTS:

$RON CS:LISP SCARDS:CS:LOADER+*SOURCE*
(RESTORE MAYA:SYSGEN)

MAYA will be started in a top-level EAR and the creation date
for the current version of the interpreter will be printed.

The following list of functions are the basic mechanisms
for controlling the interpreter. The form of each function call
is given followed by the type of the function. EXPR, NEXPR, and
FEXPR type functions can be used froa both MAYrt and LISP.
Square brackets indicate optional arguments, and the asterisk is
used as the Kleene star indicating zero or more repetitions.

Pl AY A L anquaqe Reference

165

1. (PIAYA) {EXP R}

Executed from LISP. Initializes the processor and enters
a a top-level EAR.

2. (HALT [<form>]) {alFSUBR}

The value of <form> is returned to LISP. If no arqument
is supplied, NIL is returned. HALT leaves the current
invocation of the processor intact.

3. (RESTART <form>) [NEXPB}

Executed from LISP. Restarts the interpreter from the
previous HALT. Computation proceeds with <form>
substituted for the call to HALT. RESTART and HALT can be
used as a co-routine mechanism between MAYA and LISP.
HALT returns a value to LISP at the point the interpreter
was called, leaving the process intact. RESTART returns a
value to MAYA at the point that the process vas previously
halted.

4. (@INIT)

Reinitializes the processor.
If evaluated from MAYA, a
returned.

5. (EAR)

[EXPR)

Meaningful onlv from LISP.
varni~q is given and NIL is

(@SUBR}

Enters a READ-EVAt-PRINT loop. Since ~AYA permits
multiple co-existant processes, this function permits the
user to create multiple READ-EVAL-PRINT loops. Reads
forms from each <file>. Each form is MAYA EVALed.

6. (INFI LE <file>*) {alSUBR)

This function is analogous to DISKIN in LISP. There is
however no DISKOUT analogue because MAYA function
definitions may be local to objects in the data base.

Since MAYA makes use of both read and print macro
characters, it is unwise for the user to prefix his own atoms
with these characters. The characters reserved by MAYA arE:

The "@" is not actuallf a macro character but all MAYA internal
names beqin with this character. If it is inconvenient to abide

MAYA Lanquaqe Reference

166

by these conventions, then the follovinq tvo functions mav be
used.

7. (@OFF-STATUS)

Turns off read macro processing.

8. (@ON-STATUS)

Turns on read macro processing.

{EXPRl

{EXPRl

To facilitate communication betvee.n LISP and MAYA, tvo
prefixes are provided. Prom LISP, ¢<form> will return the ~AYA
value of <form>. From ~AYA, S<for m> will return the LISP value
of <form>. For example, from LISP, tStttt (FOO) vill return
the LISP value of (POO). Note that (lUYA) is (@INIT) followed
by t/. (EAR) •

B.2 The Database

~any of the primitive functions defined in ~AYA are
concerned vith creating obiects, for■ ing semantic networks from
obiects, searching arc paths through these networks, and
interpretinq objects as schemata. These .functions create and
manipulate obiects and the schemata and nodes that can be
created from objects.

9. (OBJECT <type><pair>*} (@PSUBR & FEXPRl

Each <pair> is of the form, <name><form>. OBJECT creates
a new object of the user tvpe, <type>. havinq for each
<pair> a binding defined between the naae, <name>, and its
definition, <form>. OBJECT evaluates its odd arguments,
and its even arguments must be <AT0M>s. Note that both a
MAYA and LISP version of this function are included in the
system.
Example:

!
(OBJECT 'NODE CLASS 1 TAaLE HAS-AS-PARTS (LIST 'LEGS 'TOP))

(@0BJECTi NODE CLASS TABLE HAS-AS-PARTS (LEGS TOP))

10. (NEW <object> <pair.>*) f@FSUBR 6 FEXPRl

If <object> is not an object, an error occurs. NEW
creates a new iBstgn£~ of <object> of type, ~INSTANCP.m.

MAYA Lanquaqe Reference

, ·

167

The new ob1ect consists of the bindinqs of <pair>s
concat{:!nated with <object>. The new instance is of the
for■:

(aOBJECT@ @INSTANCE@ <pair>*) II <object>,

where It indicates list concatenation. Note that both a
"AYA and LISP version of this function are included.
Exa11ple:

(PUT* 1 DOG (OBJECT 1 G.ENERIC NAME 'DOG CLASS '"UHULIA) t
! (@O.BJECT~ GENERIC NAME DOG CLASS KAf!ll!ALI A)
_ (BEW DOG NA~E 'FLOYD OWNER 'BILL)
! (@OBJECT@ @INSTANCE@ NAME FLOYD OWNER BILL @OBJECT@
! GENERIC NAME DOG CLASS MAMMALIA)

11. (OBJ ECTP <thing>)

If <thing> is an object, its type is returned.
is returned.

12. (STEREO <object>)

{EXPRl

Else NIL

{@SUBR l

If <object> is an instance, its stereotype object is
returned. If <object> is object but not an instance of
some other object, <obiect> itself is returned. Else NIL
is returned.

13. (GET* <name> (<else> l) (alSUBR 6 EXPR}

Fetches the definition of <name> from within the enclosinq
obiect. Both a MAYA and a LISP version are provided. If
there is no <name> defined in. the enclosinq obiect, <else>
is evaluated. If <else> is not given, NIL is returned.
If the.re is no enclosing object on t .he stack, the qlobal
object is taken to be the enclosing object.
Examples:

!
{GBT* 1 CONS)

(aOBJECTi @PLISTi SUBR *)
(GET* 1 DPDPDGGGG ''ELSE)

! NIL
_ ; NOTE: GLOBAL OBJECT HAS EVERY

(SEND (OBJECT 'TYPE A 1 ADEF)
(GET* 'A)) -!

-
!

ADEP
(SEND (OBJECT 'TYPE A 'ADEF)

(GET* • B 1 ' ELSE))
ELSE

NAME DEFINED.

NAYA Languaqe Reference

168

14. (PUT* <name><form>) {EXPR}

Puts within the enclosing object the binding of <name> to
its nev definition, <form>. <Name> must be atomic. If a
previous definition existed, it is replaced. If no
enclosinq obiect exists on the stack, the bindinq is added
to the global object, i.e., the CDR of <name> is set to
<form>. If the enclosing object is an instance of some
parent sterotype object, the stereotype ob1ect is
quaranteed to remain unaltered. PUT* returns <form>.
Examples:

!

-

(PUT* 'A 1 ADEF)
ADEP

A
! ADEP
_ (COR 'A)
! ADEF

(: (PUT* 'B (OBJECT 'NODE))
(PUT* •c •coEP)
(SEL 'f'))

! (@OBJECT~ NODE C 1 CDEF)
B

! (@OBJECTj NODE C 1 CDEP)

15. (REM* <name>) [@SUBRl

Removes the definition of <name> from the enclosing
object9 If there is no enclosinq object on the stack, the
CD"R of the atom, <name>, is set to NIL. If the enclosinq
object is an instance, its stereotype object remains
unaltered. REL! returns the binding of <name>. If the
binding of <name> is not defined in this object or within
this instance, NIL is returned.
Examples:

B
! (ilOBJECTa NODE C 1 CDEP')

- (SEND B (REM* 'C))
! NIL

B -
! (@OBJ ECTit 'NODE)

- (REM* • B)
! NIL

B -
! NIL

MAYA Language Reference

169

16. (SELF) (@SUBR}

Returns the current enclosing object from the stack. If
there is no enclosing object, an error occurs.
Exaaples:

_ (: (OBJECT 'TYPE A 'ADEP)
(POT* 'A 'NEW-ADEP)
(SEL .F))

! (@OBJECT! TYPE A NEW-A DEP)
(SELF) = ERROR: NO ENCLOSING OBJECT ON THE STACK

17. (ITEM <pair>*) {@SU BR 1

Each pair is of the form, <name><value>. ITEM creates a
new item containing a new instances of each variable,
<name>, having value, <value>. ITEM evaluates its even
arguments, and its even arguments must be atoms. The new
item is returned as value.
Example:

_ (ITEM X 'XVAL Y (LIST 'YYY))
! (@ITEM@ NIL X XVAL Y (YYY))

(SETQ I 'XVAL)
! XVAL
_ (: (lT EM X ' ZZ Z Y ? X)

(PRINT ?J)
?X)

! XVAL
! zzz

18. (SET <pair>*) [iilSUBRl

Each <pair> is of the form, <name><value>. SET binds each
variable name, <name>, to its new value, <value>. SET
evaluates all its arguments and its odd arguments must
evaluate to atoms. SET returns the value of the last
<pair>.

19. (SETO <pair>•) (iJP'SUBR}

Each <pair> is of the form, <name><value>. SETQ behaves
as SET except it evaluates only its even arquments. Both
SET and SETQ search the stack lookinq for the first

~AYA Language Reference

170

occurrence of the variable, <name>. If no variable exists
on the stack having name, <name>, the LISP value of the
atom, <name>, is changed to <value>. Note that only the
variable, <name>, is changed and not the definition of the
atom, <name>. SET and SETQ bind values whereas PUT* binds
definitions.

20. (DEFUN <defn>) {FEXPR}

DE.FUN has been extended to per11i t the definition of ii EX PR,
jNEXPR, @FEXPR, and QEXPR type functions. DEFUN may be
used from either ,.l\YA or LISP to defi.ne any of the
function types from both lanquages. DEFON always adds its
definition, <defn>, to the enclosing object and may
therefore be used to provide function definitions local to
specfic objects. DEPUN honors inst.a nee boundaries.
Examples:

(DEFON TEST NIL (PRINT 'OUTSIDE) T)
! TEST
_ (SEND (OBJECT 1 CONTEXT)

-
!
!

!

(DEFUM TEST NIL (PRINT 'INSIDE)
(TEST))

INSIDE
NIL

(TEST)
OUTSIDE
T

21. (@ P 1 P2 • • • Pn l

NIL)

{@FSU.BR & FEXPRl

The tuple evaluator. The value of a tuple is a new tuple
of the values of its elements, P1, P2, ••• Pn. The
tuple evaluator uses i!!.Y~r..§~ 51YQ1~ !!Qg~ during evaluation.
Ato•~ and matcher variables are treated as constants,
i.e., they evaluate to themselves. All other forms are
EVALed, note that (@ P1 P2 ••• Pn) can be abbreviated
using angle brackets as <P1 P2 ••• Pn>. Both a HAYA and
a LISP version are included. Note also that anqle
brackets cannot be used as LISP super-parentheses.
Examples:

<ABC>
! <ABC>
_ <' A (LIST I B I C) >
! < l\ (B C) >
_ (SETQ Y I YVAL}
! YVAL

<A <B !:X> ?Y>

KAY A L anguaqe Reference

I

i-
i•

171

! <A <B !:X> YVAL>

22. (TUPLEP <thing>) {EXPRl

Returns T if <thing> is a tuple, else returns NIL.

23. (VARP <thing>) fEXPR}

Returns the name of <thinq> if it is a MAYA variable, else
NIL. Pattern variables return NIL.

24. (ITEP!P <thinq>) (EXPRl

Returns T if <thing> is an item, else NIL.

B.3 Evaluation

The
included
executed
function
types:

follovi .nq paragraphs describe the fu net ion types
in MAYA. Valid LISP functions are acceptable and are

directly by LISP for "AYA. In addition to LISP's
types, the interpreter also recogni ze.s the f ollowinq

@SUBR, aFSUBR, @EXPR, iNEXPR, iFEXPR, and QEXPB.

