
The BCODE Sy stem

s M~ i, R. Ar~,.l IN\-)..1
v.flft. of G'Mr.J.Jlt Sc..:ei,,a,

Table of Contents

0. Introduction

Uvi; 1/e,./~;+1 of Bv-.'+1~ ~ Lo/i, ... b;'\

Vo..¾ ... vt.r, 8.c. vir ,u1s
CAI\/At>A .

0.1. The HP21MX Minicomputer Implementation

1. The BCODE Machine

2. The BCODE Code Generator
2.1. The Code Compaction Problem

3. The BCODE Linker

4. The BCODE Loader

5. An Interpreter for the BCODE Machine

Appendicies

1. OCODE to BCODE Translation

2. Using the BCODE Code Generator Under MTS

Project Documentation

Compu~er Science

submitted by R Agarwal and S Ma

TM-24
DEPT. OF COMPUrE'R SGIENC£

UB C, APRIi..- > I '178.

1
t
4

n
17
2.1

27

2.6

Al

.A7

0. Introduction

In an attempt to achieve program portability, the processor

for the language BCPL (R] was designed to generate code for a vir­

tual machine. The code for this machine was termed OCODE
1

. The

structure of this language, though well-suited as a target language

for the translation of BCPL, was nevertheless thought to be more

complex than necessary. Hence, the Intcode machine appeared, which

is both easy to understand and for which an interpreter is readily

written for most real machines available today. Since an OCODE to

Intcode translator exists, it is clear that in theory any BCPL

program (after suitable translations) may be made to execute on any

machine where an Intcode interpreter exists.

Several problems arise when one actually tries to transport

programs via the above method. Within the environment of mini­

computers, one major problem is that of insufficient memory space.

This lack arises not only because most minicomputers can address

only 32K 16-bit words directly but also because many programs being

transported to a minicomputer are originally written on a large

machine (such as the IBM 370) where memory space is virtually

infinite.

Creating segment overlays to alleviate the space problem is

possible to a certain extent but is not very easily done since

BCPL lacks language primitives to define (and restrict) interactions

1 The form of OCODE has been modified at UBC to remove some of
its machine dependant aspects. The new (machine independent)

:...: , fo.rm.:.:is~;calI.ed :MCODE.

2 Like MCODE, Intcode has been modified at UBC to remove some
of its machine dependent characteristics. The resulting lan­
guage is called Minicode.

.1

2

between different overlays. However, one promising approach is

to increase the density of code generated by the overall trans­

lation process of BCPL. The most readily apparent way to achieve

this is to write an optimizing compiler for every machine; but

this detracts from the goals of compiler and language portability.

A "middle-ground" solution which maintains portability is to

delete the OCODE to Intcode translation step and to interpret the

OCODE directly. Since OCODE describes a more powerful machine

than Intcode, the code generated for it is often much smaller than

the equivalent Intcode. Described herein is the implementation

of a complete OCODE interpreter on the HP21MX as well as a code

generator used to transfer the OCODE from the BCPL compiler to the

Hewlett-Packard minicomputer. Also described is the design for

a machine independent linker/loader whidh has not been implemented.

Currently, HP assembler source is used for the transfer of pro­

grams.

0.1. The HP21MX Minicomputer Implementation

Since the HP21MX minicomputer is a microprogrammed machine,

it is natural that the OCODE machine's instruction repertoire be

microprogrammed. However, examination of the machine's assembler

language description
3

reveals taht it was probably never designed

to be used as an assembler per se. The language is both very

unreadable in form and also has several opcodes which possess sem­

antic information concerning theBCPL source program which has

4
little to do with a general purpose assembler . Similarly, some

3 No complete description of the OCODE machine is known to exist.
An almost complete description is to be found in [W].

commands exist which are best viewed as simple macros; that is,

they are definable as a fixed sequence of other OCODE commands.

There also exist a class of instructions for which no convenient

execution strategy exists. These tend to point out shortcomings

3

in OCODE if viewed as an actual machine; they also serve to

strengthen out earlier belief about the original design intentions

of OCODE.

Although none of the above cniticisms prevent the current

description of OCODE from defining a machine unambiguously, it is

nonetheless highly desirable to have a symbolic language which

defines the machine in a convenient manner. To this end we have

devised the BCODE machine (which is described in section 1.)

The assembler language for this machine follows the normal assem­

bler structure more closely. The mapping between the assembly

language and its machine code is also defined (no such translation

scheme exists for OCODE.) We also note that the machine code

encoding for BCODE closely resemble those of Intcode [P].

We should note that the microprogrammability of the 21MX

implies that the BCODE interpreter for it transforms the machine

into a true BCODE machine (with the execption of a few system

calls which utilize the standard instruction set to access the

resources management facilities provide by RTE/II.)

4 An example is the SAVE, STACK, and STORE operators of OCODE
which have the same meaning within the OCODE environment but
which carry different meanings as to the point of origin
within the BCPL source.

4

BCODE is an abstract machine intended for efficient execu­
tion in both time and space -- of BCPL proqrams. As such, it
has some features that are unusual when compare,l with "normal"
machines like the IBM 370.

(1) 'T'he w-ord size is unspecified; in theory, IJCODE
proqrams work with any word size. This concept is
the key one in ruakinq RCODH so portable.

