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0. Introduction 

In an attempt to achieve program portability, the processor 

for the language BCPL (R] was designed to generate code for a vir­

tual machine. The code for this machine was termed OCODE
1

. The 

structure of this language, though well-suited as a target language 

for the translation of BCPL, was nevertheless thought to be more 

complex than necessary. Hence, the Intcode machine appeared, which 

is both easy to understand and for which an interpreter is readily 

written for most real machines available today. Since an OCODE to 

Intcode translator exists, it is clear that in theory any BCPL 

program (after suitable translations) may be made to execute on any 

machine where an Intcode interpreter exists. 

Several problems arise when one actually tries to transport 

programs via the above method. Within the environment of mini­

computers, one major problem is that of insufficient memory space. 

This lack arises not only because most minicomputers can address 

only 32K 16-bit words directly but also because many programs being 

transported to a minicomputer are originally written on a large 

machine (such as the IBM 370) where memory space is virtually 

infinite. 

Creating segment overlays to alleviate the space problem is 

possible to a certain extent but is not very easily done since 

BCPL lacks language primitives to define (and restrict) interactions 

1 The form of OCODE has been modified at UBC to remove some of 
its machine dependant aspects. The new (machine independent) 

:...: , fo.rm.:.:is~;calI.ed :MCODE. 

2 Like MCODE, Intcode has been modified at UBC to remove some 
of its machine dependent characteristics. The resulting lan­
guage is called Minicode. 
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between different overlays. However, one promising approach is 

to increase the density of code generated by the overall trans­

lation process of BCPL. The most readily apparent way to achieve 

this is to write an optimizing compiler for every machine; but 

this detracts from the goals of compiler and language portability. 

A "middle-ground" solution which maintains portability is to 

delete the OCODE to Intcode translation step and to interpret the 

OCODE directly. Since OCODE describes a more powerful machine 

than Intcode, the code generated for it is often much smaller than 

the equivalent Intcode. Described herein is the implementation 

of a complete OCODE interpreter on the HP21MX as well as a code 

generator used to transfer the OCODE from the BCPL compiler to the 

Hewlett-Packard minicomputer. Also described is the design for 

a machine independent linker/loader whidh has not been implemented. 

Currently, HP assembler source is used for the transfer of pro­

grams. 

0.1. The HP21MX Minicomputer Implementation 

Since the HP21MX minicomputer is a microprogrammed machine, 

it is natural that the OCODE machine's instruction repertoire be 

microprogrammed. However, examination of the machine's assembler 

language description
3 

reveals taht it was probably never designed 

to be used as an assembler per se. The language is both very 

unreadable in form and also has several opcodes which possess sem­

antic information concerning theBCPL source program which has 

4 
little to do with a general purpose assembler . Similarly, some 

3 No complete description of the OCODE machine is known to exist. 
An almost complete description is to be found in [W]. 



commands exist which are best viewed as simple macros; that is, 

they are definable as a fixed sequence of other OCODE commands. 

There also exist a class of instructions for which no convenient 

execution strategy exists. These tend to point out shortcomings 

3 

in OCODE if viewed as an actual machine; they also serve to 

strengthen out earlier belief about the original design intentions 

of OCODE. 

Although none of the above cniticisms prevent the current 

description of OCODE from defining a machine unambiguously, it is 

nonetheless highly desirable to have a symbolic language which 

defines the machine in a convenient manner. To this end we have 

devised the BCODE machine (which is described in section 1.) 

The assembler language for this machine follows the normal assem­

bler structure more closely. The mapping between the assembly 

language and its machine code is also defined (no such translation 

scheme exists for OCODE.) We also note that the machine code 

encoding for BCODE closely resemble those of Intcode [P]. 

We should note that the microprogrammability of the 21MX 

implies that the BCODE interpreter for it transforms the machine 

into a true BCODE machine (with the execption of a few system 

calls which utilize the standard instruction set to access the 

resources management facilities provide by RTE/II.) 

4 An example is the SAVE, STACK, and STORE operators of OCODE 
which have the same meaning within the OCODE environment but 
which carry different meanings as to the point of origin 
within the BCPL source. 
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BCODE is an abstract machine intended for efficient execu­
tion in both time and space -- of BCPL proqrams. As such, it 
has some features that are unusual when compare,l with "normal" 
machines like the IBM 370. 

(1) 'T'he w-ord size is unspecified; in theory, IJCODE 
proqrams work with any word size. This concept is 
the key one in ruakinq RCODH so portable. 

(2) 'T'he machinr~ is stack orient~d, allowinq arith1netic 
expressions and the like to trans l,1 te almost one­
fo r-o n e into machine operations. In addition, the 
ZPro-address instructions made possible by stack 
arcbitecturP. qre~tly r.educe pl·oqram size. 

{3) On a typical machin~, a compiler for BCPL usually 
has a hard time g~neratinq code for procedure 
calls, parameter transmission, and procedure ex­
its. This is not so in BCODE, where special in­
structions exist to perform these operations. 

Thes2 features, in combination with others, should make it clear 
why we think BCODE is an '1 ideal" machine for BCPL. 

Internal storage for thE BCODE machine consists of 
quence of words with addresses increasinq by one. The 
of bits in a word -- the wora size -- is deliberately 
fied; however, a word should he larqe enot1qh to hold any 

a se­
nnmher W 
unspeci­
addr:-ess. 