If desired, the interpreter may be extended to include other
function types as well. Please see ae for details.

@SUBR's and iPSUBR's are the system supplied functions of
MAYA. @SUBRs evaluate their arguments but iFSUBRs bind the list
of unevaluated arguments to their single parameter, as expected.
@EXPB, @NEXPR, and iFEXPR are ffAYA's user defined function tvpes
that are analogous to their LISP. counterparts. QEXPR type
functions are somewhat analogous to the Q-tvpe functions of
QLISP (Reboh, 1913). QEXPRs are implemented via QLAMBDA
expressions and take a single tuple as argument. Thev return as
value an item representing the result of a pattern match b~tween
the tuple argument and the tuple pattern of the QLAMBDA
expression • . Please see the sections on pattern matchinq,
Generators, and Recognizers.

The interpreter uses the following algorithm when applyinq
a function to its arguments:

• If the function is an ~SUBR or an @EXPR, its
arguments are evaluated and the function is applied to

MAYA Language Reference

their values.

• If the function is an @PSUBR or an @PEXPR, then the
function is applied to the list of unevaluated
arguments.

• If the function is an @NEXPR, it is applied to the
unevaluated arguments.

• If the function is a QEXPR, the tuple argument is
evaluated and the pattern matcher called on the value.
If the match succeeds, the function is applied to tbE
result.

• Else the function is a LISP for~. If it is a SDBR
or EXPR, the arguments are evaluated and the function
is LISP APPLYed to the result. If the function is an
NEXPR, FEXPR, NSUBR, or FSUBR, then the form is LISP
EVALed.

172

Functions which make no use of the parallelism, control
structures, or data structures of rtAYA can be written in LISP
and executed from MAYA thereby gaining a considerable increase
in efficiency. While in LISP, any forms defined within IUYA can
be evaluated via the "t" prefix and references to HAYA variables
can be fetched via the "?n prefi:r;.

25. (AVAL <form>) {@SUBR}

MAYA evaluates its argument. <form>. If <fora> is a list
whose CAR is an atom, AVAL fetches the MAYA function from
the first definition of the atoa on the stack. If there
is no function definition within the first occurrence of
the atom on the stack, an error occurs.

26. (EVAL <form>) {@SUBR l

MAYA evaluates its argument, <fora>. If <form> is a list
whose CAR is an atom, EVAL fetches the function definition
from within the global obiect. That is, EVAL fetches
function definition from the PLIST of the atom. EVAL is
therefore faster than AVAL, but does not recoqnize
function definitions local to enclosing obiects. rtAYA
functions use EV.AL for evaluation unless otherwise noted.

27. (SEND (A1><A2> ••• <An>) {@FSUBR}

SEND AVALuates each element in the sequence,
<A1><A2> •• <An>, in a left-to-right order. If the value
returned froa <Ai> is an object or an item, then it is

MAYA Language Reference

173

pushed onto the stack. Next, <Ai+1> is evaluated in this
new environment. The final value returned from SEND is
the value of <An>. SEND may be abbreviated by a single
colon,":".
Examples:

(SEND PRINT)
! (@OBJECTi @PLIST@ SUBR *)

(: PRINT SUBR)
! •

(SETQ NET (OBJECT 'NODE))
(: ?NET

(PUT* 'A (OBJECT 1 BOOE))
(PUT* 'B (OBJECT 1 .NODE))

- (PUT* •c 'CD.EP))
! CDEF

(SEND ?NET (PRINT A) (PRINT B) {PRINT C))
! (atOBJ ECTi NODE B (llOBJECTi NODE C CDEF))
! (itOBJECTi NODE C CD.EP)
! CDEP
! CDEF

B.4 Error Conditions and the DEBUG System

There are tvo classes of errors that can occur during the
execution of MAYA. They are errors trapped by MAYA and errors
trapped by LISP. Errors trapped bv MAYA cause an "appropriate"
error message to be printed and MAYA's DEBUG System to be called
on the form causing the error. This form is called the
Breakform. Note that there is one exception. If the error
detected by MAYA is an undefined name or an undefined variable
occuring at the top-level of an EARr then the error message is
printed but an immediate return is made to the EAB. In this
case, there is no form to BREAK on.

The second class of errors cause a LISP BREAK to be entered
for one of the follovinq reasons:

• A LISP error occurred in a user's LISP function.
• An unexpected condition occurred within the interpreter
causing it to abnormally terminate •
• An error occurred within a "AYA EXPR, NEXPR, or PEXPR
type function.

If a LISP BREAK is entered for one of the above reasons, and the
user desires to be instead in a MAYA BREAK, a transfer may be
made using the functio,n, OOPS, described below.

MAY A Lanquaqe Reference

174

The DEBUG system provided in MAYA is modelled after the
LISP/MTS DEBUG Packaqe. Most of the facilities included in the
LISP system are provided in MAYA and a familiarity with the LISP
DEBUG Packaqe is assumed here. PO\YA 's DEBUG System can be
called in a number of ways. It can be ca led explicitly on a
form via the functions, DEBUG and BREAK. The svstem may be
called implicitly on the body of a function via settinq a
Breakpoint in that function. And lastly, the DEBUG svstem is
called by the interpreter whenever a ~AYA error occurs.

The LISP BREAK functions, BREAKF, UNBREAKF, and UNSET, have
been modified to work with mEXPR, and QEXPR type functions as
~ell as EXPRs. As in LISP/~TS, Breakpoints can set on an entire
function, or a form within a function. Both tvpes may have an
optional predicate which determines whether the break is
ac.knovledged vhen encountered. However, care must be taken with
the LISP global atoms, "?BREAKSW", "?DEBUG", and "?BROKEN". If
they are to be altered or examined, they must be enclosed in
double quotes to prevent them from beinq treated as variables by
MAYA or alterna·tively, read macro -processinq can be disabled via
@OPF-ST1\TUS.

Care must also be taken vith local function definitions.
To set a Breakpoint on FOO within some object, FR1:

(: FR1 (BREAKP FOO)).

To negate the Breakpoint, you must again "GOTO" that object:

(: FR 1 (UNBREAKP FOO)) or

(: PR 1 (UNSET)).

28. (DEBtJG <fora>)

Calls the DEBUG System explicitly on <form>.

29. (BREAK <message>*)

{@FSUBB)

{@SUBR)

BREAK is provided as a user errror handler. It prints
each <message> on @ERROOT then calls the DEBUG System on
the current form being evaluated, i.e., in most cases
BREAK itself.

30. (OOPS) [EXPR}

A very useful function! OOPS allows the user to recover
from a catastrophic error that has caused a LISP break to
be entered. OOPS will return control to MAYA's Break

MAYA Lanquaqe Reference

175

package with the form that was being evaluated in f'AYA at
the ti11e of the error as the Break.form.

OOPS may also be used to Break on MAYA @SUBRs and @PSUBRs by
settinq a LISP Breakpoint on the internal MAYA routine. When
the LISP Break is acknovledqed, t,-pinq (OOPS) will transfer
control back to MAYA'S Debug System with the MAYA @SUER or
@FSUBR as the Break.for■•

31. (@BK) {EXPRl

Prints a J?Q§§iJ?!Y long backtrace of the stack.

32. (@TRACE) {EXPRl

Begins the printing of a trace of the evaluation of each
non-atomic for • The form is printed before its body is
entered.

33. (@UNTRACE) [EXPR}

Turns off tracing.

A summary of the commands recognized by the DEBUG System
follows:

BK [n]

BKO r n l

BKE [n]

*

Abbreviation: none
Prints a backtrace of the stack starting at the
stack-pointer for lenqth "n" which defaults to 10.

Abbreviation: none
Prints a backtrace of all obiects and
stack starting at the stackpointer for
w~ich defaults to 10.

A.bbreviat ion: none

items on
a length of

the
n n"

Prints a backtrace of all MAYA forms on the stack
starting from stackpointer. "n" defaults to 10.

Abbreviation: none
Prints the Breakfor11. Note that
Breakform is never on top of the stack
BREA! is entered.

in PIAYA, the
at the time the

PP Abbreviation: none
Pretty-prints the for■ where the stack-pointer points.

PP* Abbreviation: none
Pretty-prints the Breakform.

MAYA Lanquaqe Reference

PRINT

TOP

176

Abbreviation: P
Prints the form vhere the stackpointer points.

Abbreviation: none
Resets the stackpointer to the top of the stack. Note
that since Break.form bas not been pushed onto the
stack at the time the BREAK occurs, the top of. the
stack and Breakfora do not coincide. The top of the
stack is always the form that called Breakform.

FIND <loc>* Abbreviation: P
Finds a form on the stack and sets the stack-pointer
to that point. Each <loc> is either a number of forms
to move the stackpointer dovn the stack or the name of
a function on the stack.

GO [<loc>*l Abbreviation: G
Finds a form on the stack as in the FIND command, then
restarts computation BREAKing on that form. <Loe> may
be ommi tted.

RETURN <form> Abbreviation: RET
Evaluates <form>
Breakfor11.

and returns it as the value of the

FESTART (<form>) Abbreviation: RES
Restarts computation from vbere the stackpointer
points using <fora>. If <form> is not coded,
computation is restarted usinq the previous form on
the stack.

CONTINUE Abbreviation: C CO
Continues with Breakform. If Breakform has been
previously evaluated via the EVAL command, it will not
be re-evaluated.

STEP [n] Abbreviation: S

NEXT

EVAL

UP

Steps through the evaluation of the next "n" forms and
generates a new BREAK. "n" defaults to 1.

Abbreviation: N NX
Evaluates Breakform and breaks on the next
Breakf or11 has been previously evaluated
command, it vill not be re-evaluated.

Abbreviation: E

form. If
via the EVAL

Evaluates Breakform and prints its value. Note that
Breakform is AVALUATEd.

Abbreviation: t
causes the DEBUG System to ascend one level. If there

"AIA Language Reference

STOP

177

is no higher BREAK level, control is returned to
top-lev?.1.

Abbreviation: NIL II
Causes a return to top-level.

EDIT [<loc>•] Abbreviation: ED
Calls EDITE on
If <loc>• is
executed.

the form where the stackpointer points.
coded, an implicit FINO command is

Any form tvped at DEBUG other than the above comMands or
there abbreviations will be AV!Led and its value printed. Note
that the DEBUG System always uses AVAL for all evaluations,
i.e., all function definitions are fetched from the first
definition found on the stack.

B.5 Input/Output

When ~AYA is running, all I/0 is performed through buffers
separate from the ones used by MTS/LISP. Reading is performed
through ~LISPIN with the file prefix character"-"• Writinq is
performed through ~LISFOUT with the file prefix character "!".
All I/0 functions behave, except for the choice of I/0 buffers,
as they do in LISP.

34. (TPRIN1 <form> (<IO-atom> J) (EXPR}

PRIN1' s <form> .in a terse mode. Printing descends only a
set number of levels into the given structure. Any
non-atomic structures greater than this level are
represented by an"&". If the second argument, <IO-atom>,
is given, <form> is written in its buffer. Else <form> is
written in @LISPOUT. TPRIN1 returns T.

35. (TPRINT <form> [(IO-atom>]) [EXPR}

same as TPRIN1 except that the buffer is emptied both
before and after <form> is written.

36. (TPRINT-LEVEL <n >) fNEXPRl

Sets the level to which TPRIN1 and TPRINT will descend.
Default is (TPRINT-LEVEL 2).