(2) 'T'he machinr~ is stack orient~d, allowinq arith1netic
expressions and the like to trans l,1 te almost one­
fo r-o n e into machine operations. In addition, the
ZPro-address instructions made possible by stack
arcbitecturP. qre~tly r.educe pl·oqram size.

{3) On a typical machin~, a compiler for BCPL usually
has a hard time g~neratinq code for procedure
calls, parameter transmission, and procedure ex­
its. This is not so in BCODE, where special in­
structions exist to perform these operations.

Thes2 features, in combination with others, should make it clear
why we think BCODE is an '1 ideal" machine for BCPL.

Internal storage for thE BCODE machine consists of
quence of words with addresses increasinq by one. The
of bits in a word -- the wora size -- is deliberately
fied; however, a word should he larqe enot1qh to hold any

a se­
nnmher W
unspeci­
addr:-ess.

As a result of its BCPL orientation, the basic BCODE machine
has at least three storage areas:

(1) 'l'he global V'~ctor. This ar~a. (of unspecified size)
is a contiquons sequence of cells common to all
pcocedures in a BCPL program. The first 100 of
these cells are reserved for the operatinq system:
the remainder can be used for inter-procedure com­
munication in a BCPL proqram.

(2) The pcogram vector. This area holds all the code
and static data foe an executinq BCPL program.

(3) The stack. This area holds all temporaries,
dynamically-allocated variables, and inter­
procedure linkages. The stack qrows in the direc­
tion of increasinq addresses, so a push operation
always increments the stack top's addr~ss by one.

In addition, mor.f' sorhisticated syst8ms may have a fourth area of

storage:

5

(4) The heap. This area contains all storaqe that can
be allocated and released by calls to GETSPACR()
and FREESPACF.(). Allocation and dR-allocation is
complet~ly under programmer control and is in­
dependent of stack movement. Standara BCPL does
not support the heap conceot.

The locations of tlte ahove four st.oraqe areds ,1n~
fied.

left unspeci-

The BconE machine has five internal registers, each a word
in size. Unlike most machinAs, BCOD~'s stack architecture allows
these registers to operate implici~ly; they are not, in qeneral,
under direct programmer control. The five registers are:

(1) G -- This contains the address of the fist cell in
the global vector. The G r=qister usually remc1in.s
unchanged throughout the execution of a BCPL pro­
gram.

(2) C -- This register (the proqram counter) always
contains the address of the next instruction to be
executed.

(3) S -- This register always points to the top cell
on the stack. ~11 load instructions increases bv
1 before placing a value in the resultinq address.

{4) P -- This is the stack frame pointer. Every pro­
cedure allocates (on ent.ry) its own frame for
storage of dynamic variables and releases the
frame on exit; nested procedures stack frames on
top of each other. A-t: anv instant, a proqram can
access only those dynamic variables in the current
{topmost.) stack frame.

(5) T -- This is a temporary reqister used mainly in
returning a function's result to the callinq pro­
cedun~. (Se,? the BCODE instructions FNRN, PUSHT,
MOD, and MODST.)

1-1-1 Stack OQeration.

The BCODE machine is stack oriented, so all operations are
done in postfix order: each machine function takes its arquments
from the top of the stack and replaces them with the r~sult.

One of the most important ani most neqlectP~ areas cf
machine ~esiqn is the architectuce of procedure callinq se­
quences. All too often, this area is qiven only token att~ntion,

with the result that procedure calls seemed to be added
an after-thought. This consequently plac,Js a tiresom~
the proqrammer, who must hunt around for clever doclqes
machine's restrictions.

onlv
burden
aro11nd

0

as
on

a

BCOnE's design t. riPs +:o rem~dy t.his. 13:Jcausc of its BCPL
orientation, facilities for procedure hanrtlinq are inteqrat€d
with the rest of the instruction sPt. As a result, the hardware
performs the bookPepinq -- not the proqrammer.

The facilities BCODE provides is best illustrated by exam-
ple. Suppose the curr~nt stack fram is 40 words lonq, and we
want to execute the following RCPL call:

SUB(P1, P2, Pl)

Suppose the stack looks like the following:

p s

where Pis the stack frame pointer, an~ S is the stack top
pointer. (We shall call this thA ''initial confiquration".) To
process the call, we must first lo~d the parameters:

SF.TS l.12

LIP P1
LIP P2
LIP Pl

;Reserve current stack frame
;Load fiLst parameter
;Load second paLameter
;Load third parameter

At this point, the stack looks like:

p

I P1 I P2 I P3 I

s

We now call the subroutine:

11 sun
CALL 1m

;Get address of subroutine
; P.nter subroutine

We are now at the subroutine's entry point.
like:

The stack looks

. . . I P' I C' I P1 I P2 I P3 I

where P'
SUB can
str.uct ion

p

is the old frame point0r and C' is the
now run. When it wishes to return,

RTPN ; Ret11rn from subroutine

s

n~tur:n address.
it issues the in-

7

and ~he stack will be reset to its initial confiquration. If SUB
is a function, it should l~ave the result on the top of the stack
and issue

FNRN ;Return from function

This places thP function result into the T register and returns
like R'I'RN. The callinq proqrilm must then issue

PUSHT ;G•0!t function i:esult

to retrieve the function's value.