As a result of its BCPL orientation, the basic BCODE machine 
has at least three storage areas: 

(1) 'l'he global V'~ctor. This ar~a. (of unspecified size) 
is a contiquons sequence of cells common to all 
pcocedures in a BCPL program. The first 100 of 
these cells are reserved for the operatinq system: 
the remainder can be used for inter-procedure com­
munication in a BCPL proqram. 

(2) The pcogram vector. This area holds all the code 
and static data foe an executinq BCPL program. 

(3) The stack. This area holds all temporaries, 
dynamically-allocated variables, and inter­
procedure linkages. The stack qrows in the direc­
tion of increasinq addresses, so a push operation 
always increments the stack top's addr~ss by one. 

In addition, mor.f' sorhisticated syst8ms may have a fourth area of 



storage: 
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(4) The heap. This area contains all storaqe that can 
be allocated and released by calls to GETSPACR() 
and FREESPACF.(). Allocation and dR-allocation is 
complet~ly under programmer control and is in­
dependent of stack movement. Standara BCPL does 
not support the heap conceot. 

The locations of tlte ahove four st.oraqe areds ,1n~ 
fied. 

left unspeci-

The BconE machine has five internal registers, each a word 
in size. Unlike most machinAs, BCOD~'s stack architecture allows 
these registers to operate implici~ly; they are not, in qeneral, 
under direct programmer control. The five registers are: 

(1) G -- This contains the address of the fist cell in 
the global vector. The G r=qister usually remc1in.s 
unchanged throughout the execution of a BCPL pro­
gram. 

(2) C -- This register (the proqram counter) always 
contains the address of the next instruction to be 
executed. 

(3) S -- This register always points to the top cell 
on the stack. ~11 load instructions increases bv 
1 before placing a value in the resultinq address. 

{4) P -- This is the stack frame pointer. Every pro­
cedure allocates (on ent.ry) its own frame for 
storage of dynamic variables and releases the 
frame on exit; nested procedures stack frames on 
top of each other. A-t: anv instant, a proqram can 
access only those dynamic variables in the current 
{topmost.) stack frame. 

(5) T -- This is a temporary reqister used mainly in 
returning a function's result to the callinq pro­
cedun~. (Se,? the BCODE instructions FNRN, PUSHT, 
MOD, and MODST.) 

1-1-1 Stack OQeration. 

The BCODE machine is stack oriented, so all operations are 
done in postfix order: each machine function takes its arquments 
from the top of the stack and replaces them with the r~sult. 

One of the most important ani most neqlectP~ areas cf 
machine ~esiqn is the architectuce of procedure callinq se­
quences. All too often, this area is qiven only token att~ntion, 



with the result that procedure calls seemed to be added 
an after-thought. This consequently plac,Js a tiresom~ 
the proqrammer, who must hunt around for clever doclqes 
machine's restrictions. 

onlv 
burden 
aro11nd 

0 

as 
on 

a 

BCOnE's design t. riPs +:o rem~dy t.his. 13:Jcausc of its BCPL 
orientation, facilities for procedure hanrtlinq are inteqrat€d 
with the rest of the instruction sPt. As a result, the hardware 
performs the bookPepinq -- not the proqrammer. 

The facilities BCODE provides is best illustrated by exam-
ple. Suppose the curr~nt stack fram is 40 words lonq, and we 
want to execute the following RCPL call: 

SUB(P1, P2, Pl) 

Suppose the stack looks like the following: 

p s 

where Pis the stack frame pointer, an~ S is the stack top 
pointer. (We shall call this thA ''initial confiquration".) To 
process the call, we must first lo~d the parameters: 

SF.TS l.12 

LIP P1 
LIP P2 
LIP Pl 

;Reserve current stack frame 
;Load fiLst parameter 
;Load second paLameter 
;Load third parameter 

At this point, the stack looks like: 

p 

I P1 I P2 I P3 I 

s 

We now call the subroutine: 

11 sun 
CALL 1m 

;Get address of subroutine 
; P.nter subroutine 

We are now at the subroutine's entry point. 
like: 

The stack looks 

. . . I P' I C' I P1 I P2 I P3 I 

where P' 
SUB can 
str.uct ion 

p 

is the old frame point0r and C' is the 
now run. When it wishes to return, 

RTPN ; Ret11rn from subroutine 

s 

n~tur:n address. 
it issues the in-
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and ~he stack will be reset to its initial confiquration. If SUB 
is a function, it should l~ave the result on the top of the stack 
and issue 

FNRN ;Return from function 

This places thP function result into the T register and returns 
like R'I'RN. The callinq proqrilm must then issue 

PUSHT ;G•0!t function i:esult 

to retrieve the function's value. 

We will b~ using th8 followinq notation in the rest of this 
chapter. In general, the notation follows BCPL conventions. 

The letters G, C, P, s, and T reprAsent internal registers 
as described in section 1.1.2. Other symbols are as follows: 

adr 

roadr 

adr1 ! adr2 

Descrigtion 

An expression havinq an integer result. 
This is interpreted as an address. 

Contents of th~ location whose address is 
qi v ~ n by .i!.£1!:. 

Ad~ress of the location qiven by ~1f• 

Equivalent to! (adr1 + adr2). 

1-1· Instruction Format. 