~AYA Language Reference

178

B.6 Pattern Matching

This section describes the pattern matching functions and
pattern element definitions provided in MAYA.

37. (fltATCH <pattern><db>[<else>]} (mSUBR}

<Pattern> must be a tuple. <Db> must evaluate to either a
tuple or an object representing a tuple database. See
below. The <pattern> is matched against the <db>. If a
match can be found, MATCH returns an item containing the
bindings of any pattern variables contained in the
<pattern> plus a reactivation TAG. This TAG is an stack
segment which permits the •atcher to be recalled again
from the point of its last successful match. If <db> is a
tuplebase, the value associated with the matching datua is
bound to the variable, "*", in the returned item. If <db>
is a tuple,"?*" defaults to T. If MATCH fails to find a
match between <pattern> and <db>, <else> is evaluated.
<Else> defaults to NIL.
Examples:

(!!ATCH I <A B C> '<A B C>}
! (@ITEl'lal NIL * T itTAGit • . .)

(!UTCH • <A B C> '<A B>}
! NIL

(MATCH '<A B C> '<A B> ' (LIST 'A))
! (A)

A tuple data base, called a t.!:!B!~Q~~, is the associative
data base aechanism in ~AYA. Each tuplebase is composed of an
obiect having a type indicator of either "@INDEX@" or some
positive integer number. Tuplebases are operated on bv the
system functions: MATCB, NEXT, PADD, PREMOVE, PDELETE, 81ST,
D1ST, SUSPEND, RESUME, COffPLETE, etc •. The user may as well
operate on tuplebases by treating them as ordinary obiects.

When MAYA is
within the qlobal
purposes are:

loaded
object.

itTOPLEi
@METHOD@
iiPROC@

three empty tuplebases are created
By conYention, their names and

for declarative patterns,
for generator methods, and
for suspended processes.

To create a new, empty tuplebase within some enclosing object
under the name, <name>, one may write:

~AYA Language Reference

179

(PUT* <name> (OBJECT 0)).

38. (PADD <datu11><db>[<£or■ >]) f@SOBR}

The <data ■>, which aust be a tuple, is added to the tuple
database, <db>. Associated with <datu11> in the database
is the value of <fora>. If <form> is not coded, <datum>
is given the value, T. If <datum> is already present in
the <db> its value is replaced with <form>. PADD rEturns
the value of <fora>. If <db> is not a tuplebase, an error
occurs.
Examples:

(PADD '< A B C> @TUPLE@)
! T

(f'!ATCR '<A B C> aJTUPLEit)
! (iiITE~@ NIL* T @TAG~ •••)
_ (PADD '<ABC> ~TUPLE@ 'PFF)
! FFP

(MATCH '<A B C> @TUPLEii)
! (@ITEK@ NIL * FFP @'l'AG«i •••)

39. (PREfWVE <da tum><db>) {@SUBR}

Removes <datum> from the tuple database, <db>, <Datum>
must be a tuple and <db> must be a tuplebase. PREMOVE
returns <datum> if it was present in the tuple database.
If it was not present NIL is returned.
Exa11ples:

(PADD '<S D> @TUPLF.it)
! <S D>
_ (PREMOVE '<SD> iTUPLEi)
! <SD>
_ (KATCH '<SD> @TUPLE~)
! NIL
_ (PREMOVE '<S D> @TUPLEal)
! NIL

40. (PDELETE <pattern><db>[<else>])

"atches <pattern> against <db>. If the
PDELETE deletes the •atchinq datum from
<db>, and returns an item containing
<pattern>, the variable, "", bound to the

{@SUBR1

match succeeds,
the tuplebase,
the bindinqs of

value associated

~AYA Lanquaqe Reference

180

with the matched datu~, and a
PDELETE. If the match fails, <else>
defaults to NIL.

reactivation tag
is eval ua tea

for
which

Note that PREIIOVE does not call the pattern matcher. The datum
in the tuplebase that exactly matches <pattern> svntactically,
is removed. PDELETE on the other hand deletes the first datum
which matches <pattern> and it returns a taq .for subsEquent
deletions.

41. (PDUMP <db>) (itSUBR}

Prints a dump of the patterns and their associated values
from the tuplebase, <db>.
Example:

(PADD '<A B C> @TUPLE@)
! T

(PADD '<A B> @TUPLE<i)
! T

- (PADD '<WOOP> @TUPLE@ 'FLOYD)
! FLOYD

(PDO!P @TUPLE@)
! <A B> = T

<A B C> = T
! (WOOP> = FLOYD
! NIL

Patterns in KAYA are represented as tuples. Each tuple is
composed of pattern elements called Patels. There are three
types of Patels:

1. Patels that match values,
2. Patels that yield values to be matched,
3. Patels that are recursively sub-patterns, i.e., tuples.

The following paraqraphs will explain in some detail the
different pattern elements that are defined in MAYA. Because
the type-2 Patels are somewhat more straiqhtforward than the
others, they will be explained first.

Type-2 Patels are pattern elements that yield
matched. Type-2 Patels can match Type-1 Patels.
match type-3 Patels and other type-2 Patels on
following forms are included as type-2 Patels:

values to be
They can also

EQUAL. The

~AYA Lanquaqe Reference

<ATOM>
<LIST>
?<var>
! ?<var>
!-.<var>

181

Note that some of the Patels have prefixes. These prefixes
determine the manner in which the Patels yield their values.
The semantics of Type-2 Patels are presented below:

?<var>

Atoms and lists are considered constants in MAYA patterns.
Their values are thems~lves. This format is so•etimes
called "inverse quote mode". They yield their values
immediately.
Examples:

(MATCH '<A (B C) > '<A (B C) >)
! (iITEf'li NIL* T @TAG@ • ••)
_ {MATCH •<A (BC)> '<A <BC>>)
! MIL

Yields the current ftAYA
its value will match as
bound, an error occurs.
Examples:

(SETQ Y 1 B)
! B
_ (MATCH '<AB> '<l ?Y>)

value of <var>. Matches whatever
a constant. If <var> is not

! (@ITEi!@ NIL * T @TAG@ • • •)
(PIATCB '<A ?Y> '<A C>)

! NJ:t
(MATCH '<B ?Y> '<?Y ?Y>)

! (@ITEM@ NIL* T @TAG@• ••)

!?<var>

Matches the current matcher value of <var> from the same
side of the match. If <var> has not been bound on the
same side of the match, the current match fails.
Examples:

(IUTCH t < ! : X !?X> '<A A>)
! (iITErt<t NIL * T X B @TAG@ • • •)

- (~ATCH '<A !?X> '<A A>)
! NIL

(PIATCH '< !'?X ! : X> '<A A>)

MAYA Lanquaqe Reference

182

! NIL

!-,<var>

This patel is valid only on the <db> side of the match or
as a Pa tel in a QLUIBDA expression. It does not yield a
value immediately but only at the time the match succeeds.
It therefore can be used as a mechanism for returninq a
result from a method or the datum side of a match. This
patel can only match type-1 P;:t.tels.
Examples:

(MATCH I<!: X B> '<!.,z ! : Z>)
! (itITENa Nil. • T X B @TAG@ • . .)

(lUTCff • <! :X B> •<!.,z B>)
! NIL

(MATCH '<AB> •<1..,z ! : Z>)
! NIL

Type 1 patels include all of the pattern variables defined
in MAYA. They match values yielded by the other tvo patel types
and bind their variable names to those values. If the matcher
succeeds, the bindings of all Type 1 patels on the pattern side
of the match are to■ posed into the item returned from the match.

MAYA permits £~!t~.rn. ~tor2 (Hewitt, 1972) to act as
predicates on Type 1 patels. Each pattern variable is of the
form:

<var-prefix><atom> or
<var-prefix>(<atom><pred>*)

where <atom> is the name of the pattern variable, <var-prefix>
restricts the types of values that the pattern variable can
match, and <pred>* is zero or ore forms whose evaluation must
be non-NIL for the match to succeed. The predicates are
evaluated in a left-to-right order. If one of the predicates
fails, the remainder are not evaluated and the matcher attempts
a different match. <Atom> is ·bound to its matching value .QefQ!__g
the predicates are evaluated and each <pred> may reference
<atom> as a free variable, e.q.,

!: (X (PRINT ?X) (POO ?X ?Y)).

The following pattern variables are currently included in
MAYA:

! : <var> or!: (<var><pred>*)

MAYA Lanquage Reference

!*<var> or !*(<var><pred>*)

! : <var>

~atches a single pattern element which must be
Type-2 patel or a Type-3 patel containing
variables.
Examples:

(MATCH 1(!:X ! : Y> '<A <B C>>)
! (@ITEPJii NIL * T X A y <BC> itTAGa • • •)

(SETQ Y 'YVAL)
YVAL

- (PJATCH '< ! : X B> '<<A ?Y> ! : Z>)
! (@ITEPJ@ NIL* T X '<A YVAL> @TAG@ • • •)

- (MATCB '<!: X B> '<<A !:'Z> B>)
! NIL

!•<var>

183

either a
no pattern

"atches a segment of patels of lenqth zero or longer. The
segment must contain no T~pe-1 patels. <Var> is bound to
a copy of the segment.
Examples:

(ftATCB '<A !*X> •<A B C>)
! (~ITEPJ@ NIL* TX <BC> a'l'AG@ • . .)

(MATCH '<A ! •x B> '<A B>)
! (@ITEMat NIL* TX<> @TAG@ • • •)

- (MATCH '<A ! *X> •<A <B ?Y> C>)
! (itITEM@ N.IL * T X <<B YVAL> C> @TAG@ • • • l
- (ftATCH '<A ! *X> '<A ! : y B>)
! NIL

(MATCH '<A ! *X> '<A !*Y B>)
! (@ITEM@ NIL* T X ilTlG@ • • •)

Type-3 patels are tuples, that is, recursive sub-patterns.
Each patel in a sub-pattern may be either a Type-1, Type-2, or
Type-3 patel.

B. 7 Generators

42. (D1ST <pattern><db>(<else>]) {@SCJBR l

Generates items in depth-first order, i.e., in a tuplebase
of QLlMBDA methods, 01ST vill recall the same QLAMBDA
generator repeatedly until it fails to return a nert item.

MAYA Language Reference

184

D1ST will then atteapt to aatch another QLAMBDA expression
in the tuplebase. <Pattern> is matched against <db>.
<Pattern> must be a tuple a.nd <db> must be a tu plebase of
QLAftBDA expressions or QEXPR names. If the match fails,
<else> is eyaluated which defaults to NIL. If the match
succeeds, the matched QLA~BD~ expression is evaluated
using the item from the datum side of the pattern match as
the actual arguments to the function. If the QLANBDA
successfully terminates, 01ST returns an item from the
match plus a reactivation taq for the generator. If
however, the QLAftBDA terminates unsuccessfully bv
executing the PAIL function, D1ST will attempt to find
another match in <db>.
Example:

_ (DEFUH GENA QEXPR <A !,X>
(SETQ X 'A 1)
(POST)

_ (S ETQ X ' A 2))
! GENA
_ (PADD '<A !~X> i~ETBODi 'GENA)
! GENA
_ (PADD 1 <B ! ~Y>

iPIETHODit

-

1 (QLAPIBDA <B !~Y>
(PROG (N)

(SETQ N 0)
LOOP

(SETQ H (ADD1 ?N) Y (PIKATO!!
(AND (EQ ?N 3) (EXIT})
(POST)
(GO LOOP})))

! (QL Af'! BDA '<B !-,Y) • • •)
_ (01ST '<!:AB !:V> @METHOD@)
! (iITE~i NIL AB AV A1 aTAGi •••)
_ (: (ELS E • (R ET U R N ' DON E ' :))

(01ST '<!:AB !:V> iftRTHOD@ '(PAIL))
(PRINT ?V)
(FAIL))

A1
12
B1
B2
BJ
DONE

'B ?N))

MAY A L anquaqe Reference

185

43. (B 1ST <pattern>< db>[<else> }l (iiSOBR}

Generates ite■ s in breadth-first order. The arqu•ents and
behaYior of B1ST are identical to D1ST except th.at B1ST
calls only once each generator in the specified tuplebase,
<db>, t hat matches the pattern, <pattern>. Only after it
has called all possible ■atchinq QLANBDAs vill it recall
each s uspended generator for the second time, then each
for the third tiae, etc.
Example:

!

