The BCODE System

S Ma v R. A-Ttwdal T/V__Q_Zf

Dapt: o‘F Cons Jrr Science i
r pib Se
uw;ww;ﬁ" o][Bv.-}'(}l\ Columlm'q

Vaweour, 8.C. VLT W5
CANVADA -

Table of Contents

0. Introduction
0.1. The HP21MX Minicomputer Implementation S

1. The BCODE Machine
17

2. The BCODE Code Generator
2.1. The Code Compaction Problem 7

3. The BCODE Linker z

4. The BCODE Loader 27

5. An Interpreter for the BCODE Machine Lb

Appendicies

1. OCODE to BCODE Translation Af
AT

2. Using the BCODE Code Generator Under MTS

Project Documentation
Computer Science
submitted by R Agarwal and S Ma

T™M-24)
DEPT. OF COMPUTER SCIENCE

UBC APRIL , 14T78.

0. Introduction

In an attempt to achieve program portability, the processor
for the language BCPL [R] was designed to generate code for a vir-
tual machine. The code for this machine was termed OCODEl. The
structure of this language, though well-suited as a target language
for the translation of BCPL, was nevertheless thought to be more
complex than necessary. Hence, the Intcode machine appeared, which
is both easy to understand and for which an interpreter is readily
written for most real machines available today. Since an OCODE to
Intcode translator exists, it is clear that in theory any BCPL
program (after suitable translations) may be made to execute on any
machine where an Intcode interpreter exists.

Several problems arise when one actually tries to transport
programs via the above method. Within the environment of mini-
computers, one major problem is that of insufficient memory space.
This lack arises not only because most minicomputers can address
only 32K 16-bit words directly but also because many programs being
transported to a minicomputer are originally written on a large
machine (such as the IBM 370) where memory space is virtually
infinite.

Creating segment overlays to alleviate the space problem is
possible to a certain extent but is not very easily done since

BCPL lacks language primitives to define (and restrict) interactions

1 The form of OCODE has been modified at UBC to remove some of

its machine dependant aspects. The new (machine independent)
< form:=is:cailed "MCODE.

Like MCODE, Intcode has been modified at UBC to remove some
of its machine dependent characteristics. The resulting lan-
guage is called Minicode.

between different overlays. However, one promising approach is
to increase the density of code generated by the overall trans-
lation process of BCPL. The most readily apparent way to achieve
this is to write an optimizing compiler for every machine; but
this detracts from the goals of compiler and language portability.
A "middle-ground" solution which maintains portability is to
delete the OCODE to Intcode translation step and to interpret the
OCODE directly. Since OCODE describes a more powerful machine
than Intcode, the code generated for it is often much smaller than
the equivalent Intcode. Described herein is the implementation
of a complete OCODE interpreter on the HP21MX as well as a code
generator used to transfer the OCODE from the BCPL compiler to the
Hewlett-Packard minicomputer. Also described is the design for
a machine independent linker/loader whic¢h has not been implemented.

Currently, HP assembler source is used for the transfer of pro-

grams.

0.1. The HP21MX Minicomputer Implementation

Since the HP21MX minicomputér is a microprogrammed machine,
it is natural that the OCODE machine's instruction repertoire be
microprogrammed. However, examination of the machine's assembler
language description3 reveals taht it was probably never designed
to be used as an assembler per se. The language is both very
unreadable in form and also has several opcodes which possess sem-
antic information concerning theBCPL source program which has

little to do with a general purpose assembler4. Similarly, some

No complete description of the OCODE machine is known to exist.
An almost complete description is to be found in [W].

commands exist which are best viewed as simple macros; that is,
tﬁey are definable as a fixed sequence of other OCODE commands.
There also exist a class of instructions for which no convenient
execution strategy exists. These tend to point out shortcomings
in OCODE if viewed as an actual machine; they also serve to
strengthen out earlier belief about the original design intentions
of OCODE.

Although none of the above criticisms prevent the current
description of OCODE from defining a machine unambiguously, it is
nonetheless highly desirable to have a symbolic language which
defines the machine in a convenient manner. To this end we have
devised the BCODE machine (which is described in section 1.)

The assembler language for this machine follows the normal assem-
bler structure more closely. The mapping between the assembly
language and its machine code is also defined (no such translation
scheme exists for OCODE.) We also note that the machine code
encoding for BCODE closely resemble those of Intcode [P].

We should note that the microprogrammability of the 21MX
implies that tha BCODE interpreter for it transforms the machine
into a true BCODE machine (with the execption of a few system
calls which utilize the standard instruction set to access the

resources management facilities provide by RTE/II.)

& An example is the SAVE, STACK, and STORE operators of OCODE
which have the same meaning within the OCODE environment but

'+ which carry different meanings as to the point of origin
within the BCPL source.

1. The RCODE Machine.

BCODE is an ahstract machine intended for efficient execu-
tion -- in both time and space -- of BCPL programs, As such, it
has some features that are unusual when compared with "“normal"
machines like the IBM 370.