We will b~ using th8 followinq notation in the rest of this
chapter. In general, the notation follows BCPL conventions.

The letters G, C, P, s, and T reprAsent internal registers
as described in section 1.1.2. Other symbols are as follows:

adr

roadr

adr1 ! adr2

Descrigtion

An expression havinq an integer result.
This is interpreted as an address.

Contents of th~ location whose address is
qi v ~ n by .i!.£1!:.

Ad~ress of the location qiven by ~1f•

Equivalent to! (adr1 + adr2).

1-1· Instruction Format.

BCODE instructions come in two sizes, sinqle word and double
word. The two sizes hav~ the same qeneral format, and are gen­
erally interchanqable in that any given instruction may use ei­
ther size; however, the sinqle word size has a i:estricted ad­
dressing range, and can he nsed only when the operand is small.
The two instruction sizes look like the following:

Single word: Opppmmmdclddddddd

Double word: 1popmmmdd<l~ddddd dddddddddddddddd

The two formats differ onlv in the state of the most significant
bit: a single word instruction has this bit set to zero, while a
double word instruction has it set to one. Other fields in an
instruction are defined as follows:

PPP This 3-bit field defines thG operation
(called OP).

code

mmm This 3-bit fiRld (called MOD) defines the rnodifi-

d •• d.

8

cations to be perfocmed on the operand. (See Sec­
tion 1. 4 for the format of this field.)

This field (called D) is the operand.
size is W bits, the opecand field
word instruction is W-7 bits, while
nouble wor,i instruction is 2W-7 bits.
is a siqned, two's complement number:-.

If the word
for a sinqle
that for a

Note that D

Instruction Execution.

The BCODF machine goes throuqh thr:-ee distinct phases durinq
the execution of a single instcuction:

(1) .F i rs t , it f et ch es th e cur c e n t in st n1 ct ion h e i n q
pointeJ to by the proqrarn counter (C) and deco~es
it. The proqram counter is incremented past thE>
instruction.

(2) The machine then computes the effective operand
(EFF) from the instruct.ion's MOD and D fields, as
desccibed below.

{3) Finally, the machine performs the indicated opera­
tion, usinq the the effective operand (EFF) and
the st:lck.

BCODE repeats this entire process for each instruction; it halts
only upon encounterinq a FINISH.

As indicated above, the calculation of the effective oparand
(EFF) uses both the modifiers (MOD) and the raw oper:-and (D}.
This calculation proceeds in two steps. Pirst, if

MOD -= xOO then EF'F . - D (no modification)

MOD = x01 then EFF := G+D (qlobdl r:-e la ti ve)

MOD = x10 then EFF . - P+D (stack r:-elative)

MOD = x11 then EPP . C + D (proqra.m relative)

(Not(~ that, in the a hove, thP pro qr am count er (C) pcints past
inst.ruction.) Then, if

MOD = Oxx then EFF := EFF (direct)

MOD = 1xx then EFF : ::: !EFF (indirect)

EFF is now ready for use by the instruction.

This section rlefin~s the ECOD? machine's instruction
Whi1e each instruction hds its own 1ssembler-like mn~monic,

the

S i~ t •
th is

9

symbol is used for desciptive pn!."poses only; there is no "BCODE
assembly language".

For each RCOOR inst.!:"uction, th":' operation cooe (OP) identi-
fies the action to take upon the effective operand (EFF). EP.F is
always comput":'d (see Section 1.1) before ;_my action occurrs.

Push th9 effectiv8 operand onto the stack.

Operation:

Examples:

S := S + 1
!S := EFF'

(Sis the stack top pointer)

L 29
LIP 7
LG 55

(Load constant 29)
(Load cont~nts of P+7)
(Load address of global .5 5)

Pop the top element off thP stack and store it into the ef­
fective operand..

Operation:

Examples:

!EFF : == !S
S := S - 1

s 2476 (:itoLe into location 2476)
SP 9 (St.ore into location P+9)
SIG 123 (St.ore incHrPct thru qlobal 123)

Set the stack top pointer to a 1iven numb2r of cells above
P. This effectively sets th~ current st~ck frame size.

Oper-ation:

Examples:

S := P + EFF

SETS 27 (Set frame size to 27)

Note that SETS O sets s equal to P.

1-5 ■ 1 Unconditional jym~ (Q~ =])

Jump unconditi~nally to the location given by the effective
operand.

Operation:

Example:

C : -= EFF

JUMP 5276 (Jump to location 5276)

10

1•5•1. Jum!? if falsP. (OP =- !!)

Jump if the stdck top contains f~1~~- Pop this element off
after testinq. (Note that the constant f~.!..§g in BCODE is zero.)

Ooeration: if !S = 0 then C := EFF
s := S - 1

Exr1mple: ,JF 9700 (Jump if false to location 9700)

Jump if the stack top does not contain f1!§g. Pop the ele­
ment off after testinq.

Operation: i f ! S :/ 0 th en C : = E FF

EJCample: (,Jump if true to location 9700)

1 . .5.§.. ProcP.dur~ call (OP= 6)

Call the procedure whose address is on the top of the stack.
EFF gives the curent stack frame size.