;PROM THE TUPLEBASE OP IIETHODS DEFINED
(81ST '<!:AB !:V> aftETHODa)

(@ITE!i NIL AB AV 11 iTAGi •. ••)
_ (: (ELSE 1 (RETURB 1 D01fE ':)l

-!
!
!
!
!
!

(81ST 1 <!:1B !:V> ~~ETBOD@ '(FAIL)l
(PRINT ?V)
(.FAIL))

A1
B1
A2
B2
B3
DONE

t

ABOVE

(alSUBR}

Terminates i■ 11ediately the current enclosing generator or
process. The exited generator or process returns an item
from the previous invoking pattern match. If it is a
process associated with a schema, then the highest process
on the stack associated with that sche a is exited.

45. (POST) {itSUBRl

Returns an item froa a generator. POST is analogous to
the lU-BEVOIR function of CONN.IV ER. POST causes the first
enclosing generator to retarn an item representing the
match that invoked the qenerator plus a reactivation taq.
When the qenerator is resumed, POST returns JUL.
Exaaple: see D1ST.

The last genera tor type is used for re-invo.kinq a generator
from a reactiYation tag anC, for implementing a restricted
automatic backtracking capability.

~lYA Language Reference

186

46 •. (NE.IT <i te11>[<else>]) (ilStJBB}

<Ite■> must be an item containing a reactivation taq.
NEXT uses the tag in the itea to resume the generator in
order to see.k a new match. If the qene rator succeeds
again, IBXT returns the new ite■ containing the nev
bindings of the pattern variables froa the pattern side
plus a new reactivation TAG • .. · If the generator fails, NEXT
returns the evaluation of <else> which defaults to NIL.

47. (PAIL) (@SOBR}

Provides a si ■ple 11echanis ■ for realizing backtrack
search. PAIL locates the first i tea on the stack
containing a reactivation tag. The stack is truncated
just past the item and the function which created the ite■
is resumed. If the res1111ed function returns a new item,
computation proceeds forvard again. , If however, the
function returns failure, FAIL evaluates itself
recursively, i.e., it continues failing up the stack. If
FAIL encounters a generator or process ~arker on the
stack. the generator or process i11aediately returns NIL.

48. (ELSE <form>)

creates an
containing
<for■>. If
encountered

[ISU.BR}

explicit failpoint. ELSE returns an item
a single binding, a reactiva. tion taq bound to
NEXT is applied to the itea or if the item is
on the stack by PAIL, <for•> is evaluated.

B.8 Processes and Recognizers

49. (PROCESS <sche■a><ql><pattern>[<else>]) (iSUBR}

creates a new process and begins its execution • . <QI> must
be either a OLl!BDl expression . or the na■e of QEXPR
function. The pattern of <JLA.MBDA expression is ■atched
against <pattern> which must be a tuple • . If the etch
succeeds, a new process is created and associated with
<schema> which ■ ust be either an ob1ect or NIL. If NIL is
specified, the process is not associated with any schema.
control is passed to the body of the QLlfllBDA expression
which is · used as the body of the process • . .If the ■atch
fails. <else> is evaluated. <Else> defaults to BIL. When
the process ter■.inates or is suspended, PROCESS returns an
item fro11 the ■atch of <pattern>.

MAYA Language Reference

187

50. (SUSPEND <pattern><db>) {@SUBR)

The current process. P1, is suspended to <pattern> in the
tuplebase. <db>. <Pattern> must be a tuple and <db> a
tuplebase of p.rocesses. control retu .rns to P 2, the
process which invoked P1. ; When resumed, SUSPEND returns
an item representing the match to <pattern>.

51. (RESUJIIE <pattern><db>[<else>]) (iiSU BR)

Resu•es suspended processes and creates new named
processes. , <Pattern>, which must be a tuple, is matched
against <db> which must be a tuplebase of processes. If
the aatch fails, <else> is evaluated vhich defaults to
NIL. If the match succeeds, the matched process is
resumed if it is a suspended process or a nev process is
created and begun if it is a named process. When the
process returns, RESfJME retu.rns an item re presenting the
■atch to <pattern> plus a reactivation tag for RESUME.

52. (C08PLETE <pattern><db>{<else>]) (@SUBR}

Suspends all active processes associated vith the same
schema as the current process, P1, to a reactivation taq,
then resu111es a specified process, P2. If P1 is not
associated vith any schema, only P1 is suspended.
<Pattern>, vhich must be a tuple, is matched against <db>,
which aust be a tuplebase of processes. If the match
fails, <else> is evaluated which defaults to NIL. If the
■atch succeeds, P1 ~is suspended to a reactivation taq. P2
is resumed if it vas a suspended process or created if it
vas a naaed process. Included in the item returned to the
invocation of P2 is the reactiYation for P1. If P2
terminates via any £unction except EXIT, P1 vill be
resumed from the COPIPLETB function. COPIPLETE returns an
itea representing the aatch of <pattern> plus a
reactivation tag for subsequent invocations of the
function.

ftAYA Language Reference

!PPEN!!IX ~

~IAlltLE PROG.RA Pl LI.§Il.!Hi

188

;*** A POLYHEDRAL BLOCKS RECOGNIZER***
; W. S. HAVERS• UBC, VANCOUVER, CANADA, MAY 1977 • .
I

; TOP-LEVEL CALL.
(DEFUR RECOGBIZE @EXPR NIL

(: SCENE
; CREATE A TOP-LEVEL PROCESS.
(PROCESS (SELF)

'(OLAl'IBDl <!,DESCRIPTION>
(COPl"EHTARY '"!ETHOD: TOP-LEVEL RECR EXHAUSTIVELY

OBSERVES EACH VER1'EX")
;EXHAUSTIVELY OBSERVE EACH VERTEX.
(fUPC '(LUIBDA (V) (: ;SEID THIS VERTEX.

(AVAL ?Y)

?VERTEX-LIST)

(COPll'IENTARY '"SCENE RECR OBSERVES"
?V)

;A MESSAGE TO CO!PLETE.
(RESUl'IE '<OBSERVE-VERTEX> PROC)))

; A SCENE BAS NOT BEEN POUND.
(PRINT 'PAILUBE)
(PAIL))

'<!:DESCRIPTION>
'(RETURN NIL 'RECOGNIZE))

;SUCCESS!
(BREAK'"** SUCCESS!**" ?DBSCRIPTIOM)))

; CREATE GENERIC SCHE"ATA
(: (POT* 'SCENE (OBJECT •SCHEMA tUME 'SCENE

;SCENE COMPLETION PBOCESS • .

COltPOS .ITION 'POLYHEDRON
PROC (OBJECT 0)))

(PADD '<SCENE-RECR !:POLY> PROC (BA!ED-PROCESS 1 SCENE-CO~PLETE
(SELF)))

;SCENE COKPLETIOH PROCESS.
(DEFUN SCBNE-COfi!PLETE QEXPR <SCERE-RECR !:POLY>

(COfUIEKTARY '"SCENE BECOGNIZBR HAS POUND l SCENE COMPOSED OF"
(: ?POLY HUIE))

(SETQ DESCRIPTION ?POLY)
(EXIT))

;END or SCENE SCHEKA.

Appendix-C: Example Program Listinq

(POT* 'LINE (OBJECT 'SCHE.l!IA !Al!E 'L.I'NE))

(: (PUT* 'VERTEX (OBJECT 'SC ff Elf A PROC (OBJECT 0)))

;VERTEX CO!PLETION PROCESS.

189

(PADD 1 <OBSERVE-VERTEX> PROC (NUIED-PROCES 5 'OBS ERVE-YERTEX))

; OBSERVATION OP A VERTEX
;DEPAULT IS 3-LIWE VEBTICES
(DEPUB OBSERVE-VERTEX QEXPR <OBSEBVE-VERTEX>

(: ;SAVE POillTEB TO THIS VERTEX.
(ITEM SELP (SELF))
(ELSE '(RETURN NIL 1 :))

;FOR EACH SECTOR OP THIS VERTEX •••
(GEN-SECTORS '<?SELF !:L-LIBB !:B-LINE !:ANGLE !:SECTOR>

(PAIL))
;IF ALREADY OBSERVED THEM FAIL
(AN.D (GET* ?SECTOB) (PAIL))
(CO!HIB!l'TART 1 "FOR" ?SECTOR '"OF" (: ?SELF NAME)}
;GOTO PACE
PACE
;EITHER ~ATCB THIS SECTOR TO AM EXISTING PACE RECR •••
(OR

;POR EACH PACE RECR •••
(lUPC 1 (LAl!BDA (RECR)

(: ?RECR
;~ATCH IT CWISE OR CCWISE
(COfHIENTARY 111 ATTEMPT TO ft lTCB THE

EXPECTATIONS OP"
(: ?R ECR RUf E))

(OB (COMPLETE '<FlCE-RECR
CWISE
?R-LINE
! : (FV (N EQ ?PV ?SELF))
?SELF
?L-LINE
?ANGLE
?SECTOR>

CONSTRAINTS)
(COl!PLETE '<PACE-RECR

CCiISE
?L-LI NE
! : (FV (N EQ ?J!V ?SELF))
?SELF
?R-LIRE
?ANGLE
?SECTOR>

CONSTRAI HTS)
(RETURN N.IL I L AM BDA))

;ftATCH SUCCEEDED.

App endix-C: Example Progra• Listing

(RETURN 'T 1 KAPC)))
DNET)

;OR A NEW ONE.

190

(: (NEW-P'ACB-RECR '<?SELF ?L-LINE ?R-LIRE ?ANGLE ?SECTOR>)))
;RETURN .FOR :NEXT SECTOR.
(PAIL)))

) ;END OP VERTEX.