(1) The word size is unspecified; in theory, BCODE
proqrams work with any word size,. This concept 1is
the key one in making BCODE so portable,

(2) The machine is stack oriented, allowing arithmetic
expressions and the like to translate almost one-
for-one into machine operations. In addition, the
zero-address instructions made possible by stack
architecture greatly reduce program size.

{3) On a typical machine, a compiler for BCPL usually
has a hard time generating code for procedure
calls, parameter transmission, and procedure ex-
its. This 1is not so in BCODE, where special in-
structions cxist to perform these operations.

These features, in combination with others, should make it clear
why we think BCODE is an "id=al" machine for BCPL.

Internal storage for the BCODE machine coansists of a se-
guence of words with addresses increasing by one. The numher ¥
of bits in a word -- the word size -- 1is deliberately unspeci-
fied; however, a word should be large enough to hold any address.

As a result of its BCPL orientation, the basic BCODE machine
has at least three storage areas:

(1 The global vector. This area (of unspecified size)
is a contiquous sequence of cells conmon to all
procedures in a BCPL program. Tha first 100 of
these cells are reserved for the operating systam;
the remainder can be used for inter-procedure com-
munication in a BCPL proqgram,

(2) The program vector. This area holds all the code
and static data for an executing BCPL program.

{3) The stack. This area holds all t=mporaries,
dynamically-allocated variables, and inter-

procedure linkages. The stack grows in the direc-
tion of increasing addresses, so a push operation
always increments the stack top's address by one.

In addition, more sophisticated systems may have a fourth area of

storage:

() The heap. This area contains all storage that can
be allocated and ralesased by calls to GETSPACF ()
and FREESPACE(). Allocation and de-allocation is
completely under programmer control and is in-
dependent of stack movement. Standard BCPL does
not support the heap concant,

The locations of the above four storage areas ars left unspeci-
fied.

The BCODE machine has five internal registers, each a word
in size. Unlike most machines, BCODE's stack architecture allows
these registers to operate implicitly; they are not, in general,
under direct programmer control. The five registers are:

(1 G -~ This contains thas address of the fist cell in
the global vector. The G ragister usually remains
unchanged throughout the execution of a BCPL pro-

gram.

(2) C -- This register (the program counter) always
contains the address of the next instruction to be
cxecuted.

(3) S -- This register always points to ths top cell

on the stack. All load instructions increase S by
1 before placing a value in the resulting address.

() P -- This is the stack frame pointer, Every pro-
cedure allocates (on entry) its own frame for
storage of dynamic variables and releases the
frame on exit; nested procedures stack frames on
top of =2ach other. At any instant, a program can
access only those dynamic variables in the current
{topmost) stack franme.

(5) T -- This is a temporary register used mainly in
returning a function's result to the calling pro-
cedure, {Se2 the BCODE instructions FNRN, PUSHT,
MOD, and MODST.)

1.1.3 Stack Operation.

The BCODE machine is stack oriented, so all operations are
done 1in postfix order: each machine function takes its arquments
from the top of the stack and replaces them with the result.

One of the most imvortant and most neglected ar=2as c¢f
machine design is the architecturz of procedure calling se-
quences. All too often, this area is given only token att=antion,

with the result that procedure calls seemed to be added only as
an afterthought. This consequently placoes a tiresome burden on
tha programmer, who must hunt around for clever dodges around a
machine's restrictions.

BCODE!'s design tries +o rem=2dy this. Because of its BCPL
orientation, facilities for procedure handling are integrated
with the rest of the instruction set. As a result, tha hardware
performs the bookeaeping -- not the progranmmer,

The facilities BCODE provides is best illustrated by exan-
ple. Ssuppose the currant stack fram is 40 words long, and we
Wwant to execute the following BCPL call:

SUB(P1, P2, P3)

Suppose the stack looks like the following:

—— . —— —— i —— i —— ———— i —— — - —— e ———— — — —— ——— - —— e ———— . —

where P is the stack frame pointer, and S 1s the stack top
pointer. (We shall call this the "initial confiquration®.) To
process the call, we must first load the parameters:

SETS W42 Reserve current stack frame
LIP P1 nad first parametar

'
3+ K
LIP P2 ;Load second parameter
LIP P3 ;Load third parameter

At this pcint, the stack looks like:

o - - - - e - e = e - a L - = = - - e = —— - - - — -

We now call the subroutine:

LT sSUB ;Get address of subroutine
CALL 40 ; Bnter subroutin=a
We are now at the subroutine's entry point. The stack looks
like:
| | | ce e { P* | C*' | P1T | P2 | P3 | 1
P S

where P' is the old frame pointer and C' is the return address.
SUB can now run. When it wishes to return, it issues the in-

struction

RTPN ;Retnrn from subroutine

7

and the stack will be reset to its initial configuration. If SUB
is a function, it should l=zave the result on the top of the stack
and issue

FNRN 1 Return from function

This places the function result into the T register and returns
like RTRN. The calling program must ther issue

PUSHT ;Gat function result

to retrieve the function's value,

1.2. Notation.

We will he using the following notation in the rest of this
chapter. 1In general, the notation follows BCPL conventions.