Operation: temp . - p -+- EFF (address of new frame)
ternp!O . - p (save old frame pointer) .-
temp!1 := C {Sd. Ve ret11rn address)
p .- temp (set new stack fc am e)
C . - ! s (transfer to procedure) . -
s . -. - s - 1 (pop procedure address)

Example: Cl\LL '• 0 (call procedure with frame size 40)

Execute the operation determined by the effective operand
(EFF). This instruction is actually a whole class of zero-
address instructions that operat~ unpon the stack.

~he following tables list all execute opgrations currently
ri.efined. Note thr\t no floating point operations are included.

11

I.!i.!21~ 1-1 !l!l!!£Y 2E~££!tQ£.§

~EI .1'.!.!!~l!QI!!~ Descri£tion

1 ABS !S . 1.Q.'.? ! s

2 NEG ! s . - !}.Qg ! s . -
] NOT ! s . - !!Q! ! s

4 RV ! s . - (! s)

5 TRUE s . - s + 1 • ! s . - - 1 , . -

6 FALSE s := s + 1 ; ! s . - 0

I'

12

'.IaQ!.~ J-2 ~.b!!.~£Y Q£gfs!tQI.§

~ff .tl!l~.!!!Q!!i£ Dcsc r-iQt ion

7 MllLT Binary op,:~rator:
s . - s - 1 . S!O . - S!O * S ! 1 . - •

8 DIV As above, for I

g REI."! As a hove, foe £~!!!

10 PLUS As above, for +

1 1 MINUS As above, for -
12 EQ l\.s above, for =

13 NE As above, for t

14 LS As above, for <

15 GR As above, for >

1 6 GE As above, for z
17 LE As a hove, for i

1 8 LSHIFT As above, for >>

19 RSHI F1' As above, for <<

20 LOGAND As above, for f,

2 1 LOGOR As above, foe

22 EQV As a bovP., for ~1Y

23 NEQV As above, for g~gy

24

25

26

27

28

29

FINISH

RTFN

FNRN

GOTO

SWITCIJ[I

SWI'l'CHX

Descri2tion

Halt BCODE machine.

RP.tur-n from subr:-outine:
S . - P - 1 (i:~set stack toµ)
c P! 1 (return r1ddr.ess)
P . - P!O (oln str1ck frame)

Ret:1rn from function:
T • - ! S
s : = r - 1
C . - P!1

(set return value)
)
) Like RTRN.

P . - P!O)

Indi.rect iump (unconditional):
C : = ! S
S : = S - 1

This instruction perfor:-ms a multi-way branch
dependinq on the value on top of the stack. The
instruction format is:

SWITCH9 n D C(1) L(1)

C (n) L (n)

where n is the number of cases to choose from,
and C(1) L(1) ••• C(n) L(n) are the n
corr es po r.rUn g value- label pairs. D is the de­
f a ul. t label.

'1'he bt> 11 c h pcocce1s as follows: Jf value C(i)
~q11al~ th valu..., on tbP st cl< top , conti:ol qoes
.o r1Jllr .. , s L(i). r f non e of t he val n es match,
control rroes to · <ldc:ess o. Note thc:1t, s ines a
bin ry sear ch i s us d , th~ v al u es C (1) C(n)
must h ~ in ascendinq or1 e r.

This instruction performs a multi-way branch 11s­
inq an ind9xed iump. 'T'he format of the instruc­
tion is:

SWITCHX min max D L{min) L (max)

wh ~r:e min nd max are th e
values, respectivql y, th~
tabl can handl e . L (min)

minimum anrl maKimum
th e followinq iump

L(max) ace the
max-min+1 label s defininq the iumo abl • D

is the d efa ult lab 1.

The instruction works as follows:
contents of the st~ck top is X.
X ~ ma~, control qoes to aJdr:-ess
wise, con+rol qoes to address D.

Suppose the
Then, if min .$

L(X). Other:-

STIND

3 1 PU SH'l'

32 GETBYTE

]3 PUTBY'Y' E

34 SLCTAP

35 SLC'fST

36 MOD

Miscellaneous Ogerations

Descri.12tion

Store irdirect:
s := S - 2
!(S!2) := S!1

Push 'I' r~qister.
S := S + 1
! S : = T

Fetch bvt~ frcm memor:-y.
S := s - 1
S! 0 :=- getbyt ,~ (S!O, S! 1)

Store byte into memory.
s := s -]
putbyte(S!1, S!2, S!J)

Extract field (see SLCTST) •
S := S - 1
S ! 0 : =- (S ! 1) Q.f (S ! 0)

Deposit field.
s := s -]
(S ! 2) g_f (S ! 1) : = S ! 3

14

Conceptu lly , the SLCT AP nd SLCTST op era .ions
both oper<1.t.:. on (1) the address of a vector con­
taini nq t h field and (2) a fiel tl selector t hat
define~ th . .str ·_nq of bits to be e xtr act.e a or
1.eposit-,. d ; t h i~ stcinq m y not ct:oss word houn­
da ri s . Tt e s· l _ctor has three components : the
t-~i z ,. (n umber of bit.-... in th field), Ii ·~ shift
(num0 Pr of riqht shifts n~e 2d to riqht iust ify
the fi _l r1 in a worn.), and t he of f. et (nu rnu r of
wnrd~ fr m the b qinninq o f th e vector to the
word containing the f.ield). These cornponen s
ar . packed into a s inql word for the SLCTAP ana
SLCT'iT ope r at ion s ; t h method of p· c kinq mav
vary from machine to machine.