; DEFINE VERTEX TYPES.
(PUT* 'ARROW-VERTEX (NEW VERTEX TYPE 1 ARBOW))
(PUT* 1 FORK-VEBTEX (NEW VERTEX TYPE 'PORK))
(PUT* 'T-VERTEX (NEW VERTEX TYPE 1 T))
(POT* 'L-VERTEX (NEW VERTEX TYPE 'L))
(: VERTEX (PUT* 'INSTANCES (LIST ARROW-VERTEX

FORK-VERTEX
T-VERTEX
L-VERTEX)))

; DEFINE FACE SCHEMA
(: (PUT* 'PACE (OBJECT 1 SCHEKA MAME 1 PACE

; NEW PACE RECOGNIZER

COMPOSITION ' (VERTEX LINE)
DNET NIL
NRECBS 0))

(DE.FON NEW-PACE-RECR QEXPR <!:FIRST-VERTEX
! :L-EDGE
!:R-EDGE
! : ANGLE
! :SECTOR>

(: ;CREATE AR INIT.IAL CORNER FOR THIS FACE
(ITEM COBNER (OBJECT 'SNET

VERTEX (: ?FIRST-VERTEX NAPIE)
L-EDGE ?L-EDGE
R-EDGE ?R-EDGE.
ANGLE ?ANGLE))

;VERTEX -SECTOR .IS THIS NEW CORNER.
(: ?FIRST-VERTEX (PUT* ?SECTOR ?CORNER) T)
;CREATE A MEW PACE RECOGNIZER
(NEW FACE

NAPIE (PIKATOPI '"PACE-" (ADD1 (: PACE HBECRS)))
CONSTBAIBTS (OBJECT 0)
CORNERS (LIST ?CORNER)
EDGES NIL
CCW-CORRER ?CORNER
CW-CORRER ?CORNER)

(ITEPI SELF (SELP))
(COKftEBTARY '"CREATE A NEW RECR:" NA!E '"CONTAINING

Appendix-c: Example Program Listinq

A CORNER POR" (: ?FIRST-VERTEX NAftE))
(: ?CORNER (PUT* 1 PlBT-OP ?SELP) T)

191

;CREATE 2 PROCESSES TO EXPECT VERTICES CVISE ARD CCWISE
; AROUND TRIS FACE.
(COftftENTARY '"CREATE TWO PROCESSES BOUND TO EXPECTATIONS

FOR" ?L-EDGE '"AND 0 ?R-EDGE)
(PROCESS ?SELF •cw-FACE-RECR •<?L-EDGE ?FIRST-VERTEX>)
(PROCESS ?SELP I CCV-FACE-RECR '<?R-E DGE ?PIRST-VER"l'EX>)
;RECORD THIS RECR IMSTABCE IN TBE GENERIC PACE SCHEMA
PACE
(PUT* 'NRECRS (ADD1 NBBCRS))
(POT* 1 DNET (CONS ?SELP DNET))))

(DEFUN CW-FACE-RECR QEXPR <!:EXPECT !:FIRST-VERTEX>
(: ;GET THIS SCHEftA.

(ITEK SEI.F (SELP))
;SUSPERO THIS PROCESS TO cnsE EXPECTATIONS
(SUSPEND <PACE-RECB

CWISE
?EXPECT
?FIRST-VERTEX
! : VERTEX
! : If EXT-EXPECT
!:ANGLE
!:SECTOR>

CONSTRAINTS)
(COK!EYTARY (: ?SELP BAME) '"HAS BEEB MATCHED BY"

(: ?VERTEX HAI,E))
; CREATE A NEW CORRER FOR THIS VERTEX.
(ITE~ CORNER (OBJECT 1 SNET

PART-OP ?SELP
VERTEX (: ?VERTEX RAMEl
R-EDGE ?EXPECT
L-EDGE ?NEXT-EXPECT
ANGLE ? AltGLE
NEXT-CCV CW-CORNER))

; VERTEX SEC'l'OR COMPRISES THIS NEW CO.RN ER.
(: ?VERTEX (Pff'?* ?S.ECTOR -?CORNER) T)
;ADD TO LIST OP CORNERS POR THIS P'ACE
?SELF
(PUT* • CORNERS (CONS ?CORNER CORNERS))
;UPDATE L:IS'l' OF EDGES FOB THIS PACE.
(PUT* 'EDGES (CONS ?EXPECT EDGES))
;EXCHANGE CWISE ARD CCWISE POINTERS.
(: CW-CORMER (PUT* 'NEXT-CW ?CORNER) T)
(: ?CORVER (POT* 1 BEXT-CCW CW-CORNER) T)
;UPDATE CW-CORNER
(: (PUT* 'CW-CORBER ?CORNER) T)
;VERIFY THIS PACE USING TOP-DOWN SEARCH
(COftfllENTARY '"VERIFY" (: ?SELF NAME) '"USING TOP-DOWN

SEARCH")

Appendix-c: Example Program Listing

. .

(VERIPY-PACE ?SELF (ADD (: CV-CORNER AMGLE)
(: CCW-CORMER lNGLE)))))

(DEPUN CClf-PACE-RBCR QEXPR <!: EXPECT ! : FIRST-VERTEX>
(: ;GET THIS SCHEMA.

(I'l"EPI S ELP (SELF))
;SUSPERD THIS PROCESS TO CCWISE EXPECTATIONS.
(SUSPEND <PACE-RECR

CCWISE
?EXPECT
?FIRST-VERTEX
! :VERTEX
! :NEXT-EXPECT
! : ANGLE
!:SECTOR>

COHSTB AIN'l'S)
(COftPIEHTARY (: ?SELF Nlf!E) '"HAS BEEN MATCHED BY"

(: ?VERTEX NAME))
;CREATE A MEW CORNER FOR THIS PACE.
(ITEM CORNER (OBJECT 'SMET

PART-OF ?SELF
VERTEX (: ?VERTEX NlftE)
R-EDGE ?NEXT-EXPECT
L-EDGE ?EXPECT
ANGLE ? ANGLE
NEXT-CW CCW-COR'NER))

;VERTEX SEC'l'OR COMPRISES THIS NEW CORNER.
(: ?VERTEX (POT* ?SECTOR ?CORNER) T)
; ADD TO LIST OP CORKE.RS POR THIS FACE.
?SELF
(PUT* 1 CORNERS (CONS ?CO:BHER CO.RKERS))
;UPDATE LIST OP EDGES POR THIS PACE.
(PUT* 'EDGES (CONS ?EXPECT EDGES))
;EXCHANGE CWISE AND CCWISE POINTERS.
(: CCW-CORNER (PUT* 'MEXT-CCW ?CORNER) T)
(: ?CORNER (PUT* 'NEXT-CW CCW-CORSER) T)
;UPDATE CCWISE CORNER. ,
(: (PU'?* 'CCW-COBIER ?COBRER) . T) ·
; VERIFY THIS FACE tJSING TOP-DOWN S ElBCH.
(COfll!EtfTARY • "!IETHOD: VERIFY" (: ?SELF Nl!E)

'"USING TOP-DOWN SEARCH")
(VERIFY-PACE ?SELF (ADD (: CW-CORNER .ANGLE)

(: CCV-CORNER ANGLE)))))

;SEARCH TOP-DOWJ FOR THE REMAIRDBB OF THIS PACE.
(DEPUR VERIPI-FlCE iEXPR (THIS-P lCE EX-ANGLE)

(: ;GET NEIGHBORING CWISE VERTEX.
(ITEM NEIGHBOR-VERTEX (: ?THIS-FACE

CW-CORNER

192

(NEIGHBOR-VERTEX L-EDGE VEBTEX)))
(CO~MENTABY '"GET NEXT CLOCKWISE NEIGHBOR VERTEX:"

Appendix-c: Example Proqra■ Listinq

(: ?NEIGHBOR-VERTEX HA!E)
'"PROflJ" (: ?THIS-PACE CW-CORNER L-EDGE))

;GET FACE RECR THAT THIS CVISE SECTOR IS PART OP.
; ELSE NIL.
(ITEi! OTHER-PACE (: ?THIS-FACE

CW-CORNER
?NEIGHBOR-VERTEX
(GET* (: (CWISE-SECTOR L-EDGE))

'(RETURN NIL':))
PART-OF))

(CORD ;IS THIS VERTEX PART OP THIS FACE RECR?
((EQ ?THIS-PACE ?OTHER-PAC~

193

(COftl!EBTARY '"THIS VERTEX IS ALREADY CONTAINED IN"
(: ?THIS-PACE NAME) J

(: ;COMPLETE THE DESCRIPTION OP THIS FACE.
?THIS-PACE
;UPDATE LIST OP EDGES.
(POT* 'EDGES (CONS (: CW-CORNER L-EDGE) EDGES))
;fUKE CWISE AWD CCWISE BilfGS.
(: CW-CORNER (PUT* 'NEXT-CW CCW-CORNER) T)
(: CCW-CORNER (PUT* 'NEXT-CCW CW-CORNER) T)
;TEST THE CO~PLETED PACE.
(COMIIERTARY '"COMPARE" (: ?THIS-FACE NAME)

• "TO POL IGOR MODEL")
(TEST-COftPLETED-PlCE ?~HIS-PACE ?EX-ANGLE}
;MATCH THIS FACE TO POLYHEDRON SOPERGOlLS.
(COMPLETE-PACE ?THIS-PACE)))

;IS THIS SECTOR PART OP SOME OTHER RECR?
(?OTHER-FACE

(COftftEBTARY '"ITS CWISE SECTOR IS ALREADY PART
OP A CORNER OP" (: ?OTHER-PACE NAME))

;DELETE THE OTHER PACE PROff DNET OP GENERIC PACE.
(: PACE (PUT* 'DNET (DELQ ?OTHER-PACE DNET)) T)
;INCORPORATE ITS CORNERS INTO THIS PACE.
;EXCHANGE CWISE ABD CCWISE POINTERS.
(: ?OTHER-PACE

CCW-CORNER
(PUT* 'NEXT-CCW (: ?THIS-FACE CW-CORNE~)))

(: ?THIS-PACE
CW-CORNER
(PUT* 'NEXT-CW (: ?OTHER-PACE CCW-CORNER)))

; FOLLOW THE EDGES OF THE OTHER PACE CWISE.
(COM1'ENTARY '"IHCORPO RATE THE CORNERS OP"

(: ?OTHER-PACE NAftE) '"INTO"
(! ?THIS-FACE NAME))

(: (FOLLOW-FACE ?TBlS- PACE ?EX-ANGLE)))
; ELSE THIS VERTEX HAS NOT BEEN OBSERVED BEPOBE.
(T (COMKENTARY '"INCORPOBATE THIS VERTEX INTO A

HEW CORNEB OP" (: ?THIS-PACE NAftE)J
(: ;CREATE A NEV CORN ER FOR THIS VERTEX.

?THIS-FACE

Appendix-C: Exa ■ple Program Listinq

?NEIGHBOR-VERTEX
(ITE! CORNER (OBJECT 1 SNET

PART-OF ?THIS-FACE
VERTEX NAME
L-EDGE

194

(: CW-CORNER (CW-LINE L-EDGE)l
R-EDGE L-EDGE
ANGLE

(: CW-CORNE B
(CW-ANGLE L-EDGE) l))

;ftAKE VERTEX POINT TO CORNER.
(PUT* (: (CWISE-SECTOR (: CW-CORNER L-EDGE)))

?CORNER)
; ADD TO THIS PACE.
?THIS-PACE
(PUT* 'CORNERS (CONS ?CORNER CORNERS))
; OPDlTE LIST OF ED.GES POR THIS PACE.
(PUT* 'EDGES (CONS (: CW-CORNER L-EDGE) EDGES))
;EXCRlRGB CWISE AND CCWISE POINTERS.
(: CW-CORRER (POT* 'NEXT-CW ?CORNER) T)
(: ?CORNER (PUT* 'NEXT-CCW CW-CORNER) T)
;UPDATE CWISE CORNER
(: (PUT* 'CW-CORMER ?CORNER) T)
;RECURSE OH THE NEXT CWISE VERTEX.
(VERIFY-FACE ?TRIS-FACE CADD ?EX-ANGLE

(: ?CORNER ANGLE))))))))

.;INCORPORATE THE NEW CORNERS INTO THIS FACE.
(DEPON FOLLOW-PACE it EXPR (?THIS-PACE ? EX- ANGLE)

(: ;GOTO CWISE CORNER OP THIS PACE.
?THIS-PACE
CW-CORNER
(COMD ; IS THERE A NEXT ClfISE CORNER?