The letters G, C, P, S, and T represent internal TrTegisters
as described in section 1.1.2. Other symbols are as follows:

Symbol Description

adr An expression having an integer result.
This 1s interpreted as an address.,

tadr Contents of the location whose address is
given by adr.

Mmadr Address of the location given by adr.

adr1 ' adr?2 Equivalent to ! (adrl1 + adr2).

1.3. Instruction Format.

BCODE instructions come in two sizes, single word and double
word. The two sizes have the same general format, and are gen-
erally interchanqgable in that any given instruction may use ei-
ther size; however, the single word size has a restricted ad-
dressing range, and can be used only when the operand is small.
The two instruction sizes look like the following:

Single word: Opppmmmnddddddddd

Double word: Tpppmmmddddddddd dddddddddddddddd
The two formats differ onlv in the state of the most significant
bit: a single word instruction has this bit set to zero, while a
double word instruction has it set to one, Other fields in an

instruction are defined as follows:

pPpPpP This 3-bit field defines the operation code
(called 0P).

mmm This 3-bit field (called MOD) defines the mnmodifi-

cations to be performed on the operand. (See Sec-
tion 1.4 for the format of this field.)

d..d This field (called D) is the operand. If the word
size 1s W bits, the operand field for a single
word instruction is W-7 bits, while that for a
doutle word instruction is 2W-7 bits. Note that D
is a signed, two's couplement number.

1.4, Instruction Execution,

=3 Pl S S il

The BCODF machine goes through three distinct phases during
the execution of a single instruction:

n First, it fetches the «current instruction heing
pointed to by the program counter (C) and decodes
it., The program counter is incremented past the
instruction.

(2) The machine then computes the effective operand
(EFF) from the instruction's MOD and D fields, as
described below.

(3) Finally, the machine performs the indicated opera-
tior, using *the the effective operand (EFF) and
the stack.

BCODE repeats this entire process for each instruction; it halts
only upon encountering a FINISH.

As indicated above, the calculation of the effective oparand
(EFF) us2s both +the wmodifiers (MOD) and the raw operand (D).
This calculation proceeds in two steps. First, if

MOD = x00 then EFF := D (no modification)

0]

MOD = x01 then EFF G+D (global relative)

se
H
e)

I

MOD x10 then EFF tD (stack relative)

C+D (program relative)

tl

MOD x 11 then EFF :

(Note that, in the ahove, the program countar (C) pcints past the
instruction.) Then, if

EFF {direct)

MOD = Oxx then EFF

"

MOD 1xx then EFF := !EFF (indirect)

EFF is now ready for use by the instruction,

1.5. Instruction S=t.

This section defines the BCODF machina's 1instruction sat,
While each instruction has its own assembler-like mnemonic, this

symbhol is used for desciptive purposes only; there is no "
assembly language",

BCOLE

For each RCODFE instruction, the operation code (0P) identi-

fies the action to take upon the effective oparand (EFF). E
always caomputad (see Section 1.3) before any action occurrs.

1.5.0 Load (0B = 0)
Push the effective operand onto the stack.
Operation: S 1= S + 1 (S is the stack top pointer)
tS ;= TPF
Examples: L 29 {Load constant 29)

LIP 7 (Load cont=ants of P+7)
LG 55 (Load address of global 5595)

1.5.1 Store (02 = 1)

Pop the top element off the stack and store it into the
fective operand,

Operation: I1BRPF = 15
§ 2= 5§ =1

Examples: S 2476 (Store into location 2476)
SP 9 (Store into location P+9)

SIG 123 (Store indirect thru global 123)

1.5.2 sSet stack pointer (0P = 2)

Set the stack top pointer to a given number of cells
P. This effectively sets the current stack frame size.
Operation: S := P + EFF
Examples: SETS 27 (Set frame size to 27)

Note that SETS 0 sets S equal to P.

1.5.3 Unconditional jump (0P = 3)

Jump unconditionally to the location given by the effe
operand.

Operation: C := EFF

Example: JUMP 5276 (Jump to location 5276)

FF is

ef-

above

ctive

10

(L = 4)

1.5.4 Jump if false

Jump if the stack top contains false. Pop this element off
after testing. (Note that the constant false in BCODE is zero.)

Operation: if 1S = 0 +then C := EFF

S 2= § - 1
Exanple: JF 9700 (Jump if false to location 9700)
1.5.5. Jump if trus (OB = 5)

Jump if the stack top does not contain false. Pop the ele-
ment off after testing.