BCODE instructions come in two sizes, sinqle word and double 
word. The two sizes hav~ the same qeneral format, and are gen­
erally interchanqable in that any given instruction may use ei­
ther size; however, the sinqle word size has a i:estricted ad­
dressing range, and can he nsed only when the operand is small. 
The two instruction sizes look like the following: 

Single word: Opppmmmdclddddddd 

Double word: 1popmmmdd<l~ddddd dddddddddddddddd 

The two formats differ onlv in the state of the most significant 
bit: a single word instruction has this bit set to zero, while a 
double word instruction has it set to one. Other fields in an 
instruction are defined as follows: 

PPP This 3-bit field defines thG operation 
(called OP). 

code 

mmm This 3-bit fiRld (called MOD) defines the rnodifi-
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cations to be perfocmed on the operand. (See Sec­
tion 1. 4 for the format of this field.) 

This field (called D) is the operand. 
size is W bits, the opecand field 
word instruction is W-7 bits, while 
nouble wor,i instruction is 2W-7 bits. 
is a siqned, two's complement number:-. 

If the word 
for a sinqle 
that for a 

Note that D 

Instruction Execution. 

The BCODF machine goes throuqh thr:-ee distinct phases durinq 
the execution of a single instcuction: 

( 1 ) .F i rs t , it f et ch es th e cur c e n t in st n1 ct ion h e i n q 
pointeJ to by the proqrarn counter (C) and deco~es 
it. The proqram counter is incremented past thE> 
instruction. 

(2) The machine then computes the effective operand 
(EFF) from the instruct.ion's MOD and D fields, as 
desccibed below. 

{3) Finally, the machine performs the indicated opera­
tion, usinq the the effective operand (EFF) and 
the st:lck. 

BCODE repeats this entire process for each instruction; it halts 
only upon encounterinq a FINISH. 

As indicated above, the calculation of the effective oparand 
(EFF) uses both the modifiers (MOD) and the raw oper:-and (D}. 
This calculation proceeds in two steps. Pirst, if 

MOD -= xOO then EF'F . - D (no modification) 

MOD = x01 then EFF := G+D (qlobdl r:-e la ti ve) 

MOD = x10 then EFF . - P+D (stack r:-elative) 

MOD = x11 then EPP . C + D (proqra.m relative) 

(Not(~ that, in the a hove, thP pro qr am count er (C) pcints past 
inst.ruction.) Then, if 

MOD = Oxx then EFF := EFF ( direct) 

MOD = 1xx then EFF : ::: !EFF (indirect) 

EFF is now ready for use by the instruction. 

This section rlefin~s the ECOD? machine's instruction 
Whi1e each instruction hds its own 1ssembler-like mn~monic, 

the 

S i~ t • 
th is 
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symbol is used for desciptive pn!."poses only; there is no "BCODE 
assembly language". 

For each RCOOR inst.!:"uction, th":' operation cooe (OP) identi-
fies the action to take upon the effective operand (EFF). EP.F is 
always comput":'d (see Section 1.1) before ;_my action occurrs. 

Push th9 effectiv8 operand onto the stack. 

Operation: 

Examples: 

S := S + 1 
!S := EFF' 

(Sis the stack top pointer) 

L 29 
LIP 7 
LG 55 

(Load constant 29) 
(Load cont~nts of P+7) 
(Load address of global .5 5) 

Pop the top element off thP stack and store it into the ef­
fective operand.. 

Operation: 

Examples: 

!EFF : == !S 
S := S - 1 

s 2476 (:itoLe into location 2476) 
SP 9 (St.ore into location P+9) 
SIG 123 (St.ore incHrPct thru qlobal 123) 

Set the stack top pointer to a 1iven numb2r of cells above 
P. This effectively sets th~ current st~ck frame size. 

Oper-ation: 

Examples: 

S := P + EFF 

SETS 27 (Set frame size to 27) 

Note that SETS O sets s equal to P. 

1-5 ■ 1 Unconditional jym~ (Q~ = ]) 

Jump unconditi~nally to the location given by the effective 
operand. 

Operation: 

Example: 

C : -= EFF 

JUMP 5276 (Jump to location 5276) 
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1•5•1. Jum!? if falsP. (OP =- !!) 

Jump if the stdck top contains f~1~~- Pop this element off 
after testinq. (Note that the constant f~.!..§g in BCODE is zero.) 

Ooeration: if !S = 0 then C := EFF 
s := S - 1 

Exr1mple: ,JF 9700 (Jump if false to location 9700) 

Jump if the stack top does not contain f1!§g. Pop the ele­
ment off after testinq. 

Operation: i f ! S :/ 0 th en C : = E FF 

EJCample: (,Jump if true to location 9700) 

1 . .5.§.. ProcP.dur~ call (OP= 6) 

Call the procedure whose address is on the top of the stack. 
EFF gives the curent stack frame size. 

Operation: temp . - p -+- EFF ( address of new frame) 
ternp!O . - p (save old frame pointer) .-
temp!1 := C {Sd. Ve ret11rn address) 
p .- temp (set new stack fc am e) 
C . - ! s (transfer to procedure) . -
s . -. - s - 1 (pop procedure address) 

Example: Cl\LL '• 0 (call procedure with frame size 40) 

Execute the operation determined by the effective operand 
(EFF). This instruction is actually a whole class of zero-
address instructions that operat~ unpon the stack. 