((GET* 'MEX'l'-Ci)
(COlU.IENTARY 1 "IMCLODE THE CORNER FOR"

(: NEXT-CW VERTEX))
;INCLUDE IN CORNERS LIST.
(: ?THIS-l'ACE

(POT* 'CORNEBS (CONS NEXT-CW CORNERS))
(POT* 'EDGES (CONS L-EDGE EDGES)))

;ADVANCE POINTER TO THE NEXT CWISE CORNER.
(: ?TBIS-FACE (POT* 'CW-CORNER NEXT-CW))
;!!AKE THIS CORNER POINT TO '!'HIS PACE.
(: CW-CORNER (PUT * 'PART-OP ?THIS-PACE))
;RECURSE ON THE REIT CORNER.
(:(FOLLOW-PACE ?THIS-FACE (ADD ANGLE ?EX-ANGLE))))

;VERIFY EACB CWISE VERTEX.
(T(COftKEMTARY •"ALL CORNERS HAVE BEER INCLUDED")

(: (VERIPJ-l'ACE ?THIS-FACE
(lDD ANGLE ?EX-ANGLE)))))))

Appendix-c: Example Proqram Listing

;TEST THIS FACE AND ASSIGN ITS TYPE.
(DEPON TEST-COfllPLETED-PACE al EX PR ('PACE EX-ANGLE)

(: ?FACE
. ;CHECK THE SU! OP THE FACE'S EXTERIOR ANGLES.

(COND ((EPSILO!f 10 360 ?EX-ANGLE)
(PUT* 1 TYPE 'INSIDE-CLOSURE))

((BPSILOM 10 -360 ?EX-ANGLE)
; DECIDE PACE'S TYPE.
(SELECTQ (LENGTH EDGES)

(3 (PUT* 'TYPE 'TBIAHGLE))
(4 (COND ;IS FACE A PARALLELOGRAft?

195

((AND (EPSILON 10 (MINUS (: CW-CORNER ANGLE))
(: CCW-CORNER NEXT-CW ANGLE))

(EPSILON 10 (ftINUS (: CCW-CORNEB ANGLE))
(: CW-CORNER NEXT-CCW ANGLE)))

(PUT* 'TYPE 1 PARALLELO:;BAM))
(T tPUT* 'TYPE •ou ADRALATERAL))))

(POT* 'TYPE 1 ft0LTILATERAL))))
(COM!ENTlRY '"COMPLETED" RAKE '"IS A" TYPE)))

;l'lATCH THIS PACE TO POLYHEDRON RECRS.
(DEFUN COPJPLETE-FACE @EXPB (THIS-PACE)

i DELETE THIS RECR FROM DNET OF PACE RECRS.
(: PACE (PUT* 'DNET (DELQ ?THIS-FACE DNET)))
(COI.U!ERTARY '"PIATCB THIS PACE TO THE EXPECTATIONS O.F

POLYHEDRON RECOGNIZERS•)
(: POLYHEDRON

(OR ;"ATCH "CORRECT" EIPEC'l'lTIONS OF SOftE POLYHEDRON RECR.
(ftlPC '(LAPIBDA (RECR)

(CO!ftENTlRt '"BATCH THE CONNECT EXPECTATIONS
OF" (: ?RECB NA aE))

(: ?BECR
(ELSE 1 (RETURN NIL':))
;GENERATE ALL CONNECT EDGES FOR THIS ?ACL
(GEN-EDGES '<?THIS-PACE

!:EXPECT
! : EDGE-TYPE>

I (FAIL))
(OR (EQ ?EDGE-TYPE 1 CORNBCT) (FAIL))
(COPl!,ENTARY '"TRY" ?EXPECT)
;PIATCH THIS RECR' S EXPECTATIONS.
(COffPLETE ' <POLYHEDROM-RECR

CONNECT
?EXPECT
! : NODE
?THIS-FACE>

CONSTRAINTS
I (FAIL))

;DONE.
(RETURN T •~APC)))

Appendi%-C: Example Program Listing

196

RECRS)
;ELSE fllATCH "IUYBE-CONNECT" EXPECTATIONS OP ALL RECRS.
(PROGN

(ftAPC '(LAKBDA (RECR)
(COftMEHTARY '"ftATCH THE MAYBE-CONNECT

EXPECTATIONS OP" (: ?RECR NlME))
(: ?RECR

(ELSE '(RETURN NIL ':))
; GENERATE KA YBE CONNECT EXPECTATIONS.
(GEN-EDGES '<?THIS-PACE

! : EXPECT
! : EDGE-TYPE>

' (PAIL))
(OR (EQ ?EDGE-TYPE 'ft A YBE-CONNECT) (FAIL) l
(COllftERTlRY '"TRY" ?EXPECT)
;ftATCH THIS RECR'S EXPECTATIONS.
(COMPLETE '<POLYHEDRON-RECR

!UY BE-CONNECT
?EXPECT
!:NODE
?THIS-PACE>

CONSTRAINTS
' (PAIL))

; DONE WITH THIS RECR.
(RETURN BIL • :)))

RECRS)
;AND CREATE A NEW RECB POR THIS FACE.
(: (HEi-POLYBEDBOH-BECR ?'!'HIS-PACE)))))-)

;GENERATES THE EDGES AND EDGE TYPES FOR A GIVEN FACE.
(DEFUH GEN-EDGES QEXPR (!:PAC! !,EDGE !,EDGE-TYPE>

(: ?FACE
;FOR EACH EDGE IH THIS PACE •••
(PJAPC ' (LAMBDA (E)

(: (AVAL ?E)
(COND ((OR(: (AVAL V1)(AND (EQ TYPE 'ARROW)

(EQ L2 ?E)))
(: (AVLL V2) (AND (EQ TYPE 'ARROW)

;THEN
(SETO

(T ; ELSE
(SETQ

(POST)) l
EDGES)

(PAIL)))

) ; END OP FACE

EDGE IS
EDGE ?E
EDGE IS
EDGE ?E

(EQ L2 ?E))))
CONNECT.
EDGE-TYPE 'CORRECT))
lU YBE-CORJfECT.
EDGE-TYPE 'MAYBE-CONNECT)))

Appendix-c: Eia ■ ple Program Listing

(: (PUT* 1 POLYHEDRON (OBJECT 'SCHEMA
NAftE 'POLYHEDRON
COftPOSITION 'FACE
RECRS MIL
NRECRS 0))

;CREATES A NEV POLtffEDRON RECR.
(DEPUN NEW-POLYHEDRON-RECR IEXPR (PACE1)

;IS THIS FIRST PACE COMPATIBLE WITH THIS RECR'S ftODEL
; OF POLYHEDRA?
(OR (: POLYHEDROI (TEST-PACE-TYPE ?FACE1))

(RETURN NIL 1 WEi-POLYHEDRON-RECR))
(: ;CREATE A COBNECT NODE TO REPRESENT THIS FACE.

(ITEM NODE (OBJECT I SN.ET
NJ.PACE ?PACE1
CONNEC'l' NIL))

;CREATE A POLYHEDRON SCHE~A INSTANCE.
(NEW POLYHEDRON

197

NAl!E (ftKATOP.I 1 "POLYHEDRON-" (: POLYHEDRON (ADD1 HRECRS)))
CONSTRAINTS (OBJECT 0)
NODES (LIST ?NODE)
l!AYBE-NODES NIL)

;SAVE POINTER TO THIS RECR.
(ITEM R ECR (SELF))
(COMPIEHTARY • "CREATE A NEW RECR:" NA.ME • "CONT AINI.NG"

(: ?PACE1 NAPIE)) .
(COMMENTARY '"CO~PUTE EXPECTATIONS ABOUT OTHER PACES OP"

NAPIE)
;RECORD IM THE GENERIC POLYHEDRON SCHEKA.
(: POLYHEDRON

(PUT* 'RECRS (CONS ?RECR RECRS))
(POT* 'RRECBS (ADD1 NRECRS)))

;CBElTE A PBOCESS BOUND 1"0 Alf EXPECTATION FOR EACH EDGE
; IN THIS PACE.
(: (ELSE ' (RETURN NIL 1 :))

;GEIERATE EACH EDGE OP THIS PACE AND ITS TYPE.
(: PACE (GEN-EDGES 1 (?.FlCE1 ! : EOO E ! : EDGE-TYPE> 1 (PA.IL)))
(COPU!ENTARY '"POR" ?EDGE '"OF"(: ?PACE1 NAPIE))
;EITHER A CONNECT OR ftAYBE-CONNECT PROCESS.
(COllD ((EQ ?EDGE-TYPE 1 CORN !CT)

(PROCESS ?RECR
'ACCEPT-CONNECT-FACE
'<?RECR ?EDGE ?NODE>))

((PROCESS ?RECR
'ACCEPT-"AYBE-CONNECT-FACE
' <?RECR ?EDGE ?NODE>)))

;GO BACK FOB NEXT EDGE.
(PAIL))

;SEARCH FOR OTHER FACES OF THIS POLYHEDRON BY OBSERVING
; 3-LINE VERTICES OP THIS FACE.

Appendix-c: Example Program Listing

(COPU1ENTARI 1 "f!ETHOD: SEARCH FOR OTHER FACES OP"
(: ?RECR RAftE) '"BY OBSERVING VERTICES OP")

(CO!ftENTARY '" " (: ?PACE1 NAME)
'"THAT MAY BE PABT OP NOBE THAN ONE PACE")

?PACE1
("APC 1 (LAftBDA (CORNER)

(: ?CORNER
(AVAL VERTEX)

198

(CORD ((ftEMQ TYPE '(ARROW FORK T))
(COMMENTARY (: ?RECR NAME) '"OBSERVES"

BAME)
(RESUME '<OBSERVE-VERTEX) PROC)))))

CORNERS)))

; ACCEPTS fUTCHIRG CONNECT F'AC B INTO THIS POLYHEDRAL DESCRIPTION.
(D.EPUN ACCEPT-CONNECT-PACE QEXPR <! :RECR ! :EXPECT ! :EXPECT-NODE>

(COM"ENTARY '"CREATE A PROCESS BOUND TO THE CONNECT
EXPECTATION:" ?EXPEC't')

(: ?R ECR
;SUSPEND THIS PROCESS TO THIS EXPECTATION.
(SUSPEND <POLYBEDROM-RECB CONNECT ?EXPECT ?EXPECT-NODE

! : PACE> CONSTRAINTS)
(COMMENTARY '"l CONNECT EXPECTATION OF" (: ?RECR NAME)

'"HAS BEEN "ATCHED BY" (: ?FACE NAME))
;IS NEW PACE CO!!PATIBLE WITH THIS PIODEL OF POLYHEDRA?
(OR (: (TEST-FACE-TYPE ?PACE)) (PAIL))
;CREATE A NOOE IN THIS RECR'S DESCRIPTION FOR THIS PACE.
(ITEl'l BODE (OBJECT 'SRE'l'

MPACE ?FACE
~AYBE-CONHECT NIL
CONNECT (LIST ?EXPECT-NODE)))