Operation: if 'S # 0 then C := EFF

Example: JT 9700 (Jump if true to location 3700)

1.5.6. Procedure call (0P = 6)

Call the procedurs whose address is on the top of the stack.
EFF gives the curent stack frame size,

Operaticn: temp := P + EFF (address of new frame)
temp!0 := P (save old frame pointer)
temp!1 := C {save return address)
P := temp (set new stack frame)
C = '8 (transfer to procedure)
§ 2= 5 = 1 (pop procedure address)
Example: CALL 40 (call procedure with frame size 40)

1.5.7. Execute (0P = 17)

Execute the operation determined by the effective operand
(EFF) ., This instruction 1is actually a whole class of zero-
address instructions that operate unpon the stack.

The following tables list all execute operations currently
defined. Note that no floating point operations are included.

Mnemonic Description
ABS 'S := abs !S
NEG 1S 2= neqg !S
NOT !5 3= not 1S
RV 'S 1= ! (!S)
TRUE S:= S+ 1; IS := =1

FALSE § g= 8§ + 1; 158 3= 0

=
I
{r

~J

10
11
12
13
14
15
16
17
18
19
20
21
22

23

Mnemonic

DIV
REM
PLUS
MINUS
EQ

NE

LE
LSHIET
RSHIFT
LOGAND
LOGOR
EQV

NEQV

As

As

As

As

As

As

As

As

As

As

As

S :=
above,
above,
above,
above,
above,
above,
above,
above,
abhove,
above,
above,
above,
above,
above,
above,

above,

focr

for

for

for

for

for

for

for

for

v

in

* 511

26

27

28

29

Mnemonic

FINISH

RTEN

FNRN

GOTO

SWITCHR

SWITCHYX

13

Halt BCODE machine.

Return from subroutine:

S &= P - 1 (reset stack top)
C = P11 (return address)
P = PO (o0ld stack frame)

Retuarn from funpction:
'S (set return value)
1)

) Like RTRN.

)

H

!
-
1

H

SRR

as f2 e
"

o T s B

.O-nl

Indire

2ct jump (unconditional):
C 3
S

$S
S = 1

»
-
-
-

"

This instruction performs a multi-way branch
depending on the value on top of the stack. The
instruction fcrmat is:

SWITCHB n D C(1) L(1)
C(n) L (n)

wher2 n 1is the number of cases to choose from,
and cC(1) L(1) eee C(n) L{n) are the n
corresponrnding value-label pairs. D is the de-
fault label.

The branch proceeds as follows: TIf value C(1i)
aquals th2 value on the stack top, control qoes
to address L(i). If none of the values match,
control qoes to address D. Note that, since a
hinary search is used, the values C(1) ... C(n)
must bha in ascending order.

This instruction performs a multi-way branch us-
ing an ind=2xed jump. The format of the instruc-
tion is:

SWITCHX min max D L(min) ... L{(max)

where min and max are the minimum and maxioum
values, resp=actively, that the following Hjump
table can handles. L {min) «e. L{max) are the
max-min+1 lahels defining the <Hump table. D
is the dafault label,

The instruction works as follows: Suppose the
contents of the stack top is X. Then, if min <
X < max, control goas to address L (X). Other-

wise, control goes to address D.

Itz
Irm
I

-
o)

31

32

13

34

35

36

STIND

PUSHT

GETBYTE

PUTBYTE

SLCTAP

SLCTST

MOD

14

Store indirect:
S 2= § = 2
1(S12) = ST

Push T register

S 1= § + 1
15 = T
Fetch byt2 frcm menmnory.
S == § - 1
S10 := getbhyte(St0, S!1)

Store byte into memory.
S = 8§ - 3
putbhyte (5?1, 512, S13)

Extract fi=1ld (sez SLCTST).
S g= 8§ - 1
S10 := (S'1) of (5!0)

Deposit field.
S 1= § — |
(S'2) of (S!1) := S!'3

Conceptually, the SLCTAP and SLCTST operations
hoth operate on (1) the address of a vector con-
taining the field and (2) a field selector that
defines the string of bits to be extracted or
1epositad; this string may not cross word boun-
daries. The selactor has thres components: the
size (number of bits in the field), the shift
(number of right shifts needa2d to right Fustify
the field in a word), and the offset (numnber of
words from the beginning of the vector to the
word containing the field). These components
are packed into a sinqgle word for the SLCTAP and
SLCTST operations; the method of packing may
vary from machine to machine,

BCPL supports constructs like "var +:= 1", where
a binary operator is combined with an assign-
ment. Accordingly, BCODE supplies the MOD and
MODST operations, so that, for the above con-
struct, one need only push the address of var,
followed by the number 1; then the segquence

MOD PLUS MODST

will perform the required addition combined with
assignment. In detail, MOD replaces the stacked
address of var with its contents and saves the
address in register T; PLUS leaves the sum on
the stack top; and MNDST stores this sum in the

location saved in reqgister T.
In other words, MOD performs:

T 3= 1(S - 1)
] -

=1) 4= T

L e

(

and MODST performs:

37 MODST Store result of modified instruction. (See
MOD:,)

2. The BCODE Code Generator

As should be apparent from the description of the BCODE
machine, there is a very close correspondence between OCODE and
BCODE. 1In addition, examination of the code for the BCPL compiler
reveals that it has been divided into three logical parts: the
parser, the translator and the code generator. The parser utiliZes
recursive descent techniques to construct the parse tree. The
translator walks the parse tree to generate the intermediate OCODE.
This OCODE is translated into IBM 370 code by the code generator.