BCPL supports constructs like "var: +:= 111 , where
a binary operator is combined with an assiqn­
ment. Accordingly, BCODE supplies the MOD and
MODS~ operations, so that, for the above con­
struct, one need only push the address of var,
followed by the number 1; then the sequence

MOD PLUS MODST

will perform the required addition combined with
assignment. In detail, MOD replaces the stacked
addr~ss of var with its contents and saves the
address in register T; PLUS leaves the sum on
the stack top; and M0DST stores this sum in the

)7 MODS1'

location saved in reqister T.

In oth 0 r words, MOD p~rforms:

1' · =-- •(s - 1)
! (:-i-1) :-= !T

and MonsT performs:

! 'T' : = ! s
S : -=a '.3 - 1

store result of modified instruction.
MOD.)

1 /· ()

(See

17

2. The BCODE Code Generator

As should be apparent from the description of the BCODE

machine, there is a very close correspondence between OCODE and

BCODE. In addition, examination of the code for the BCPL compiler

reveals that it has been divided into three logical parts: the

parser, the translator and the code generator. The parser utilizes

recursive descent techniques to construct the parse tree. The

translator walks the parse tree to generate the intermediate OCODE.

This OCODE is translated into IBM 370 code by the code generator.

To allow the code generator to operate on OCODE, it is made

available in an encoded form in an OCODE buffer. To produce BCODE,

the code generator for the 370 has been replaced by a BCODE code

geneartor. The BCODE code generator exists in two parts: one

which is machine independent (section BCGEN), and another which is

machine dependent (section OBJHPGEN.) In general, the machine

dependent part defines the loader format for a particular macgine.

If the machine independent linker/loader (described in sections 3

and 4) were used, the entire code generator would be machine

independent (with the wordsize being the only parameter.) The code

generator currently generates HP assembler source, however. The

mapping between OCODE and BCODE is described in Appendix 1. The

following appendix (appendix 2) gives instructions on how to use

the BCODE code generator under MTS.

2.1. The Code Compaction Problem

One of our primary objectives in undertaking this project was

to transport large programs such as the BCPL compiler onto a mini­

computer. The major problem in such endeavors is that one invar-

iably runs short of memory space. Therefore, in all aspects of

the system, the generation of dense code has always been the over-

riding concern. (As an example, we note that the BCODE code

generator emits a SWITCHB or a SWITCIIX instruction depending on

which is more space efficient.)

One technique available for code compaction is the massaging

of generated code to change direct addresses into relative addresses.

This requires the base machine to support relative addressing;

the BCODE machine does. Relative addressing is available on various

commercially available machines such as the PDP/11, the Nova series,

and the HP3000, as well as the virtual Intcode machine. For the

latter, a scheme is described in [P] whereby an assembly language

source is compacted by scanning the code for instructions with

label references. For each label reference, the relative displace­

ment between the instruction and the referenced label is computed.

If this displacement value is small enough to fit into the address

field of a single word instruction, the instruction is changed

from a double word instruction using an absolute address to a

single word instruction using a relative address. The freed word

is marked appropriately as a hole, and a subsequent pass made

over the code to delete all holes.

Not only does the above method require the code to be scanned

at least twice for each compaction pass, but in general, several

compaction passes are required before all possible compaction is

achieved. This is because it is very likely that a given compaction

pass will make label references which were previously too far apart

sufficiently close foL "relativising."

] q .,

It seems intuitively clear that at least with the simple data

structures presently used for storing of code, the iterative nature

of the compaction process is unavoidable. If we consider a less

general branching structure than that which is assumed above, a

possibly better algorithm than the brute-force approach outlined

above emerges. In particular, let us assume that all branches are

nested, as shown below pictorially
So

S1

c:
where ans. is the label of an instruction referencing label d ..

1 1

(Note th~t a barnch or a jump in the following discussing refers

to any memory reference instruction, that is, an instruction with

a label operand.) Now we define a function displ(s,d) which has

as its value the optimal displacement between an instruction

labelled sand a location d which it references. Let us define

an inactive code segment to be one whibh has no label reference

instructions within it. Th0.n, if a code segment bound~ by the

addresses [s,d] is inactive, the optimal displacement is clearly

ld-sl address units. Otherwise, the optimal displacement is simply

the sum of the optimal displacements of all branches nested one

level down augmented by the size of any inactive regions between

these branches. In the example above, we see that

displ(s
0

,d
0

) = (s
1
-s

0
) + displ(s

1
,d

1
) + (s

2
-d

1
) + displ(s

2
,d

2
)

+ (d0-d2)

We note that it is a simple matter to actually generate object

code as the assembly source is being scanned by the displ function.

Hence, assuming nested jumps, it is possible to achieve complete

compaction of code in a single pass over the assembly code.

In reality, we note that many jumps will not be nested. If

we process such a structure by partitioning all the (potentially

unnested) jumps into classes of nested jumps, and then applying

the above compaction method to each nested class in succesion,

complete compaction is still achievable. ',Since the compaction

of a set of nested jumps is achievable in linear time, intuition

suggests that fewer iterations will be required by this recursive

compaction technique than would be with the brute-force method.

