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Abstract

Computer-based Landsat image interpretation has neqlected
the spatial organisation of the image in favour of the spectral
and temporal organisation. A brief survey of techniques that
exploit spatial information, including multistage sampling, is
given. Semantically-guided region-merging methods have been
used successfully but they require sophisticated and expensive
list processing facilities. Similar semantic and spatial
sensitivity can be introduced by exploiting a pyramidal,
hierarchical representation of the image advocated by Kelly,
Tanimoto and Levine. The image pyramid is constructed bottom-up
with the original image as the base. Each level is a reduced
resolution version of the level below, constructed by averaging
the signatures of adjacent pixels at the 1lower level. BY
classifying pixels at the higher 1levels one is efficiently
classif{ing semantically uniform regions in the original image.
If, hovever, a region's signature lies in the spectral overlap
of two or more classes its subregions will have to be considered
for classification. Several refinements of this technique,
including the use of semantically-based region splitting and

merging techniques at each level of the pyramid, are described.
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These techniques are used to classify forest cover types on
Vancouver Island in a Landsat image. The results of several
initial experiments indicate that, compared to a baseline of a
traditional supervised maximum-likelihood classifier, the cost
of maintaining the pyranid is balanced by the vast reduction in
the number of pixel classifications. The spatial homogeneity or
readability of the segqmented image, as measured by the number of
regions, is improved by a factor of three while the accuracy of
the classification is unaffected or slightly improved. When the
region splitting and merging techniques are applied at each
level of the image pyramid the accuracy and the readability of
the final segmentation both increase markedly. It 1is thereby
demonstrated that these pyramidal techniques offer many of the
advantages of the semantically-driven region-merging approach in
a more flexible and .efficient fashion. Indeed the two
approaches have been combined to achieve substantial benefits

for Landsat image interpretation.



1. Background

1.1 classification Techniques

All remotely sensed images are characterized by the fact
that the information about the scene is conveyed to the sensors
through the spectral, spatial and temporal variations of the
electromagnetic field. Landsat image processing systems rely
most heavily on multispectral and multitemporal technigues. To
a great extent they neglect spatial variation. This is due to
the high cost of the few successful attempts to exploit the
spatial context of ¢the scene, together with the lack of a
substantial theory on which to base suitable techniques, Most
systems rely on the wvell-known nmultispectral Patterm Recognition
paradigm for digital image interpretation. One way of stating
this approach 1is in decision-theoretic terms: the objective of
the classification is to arrive at an assignment of every pixel
to one of a number of classes in the vay that best fulfills a
certain decision criterion, Supervised or unsupervised
techniques can be used depending on the availability of ground
truth data for the classes of interest. A wide variety of
mathematical sophistications can be added to the classification
model without changing its essence.

The fundamental assumption of this paradigm is that a
pixel's interpretation depends only on its spectral attributes
not, for example, on its location in the picture or omn the
interpretation of neighbouring pixels. An essential regquirement

of such approach is that the classes be spectrally separable,



and, moreover, that the class statistics are stationary over the
image, Neither assumption holds for real images., £ When the
classifier is asked to pronounce on a pixel whose signature
falls within an overlapping area of two given classes it can
only do so by making unreliable guesses, For example, in an
experiment performed at LARS! the classification performance on
a set of Landsat data was compared with the performance on a
data set collected by an airborne multispectral scanner systenm
with more wavelength bands over a wider reqion of the spectrunm.
The interesting result was that the overall performance for the
data set was nearly identical, Classification performance of
any technique based on the classification model depends largely
on the degree of spectral separability of the classes of
interest. If the classes of interest are spectrally similar
then, using this approach, one cannot discriminate among thenm
regardless of the amount of training data used, or the number of

spectral bands available.