To allow the code generator to operate on OCODE, it is made
available in an encoded form in an OCODE buffer. To produce BCODE,
the code generator for the 370 has been replaced by a BCODE code
geneartor. The BCODE code generator exists in two parts: one
which is machine independent (section BCGEN), and another which is
machine dependent (section OBJHPGEN.) In general, the machine
dependent part defines the loader format for a particular macgine.
If the machine independent linker/loader (described in Sections 3
and 4) were used, the entire code generator would be machine
independent (with the wordsize being the only parameter.) The code
generator currently generates HP assembler source, however. The
mapping between OCODE and BCODE is described in Appendix 1. The
following appendix (appendix 2) gives instructions on how to use

the BCODE code generator under MTS.

2.1. The Code Compaction Problem

One of our primary objectives in undertaking this project was
to transport large programs such as the BCPL compiler onto a mini-

computer. The major problem in such endeavors is that one invar-

i~
0%

iably runs short of memory space. Therefore, in all aspects of
the system, the generation of dense code has always been the over-
riding concern. (As an example, we note that the BCODE code
generator emits a SWITCHB or a SWITCHX instruction depending on
which is more space efficient.)

One technique available for code compaction is the massaging
of generated code to change direct addresses into relative addresses.
This requires the base machine to support relative addressing;
the BCODE machine does. Relative addressing is available on various
commercially available machines such as the PDP/11, the Nova series,
and the HP3000, as well as the virtual Intcode machine. For the
latter, a scheme is described in [P] whereby an assembly language
source is compacted by scanning the code for instructions with
label references. For each label reference, the relative displace-
ment between the instruction and the referenced label is computed.
If this displacement value is small enough to fit into the address
field of a single word instruction, the instruction is changed
from a double word instruction using an absolute address to a
single word instruction using a relative address. The freed word
is marked appropriately as a hole, and a subsequent pass made
over the code to delete all holes.

Not only does the above method require the code to be scanned
at least twice for each compaction pass, but in general, several
compaction passes are required before all possible compaction is
achieved. This is because it is very likely that a given compaction
pass will make label references which were previously too far apart

sufficiently close for "relativising."

13

It seems intuitively clear that at least with the simple data

structures presently used for storing of code, the iterative nature

of the compaction process is unavoidable. If we consider a less

general branching structure than that which is assumed above, a

possibly better algorithm than the brute-force approach outlined

above emerges. In particular, let us assume that all branches are

nested, as shown below pictorially
So

dy

Ss

d
4

where an S5 is the label of an instruction referencing label di.

(Note that a barnch or a jump in the following discussing refers

to any memory reference instruction, that is, an instruction with

a label operand.) Now we define a function displ(s,d) which has

as its value the optimal displacement between an instruction

labelled s and a location [} which it references. Let us define

an inactive code segment to be one which has no label reference

instructions within it. Then, if a code segment bounde« by the

addresses [s,d] is inactive, the optimal displacement is clearly
|d-s| address units. Otherwise, the optimal displacement is simply
the sum of the optimal displacements of all branches nested one

level down augmented by the size of any inactive regions between

these branches. 1In the example above, we see that
dlSpl(Sordo) = (sl—SO) + dlspl(sl,dl) + (Sz_dl) + d1sp1(sz,d2)
+ (do—dz) =

We note that it is a simple matter to actually generate object

code as the assembly source is being scanned by the displ function.
Hence, assuming nested jumps, it is possible to achieve complete
compaction of code in a single pass over the assembly code.

In reality, we note that many jumps will not be nested. If
we process such a structure by partitioning all the (potentially
unnested) jumps into classes of nested jumps, and then applying
the above compaction method to each nested class in succesion,
complete compaction is still achievable. '‘Since the compaction
of a set of nested jumps is achievable in linear time, intuition
suggests that fewer iterations will be required by this recursive
compaction technique than would be with the brute-force method.

In the above description,note that we tacitly assumed the
ability to locate all jumps nested below a given jump. In practice,
the time required to construct such a data structure may render it
impractical. The implications of these and other aspects of the
method have not fully been considered, it presently being only at
the exploratory stage. Nonethless, it seems to be a promising

approach to the difficult problem of efficient code compaction.