(PUT* 'HODES (CONS ?NODE NODES))
(: ?EXP.ECT-IIODE (.PUT* 'CONNECT (CONS ?NODE CONNECT)))
;CO!PUTE TRANSITIVE CLOSURE OF EDGES FOR THIS PACE.
(CO~!ENTARY '"COftPUTE TRANSITIVE EDGE CLOSURE FOR THIS FACE")
(: (ELSE '(RETURN NIL':))

;POR EACH OTHER EDGE IN THIS PACE •••
(: PACE (GEN-EDGES '<?PACE !:EDGE !:EDGE-TYPE> '(PAIL))}
;IS IT THE PREVIOUS EXPECTATION?
(AND (EQ ?EDGE ?EXPECT) (PAIL))
(COMMENTARY '"FOR" ?EDGE '"OP" (: ?PACE NAME))
;ELSE CO!PUTE CLOSURE FOR TBIS EDGE.
(EDGE-CLOSURE ?RBCR ?EDGE ?EDGE-TYPE ?NODE)
;GET REX~ EDGE.
(PAIL))

;PIATCH PUIBE CONNECT PACES TO THESE NEW EXPECTATIONS.
(tUPC ' {LU'8DA {!NODE)

(: (ITEtf !lfPACE (: ?flNODE !fFACE))
(COft~ENTABY '"ATTE"PT TO ftlTCH !AYBE-CONNECT

PACE:" (: ?!!FACE NAME) '"TO THESE NEW
EXP EC Tl TIOllS")

Appendix-c: Example Program Listing

199

(ELSE '(BBTUBN NIL':))
;FOB ANY CONBECT EDGE IN THIS FACE •••
(: PACE (GEN-EDGES '(?"PACE !:EDGE !:EDGE-TYPE>

1 (Fl:IL)))
(OR (EQ ?EDGE-TYPE 'CONNECT) (FAIL))
(COMMENTARY '"TRY" ?EDGE)
; IS THIS EDGE NOW CONNECT WITH THIS RECR?
(PllTCH '<POLYHEDRON-RECH

CONIECT
?EDGE
! : EXPECT-NODE
XX>

CONSTRAINTS
1 (PAIL))

(COP!r!EIT ARY (: ?PIFACE NA fl!E) '" IS CONNECT WITH"
(: ?R ECR NU!E))

;THEN PIOVE THIS NODE TO CONNECT LIST.
(PUT* 'NODES (CONS ?f!NODE NODES))
(PUT* 1 tU !BE-NODES (DELQ ? ft NODE 15AYBE-lfO0ES))
;ADD CONNECT LINK TO PREVIOUS ptAfBE CONNECT.
(: ?EXPECT-NODE (POT* 'CONNECT

(CORS ?PINODE CONNECT)))
;COPIPOTE TRANSITIVE CLOSURE l"O:R EDGES
; OP TRIS 80 DE.
(COftl!ENTARY '"COPIPUTE TRANSITIVE EDGE CLOSURE

FOR" (: ?!PACE NAME))
(: (ELSE ' (RETURN NIL ':))

; FOR EACH EDGE IN THIS FACE• ••
(: PACE (GEN-EDGES '<?f1FACE

! : EDGE
! : EDGE-TYPE>

• (PAIL)))
;EXCEPT EDGE OF PREVIOUS l'IAYBE-CONJECT?
(AND (EO ?EDGE (: ?MN ODE .f1EDGE)) (PAIL) l
(COfU,ENTARY '"FOR" ?EDGE "'OP THIS .PACE")
;COftPrJTE CLOSURE FO.R THIS EDGE.
(EDGE-CLOSURE ?RECR ?EDGE ?EDGE-TYPE ?~NODE)
;GET NEXT . EDGE.
(PAIL))

;FINISHED WITH THIS NODE.
(RETURN NIL 'LA"BDA}))

ftAYBE-RODES) .
(COND ;DOES DESCRIPTION SATISFY POLYHEDRON MODEL?

((:(TEST-POLY ?RECR)) (:(COMPLETE-POLYHEDRON ?RECRt))
;ELSE SEARCH POR OTHER PACES OP THIS VERTEX BY
; OBSERVING 3-LINE VERTICES THAT ARE AT THE
; PERIPHERY OF TH.IS INCOflPLETE POLYH EORON.
(T(COftMEHTAR! '"METHOD: OBSERVE VERTICES THAT WILL

DRIVE THE RECOGNITION OF NEIGHBORING FACES")
(: (ELSE '(RETURN llIL •:))

; FOR EACH EXPECTATION IN THIS RECR. • •

Appendix-c: Example Proqram Listinq

200

(PllTCH '<POLYBEDROH-RECR
! : EDGE-TYPE
! :EDGE
! :EIPECT-NODE
XX>

CO.IISTRlIHTS
' (FlIL))

(AV lL ?EDGE)
; OBSERVE ElTHBR VERTEX OF EDGE IF A 3-LINE VERT EX.
(: (AVAL V1) (CORD ((REPIQ TYPE '(ARROW FORK T))

(CO!IPIENTARY (: ?RECR HAf!E)
'"OBSERVES" NAME)

(RESUPIE '<OBSERVE-VERTEX>
PBOC)}))

(: (AVAL V2) (COND ((PIE!IQ TYPB ' (ARROW PORK T))
(COMltENTA.BY (: ?RECR NAl!E)

'"OBSERVES" MAKE)
(RESUME '<OBSERVE-VERTEX>

PROC))))
;GO BACK FOR NEXT EXPECTATION.
(:PAIL))))))

; ACCEPTS 1'11BE-CONHECT !'ACES INTO THIS RECR.
(DEFUM lCCEPT-MAYBE-COlfllECT-PACE QEXPR

<!:RECR !:EXPECT !:EXPECT-NODE>
(COtU!EMTARY '"CREATE A PROCESS BOUND TO THE fll!BE-CONNECT

EXPECTATION:" ?EXPECT)
(: ?RECR

; SUSPEND THIS PROCESS TO THIS EXPECTATION.
(SUSPEND <POLYHEDROB-RECR

!IAYBE-CONNECT
?EXPECT
?EXPECT-NODE
! :PACE>

CONSTRAINTS)
(COMMENTARY '"A PllYBE-COBIECT EXPECTATION OP"

(: ?RECR NUIE) '"HAS BEEN ftlTCHED BY" (: ?FACE lfAf!E))
;IS N.EW NODE COl!PATIBLE WITH. PIODEL OP POLYHEDRA?
(OR (:(TEST-PACE-TYPE ?PACE)) (PAIL))
;CREATE A MEW NODE FOR THIS FACE.
(ITEft NODE (OBJECT 'SNET

NFACE ?PACE
f!E.DGE ?EXPECT
CORllECT (LIST ? EXPECT-NODE)))

;INCORPORATE THIS IODE INTO TRIS POLYHEDRON DESCRIPTION.
(PUT• 1 !AYBE-MODES (CONS ?HOOE ftAYBE-NODES))})

; CO!PUTES THE TRANSITIVE CLOSURE OP CONNECT EDGES.
(DEPON EDGE-CLOSURE itEXPR (THIS-RECH EDGE EDGE-TYPE NEW-NODE)

(: ?TBIS-RECR

Appendix-c: Example Program Listing

(COND ;DOES EDGE .!IATCH EXPECTATIONS OF THIS RECR?
((: (PDELETE '<POLYHEDRON-RECR

?EDGE-TYPE
?EDGE
! : THIS-NODE
XX>

CONSTRAINTS
'(RETURI ·NIL 1 :))

(COlUtEIITARY ?EDGE '"IUTCHES A" ?EDGE-TYPE
"'EtPECTlTIOB OP" (: ?THIS-RECR Nl8E))

;EXCHANGE CONNECT LINKS BETVEEM HODES.
?TRIS-tlODE
(PUT* 'CONNECT (CORS ?HEW-NODE CONNECT))

?NEV-NODE
(PUT* 'CONNECT (CONS ?THIS-MODE CONNECT))))

201

; ELSE CREATE A CONNECT OR fUYBE-CONNECT PROCESS.
((EQ ?EDGE-TYPE 'CONNECT)

(PROCESS ?'!'HIS-RECR
'ACCEPT-CONNECT-PACE
1 <?THIS-RECB ?EDGE ?N EW-IIODE>))

((PROCESS ?THIS-RECR
'ACCEPT-!llYBE-CONNBCT-PACE
•<?TRIS-RECR ?EDGE ?NEW-NODE>)))))

; ftATCH COllPLETED POLYHEDRON TO EXPECTATIONS OF SCENE SCHEMA.
(DEPON COftPLETE-POLYHEDRON IEXPR (R ECR)

(CO"ftENTARY '"!lATCH COMPLETED" (: ?RECR NAME)
'"TO THE EXPECTA'l'I0.15 OP THE SCENE RECR")

(: SCENE (COftPLETE 1 <SCENE~RECR ?RECR> PROC '(PAIL))))

;TEST POR COBPLETED POLYHEDRON.
(DEFON TEST-POLY iEXPR (RECR)

(COMftENTARY '"DOES DESCRIPTION OF" (: ?~ECR HAftE)
'"SATISFY THE CRITERIA FOR l COMPLETE POLYHEDRAL OBJECT?")

(: ?RECR
;ARE THERE RO !ORE CONNECT EXPECTATIONS FOR THIS POLYHEDRON?
(COHD (("ATCH '<POLYHEDROB-RECR CONNECT !:XX !:XX XX>

CONSTRAINTS)
(CO!l"ENTABY '"NO")
NIL)

((PROG (NTRI)
(SETQ NTRI 0)
(IUPC ' (LAftBDl (NODE)

(: ?NODE
NFACE
(AND (EQ TYPE I TRI ANGLE)

(S ETQ NTRI (ADD1 ?NTRI)))))
NODES)

(SELECTQ ?NTRI
(0 (PUT* 1 'l"YPE 'CUBE))
(1 (PUT* 'TYPE 'WEDGE))

Appendix-c: Example Program Listinq

(PUT* 'TYPE 'PYRAMID))
(COfU!ENTARY '"YES: n NAME 1 " IS A" TYPE)
T)))))

;IS PROPOSED PACE COftPATIBLE WITH l'JODEL OF POLYHEDRA?
(DEFUN TEST-PACE-TYPE ~EXPR (PACE)

(COMMENTARY '"IS" (: ?FACE BAME)
'"COMPATIBLE WITH THIS CLASS OP POLYHEDRA?")

(COND ((P!EPIQ (: ?FACE TYPE) '(TRIANGLE PARALLELOGRUl))
(COft"ENTARY '"YES")
T)

(T(CO!KERTlRY '"RO: REJECT THIS FACE")
NIL)))

) ; END OF POLYHEDRON.

;AUXILIARY FUNCTIONS.