1.2 The use of spatial information

There have been several attempts to use spatial information
or, more generally, to introduce coqtext-sensitivity into the
interpretation of remotely sensed images., The majority of them
are formulated within the classification paradigm. Usually some
spatial features, such as texture, are computed for pixels or
groups of pixels. These features are used as additional inputs
to a point by point classifiert! 2,

Several systems successfully expleoit the fact that



spatially adjacent pixels are more likely to belong to the same
class than distant pixels. Therefore the image is partitioned
into “homogeneous" groups of pixels which are considered as
single entities and as such classified by a traditional
classifier using spectral and spatial characteristics3? »,
Obviously techniques like these considerably reduce the number
of needed classifications but the total time required to process
the entire image is often considerably augmented by the
preprocessing procedures, Robertson for example reports an
increased accuracy over the point by point classification by
2.5%, while the computing time increased by a factor of 10.
Others have used the same idea in devising technigues to
postprocess the image after it has been first segmented by a
point by point classifier. Goldberg et al.S give a technique
for relabelling each pixel using the spatial information
contained in the surrounding three-by-three region. Kan® and
Davis and Peet? give procedures which eliminate small reqions in
the scene, Postprocessing techniques such as the above are
expecially effective in improving the readability of a

classified image.

1.3 Scepe analysis and image understanding

Starr and Mackwvorth® used an approach that differed from
most other Landsat systems. They identified different types of
forest cover in a Landsat image, Traditional classification
methods were used to obtain an initial segmentation of the image

into atomic regions, Then they used Artificial Intelligence



region merging techniques to merge regions with similar
intensities. The region merging process goes hand-in-hand with
the interpretation pProcess: regions with unambigous
interpretation are allowved to segquentially influence the
interpretation of ambigous regions. Context sensitivity is thus
.introduced from the beginning into the interpretation process.
Using this technique they showed a 9% improvement in
classification accuracy over the point by point classifier, at a
cost of increasing the computing time by a factor of 3.5.

This program is an application of an alternative approach
that has recently emerged for machine interpretation of visual
data within the field of Artificial 1Intelligence. The
conventional approach to machine vision, on which the decision
theoretic classification model for Pattern Recognitionm is based,
sees the interpretation phase of the whole recognition process
as sequentially following the segmentation phase. On the other
hand, the Artificial 1Intelligence approach (the cycle of
perception paradigm for scene analysis?) states that
segmentation requires semantic information, interpretation, to
be performed sensibly. Segmentation is interpretation and yice
versa, To be meaningful segmentation needs to be drivem by a
real world model, but such a model cannot be invoked without
having first partially segmented the pictursa. Following this
paradigm the whole vision process becomes a cycle, alternating

segmentation and interpretation.



1.4 Bierarchical image structures

In the simplest application of Pattern Recognition to image
understanding, each pixel in the image is uniformly processed in
the course of interpretation, This approach is inefficient, at
best, because not all the available detail is always necessary
to interpret the image. The amount of detail that is needed
strongly depends on the purpose of the study.

This idea underlies some mrultistage techniques which make
sequential use of pictures at differsnt scale in the analysis of
remnotely sensed data. Nichols et al.!?, for example, described
a three-stage sampling method using satellite and aircraft
imagery and ground sampling. Information gathered at any stage
is wused to direct the selection of samples at the successive
lover stage. They used this technique to estimate the timber
volume in a forest inventory application. At each stage timber
volume estimates are made from sampling units vhose
probabilities of selection in the sample are biased by a factor
proportional to the corresponding predicted volunmes, as
interpreted from the previous smaller scale imagery. This
technique is shown to be more efficient, in teras of cost, than
purely random sampling because fewer ground samples need to be
taken,

This same idea has been clearly stated and successfully
exploited in some recent scene analysis work.

Kelly!! described an approach motivated by the idea of
selective attention., He considers an image of a human face and

extracts a smaller picture from it. The idea is that this



reduced, lower resolution picture exhibits only the gross
features of the face without the surrounding noise of the fine
features, These features are therefore detected and used as a
plan to find all the features in the original picture.

Several authors have extended Kelly's idea on planning.
Tanimoto and Pavidlist!2 described a pyramjid structure capable of
handling image processing at different levels. The structure
consists in a sequence of matrices where svery matrix is a
digitization of the picture at 1lower resolution than the
previous matrix in the sequence.

This pyramidal data structure was successfully exploited by
Levinel!3 to segment an outdoor scene.