3.1. Linker Format

A BCODE object module may be viewed as a stream of <opcode,operand>
pairs where opcode is itself the pair <operator,listsize>. operator defines
the type of operation to be performed; 1listsize determines the length of
the operand list to which the operator is applied. The operand list length

is in units of operand records (to be defined below).

Since the same linker operator is typically applied to several conti-
guous operands, we can extend the definition of an operand to that of a list

of operand records each of which has the same format. An operand record can

extend over an arbitrary number of words; the only restriction is that each
such record must be aligned on word boundaries.

To maintain a high degree of portability, the input to the linker is
defined in terms of words. Variations in word length do not alter the basic
linker instructions; however, a word must possess the following properties:

. Simple BCODE instructions1 must fit in one word.

an opcode (i.e., <operator,listsize> pair) should fit in one
word, with operator occupying the left half of the word and
listsize the right half.

the number of characters (i.e., bytes) per word should be a
positive integer.

. a BCPL data object should fit in one word.

a string's length should be encodeable in a character.
From the above, it should be evident that the only parameter required in

defining the linker for a specific machine are the number of bytes per word

1 A simple BCODE instruction is one which fits into one BCODE machine word.

21

and the number of bits per word. 1In the following description they are

denoted by the constants BYTESPERWORD and BITSPERWORD.

3.2. Linker Instructions

The basic purpose of a linker is to resolve external addresses. To
this end, some declaration commands are needed to define external references
and entry points. Although the linker does not modify the relocation flags,
it nonetheless needs to look at instructions defining the actual object data,
along with their relocation flags. This information is passed on to the
loader fotr its use. The instructions needed to effect the above functions
are now described.

The instructions are defined in their mnemonic form only. In an actual
loader the data will be encoded as bit patterns, of course. The following
mappings occur between the notational device and the actual bit patterns:

n the value of listsize (see section 1). It is stored

in the right half of the first word of the command.
(The left half of the word contains the operator).
SS, is a string of arbitrary length. It is represented
as a vector of characters c, ¢

0

represent the string length. Note that <5 is initia-

lized to k. An example is the string "hello" which is

c where E_

1 2Ck

encoded as

A string of length k occupies [k/BYTESPERWORD] words.

<3

The string data is left justified (i.e., with any unused
bytes at the right hand side).
L. defines a label. It occupies the next available word.

cbi defines a code block. A code block has the following

form:
R R
word # FO F
BITSPERWORD-1
0 l relocation flags
1 J (RF) block
N
2
= s AR H—‘ﬁ_,
' o BITSPERWORD words
BITSPERWORD+1

Each Ebi therefore contains a maximum of BITSPERWORD words
of object code. Since there are BITSPERWORD bits in each
word, each word of object can be assigned a 2-bit reloca-

tion flag. The relocation flags have the following

definitions:
Flag value Meaning
0 Word unused
1 Absolute
2 Normal relocatable
3 External reference

An external reference flag indicates that the corresponding
code word contains an external *unresolved) address. The

word is initialized to the index into the external symbol

references in the ordering defined by the external symbol
declarations (see section 3.2.2.).

addr defines a relative address in the object module being
linked. It occupies the next available word.

val defines a value which can be stored in a word. It is

stored in the next available word.

3.2.1. Entry declarations

Entry declarations are of the form

ENTRY n ss L ss,L 3 59 ss_ L
22 nn

where ss, is the string naming the entry and Li is the corresponding address.

The ENTRY command is encoded as 1.

3.2.2. External declarations

External declarations take the form

EXTERNAL n ss1 L1 sszL2 Ce ssnLn

where ss. is the string naming the external value referenced and L& is a
pointer to a list of locations which use the external.

The EXTERNAL declaration is encoded as 2.

3.2.3. Code Segments

Object code is specified by the use of the CODE command as follows:

25

CODE n cb cb R ch

Note that although relocatable flag information is not destroyed by the linker,
most normal relocatable values are modified when linking together several
segments. Also note that the relocation flag stating 'unused' is used to fill
up any extra cells which are unused in a code block. The empty cells do not
actually exist in an object module's image; their non-existence is detectable
via the relocation flags.

CODE is encoded as 3.

3.2.4. Patch declarations

As symbols in an ENTRY list are processed, various external symbols
become resolvable. In general, the external references may have occurred very
far back in the pair of object modules being linked. To avoid having to store
the entire object module in main memory, the PATCH command is defined. Its
function is to direct the loader to perform a patch to memory while loading.

The format of the command is

PATCH addr wval

where the relative address addr is modified by loading the value val into it.

Note that all PATCH commands are executed by the loader. The value of

the PATCH operands addr and val may change however as the relative displace-

ments of instructions change as new object modules are linked.

The PATCH directive is encoded as 4.

3.2.5. Miscellaneous control commands

Various forms of linker/loader directives may potentially exist (e.g.
for execution time debugging control). One necessary in a basic linker 1is
a directive to specify the end of an obhject module. It is specified by

END.

The encoded value of END 1s 5.