~he following tables list all execute opgrations currently 
ri.efined. Note thr\t no floating point operations are included. 
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I.!i.!21~ 1-1 !l!l!!£Y 2E~££!tQ£.§ 

~EI .1'.!.!!~l!QI!!~ Descri£tion 

1 ABS !S . 1.Q.'.? ! s 

2 NEG ! s . - !}.Qg ! s . -
] NOT ! s . - !!Q! ! s 

4 RV ! s . - ( ! s) 

5 TRUE s . - s + 1 • ! s . - - 1 , . -

6 FALSE s := s + 1 ; ! s . - 0 

I' 
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'.IaQ!.~ J-2 ~.b!!.~£Y Q£gfs!tQI.§ 

~ff .tl!l~.!!!Q!!i£ Dcsc r-iQt ion 

7 MllLT Binary op,:~rator: 
s . - s - 1 . S!O . - S!O * S ! 1 . - • 

8 DIV As above, for I 

g REI."! As a hove, foe £~!!! 

10 PLUS As above, for + 

1 1 MINUS As above, for -
12 EQ l\.s above, for = 

13 NE As above, for t 

14 LS As above, for < 

15 GR As above, for > 

1 6 GE As above, for z 
17 LE As a hove, for i 

1 8 LSHIFT As above, for >> 

19 RSHI F1' As above, for << 

20 LOGAND As above, for f, 

2 1 LOGOR As above, foe 

22 EQV As a bovP., for ~1Y 

23 NEQV As above, for g~gy 
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25 

26 

27 

28 

29 

FINISH 

RTFN 

FNRN 

GOTO 

SWITCIJ[I 

SWI'l'CHX 

Descri2tion 

Halt BCODE machine. 

RP.tur-n from subr:-outine: 
S . - P - 1 (i:~set stack toµ) 
c P! 1 (return r1ddr.ess) 
P . - P!O (oln str1ck frame) 

Ret:1rn from function: 
T • - ! S 
s : = r - 1 
C . - P!1 

(set return value) 
) 
) Like RTRN. 

P . - P!O ) 

Indi.rect iump (unconditional): 
C : = ! S 
S : = S - 1 

This instruction perfor:-ms a multi-way branch 
dependinq on the value on top of the stack. The 
instruction format is: 

SWITCH9 n D C(1) L(1) 

C ( n) L (n) 

where n is the number of cases to choose from, 
and C(1) L(1) ••• C(n) L(n) are the n 
corr es po r.rUn g value- label pairs. D is the de­
f a ul. t label. 

'1'he bt> 11 c h pcocce1s as follows: Jf value C(i) 
~q11al~ th valu..., on tbP st cl< top , conti:ol qoes 
.o r1Jllr .. , s L(i). r f non e of t he val n es match, 
control rroes to · <ldc:ess o. Note thc:1t, s ines a 
bin ry sear ch i s us d , th~ v al u es C (1) C(n) 
must h ~ in ascendinq or1 e r. 

This instruction performs a multi-way branch 11s­
inq an ind9xed iump. 'T'he format of the instruc­
tion is: 

SWITCHX min max D L{min) L (max) 

wh ~r:e min nd max are th e 
values, respectivql y, th~ 
tabl can handl e . L (min) 

minimum anrl maKimum 
th e followinq iump 

L(max) ace the 
max-min+1 label s defininq the iumo abl • D 

is the d efa ult lab 1. 

The instruction works as follows: 
contents of the st~ck top is X. 
X ~ ma~, control qoes to aJdr:-ess 
wise, con+rol qoes to address D. 

Suppose the 
Then, if min .$ 

L(X). Other:-



STIND 

3 1 PU SH'l' 

32 GETBYTE 

]3 PUTBY'Y' E 

34 SLCTAP 

35 SLC'fST 

36 MOD 

Miscellaneous Ogerations 

Descri.12tion 

Store irdirect: 
s := S - 2 
!(S!2) := S!1 

Push 'I' r~qister. 
S := S + 1 
! S : = T 

Fetch bvt~ frcm memor:-y. 
S := s - 1 
S! 0 :=- getbyt ,~ (S!O, S! 1) 

Store byte into memory. 
s := s - ] 
putbyte(S!1, S!2, S!J) 

Extract field (see SLCTST) • 
S := S - 1 
S ! 0 : =- (S ! 1) Q.f (S ! 0) 

Deposit field. 
s := s - ] 
(S ! 2) g_f ( S ! 1) : = S ! 3 

14 

Conceptu lly , the SLCT AP nd SLCTST op era .ions 
both oper<1.t.:. on (1) the address of a vector con­
taini nq t h field and (2 ) a fiel tl selector t hat 
define~ th . .str ·_nq of bits to be e xtr act.e a or 
1.eposit-,. d ; t h i~ stcinq m y not ct:oss word houn­
da ri s . Tt e s· l _ctor has three components : the 
t-~i z ,. (n umber of bit.-... in th field ), Ii ·~ shift 
(num0 Pr of riqht shifts n~e 2d to riqht iust ify 
the fi _l r1 in a worn.), and t he of f. et (nu rnu r of 
wnrd~ fr m the b qinninq o f th e vector to the 
word containing the f.ield ). These cornponen s 
ar . packed into a s inql word for the SLCTAP ana 
SLCT'iT ope r at ion s ; t h method of p· c kinq mav 
vary from machine to machine. 