These progranms, exploiting planning in the image
interpretation process, suggested to us that elaborations of
this technique could give us the spatial and meaning sensitivity
of the interpretation- guided region merging techniques of our
earlier Landsat work® without the associated high cost in CPU

time,

A segmentation obtained exploitihq the pyramidal approach
is in the spirit of the cycle of perception paradigm. The
segmentation at every level gives a context to, and drives, the
seqmentation at the 1level below. This observation, together
with the previously mentioned aspect of computational efficency
supporting the planning idea, suggested that, although current

image and scene domains in Artificial Intelligence are typically



much simpler ¢than those for a Landsat image, we could combine
the best features of the Pattern Recognition approach with these
scene analysis techniques to interpret a Landsat scene.

To test these ideas we used a Landsat image of a forested
area of Vancouver 1Island taken in August 12, 1973 covering a
ground area of 3.65 x 5.72 km. The same ground truth map and
the same nmodified maximum 1likelihood classifier described by
Starr and Mackworth were used. The objective of the
classification was to identify regions of old growth (class 1),
second growth (class 2), recent 1logging (class 3) and water
(class 4).

The original image is stored as a 64x64 array. This is
level 1 in the data structure. The spectral signature of a
pixel at level L+1 in the pyramid is constructed by successively
averaging the signatures of a square cell of four adjacent
pixzxels at level L. As the program works up the pyramid pixels
in the middle of regions are averaged with pixels belonging to
the same class, while pixels on region boundaries are mixed
together with pixels belonging to different classes. In
statistical teras, areas composed of pixels that have equal
probabilities of belonging to two or more classes expand as a
result of the averaging process, vhile clusters of pixels that
have a high probability of belonging to a single class shrink.

One could build the pyramid until eventually getting to the
highest 1level, which consists of one pixel with a value for the
feature vector equal to the average for the whole image. But as

one goes up in the pyramid the gross features (central areas) of
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the small regions start disappearing until the noise of the
boundaries eventually covers the whole image. An optimal level
at which to stop building the pyramid can be evaluated by having
an estimate of the average sizes of the classes of interest. 1In
this case the small lakes in the scene (average size 15 pixels)
suggest using 1level 4 (24=16) as the top level. Incidentally,
notice that this is the only operation which could not be
automated, In fact Ve need a priori information (an
interpretation!) to perform it.

A labelling procedure is started with the application of
the maximum likelihood classifier to the compressed picture at
the top level of the pyranid. A pixel that gives a 'high
enough® probability of belonging to one of the four classes of
interest is labelled as strong, otherwise it is labelled as
amhigoné.

The segmentation proceeds down the pyramid from this level
a level at a time until level 1 is reached. The stronqg pixels
at level L are the starting points of the region growing
process, They are simply expanded into groups of four pixels at
level L-1 retaining the same label while ambigous pixels sent to
level L-1 will be re-classified by the maximum 1likelihood
classifier. Since there is a compression factor of .four between
two successive levels of the pyramid, every ¢time a pixel is
labelled as strong at 1level L, the total number of pixels
classified is reduced by 8C(v-1)-1 over the point by point
classifier.

The first set of experiments with the pyramidal structure
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is performed by going up to some level and then successively
segmenting down to the highest resolution picture at level 1.

The simple averaging operation going up the pyramid proves
to be appropriate for homogeneous areas. But when the spatial
transition from one region to another is very abrupt, that is,
vhen neighbouring pixels give a high probability of membership
to different classes, then the averaging operation sometimes
gives a resulting pixel whose value would lie in an unambigous,
but incorrect, area of the feature space. For example pixels
resulting from the boundary between water (class 4) and forest
{class 1 or 2) were often classified as recent logging (class 3)
in some higher 1level of the pyramid. To overcome this
difficulty thé value of the dispersion vector of each four pixel
cluster is tested against a threshold vector before the
averaging operator is applied as one goes from one level up to
the next higher level. ¥When abrupt changes along the boundaries
are detected by the test, holes are created that are propagated
upwards in the pyramid. On the way down the classification of
these areas is delayed by the labelling algorithm until the
level at which the hole was created is again reached. Optimal
global wvalues for the dispersion thresholds are automatically
computed by the classifier.