27

4. The BCODE Loader

Although the BCODE linker (see section 3) and loader have not been
implemented, their design is nevertheless presented because they form an
integral part of any machine independent BCODE system. Since the loader
is simply the final phase of object module processing after all linking,
this section was to contain a description of how this phase was implemented.
The loader not having been implemented, this section is empty.

We note, however, how the loader fits into the overall link/load

process by the following block diagram:

object module1 object module2

link

phase object module

3

14
L)

W

object modulen

link phase2

link phasen_1

load module €&———— loader

5. An Interpreter for the BCODE Machine.

With the exception of a few features (most noteably external symbols),
an interpreter for the BCODE machine has been implemented on the HP2IMX system
in microcodes. The implementation is straightforward. A number of BCPL

programs have been executed on the HP machine via
|

l
code generation) execution

BCPL source (g r) BCODE () ~ result

|
BCODE generator | BCODE interpreter
i
IBM_370/168. { HP21MX

|

Our data show that the percentage gain in space reduction as compared
to the same BCPL source being translated to OCODE and then to HP Assembler
codes (the currently standard procedure to execute BCPL programs on the HP)

ranges from 10% to 40% depending on the characteristics of the programs.

J

N

References:

[P]

[R]

[w]

Peck, J.E.L., V.S. Manis, W.E. Webb, Code Compaction for
Minicomputers with Intcode and Minicode, Technical Report 75-02

Computer Science, UBC, 1975.

Richards, M., The BCPL Programming Manual, Computer Science
Technical Manual 75-10, UBC, 1975,

Wong, Kenny W.0., Introduction to OCODE, Computer Science, UBC 1976.

OCODE to RCODE Conversion Page Al

Appendix 1. OCODE to BCODE Translation.

This appendix defines the OCODE to BCODE translation
process, Fach OCODE instruction is listed along with its ECODE
equivalent. In scwe cases, a sequence of OCCOLCE instructions
translates into a single BCODE equivalent; this sequence is
listed together.

The notation to bhe used is defined bhelow:

n Some (non-negative) inteqger.
Ln label as used in
LAB L42 «e JUMP L42

the notation L (1), L(2), +«., L{k) indicates that
k labels are required.

g Global cell number (for example, g=37 in "LG 37").
The notation g (1), g9g(2), «.«, g(k) indicates that
k globals are r=aguired.

Ss A string given in one of two forms. Form 1 is a
numkter n (length c¢f string) followed by n
integars. Fach integer is the decimal
representation of a single character in the
string., Th2 second form also begins with a number

n, but the length is fcllowed by n characters
enclosed 1in double quotes, For example, the

string "ABC" can ke represented as

3 65 66 67 (in ASCII)
or as
3 "ABCH

The s=zcond form is clearly preferable as it 1is
machine independent.

sz sh of Three 1integers (size, shift, cffset) used to
define a selector for SLCTAP and SLCTST.

OCODE to BCODE Conversion

OCODE Stmt BCODE
ABS ABS
COM

DATALAB Ln

DEEBUG

DIV DIV
EQ EO
EQV FQV
FND

ENDBLCCK

n ss(1) ... ss(n)

ENDPEGC ss

ENTLABS ... (see right)

ENTRY ... (see right)

FINISH FINTSH

PageA2

Comments

Unary operator: abs

BCPL statement delimiter
Label definition (for data)
22? (Not implemented)
Binary operatcr: div

Binary operator: egq

Pinary operator: eqv

End of prograrn

Marks end of blocks whose
names are given by ss(1) T
ss(n)

Marks end of procedure ss

Define entry points. OCODE

format is:

ENTLABS n ss({1) L (1)
ss(2) L(2)

ss}n) L(;)

where 'n! is the naumber of
symbols and f*ss({(i) L(i)* give
the name {in string fcrm) and
the value (a label) of syrbol
i. Note: If a label is ‘1I0¢',
its corresponding symbcl is
external.

Indicate the start cf a
procedure. OCODE format is:

ENTRY n L ¢ (1) ... c{(n)

where LA is the label
defining the start of the
procedure, and 'c (1) ... c(n)?
are the n characters of the
procedure's nane,

Halt BCODE machine

OCCLCF to BCODE Conversion

QCCLE Stmt BCODE

FIX

FNAP n CALL n=1
PUSHT

FNRN FNRN

GRYTE GETBYTE

GE GE

GLOBAL ...

GOTO GOTO

GR GR
INCLULE

ITENC f'ch!

ITEMF ss

ITEML Ln

ITEMN n

JF Ln J¥ Ln
JT Ln JT Ln
JUMP Ln JuMP Ln

Page A3

Comments

2?2? (Not iwmplemented)

Function call; PUSHT pushes
the function result bhack cnto
the stack. Note that FENAP
translates into two BCODE
instructions.