BCPL supports constructs like "var: +:= 111 , where 
a binary operator is combined with an assiqn­
ment. Accordingly, BCODE supplies the MOD and 
MODS~ operations, so that, for the above con­
struct, one need only push the address of var, 
followed by the number 1; then the sequence 

MOD PLUS MODST 

will perform the required addition combined with 
assignment. In detail, MOD replaces the stacked 
addr~ss of var with its contents and saves the 
address in register T; PLUS leaves the sum on 
the stack top; and M0DST stores this sum in the 
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location saved in reqister T. 

In oth 0 r words, MOD p~rforms: 

1' · =-- •(s - 1) 
! (:-i-1) :-= !T 

and MonsT performs: 

! 'T' : = ! s 
S : -=a '.3 - 1 

store result of modified instruction. 
MOD.) 

1 /· () 

(See 
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2. The BCODE Code Generator 

As should be apparent from the description of the BCODE 

machine, there is a very close correspondence between OCODE and 

BCODE. In addition, examination of the code for the BCPL compiler 

reveals that it has been divided into three logical parts: the 

parser, the translator and the code generator. The parser utilizes 

recursive descent techniques to construct the parse tree. The 

translator walks the parse tree to generate the intermediate OCODE. 

This OCODE is translated into IBM 370 code by the code generator. 

To allow the code generator to operate on OCODE, it is made 

available in an encoded form in an OCODE buffer. To produce BCODE, 

the code generator for the 370 has been replaced by a BCODE code 

geneartor. The BCODE code generator exists in two parts: one 

which is machine independent (section BCGEN), and another which is 

machine dependent (section OBJHPGEN.) In general, the machine 

dependent part defines the loader format for a particular macgine. 

If the machine independent linker/loader (described in sections 3 

and 4) were used, the entire code generator would be machine 

independent (with the wordsize being the only parameter.) The code 

generator currently generates HP assembler source, however. The 

mapping between OCODE and BCODE is described in Appendix 1. The 

following appendix (appendix 2) gives instructions on how to use 

the BCODE code generator under MTS. 

2.1. The Code Compaction Problem 

One of our primary objectives in undertaking this project was 

to transport large programs such as the BCPL compiler onto a mini­

computer. The major problem in such endeavors is that one invar-



iably runs short of memory space. Therefore, in all aspects of 

the system, the generation of dense code has always been the over-

riding concern. (As an example, we note that the BCODE code 

generator emits a SWITCHB or a SWITCIIX instruction depending on 

which is more space efficient.) 

One technique available for code compaction is the massaging 

of generated code to change direct addresses into relative addresses. 

This requires the base machine to support relative addressing; 

the BCODE machine does. Relative addressing is available on various 

commercially available machines such as the PDP/11, the Nova series, 

and the HP3000, as well as the virtual Intcode machine. For the 

latter, a scheme is described in [P] whereby an assembly language 

source is compacted by scanning the code for instructions with 

label references. For each label reference, the relative displace­

ment between the instruction and the referenced label is computed. 

If this displacement value is small enough to fit into the address 

field of a single word instruction, the instruction is changed 

from a double word instruction using an absolute address to a 

single word instruction using a relative address. The freed word 

is marked appropriately as a hole, and a subsequent pass made 

over the code to delete all holes. 

Not only does the above method require the code to be scanned 

at least twice for each compaction pass, but in general, several 

compaction passes are required before all possible compaction is 

achieved. This is because it is very likely that a given compaction 

pass will make label references which were previously too far apart 

sufficiently close foL "relativising." 
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It seems intuitively clear that at least with the simple data 

structures presently used for storing of code, the iterative nature 

of the compaction process is unavoidable. If we consider a less 

general branching structure than that which is assumed above, a 

possibly better algorithm than the brute-force approach outlined 

above emerges. In particular, let us assume that all branches are 

nested, as shown below pictorially 
So 

S1 

c: 
where ans. is the label of an instruction referencing label d .. 

1 1 

(Note th~t a barnch or a jump in the following discussing refers 

to any memory reference instruction, that is, an instruction with 

a label operand.) Now we define a function displ(s,d) which has 

as its value the optimal displacement between an instruction 

labelled sand a location d which it references. Let us define 

an inactive code segment to be one whibh has no label reference 

instructions within it. Th0.n, if a code segment bound~ by the 



addresses [s,d] is inactive, the optimal displacement is clearly 

ld-sl address units. Otherwise, the optimal displacement is simply 

the sum of the optimal displacements of all branches nested one 

level down augmented by the size of any inactive regions between 

these branches. In the example above, we see that 
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We note that it is a simple matter to actually generate object 

code as the assembly source is being scanned by the displ function. 

Hence, assuming nested jumps, it is possible to achieve complete 

compaction of code in a single pass over the assembly code. 

In reality, we note that many jumps will not be nested. If 

we process such a structure by partitioning all the (potentially 

unnested) jumps into classes of nested jumps, and then applying 

the above compaction method to each nested class in succesion, 

complete compaction is still achievable. ',Since the compaction 

of a set of nested jumps is achievable in linear time, intuition 

suggests that fewer iterations will be required by this recursive 

compaction technique than would be with the brute-force method. 

In the above descriptionJnote that we tacitly assumed the 

ability to locate all jumps nested below a given jump. In practice, 

the time required to construct such a data structure may render it 

impractical. The implications of these and other aspects of the 

method have not fully been considered, it presently being only at 

the exploratory stage. Nonethless, it seems to be a promising 

approach to the difficult problem of efficient code compaction. 