The classifier so far described gives some improvement over
the point by point classifier both in classification accuracy
and in readability, that is, it gives a smaller final number of
regions. This improvement is obtained without any increase in

processing tiwe because the overhead used for building and
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maintaining the pyramid is balanced by the smaller number of
calls to the maximum likelihood classifier,

Further context-sensitivity is introduced in the
segmentation process by applying some region merging and
splitting techniques at any level in the pyramid. In
considering these techniques remember that a pixel at level L
actually represents a sguare region of side léngth 2¢L=1) of the
original picture. .

The immediate neighbourhood of each pixel in the image is
scanned, A pixel already labelled as strong that does not have
a sufficient number of neighbours belonging to its own class is
considered to be possibly misclassified and therefore is sent to
the next lower level to be classified again, Effectively, the
square region in the original image corresponding to that pixel
has been split into its four quadrants. ©On the ‘other hand, a
pixel whose probability of membership for any class is not high
enough for it to be classified as strong, but which has a large
number of strong neighbours all belonging to the same class, has
its classification influenced by theirs and is therefore merged
into that class.

At the lowest level (highest cesélution) of the pyramid a
similar region merging clean-up procedure can be applied to
clean up the final segmented image, 2liminating the "salt and
pepper” noise caused by the small and isolated regions. In the
case of the pyramidal classifier this effect, which is otherwise
almost completely eliminated as a side effect of the pyramidal

structure, is partly reintroduced by the application of the test



that delays the classification of many pixels until the lowest

level,

3. Results

The pyramidal classifier was implemented in ALGOL W on an
IBM 370/168 running under the Michigan Terminal Systenm.

There are 36 regions in the ground truth map. The
stability of the maximum likelihood classifier was verified with
different sets of training data. The size of the set varied
from 5 to 20% of the total number of pixels for each class. The
correctness of the point by point classification varies from 73
to 75%; as expected, it slightly improves with an increase in
the size of the training set. The experiments with the
pyramidal structure should be compared with a point by point
correctness of about 74% and 220 regions, achieved in 8 seconds
of CPU time,

At any level in the pyramid a pixel is labeslled as strong
if pmax > Ki(p1+p2+p3+p4) /100 vhere pmax=max(pl,p2,p3,pl4) is the
maximum value for the probability density function for the four
classes and Ki is a threshold at 1level i.. If a pixel is
labelled as strong at a level it is «classified at that level
otherwise it is sent down to the next lower level to be
classified.

Many experiments were performed. They were intended to
test the performance of the pyramid classifier in three crucial

dimensions, mainly: efficiency, as expressed by the computing
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time, accuracy, as expressed by the fraction of pixels correctly
classified, and readability, as expressel by the number of
regions remaining in the final output. For a complete
presentation and discussion of the following results see
Catanzaritilts,

Up to four 1levels were used. The first experiments were
performed using the straiqht pyrasidal structure, that is,
wvithout wusing the homogeneity test going up, and without doing
any region merging., As expected, the thresholds Ki play an
important role in the pyramidal classifier. The results showed
that the 1lower (less conservative) the values for the
thresholds, the worse the correctness of the classification; on

the other hand efficiency and readability improve (Table 1).

ABLE 1

No. levels. K4 K3 K2 K1 Correctness% No.regions CPU-time

b4 85 80 75 0 2 73 8.8
L 80 75 75 0 71 60 8.4
i 0O 0 0 O 64 8 7.5
3 - 90 85 0 75 140 9.5
3 - 80 75 0 T4 99 8.8
3 - 0 0 0 A 29 7.7
2 el ¢ T 76 70 7.5

Some test results obtained setting different values for
the level-thresholds and using different levels of the
pyramid

Notice that in the third of the cases shown 1in Table 1 the
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pixels are classified only once, at the fourth (top) level of
the pyramid. In other words only 64 pixels (1.8% of the total
number of pixels) are classified in this case. Table 1 shows
also some results obtained using three and two levels of the
pyramid. A drastic improvement in readability is obtained while
at the same time also improving slightly efficiency and
accuracy. As already pointed out, 3 and 2 levels are more
appropriate than 4 levels for the particular sczne under study.
It should be noted that ¢the execution time is relatively
independent of the number of levels used. The increased number
of pixels to be classified when using fewer levels is balanced
by the smaller overhead required for building and maintaining
the pyramid.