Return from function
Binary operators: %

Binary operator: >=

Define globals. OCODE format
is:

GLOBAL p g(1) L (1)

g{2) L(2)
g(n) L(n)
This OCCDE instruction

specifies that each glcbal
g(i) d1is to ke initialized to
label L (i).

Indirect Juop (lestination
address is cn top of stack)

Binary operator: >
722 (Not irplemented)

Define a «cell initialized to
character fch?

22? (Not 1mplemented)

Define a cell initialized to
the address of label Ln

Define a «cell initialized to
inteqer n

Jump if false (top of <stack
tested and popped off)

Jump if not false (see JF)

Unconditional jump {stack
undisturhed)

OCCDE to BCODE Conversion

LAB Ln

LC Ygh"

LE
LF ss
LG g

LL Lhn

LLG g

LLP n

LLX ss
LN n

LP n

LOGAND
LOGCR
LS
LSHLFT

LSTR ss

LX ss

MINUS

MOD op

MOCSLCT

LE

LTIG g

LTI A

LG g

LP n

LIP n

LOGAND
LOGOR
LS

LSHLEFE

LI a

MINTS

MOD op MODST

PageAld

Define label {see also
DATATLAB)

load character
n = binary value of 'ch?!

Binary operator: <=
i dd (Not irplemented)
L.oad contents of global cell

Load contents of labelled cell
a = address of label

Load address of glcbal

Load address of cell n on
the current stack frame

Load address of external cell
Load number

Load cell n on current stack
frame

Binary operator: &
Binary operator: |
Binary operator: <
Binary operator: <<

Load address of string
a = address of Ss

Load contents of external cell

where string ‘"ss" specifies
the name of the external
symbol and g " is that

symbol's address.
Binary operatcr: -

Binary operator ‘op! is
modified so that it will store
the result back into the first
operand. Note that three
BCODE instructions are needed.

Not used hy BCPL compiler

OCODE to BCODE Ccnversion

NE

NEG

NECV
NFEDS ss
NOT
PARAMETER

BYTEADDR
PBYTE

PLUS

RES Ln

REM

RSHIFT
RSTACK n
RTAP n
RTRN

RV

SAVE n
SECTICN ss
SG g

SL Ln

SLCTAP sz sh of

SLCTST sz sh of

SP n

NEG

NFQV

NQT

PUTBYTE

PLUS

JUMP Ln

REM

RSHTFT

CALL n-1
RTRN
RV

SETS n~1

I f SLCTAP

L £ SLCETST

SP n

Page AS

Binary operator: -=

Unary operator: -

lnary opsrator: negv

22

Unary operator: -

722 (Not irplemaentad)

Store byte. Note that PUTBYTE
is a ternary operator; the
sequence BYTEADDR FEYTE
translates into a single ECODE
instruction,

Binary operator: +

Unconditional Jumgp to end of

valof block

Binary operator: rem

Binary operator: >>

Not used in BCODE wmachine
Routine call

Return from rcutine

Unary operator: rv

Set stack pointer

Start of new program section
Store into glokal

Store into labelled locaticn
a = address of label

Extract field (f = {of,sz,sh}
packed). Note that two PBCODE
instructions are required.

Deposit field (like SLCTAP)

Pop the top element off the
stack and store it at index n

OCONDE to BCODE Conversion

STACK n SETS n-1
STARTBLOCK

STINLC S5TIND
STRING ss

STORE

SWITCHCN (see right)
SX ss S a

Page A6

in the current stack frame,

Set stack pointer to leocation
n-1 in current stack frame

Marks start of block

Store indirect (destination
address 1is on top of stack)

2?2 {(Define string?)

Instructs code generator to
flush all temporary values to
core
Multi-way kEranch, CCODE
format is:

(1) L(7)
(2) L(2)

C}n) L}n)

SWITCHGN n D C

PEP

where 'n! is the number of
cases, B is the default
label, and *'C({(i) L(i)" is the
value-label pair for case e
The BCODE machine surprcrts
switching via a binary search
(SWITCHB) or an indexed dump
(SWITCHX) .

Store into external cell
a = address of external svymbol
sSs

No flcating point operators (of format #xxx) are implemented.

Page AT
Appendix 2: Using the BCODE Code Generator Under MTS

The BCPL compiler generating BCODE is invoked via the MTS

command

SRUN YYC4:BCPL [SCARDS=sourcefile] [SPRINT=printfile] =
[0=0codefile] 1l=objfile PAR=par

where sourcefile 1is the name of the BCPL source file
printfile is the name of the file to receive the program
listing
ocodefile is the name of the file to which the OCODE is to
be punched (if desired)

objfile is the name of the file to which the HP Assembler
source for the BCODE is to be emitted

par igs the standard parameters string supported by the
BCPL-V compiler (see [R]l). At a minimum PAR=A/L must
be specified.

The number of BCODE instructions generated is printed on
SPRINT. The BCODE file (objfile) may be transferred to paper
tape via the system program *PUNCHJOB.