3.1. Linker Format 

A BCODE object module may be viewed as a stream of <opcode,operand> 

pairs where opcode i s its e lf the pair <operator,listsize> . operator defines 

the type of operation to be performed; listsize determines the length of 

the operand list to which the operator is applied. The operand list length 

is in units of operand records (to be defined below). 

Since the same linker operator is typically applied to several conti­

guous operands, we can extend the definition of an operand to that of a list 

of operand records each of which has the same format. An operand record can 

extend over an arbitrary number of words; the only restriction is that each 

such record must be aligned on word boundaries. 

To maintain a high degree of portability, the input to the linker is 

defined in terms of words. Variations in word length do not alter the basic 

linker instructions; however, a word must possess the following properties: 

Simple BCODE instructions 1 must fit in one word. 

an opcode (i.e., <operator, 1 istsize> pair) should fit in one 

word, with operator occupying the left half of the word and 

listsize the right half. 

the number of characters (i.e., bytes) per word should be a 

positive integer. 

a BCPL data object should fit in one word. 

a string's length should be encodeable in a character. 

From the above, it should be evident that the only parameter required in 

defining the linker for a specific machine are the number of bytes per word 

1 A simple BCODE instruction is one which fits into one BCODE machine word. 
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and the number of bits per word. In the following description they are 

denoted by the constants BYTESPERWORD and BITSPERWORD. 

3.2. Linker Instructions 

The basic purpose of a linker is to resolve external addresses. To 

this end, some declaration commands are needed to define external references 

and entry points. Although the linker does not modify the relocation flags, 

it nonetheless needs to look at instructions defining the actual object data, 

along with their relocation flags. This information is passed on to the 

loader for its use. The instructions needed to effect the above functions 

are now described. 

The instructions are defined in their mnemonic form only. In an actual 

loader the data will be encoded as bit patterns, of course. The following 

mappings occur between the notational device and the actual bit patterns: 

n the value of listsize (see section 1). It is stored 

in the right half of the first word of the command. 

(The left half of the word contains the operator). 

ss. is a string of arbitrary length. It is represented 
----½-

as a vector of characters c0 c 1 c2 ... ck where~ 

represent the string length. Note that~ is initia­

lized to k. An example is the string "hello" which is 

encoded as 

5 'h' 'e' 'l' 'l' 'o' 

A string of length k occupies fk/BYTESPERWORDl words. 
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word# 

The string data is left justified (i.e. , with any unused 

bytes at the right hand side). 

L. defines a label. It occupies the next available word. 
-1 

cb. defines a code block. A code block has the following 
- 1 

0 

1 

2 

form: 

---- -

R 
F 

BITSPERWORD-1 

-
-

}r 
Ii 

elocation flags 
(RF) block 

BITSPERWORD words 

BITSPERWORD+l 

Each cb. therefore contains a maximum of BITSPERWORD words 
-1 

of object code. Since there are BITSPERWORD bits in each 

word, each word of object can be assigned a 2-bit reloca­

tion flag. The relocation flags have the following 

definitions: 

Fl ag value 

0 

1 

2 

3 

Meaning 

Word unused 

Absolute 

Normal relocatable 

External reference 

An external reference flag indicates that the corresponding 

code word contains an external *unresolved) address. The 

word is initialized to the index into the external symbol 

23 



references in the ordering defined by the external symbol 

declarations (see section 3.2.2.). 

addr defines a relative address in the object module being 

linked. It occupies the next available word. 

val defines a value which can be stored in a word. It is 

stored in the next available word. 

3.2.1. Entry declarations 

Entry declarations are of the form 

ENTRY n ss L 
n n 

where ss. is the string naming the entry and L. is the corresponding address. 
-1 -1 

The ENTRY command is encoded as 1. 

3.2.2. External declarations 

External declarations take the form 

EXTERNAL n ss L 
n n 

where ss. is the string naming the external value referenced and L. is a 
-1 -1 

pointer to a list of locations which use the external. 

The EXTERNAL declaration is encoded as 2. 

3.2.3. Code Segments 

Object code is specified by the use of the CODE command as follows: 

24 



CODE n ch 
n 

25 

Note that although relocatable flag information is not destroyed by the linker, 

most normal relocatable values are modified when linking together several 

segments. Also note that the relocation flag stating 'unused' is used to fill 

up any extra cells which are unused in a code block. The empty cells do not 

actually exist in an object module's image; their non-existence is detectable 

via the relocation flags. 

CODE is encoded as 3. 

3.2.4. Patch declarations 

As symbols in an ENTRY list are processed, various external symbols 

become resolvable. In general, the external references may have occurred very 

far back in the pair of object modules being linked. To avoid having to store 

the entire object module in main memory, the PATCH command is defined. Its 

function is to direct the loader to perform a patch to memory while loading. 

The format of the command is 

PATCH addr val 

where the relative address addr is modified by loading the value val into it. 

Note that all PATCH commands are executed by the loader. The value of 

the PATCH operands addr and val may change however as the relative displace­

ments of instructions change as new object modules are linked. 

The PATCH directive is encoded as 4. 



3.2.5. Miscellaneous control commands 

Various forms of linker/loader directives may potentially exist (e.g. 

for execution time debugging control). One necessary in a basic linker JS 

a directive to specify the end of an object module. It is specified by 

END. 

The encoded value of END 1s 5 . 