In the above descriptionJnote that we tacitly assumed the

ability to locate all jumps nested below a given jump. In practice,

the time required to construct such a data structure may render it

impractical. The implications of these and other aspects of the

method have not fully been considered, it presently being only at

the exploratory stage. Nonethless, it seems to be a promising

approach to the difficult problem of efficient code compaction.

3.1. Linker Format

A BCODE object module may be viewed as a stream of <opcode,operand>

pairs where opcode i s its e lf the pair <operator,listsize> . operator defines

the type of operation to be performed; listsize determines the length of

the operand list to which the operator is applied. The operand list length

is in units of operand records (to be defined below).

Since the same linker operator is typically applied to several conti­

guous operands, we can extend the definition of an operand to that of a list

of operand records each of which has the same format. An operand record can

extend over an arbitrary number of words; the only restriction is that each

such record must be aligned on word boundaries.

To maintain a high degree of portability, the input to the linker is

defined in terms of words. Variations in word length do not alter the basic

linker instructions; however, a word must possess the following properties:

Simple BCODE instructions 1 must fit in one word.

an opcode (i.e., <operator, 1 istsize> pair) should fit in one

word, with operator occupying the left half of the word and

listsize the right half.

the number of characters (i.e., bytes) per word should be a

positive integer.

a BCPL data object should fit in one word.

a string's length should be encodeable in a character.

From the above, it should be evident that the only parameter required in

defining the linker for a specific machine are the number of bytes per word

1 A simple BCODE instruction is one which fits into one BCODE machine word.

21

and the number of bits per word. In the following description they are

denoted by the constants BYTESPERWORD and BITSPERWORD.

3.2. Linker Instructions

The basic purpose of a linker is to resolve external addresses. To

this end, some declaration commands are needed to define external references

and entry points. Although the linker does not modify the relocation flags,

it nonetheless needs to look at instructions defining the actual object data,

along with their relocation flags. This information is passed on to the

loader for its use. The instructions needed to effect the above functions

are now described.

The instructions are defined in their mnemonic form only. In an actual

loader the data will be encoded as bit patterns, of course. The following

mappings occur between the notational device and the actual bit patterns:

n the value of listsize (see section 1). It is stored

in the right half of the first word of the command.

(The left half of the word contains the operator).

ss. is a string of arbitrary length. It is represented
----½-

as a vector of characters c0 c 1 c2 ... ck where~

represent the string length. Note that~ is initia­

lized to k. An example is the string "hello" which is

encoded as

5 'h' 'e' 'l' 'l' 'o'

A string of length k occupies fk/BYTESPERWORDl words.

22

word#

The string data is left justified (i.e. , with any unused

bytes at the right hand side).

L. defines a label. It occupies the next available word.
-1

cb. defines a code block. A code block has the following
- 1

0

1

2

form:

---- -

R
F

BITSPERWORD-1

-
-

}r
Ii

elocation flags
(RF) block

BITSPERWORD words

BITSPERWORD+l

Each cb. therefore contains a maximum of BITSPERWORD words
-1

of object code. Since there are BITSPERWORD bits in each

word, each word of object can be assigned a 2-bit reloca­

tion flag. The relocation flags have the following

definitions:

Fl ag value

0

1

2

3

Meaning

Word unused

Absolute

Normal relocatable

External reference

An external reference flag indicates that the corresponding

code word contains an external *unresolved) address. The

word is initialized to the index into the external symbol

23

references in the ordering defined by the external symbol

declarations (see section 3.2.2.).

addr defines a relative address in the object module being

linked. It occupies the next available word.

val defines a value which can be stored in a word. It is

stored in the next available word.

3.2.1. Entry declarations

Entry declarations are of the form

ENTRY n ss L
n n

where ss. is the string naming the entry and L. is the corresponding address.
-1 -1

The ENTRY command is encoded as 1.

3.2.2. External declarations

External declarations take the form

EXTERNAL n ss L
n n

where ss. is the string naming the external value referenced and L. is a
-1 -1

pointer to a list of locations which use the external.

The EXTERNAL declaration is encoded as 2.

3.2.3. Code Segments

Object code is specified by the use of the CODE command as follows:

24

CODE n ch
n

25

Note that although relocatable flag information is not destroyed by the linker,

most normal relocatable values are modified when linking together several

segments. Also note that the relocation flag stating 'unused' is used to fill

up any extra cells which are unused in a code block. The empty cells do not

actually exist in an object module's image; their non-existence is detectable

via the relocation flags.

CODE is encoded as 3.

3.2.4. Patch declarations

As symbols in an ENTRY list are processed, various external symbols

become resolvable. In general, the external references may have occurred very

far back in the pair of object modules being linked. To avoid having to store

the entire object module in main memory, the PATCH command is defined. Its

function is to direct the loader to perform a patch to memory while loading.

The format of the command is

PATCH addr val

where the relative address addr is modified by loading the value val into it.

Note that all PATCH commands are executed by the loader. The value of

the PATCH operands addr and val may change however as the relative displace­

ments of instructions change as new object modules are linked.

The PATCH directive is encoded as 4.