(: VERTEX
;GENERATES SECTORS OP A 3-LINE VERTEX.
(DEFUN GEN-SECTORS QEXPB

<!:VERTEX !,L-LINE !,R-LIHB !,ANGLE !,SECTOR>
{: ?VEBTEX

(SETQ L-LIRE L2
R-LINE L 1

(POST)

ANGLE (SUB 180 AMGLE-L1-L2)
SECTOR 1 SECTOB-L1~t2)

(SETQ L-LIRE L3
R-LIME L2

(POST)

ANGLE (SUB 180 ANGLE-L2-L3)
SECTOR 1 SECTOR-L2-L3)

(SETO L-LI RE L 1
R-LIIIE L3
ANGLE (SUB (ADD ANGLE-L1-L2 ANGLE-L2-L3) 180)
SECTOR 1 SECTOR-L3-t1)))

; RETURNS THE CWIS E SECTOR "NAME OP' THE ENCL OS ING VERTEX
; WHOSE R-LIBE IS ?LINE.
;DEFAULT IS FOR 3-LIBE VERTICES.
(DEFON CWISE-S.BCTOR iEXPR {LINE)

(COND ((EQ ?LINE L1) 'SECTOR-L1-L2)
((EQ ?LINE L2) 1 SECTOB-L2-L3)
((EQ ?LIWE L3) 'SECTOB-L3-L1)

202

((BREAK'"*** ERROR: LIDE IS NOT PABT OP TRIS VERTEX"
?LINE))))

;RETURNS THE CCWISE SECTOR NA!E WHOSE L-LINE IS ?LINE OF

Appendix-c: Example Program Listinq

; THE ENCLOSING VERTEX.
(DEPUM CCWISE-SECTOR aEXPR (LIIE)

(CORD ((EQ ?LINE L1) 'SECTOR-L3-L1)
((EQ ?LINE L2} 'SECTOB-L1-L2l
((EQ ?LINE L3) 'SECTOB-L2-L 3)

203

((BREAK'"*** ERROR: LINE IS NOT PART OF THIS VERTEX"
?LIRE))))

; RETURNS THE CCW NEXT LIKE OF AM ENCLOSING 3-LIIIE VE.RTEX. ,
(DEPUN CCW-LINE iEXPR (LINE)

(COND ((EQ ?LINE L1) L3)
((EQ ?LIHE L2) L1)
((EQ ?LIME L3) L2)
((BREAK'"*** LINE IS NOT PART OP THIS VERTEX" ?LINE))))

; RETURNS THE CW NEXT LIRE OP AN ENCLOSING 3-LINE VERTEX.
(DEPUN CW-L.Ilf E ~EXPR (LIME)

(CORD ((EQ ?LINE L1) L2)
((EQ ?LINE L2) L3)
((EQ ?LIME L3) L1)
((BREAK'"*** LINE IS NOT PART OF THIS VERTEX" ?LINE))))

(DEPUN CW-ANGLE @EXPR (LINE)
(CORD ((EQ ?LINE L1) (SOB 180 ANGLE-L1-L2))

((EQ ?LINE L2) (SUB 180 AHGLE-L2-L3))
((EQ ?LINE L3)

(SUB (ADD ANGLE-L1-L2 ANGLE-L2-L3) 180))
((BREAK'"*** LINE IS NOT PART OP THIS VERTEXn ?LINE))))

(DEPUN CCV-ANGLE ~EXPB (LINE)
(COMD ((EQ ?LINE LJ) (SUB 180 ANGLE-L2-L3))

((EQ ?LINE L2) (SUB 180 ANGLE-L1-L2))
((EQ ? LI NE L 1)

(SUB (ADD ANGLE-L2-L3 lNGLE-L 1-L2) 180))
((BREAK 1 "*** LINE IS NOT PART OF THIS VEBTEX" ?LINE))))

) ; END OF VERTEX

(: L-VEBTEX
;GENERATES SECTORS OF A 2-LINE VERTEX.
(DEFUN GEN-SECTORS QEXPR '

<!:VERTEX !,t-LINE !,R-LIRE !~ANGLE !,SECTOR>
(: ?VERTEX

(SETQ L-LINE L2
B-LINE L1
ANGLE (SOB 180 ANGLE-L1-L2)
SECTOB 1 SECTOR-L1-L2)

(POST)
(SETQ L-LINE L1

Appendix-c: Example Program Listinq

R-LINE L2
ANGLE (SUB ANGLE-L1-L2 180)
SECTOR 'SECTOR-L2-L1)))

204

;RETURNS THE CWISE SECTOR NAKE WHOSE R-LINE IS ?LINE OF THE
; ENCLOSING VERTEX.
; FOR 2-LINE VERTICES. ,
(DEFUR CWISE-SECTOR aEXPR (LINE)

(COND ((EQ ?LIBE L1) 1 SECTOR-L1-L2)
((EQ ?LINE L2) 'SECTOR-L2-L 1)
((BREAK'"*** BRBOR: LINE IS NOT PART OP THIS VERTEX"

?LINE))))

;RETURNS THE CClflSE SECTOR NAl'IE WHOSE L-LINE IS ?LINE
; OP TH.E ENCLOSING VERTEX.
;FOR 2-LINE VERTICES.
(DEFUR CCWISE-SECTOR iEXPR (LIRE)

(COND ((EQ ?LINE L1) 1 SECTOR-L2-L1)
((EQ ?LINE L2) 1 SECTOR-L1-L2)
((BREAK'"*** ERROR: LINE IS NOT PART OF THIS VERTEX"

?LINE)) >)

; RETURNS THE CCW OR CW NEXT LINE OF AN ENCLOSING 2-LINE VERTEX.
(DEPUN CW-LINE iEXPR (LINE)

(COND ((EQ ?LINE L 1) L2)
{ (BQ ?LINE 1.2) Ll)
((BREAK'"*** LIBB IS ROT PART OF THIS VERTEX" ?LINE))))

(: (PUT* 'CCW-LINE CW-LINE) T)

(DEFUH CW-ANGLE ~EXPR (LINE)
(COND ((EQ ?LINE L 1) (SOB 180 ANGLE-L1-L2))

((EQ ?LINE L2)
(SOB ANGLE-L1-L2 180))

((BREAK'"*** LINE IS NOT PART OF THIS VERTEX" ?LIRE))))

(DEFUN CCV-ANGLE @EXPR (LINE)
(COHO ((EQ ?LI RE L2) (SUB 180 ANGLE-L 1-L2))

((EQ ?LINE L1) {SUB ABGLE-L1-L2 180))
((BREAK'"*** LINE IS NOT PART OP THIS VERTEX" ?LINE))))

) ;END OP L-VBRTEX.

; CREATE GIVEN NETWORK OY VERTICES AND LINES.
; DEPINES VERTEX OBJ EC'l'S AND BINDS THE!'I TO THEIR NAPlES.
; CALLS ARE OP THE FOR": (DEFINE-VERTEX <NA!E> <TYPE> <PAIR>*)
(DEFUR DEFINE-VERTEX aPEXPR (L)

(: (PUT* (CAR ?L)
(APPLY 'NEW (CDR ?L)))

Appendix-c: Example Program Listing

(PUT* 'Nlfl!E (CA .R ?L)))
(SETQ VERTEX-LIST (NCONC ?VERTEX-LIST (LIST (CAR ?L))))
(CAR ?L))

(SETQ VERTEX-LIST NIL)

; DEFINES LIBE OBJECTS AND BINDS THEfl! TO THEIR NAfl!ES.
; CALLS ARE OF THE PORll: (DEFINE-LIME <NUIE> <PlIR)*)
(DEFUN DEFINE-LINE ~P'EXPR (L)

(: (POT* (CAR ?Ll
(APPLY 'REW (APPEND* 1 (LINE) (CDR ?L))))

(PUT* 'NAfl!E (CAR ?L)))
(SETQ LINE-LIST (BCONC ?LINE-LIST (LIST (CAR ?L))))
(CAR ?L))

(SETQ LINE-LIST NIL)

;GENERATES ITE!S FROM A LIST.
(DEPOM LGEN QEXPR (!:LIST !~EL>

(f'IAPC ' (LU.IBDl (N) (SETQ EL ?N) (POST)) ?LIST)
(PAIL))

205

; RETURNS THE BEIGHBOB VERTEX OF SOftE VERTEX NAHE GIVEN A LINE.
{DEPUN NEIGHBOR-VERTEX @EXPR (LIRE ME)

(: (AVAL ?LINE)
(COND ((EQ V1 ?ME) (AVAL V2))

{ (EQ V2 ?ME) (l VAL V 1))
({BREAK '"***ERROR: LIME DOES NOT CONTAIN THIS VERTEX"

? ME))}))

; BETUBNS EPSILON IF THE ABSOLUTE SUft OF ITS 1ST ARG IS LESS THAN
; ITS 2ND THRU LAST ARG ELSE IT RETURNS HIL.
; CALLS ARE OP THE POR!: (EPSILON <EPS> (NUft>*)
(DEFCJN EPSILOlf N

(PROG (TALLY)
(SETQ TALLY 0)
LOOP
(COND ((NEQ N 1) (SETQ TALLY (ADD TALLY (AR3 N)) N (SUB1 N))

(GO LOOP))
((LESSP (ABS TALLY) (ARG 1)) TALLY))))

;PRINTS CO!MENTABY.
(DEPON COMMENTARY ~FEXPR (LCOf'I}

(OR ?COl!flENTARY-SWITCH (RETURN NIL • corutENTARf),
(TEBPRI)
(,.APC '(LAMBDA (COM) (PRIN1 (AVAL ?COM))) ?LCOflJ)
(TERPRI))

(SETQ COMPIENTA.RY-SWITCH T)

Appendix-c: Example Proqra11 L istinq

; DATA FOR THIS PROBLE~:

(DEPINE-VEBTEX VERTEX-1
ARROW-VERTEX
L1 'LINE-1-5
12 1 LINE-1-6
L3 'LINE-1-2
ANGLE-L1-L2 60
ANGLE-L2-L3 45)

(DEFINE-VERTEX VERTEX-2
L-VEBTEX
L 1 'LINE-1-2
L2 'LINE-2-3
ANGLE-L1-L2 135)

(DEFINE-VERTEX VERTEX-3
ARROW-VERTEX
L1 'LINE-2-3
L2 'LIHE-3-6
L3 'LINE-3-4
ANGLE-L1-L2 45
!HGLE-L2-L3 30)

(DEFINE-VERTEX VERTEX-4
A BROW-VERTEX
L 1 'L INE-3-4
L2 'LINE-4-6
L3 'LINE-4-5
ANGLE-L1-L2 40
ANGLE-L2-L3 60)

(DEFINE-VERTEX VERTEX-5
L-VERTEX
t 1 'LilfE-4-5
L2 'LINE-1-5
ANGLE-L1-L2 120)

(DEPINE-VERTEX VERTEX-6
PORK-VERTEX
L 1 ' LI NE-1-6
L2 'LIN E-4-6
L3 1 LINE-3-6
ANGLE-L 1-L2 120
ANGLE-L2-L3 110)

(DEFINE-LIRE LINE-1-5
V1 'VERTEX-1
V2 'VERTEX-5
LENGTH 28)

206

Appendix-c: Example Program Listinq

(DEFINE-LINE LINE-1-2
V1 'VERTEX-1
V2 'VERTEX-2
LENGTH 35)

(DEFINE-LINE LINE-2-3
V1 1 VERTEX-2
V2 1 VERTEX-3
LENGTH 26)

(DEFINE-LINE LINE-3-4
V 1 'VERT.EX-3
V2 'VERTE.X-4
LENGTH 52)

(DEFINE-LINE LINE-4-5
V1 'VERTEX-4
V2 1 VERTEX-5
LENGTH 25)

(DEFINE-LINE LINE-4-6
V1 'VERTEX-4
V2 1 VERTEX-6
LENGTH 28)

(DEFINE-LINE LINE-3-6
V 1 1 VERTEX-3
V2 'VE:RTEX-6
LENGTH 35)

(DEFINE-LINE LINE-1-6
V 1 'V ER'l'EX-1
V2 'VERTEX-6
LENGTH 25)

; END OP DATA.

207

Appendix-C: Example Program Listinq