4. The BCODE Loader 

Although the BCODE linker (see section 3) and loader have not been 

implemented, their design is nevertheless presented because they form an 

integral part of any machine independent BCODE system. Since the loader 

is simply the final phase of object module processing after all linking, 

this section was to contain a description of how this phase was implemented. 

The loader not having been implemented, this section is empty. 

We note, however, how the loader fits into the overall link/load 

process by the following block diagram: 

object module1 object module 2 

I I 
-1 

link object module3 phase1 
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link phase2 

load module loader 

object module 
n 

link phase 
1 n-
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5. An Interpreter for the BCODE Machine. 

With the exception of a few features (most noteably external symbols), 

an interpreter for the BCODE machine has been implemented on the HP21MX system 

in microcodes. The implementation is straightforward. A number of BCPL 

programs have been executed on the HP machine via 

BCPL source 
(code generation) 

BCODE generator 

I BM 370/168 

I 

BCODE 
(execution) 

result 
BCODE interpreter 

HP21MX 

Our data show that the percentage gain in space reduction as compared 

to the same BCPL source being translated to OCODE and then to HP Assembler 

codes (the currently standard procedure to execute BCPL programs on the HP) 

ranges from 10% to 40% depending on the characteristics of the programs. 

,, 
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OCODE to BCODE Conversion Paqe A1 

!EE~.!!Q.i:! 1• OCQQ_§ j;,Q .!lf.Q]] Translation. 

This appendix defines the OCOOE to BCODE translation 
process. Each OCODE instruction is listed alonq with its ECODE 
equivalent. In scme cases, a sequence of OCOCE instructions 
translates into a sinqle RCODE equivalent; this sequence is 
list€d together. 

The notatjon to he usEn is defined helow: 

n 

Ln 

g 

ss 

sz sh of 

~ome (non-nEgative) integer. 

I.ab e 1 a s u sE o. i n 

LAB L42 . . . JUMP L42 

the notation 1(1), L(2), ••• , L(k) indicates that 
k labels are nc,q11irEd. 

Global cell number (for example, q=37 in "LG 17"). 
The notation q(1), q(2), ••• , q(k) indicates that. 

k globals are required. 

A string qiven in one of two forms. Form 1 is a 
numter n (length cf string) followed by n 
integers. Each integer is the decimal 
representation of a single character in the 
string. The second form also beqins with a number 

n, but the lAnqth is fclloweo. by n characters 
enclosed in double quotes. For example, the 
strinq "ABC" can ce represented as 

3 65 fi6 67 (in ASCII) 

or as 

3 "ABC" 

The second form is clearly preferable as it is 
machine ind~pendent. 

Three integers (size, shift, cffset) 
define a s~lector for SLCTAP and SLCTST. 

used to 



OCODE to BCODE Convqrsion 

ABS 

COM 

OA'IALAB Ln 

DEEUG 

DIV 

EQ 

EOV 

END 

ENDBLCCK 
n ss ( 1) • • • ss ( n) 

ENDPFOC ss 

EN'I'L.I\BS 

ENTRY ••• 

FINISH 

ABS 

DIV 

EQ 

F.QV 

{see right) 

(see riqht.) 

FINISH 

P aqe A2 

Hnarv operator: abs 

BCPL statement delimiter 

label definition (for data) 

??? (Not implemented) 

Binary operat er: div 

Binary operator: eq 

einat."y operator: eqv 

End of prog ra tl 

Marks end of blocks whose 
names are given by ss(1) ••• 
ss (n) 

Marks enn of rcocedure ss 

Define entry points. 
format is: 

ENTLABS n ss(1) 1(1) 
ss(2) L(2) 

: 
ss(n) L(n) 

OCODE 

where 'n' is the numher of 
symbols and •ss (i) L (i) • qive 
the name (in string fcrm) and 
the value (a label) of symbol 
i. 1!.91~: If a lahel is •10 1 , 

its corcespondinq syrnbcl is 
external. 

Indicate the start cf a 
procedure. OCODE format is: 

E N'l' RY n L c ( 1 ) • • • c ( n) 

where 'L' is the label 
defining the start of the 
procedure, and 1 c (1) ••• c (n)' 
are the n characters of the 
procedure's name. 

Halt ECODE machine 



OCCCF to RCODE Conversion 

FIX 

FNAP n 

FNRN 

GB Y'I E 

G F. 

GLOBAL 

GOTO 

GR 

INCLUDE 

ITEMC 'ch• 

ITEMF ss 

ITEML Ln 

IT EM N n 

JF Ln 

,JT Ln 

JUMP I.n 

CALL n-1 
PUSH'l' 

FNRN 

GF.TBY'T'E 

GE 

GOTO 

GR 

JF Ln 

JT Ln 

,JU MP Ln 

P aqe A3 

??? (Not iirplemented) 

Function call: PUSHT pushes 
the function result back cnto 
the stack. Note that FNAP 
translates into two BCODE 
instructions. 

Retur-n fr-om function 

Einac v operator: % 

Binary opera toe: >= 

Define q loba ls. OCODE format 
is: 

GLOJ3AL n q ( 1) L ( 1 ) 
q {2) L ( 2) 

q ( n) L ( n) 

This OCODE instruction 
specifies that each qlcbal 
q (i) is to be initializEd to 
label L (i). 