3.2.5. Miscellaneous control commands

Various forms of linker/loader directives may potentially exist (e.g.

for execution time debugging control). One necessary in a basic linker JS

a directive to specify the end of an object module. It is specified by

END.

The encoded value of END 1s 5 .

4. The BCODE Loader

Although the BCODE linker (see section 3) and loader have not been

implemented, their design is nevertheless presented because they form an

integral part of any machine independent BCODE system. Since the loader

is simply the final phase of object module processing after all linking,

this section was to contain a description of how this phase was implemented.

The loader not having been implemented, this section is empty.

We note, however, how the loader fits into the overall link/load

process by the following block diagram:

object module1 object module 2

I I
-1

link object module3 phase1

27

I • • r

., ,----- ---~
-.!, .,,

link phase2

load module loader

object module
n

link phase
1 n-

28

5. An Interpreter for the BCODE Machine.

With the exception of a few features (most noteably external symbols),

an interpreter for the BCODE machine has been implemented on the HP21MX system

in microcodes. The implementation is straightforward. A number of BCPL

programs have been executed on the HP machine via

BCPL source
(code generation)

BCODE generator

I BM 370/168

I

BCODE
(execution)

result
BCODE interpreter

HP21MX

Our data show that the percentage gain in space reduction as compared

to the same BCPL source being translated to OCODE and then to HP Assembler

codes (the currently standard procedure to execute BCPL programs on the HP)

ranges from 10% to 40% depending on the characteristics of the programs.

,,

29

References:

[P] Peck, J.E.L., V.S. Manis, W.E. Webb, Code Compaction for
Minicomputers with Intcode and Minicode, Technical Report 75-02
Compute r Science, UBC, 1975 .

[R] Richards, M., The BCPL Prog rammin g Manual, Computer Science
Technical Manua l 75-1 0, UBC,19 75.

[W] Wong, Kenny W.O., Introduction to OCODE, Computer Science, UBC.1976,

OCODE to BCODE Conversion Paqe A1

!EE~.!!Q.i:! 1• OCQQ_§ j;,Q .!lf.Q]] Translation.

This appendix defines the OCOOE to BCODE translation
process. Each OCODE instruction is listed alonq with its ECODE
equivalent. In scme cases, a sequence of OCOCE instructions
translates into a sinqle RCODE equivalent; this sequence is
list€d together.

The notatjon to he usEn is defined helow:

n

Ln

g

ss

sz sh of

~ome (non-nEgative) integer.

I.ab e 1 a s u sE o. i n

LAB L42 . . . JUMP L42

the notation 1(1), L(2), ••• , L(k) indicates that
k labels are nc,q11irEd.

Global cell number (for example, q=37 in "LG 17").
The notation q(1), q(2), ••• , q(k) indicates that.

k globals are required.

A string qiven in one of two forms. Form 1 is a
numter n (length cf string) followed by n
integers. Each integer is the decimal
representation of a single character in the
string. The second form also beqins with a number

n, but the lAnqth is fclloweo. by n characters
enclosed in double quotes. For example, the
strinq "ABC" can ce represented as

3 65 fi6 67 (in ASCII)

or as

3 "ABC"

The second form is clearly preferable as it is
machine ind~pendent.

Three integers (size, shift, cffset)
define a s~lector for SLCTAP and SLCTST.

used to

OCODE to BCODE Convqrsion

ABS

COM

OA'IALAB Ln

DEEUG

DIV

EQ

EOV

END

ENDBLCCK
n ss (1) • • • ss (n)

ENDPFOC ss

EN'I'L.I\BS

ENTRY •••

FINISH

ABS

DIV

EQ

F.QV

{see right)

(see riqht.)

FINISH

P aqe A2

Hnarv operator: abs

BCPL statement delimiter

label definition (for data)

??? (Not implemented)

Binary operat er: div

Binary operator: eq

einat."y operator: eqv

End of prog ra tl

Marks end of blocks whose
names are given by ss(1) •••
ss (n)

Marks enn of rcocedure ss

Define entry points.
format is:

ENTLABS n ss(1) 1(1)
ss(2) L(2)

:
ss(n) L(n)

OCODE

where 'n' is the numher of
symbols and •ss (i) L (i) • qive
the name (in string fcrm) and
the value (a label) of symbol
i. 1!.91~: If a lahel is •10 1 ,

its corcespondinq syrnbcl is
external.

Indicate the start cf a
procedure. OCODE format is:

E N'l' RY n L c (1) • • • c (n)

where 'L' is the label
defining the start of the
procedure, and 1 c (1) ••• c (n)'
are the n characters of the
procedure's name.

Halt ECODE machine

OCCCF to RCODE Conversion

FIX

FNAP n

FNRN

GB Y'I E

G F.

GLOBAL

GOTO

GR

INCLUDE

ITEMC 'ch•

ITEMF ss

ITEML Ln

IT EM N n

JF Ln

,JT Ln

JUMP I.n

CALL n-1
PUSH'l'

FNRN

GF.TBY'T'E

GE

GOTO

GR

JF Ln

JT Ln

,JU MP Ln

P aqe A3

??? (Not iirplemented)

Function call: PUSHT pushes
the function result back cnto
the stack. Note that FNAP
translates into two BCODE
instructions.