The next set of experiments were intended to test the
performance of the classifier including the test for homogeneity
in the creation of the pyramid, Table 2 show some results

obtained using four levels.

TABLE 2
K4 K3 K2 K1 Correctnessg No. regions CPU~-time
0 0 0 O 75 124 8.3
90 80 0 O S 50 8.2
90 90 0 O 76.5 60 8.5

Some test results obtained using four levels of the
pyramid and applying the test at different levels

Global values for the dispersion thresholds are automatically
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computed by the classifier. The test, although intentionally
rough so as to be inexpensive, is iery effective in stabilizing
the small regions in the image., Detail is not lost. The detail
is *saved® while going up and is 'recaptured' on the way down
the pyramid. This time even the straight classification in the
four main classes at the fourth level out performs the point by
point classifier (first case of Table 2), As expected, the test
improves the classification accuracy but, as a side effect,
reentroduces some salt-and-pepper noise in the final output. 1In
this case the clean-up final procedure becomes particularly
effective.

In the last set of experiments the performance of the local
region merging and splitting procedures was tested at all levels

in the pyramid (Table 3).

TABLE 3
Correctness% No. regions CPU time
o i 100 9.3
79 60 4.4
79,5 31 21

Some test results using the region merging
and splitting techniques inside the
pyramidal structure

These results are not strongly dependent on the number of levels
used. This is probably because some of the semantics used by
these procedures is already implied in the use of the pyramidal

structure. An improvement up to 6% in classification accuracy
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is obtained over the point by point classification. The final
number of regions left is close to the number of regions in the
ground truth map. The overall coaputing time is rarely more

than twice the time taken by the point by point classifier.

4. Conclusions

The efficiency and feasibility of a pyramidal structure
have been extensively tested on a typical Landsat image. In
evaluating the results presented a few main points have to be
taken in consideration.

Often the results show small improvements in execution
time, or in other words, in the total number of pixels
classified, The scene under study was 64x64 pixels in size,
while a full size picture has at least 2048x2048 pixels. The
differences of few seconds of CPUO time involved in the
experiments herein described may become several hours when one
or more full size pictures have to be classified. It takes
about 8 hours to classify an entire Landsat scene on the
IMAGE 10015,

An important part of the execution time of the whole
classification procedure in the ﬁyramiﬂ structure consists on
the time necessdry to build the Lyrauid (Erom two to three
seconds in the 64x64 pixel image), This time could be
significantly reduced by making use of special purpose parallel
hardware in the pyramid representation. Computer systems
connecting parallel hardwired arrays of processors to a serial

computer system have been developed over the past few vears.
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Some of these devices are already at the experimental and
marketing stagets, A software system which makes use of large
numbers of regular iterative parallel-serial operations, as is
the case of the pyramidal classifier, can take enormous
advantages of parallel-serial architecture and open totally new
perspectives to Landsat data classification.

With regard to the main problem raised in this work, the
correctness/readability/efficiency tradeoff, attempts to balance
these different factors can be seen as attempts to balance
different, often conflicting, points of view.

Prom the Artificial Intelligence point of view, as long as
there is enough memory to contain all the information needed by
the program, and as 1long as the execution time is kept to a
reasonable level (less than 24 hours,say), efficiency is not the
main concern. Rather the main concern is the performance of the
program in the given domain. The Artificial Intelligence
researcher seeks a procedure that can correctly and adequately
recognize a given scene and be general enough to be used on
other scenes.

From the Remote Semsing point of view, on the other hand,
computational efficiency is the -first requirement for a
classification program that will probably be used in a
production environment.

At other times, for example uhgn producing forest inventory
maps, readability becomes a prime factor, for a classified map
with a salt-and-pepper appearance even if correctly classified

is not too meaningful to the user.
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The pyramidal classifier here described can quickly
classify a scene giving a very clean and readable output with a
correctness coaparable to or markedly better than the
correctness of the point by point classifier, But also any of
the previously described points of view can be stressed by
simply changing some parameters in the structure. One might
either have a fast rough glance at the scene; one might
efficiently classify the image to meet production requiresents
better than a point by point classifier does, or one might use
the pyramid as a fast seqmentation component of a more

intelligent image understanding system.
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