Indirect iurop (destination 
address is en top of stack) 

Binary operator: > 

??? (Not irrpleroented) 

Define a cell initialized to 
character •ch' 

??? (Not ireplemented) 

DefinE a cell initialized to 
the address of label Ln 

Define a cell initializEd to 
integer- n 

Jump if false (top of stack 
tested and popped off) 

Jump if not false (see JF) 

Unconditional 
u n dist n rh ed) 

;u rop (stack 



OCCDE to BCODE Conv~rsion 

Lll.A Ln 

LC • Ch' 

LE 

LF ss 

LG q 

LL Ln 

LLG g 

LLP n 

LLX ss 

LN n 

LP n 

LOGAND 

LOGOR 

LS 

LSHIF'I' 

LSTR ss 

LX ss 

MINUS 

MOD op 

MOCSLCT 

L n 

LP. 

I.JG q 

LI a 

LG q 

tP n 

L a. 

L n 

LIP n 

LOGAND 

LOGOR 

LS 

LS HI F'r 

LI a 

MINrJS 

MOD op MODST 

Defini? 
DATALAB) 

labEl 

load character 

(see 

n = hinary value of 'ch' 

Rinary operator: <= 

??? (Not irrplemented) 

also 

Load contents of qlobal cell 

Load contents of labelled cell 
a= address of label 

Load address of qlcbal 

Load address of eel 1 n on 
the current stack fram~ 

Load address of external c~ll 

Load number 

Load cell n on current stack 
frame 

Binary operator: & 

Binary operator:: 

Binary operator: < 

Binar.y operator: << 

Load address of strinq 
a = address ot ss 

Load contents of external cell 
where strinq 11 ss 11 specifies 
the name of the external 
symbol and "a" is that 
symbol's address. 

Binary operator: -

B in a c y o per at o r ' o p ' is 
modified so that it will Etore 
the result back into the first 
operand. Note that three 
ECODE instructions are needed. 

Not used hy BCPL compiler 



OCODE to □CODE CcnvPrsion 

OCQQl; ~!:~.! 

NE 

NEG 

NECV 

NFEDS ss 

NOT 

PA RAM ET ER 

BYTEADDR 
Pl3Y'I E 

PLUS 

RES Ln 

REM 

RSHIFT 

RSTACK n 

NE 

NF.QV 

NO'T' 

PUTl3YTE 

PLUS 

JUMP Ln 

REM 

f!SHIF'J' 

RTAP n CALL n-1 

RTRN RTRN 

RV qv 

SAVP. n SETS n-1 

SECTICN ss 

SG g SG g 

SL Ln s a 

SLCT AP sz sh of 

SLCTS'I sz sh of 

SP n 

L f SLC'l'AP 

L f SLCTST 

SP n 

Binary operator: ,= 

Unary operc1tor: -

llnary operator: 11eqv 

??? 

Unary op~rator: , 

??? (Not irr:plemented) 

PaqeA"1 

Store byte. NotP that PUTEYTE 
is a t e r n a r v ope r a to r : t 11 e 
sequence BY'IEADDR fEYTE 
translates into a sinqle ECODE 
instruction. 

Binary operator: + 

Unconditional 1um~ to end of 
.Yi!12! block 

Ainarv operator: rem 

Binary operator: >> 

Not used in BCODE machine 

Routine call 

Return from rcutine 

Unary operator: rv 

Set stack pointer 

Start of new ~r.oqram section 

Store into global 

Store into labelled locaticn 
a= address of label 

Extract field (f = {of,.sz,shl 
packed). Note that two ECODE 
instructions are required. 

Deposit field (like SLCTAP) 

Pop the top element off the 
stack and storP it at index n 



OCOOE to OCODE Conversion 

STACK n 

STAR'IBLOCK 

STIND 

STRING ss 

STORE 

SWI'l'CHCN 

sx ss 

SETS n-1 

ST IND 

(see right) 

s a 

PaqeAfi 

in the c11rrent stack frame. 

Set stack pointer to location 
n-1 in currant stack frame 

Marks start of block 

Store indirect (destination 
address is on top of stack) 

??? (Define strinq?) 

Instructs code qenerator to 
flush all temporary values to 
core 

Multi-way 
format is: 

tranch. 

SWITCHON n D C(1) L(1) 
C(2) L(2) 

C(n) L(n) 

OCODE 

where 'n' is the number of 
cases, 'D' is the default 
label, and 'C{i) L(i)' is the 
value-label pair for case i. 
The BCODE machine SUFfCrts 
switchinq via a binary search 
(SWITCH □) or an indexed iump 
( SWITCH X) • 

Store into external cell 
a= address of ext€rnal symbol 

ss 

No floating point operators (of format #xxx) are implemented. 



Appendix 2: Using the BCODE Code Generator Under MTS 

The BCPL compiler generating BCODE is invoked via the MTS 

command 

$RUN YYC4:BCPL [SCARDS=sourcefile] [SPRINT=printfile] 
[0=ocodefile] l=objfile PAR=par 

where sourcefile is the name of the BCPL source file 

printfile is the name of the file to receive the program 
listing 

ocodefile is the name of the file to which the OCODE is to 
be punched (if desired) 

objfile is the name of the file to which the HP Assembler 
source for the BCODE is to be emitted 

par is the standard parameters string supported by the 
BCPL-V compiler (see [R]). At a minimum PAR=A/L must 
be specified. 

The number of BCODE instructions generated is printed on 

SPRINT. The BCODE file (objfile) may be transferred to paper 

tape via the system program *PUNCHJOB. 