Retur-n fr-om function

Einac v operator: %

Binary opera toe: >=

Define q loba ls. OCODE format
is:

GLOJ3AL n q (1) L (1)
q {2) L (2)

q (n) L (n)

This OCODE instruction
specifies that each qlcbal
q (i) is to be initializEd to
label L (i).

Indirect iurop (destination
address is en top of stack)

Binary operator: >

??? (Not irrpleroented)

Define a cell initialized to
character •ch'

??? (Not ireplemented)

DefinE a cell initialized to
the address of label Ln

Define a cell initializEd to
integer- n

Jump if false (top of stack
tested and popped off)

Jump if not false (see JF)

Unconditional
u n dist n rh ed)

;u rop (stack

OCCDE to BCODE Conv~rsion

Lll.A Ln

LC • Ch'

LE

LF ss

LG q

LL Ln

LLG g

LLP n

LLX ss

LN n

LP n

LOGAND

LOGOR

LS

LSHIF'I'

LSTR ss

LX ss

MINUS

MOD op

MOCSLCT

L n

LP.

I.JG q

LI a

LG q

tP n

L a.

L n

LIP n

LOGAND

LOGOR

LS

LS HI F'r

LI a

MINrJS

MOD op MODST

Defini?
DATALAB)

labEl

load character

(see

n = hinary value of 'ch'

Rinary operator: <=

??? (Not irrplemented)

also

Load contents of qlobal cell

Load contents of labelled cell
a= address of label

Load address of qlcbal

Load address of eel 1 n on
the current stack fram~

Load address of external c~ll

Load number

Load cell n on current stack
frame

Binary operator: &

Binary operator::

Binary operator: <

Binar.y operator: <<

Load address of strinq
a = address ot ss

Load contents of external cell
where strinq 11 ss 11 specifies
the name of the external
symbol and "a" is that
symbol's address.

Binary operator: -

B in a c y o per at o r ' o p ' is
modified so that it will Etore
the result back into the first
operand. Note that three
ECODE instructions are needed.

Not used hy BCPL compiler

OCODE to □CODE CcnvPrsion

OCQQl; ~!:~.!

NE

NEG

NECV

NFEDS ss

NOT

PA RAM ET ER

BYTEADDR
Pl3Y'I E

PLUS

RES Ln

REM

RSHIFT

RSTACK n

NE

NF.QV

NO'T'

PUTl3YTE

PLUS

JUMP Ln

REM

f!SHIF'J'

RTAP n CALL n-1

RTRN RTRN

RV qv

SAVP. n SETS n-1

SECTICN ss

SG g SG g

SL Ln s a

SLCT AP sz sh of

SLCTS'I sz sh of

SP n

L f SLC'l'AP

L f SLCTST

SP n

Binary operator: ,=

Unary operc1tor: -

llnary operator: 11eqv

???

Unary op~rator: ,

??? (Not irr:plemented)

PaqeA"1

Store byte. NotP that PUTEYTE
is a t e r n a r v ope r a to r : t 11 e
sequence BY'IEADDR fEYTE
translates into a sinqle ECODE
instruction.

Binary operator: +

Unconditional 1um~ to end of
.Yi!12! block

Ainarv operator: rem

Binary operator: >>

Not used in BCODE machine

Routine call

Return from rcutine

Unary operator: rv

Set stack pointer

Start of new ~r.oqram section

Store into global

Store into labelled locaticn
a= address of label

Extract field (f = {of,.sz,shl
packed). Note that two ECODE
instructions are required.

Deposit field (like SLCTAP)

Pop the top element off the
stack and storP it at index n

OCOOE to OCODE Conversion

STACK n

STAR'IBLOCK

STIND

STRING ss

STORE

SWI'l'CHCN

sx ss

SETS n-1

ST IND

(see right)

s a

PaqeAfi

in the c11rrent stack frame.

Set stack pointer to location
n-1 in currant stack frame

Marks start of block

Store indirect (destination
address is on top of stack)

??? (Define strinq?)

Instructs code qenerator to
flush all temporary values to
core

Multi-way
format is:

tranch.

SWITCHON n D C(1) L(1)
C(2) L(2)

C(n) L(n)

OCODE

where 'n' is the number of
cases, 'D' is the default
label, and 'C{i) L(i)' is the
value-label pair for case i.
The BCODE machine SUFfCrts
switchinq via a binary search
(SWITCH □) or an indexed iump
(SWITCH X) •

Store into external cell
a= address of ext€rnal symbol

ss

No floating point operators (of format #xxx) are implemented.

Appendix 2: Using the BCODE Code Generator Under MTS

The BCPL compiler generating BCODE is invoked via the MTS

command

$RUN YYC4:BCPL [SCARDS=sourcefile] [SPRINT=printfile]
[0=ocodefile] l=objfile PAR=par

where sourcefile is the name of the BCPL source file

printfile is the name of the file to receive the program
listing

ocodefile is the name of the file to which the OCODE is to
be punched (if desired)

objfile is the name of the file to which the HP Assembler
source for the BCODE is to be emitted

par is the standard parameters string supported by the
BCPL-V compiler (see [R]). At a minimum PAR=A/L must
be specified.

The number of BCODE instructions generated is printed on

SPRINT. The BCODE file (objfile) may be transferred to paper

tape via the system program *PUNCHJOB.

